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1 Introduction

1.1 Overview

This Research in Computer Science project is part of an effort to develop an automatic
verification system (similar to Spec# [BLS04], ESC/Java [Fla+02] or ESC/Java2 [SC06]
and the Java Modelling Language JML [LBR99]) for the Scala [Ode09] programming
language. Scala is a strongly typed multi-paradigm language developed at the Ecole
Polytechnique Fédérale de Lausanne that runs on the Java Virtual Machine.

The contribution of this project is a specification and verification technique for Scala
traits, under special consideration of behavioural subtyping [LW94]. Traits, also known
as mixins (see the glossary of [OSV08] for a definition of the two terms in the context
of Scala), have been introduced by Moon [Moo86] in 1986 and are seen as a solution
to the diamond or linearisation problem [BC90; Duc+06] of multiple inheritance. So far,
mixin-based inheritance is mainly available in untyped dynamic languages, but rarely
as a native language feature (e.g. in Ruby). Scala is currently one of the few strongly
typed languages that offer native support for traits.

We use Boogie [Bar+05], a static programme verifier developed at Microsoft Research,
to verify our examples. Although the syntax of the specification language used in this
report has been influenced by Boogie, the resulting proof obligations are nevertheless
general in the sense that they are given in first-order logic.

Boogie performs a series of transformations from a source programme written in the
Boogie Programming Language (BoogiePL, current version being Boogie 2 [Lei08])
and finally passes the resulting proof obligations to a theorem prover. BoogiePL is a
procedural intermediate language that includes method specifications and that is used
to verify several high-level languages such as Spec#, C (using VCC [Coh+09]), Dafny
[Lei10a] or Chalice [Lei10b] by first encoding the source programme (and corresponding
specifications) in BoogiePL and then having Boogie verify this encoding.

4



1.2 Motivation 5

We expect the reader to be familiar with object-oriented programming concepts in
general, especially inheritance and subtyping, as well as software verification concepts
such as pre- and postconditions, specifications and contracts. Basic knowledge of the
Scala language and Scala traits is also assumed.

1.2 Motivation

Our motivation to engage in Scala trait verification has been driven by the stackable
modification example found in [OSV08, p. 222 ff.]. A derived example, which will be used
as a running example throughout this report, is shown in Listing 1.1.

Listing 1.1: An example of stackable modifications
class IntCell {

var x: Int = 0

def get() = this.x

def set(x: Int) {
this.x = x

}
}

trait Doubling extends IntCell {
override def set(x: Int) {

super.set(2 * x)
}

}

trait Incrementing extends IntCell {
override def set(x: Int) {

super.set(x + 1)
}

}

var cid: IntCell = IntCell with Incrementing with Doubling
/* cid.get() is always odd (or zero) */

var cdi: IntCell = IntCell with Doubling with Incrementing
/* cdi.get() is always even (or zero) */
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The concept of stackable modifications gave rise to the following research questions,
which have been addressed in this project:

Specification language How to specify methods – e.g. Doubling.set – that invoke
super-methods, without knowing to which class or trait super will be bound by the
time the method participates in a mixin?
This question is legitimate not only for traits, but also for classes such as class A

extends B that invoke super-methods, since when used in a mixin composition, super
can actually be bound to some trait T and not to B, as one might expect.

Specification linearisation How to verify that cdi.get will always return an even
value after calling cdi.set, whereas cid.get will always return an odd value? Gene-
rally speaking, how to cope with the fact that traits can be mixed in different orders into
different classes?

Behavioural subtyping How to guarantee a method such as def m(c: IntCell)

that all cells passed to it show a certain behaviour, e.g. return odd or even values?
Utilising Scala’s type system is not an option, since it only incorporates a weak notion of
behaviour, namely by structural and nominal subtyping. Neither is the straight-forward
approach of working with the specifications of the IntCell only, since these specifica-
tions must be as general as possible in order to not restrict future mixin compositions.

How to enforce behavioural subtyping for classes (and traits), e.g. such that all sub-
types of class OddIntCell with Incrementing with Doubling return odd values
only?

Flexibility Always enforcing behavioural subtyping can significantly reduce the appli-
cability and thereby the benefits of traits. A flexible trait verification technique should
therefore grant developers the liberty of deciding themselves where and when to enforce
behavioural subtyping.

With respect to our stackable modifications example, enforcing behavioural subtyping
in general would imply that the traits Doubling and Incrementing must both be
behavioural subtypes of IntCell. This implies that we either give a very weak – and
thus possibly meaningless – specification to IntCell in order to grant more freedom
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to the inheriting traits, or that we give a meaningful specification to IntCell, thereby
constraining the inheriting traits.

Modularity When do trait specifications generate proof obligations: once at declaration-
time or every time they occur in a mixin? In case of the latter, is it necessary to inspect
the trait body each time it occurs in a mixin, or is it sufficient to consider its specifications
only?

1.3 Proceeding

The rest of this report is structured as follows: Section 1.4 lists several use-cases which
have been assessed according to the challenges they might pose to verification; Section 2
introduces the elements of the specification language we developed in order to specify
Scala traits; Section 3 contains various definitions necessary to finally formulate the
proof obligations stated in Section 4. A specified and Boogie-encoded version of our
running example is shown in the appendix in Listing 6.1.

1.4 Scala traits

1.4.1 Overview

In the current chapter we briefly describe properties and characteristics of Scala traits
that are relevant to behavioural subtyping. More general introductions to Scala and
Scala traits can be found in A Tour of Scala1 or in [OSV08].

Inheritance Traits are declared as

trait T extends B with T1 with . . . with Tn

where B is a class or trait and T1, . . . Tn, n ≥ 0, are other traits. Just like Scala classes,
traits can make super-calls, i.e. invoke the parent class methods they override.

1http://www.scala-lang.org/node/104

http://www.scala-lang.org/node/104
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Traits are used in mixin class compositions

class A extends B with T1 with . . . with Tn

where B is a class or trait and T1, . . . Tn, n ≥ 0, are traits.

Traits only have a single constructor taking no arguments. Moreover, that primary trait
constructor cannot explicitly invoke its super-constructor.

Linearisation In contrast to Java’s class inheritance, where the binding of super is
already known when the class is declared, super is late-bound in Scala. By the time a
class is instantiated Scala puts all inherited classes and traits into a linear order and
binds super accordingly. This linearisation process is defined formally in [Ode09, p. 52
ff.]. Considering the declaration of cid from our running example, we have it that super
inside of Incrementing is bound to IntCell, whereas it is bound to Incrementing
inside of Doubling, although both traits are declared to inherit from IntCell.

We could thus regard super as a generic class argument that is bound not until the
class is instantiated. This implies that methods making super-invocations can only be
specified in terms of yet unknown super-methods.

Type system Each trait definition also defines a corresponding type, similar to class
definitions. Trait mixins are reflected by the type system, but the order in which traits
occur in a mixin composition is not taken into account. Hence, we cannot utilise Scala’s
type system to ensure behavioural subtyping, as shown in Listing 1.2.

Listing 1.2: Scala’s type system ignores trait order
def m(c: IntCell with Incrementing with Doubling) {. . .}

m(cid) // Both invocations
m(cdi) // are permissible.

It is worthwhile to observe that Scala’s with-keyword serves two related but nonetheless
different purposes: declaring classes by mixin composition and declaring intersection
types [Pie02]. Both applications are illustrated in Listing 1.3.
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Listing 1.3: Mixin class composition define intersection types
/* Mixin composition */
class M extends Incrementing with Doubling

/* Argument c is of an intersection type */
def m1(c: Incrementing with Doubling) {. . .}
def m2(c: M) {. . .}

m1(new M) /* Valid */
m2(new M) /* Valid */
m1(new Incrementing with Doubling {}) /* Valid */
m2(new Incrementing with Doubling {}) /* Invalid */

1.4.2 Use-cases

While the stackable modifications use-case shown in Listing 1.1 has initially motivated
us to study behavioural subtyping in the context of Scala traits, we nevertheless collected
additional use-cases that may pose challenges to the verification of traits. This section
presents several use-cases extracted from various sources, e.g. papers and blogs.

Mimicking Java language constructs

Interfaces Traits are used to mimic Java interfaces: they merely specify the signature of
a class without providing any implementation and they cannot be instantiated. Examples
of this use-case can be found in [Sca], e.g. scala.actors.remote.Service and in
the package scala.collection.interfaces.

References: [Sue09]

Abstract classes Traits are used to mimic abstract classes in Java: they cannot be
instantiated, but unlike interfaces they already contain some implementation. Examples
of this use-case can be found in the Scala standard library, e.g. scala.collection.
generic.Sorted.

References: [Sue09]
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Stackable modifications

Several traits extending or restricting themselves to a common base class are stacked
(or chained, cascaded) in different orders to yield classes that are composed of the same
basic elements (the traits) but show different behaviour. See Listing 1.1 for an example
of this use-case.

This is analogous to a filter pipeline where each filter in the pipeline performs a specific
operation on its input and where each filter’s output is the input to the next filter.

This use-case of traits also resembles the well-known decorator example from [Gam+94],
with the important limitation that decorations can only be applied statically at compile-
time.

References: [OSV08, p. 222 ff.]

Thin vs. rich interfaces

A thin interface has only a few methods and is thereby easier to implement for a service
provider. A rich interface has a lot of convenience methods and is thereby easier to use
for a client.

In Scala such a rich interface would be implemented as a trait that implements all the
convenience methods in terms of only a few basic methods. A concrete class now only
has to implement the thin interface. Afterwards, it can mixin the rich interface to offer a
convenient API to its clients.

Listing 1.4: Declaring thin and rich interfaces
class Rational(n: Int, n: Int) extends Ordered[Rational] {
...

def compare(that: Rational) =
(this.num * that.den) - (that.num * this.den)

}

trait Ordered[A] {
def compare(that: A): Int /* Abstract thin interface */

/* Rich interface’s convenience methods. */
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def < (that: A): Boolean = (this compare that) < 0
def > (that: A): Boolean = (this compare that) > 0
def <= (that: A): Boolean = (this compare that) <= 0
def >= (that: A): Boolean = (this compare that) >= 0

}

This distinction between thin and rich interfaces (on the implementation level) can also
be achieved in Java by using an abstract class implementing all convenience methods,
and a concrete class extending the abstract one. The concrete class then only has to
implement the basic methods left unimplemented by the abstract class.

The Java approach, however, becomes problematic once we have multiple rich interfaces
that are applicable to concrete classes, because we have to combine them in (many) new
abstract base classes. This can result in duplicated code or incoherent base classes.

This is not an issue in Scala where a class can inherit from multiple traits.

Listing 1.5: Using rich interfaces
trait Ordered[A] {

// ... Ordered trait as defined before ...
}

trait Iterable[A] {
def next(): A

def nextN(n: Int): List[A] = ...
def everyNth(n: Int): List[A] = ...
def transform(f: A => A): Iterable[A] = ...

}

class MyString extends Ordered[MyString] with Iterable[String] {
var content: String = ""

def compare(that: MyString): Int = ...
def next(): A = ...

}

References: [OSV08, p. 216 ff.; OM09]
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Multiple Inheritance, Aggregation

In this very general use-case, traits are used in a mixin class composition simply to
aggregate functionality. That is, traits are only used because they enable a class to inherit
from multiple other classes. In Java one would probably implement this by aggregation,
i.e. by declaring a class with references to other classes providing the required services.

The traits participating in such a mixin composition are not tightly coupled with respect
to inheritance relationships, super-calls or aggregation. That is, they do not show parti-
cular indicators hinting at the fact that they are finally combined in a mixin composition.
In other terms, when studying the traits one by one on their own, it is not self-evident,
let alone mandatory, that the traits are eventually combined.

Modules, Packages

A trait can be used in a similar way to a module or package, in the sense that the trait
itself contains a coherent (as seen by the developer) set of functions, classes, objects
and other traits. The outer trait can therefore be regarded as a module or package. The
significant difference, however, is that such a package trait can participate in mixin
compositions, just as any other trait can.

Grouping In the grouping use-case, several such package traits are finally mixed into
one class that makes use of the thereby inherited functionalities, i.e. of the functions,
classes, objects and traits inherited from the different grouping traits. In a sense, the
grouping use-case is a generalisation of the multiple inheritance use-case: a rather
arbitrary composition of functionality that is not tightly coupled.

Instances of the grouping use-case can be found in the Scala source code, e.g. scala.
tools.nsc.ast.parser.SyntaxAnalyzer in the version of Scala 2.8.0 RC6.

Two-dimensional extending A special variant of the grouping use-case is the problem
of extending a set of data types (first dimension) as well as a set of operations (second
dimension) defined on the data types. When adding new data type variants and new
operations it should be possible to independently combine the extensions without having
to neither change nor duplicate existing code.
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[ZO05] gives a detailed introduction into the problem and also suggest two solutions
using Scala traits: the first is based on object-oriented decomposition (interpreter pattern),
the second on functional decomposition (visitor pattern). Both solutions are equivalent in
the sense that they allow extensions to be made and combined independently. However,
each solution puts the focus on one dimension and makes it slightly more cumbersome
to write extensions in the other dimension.

In contrast to the traits mixed into the SyntaxAnalyzer, the package traits used in
[ZO05] are strongly coupled by inheritance relationships. This property could be used
as a heuristic guiding the decision if a certain package trait is an instance of the very
general grouping use-case, or if it represents a more specialised use-case.

1.4.3 Conclusion

After studying the previously listed use-cases we decided to focus on the stackable
modifications use-case during our development of a verification technique for Scala traits,
since it uses Scala’s trait inheritance to full capacity, thereby pushing the boundaries
of the technique we seek to develop. Moreover, we assumed that being able to verify
instances of the stackable modifications use-case is a prerequisite for the verification of
instances of more complex use-cases, such as the two-dimensional extending use-case.



2 Specification language

This chapter subsequently introduces the components of our verification technique,
mainly the syntactic elements of the specification language we use to declare method pre-
and postconditions and the concept of specification linearisation. The syntactic elements
are presented as an extension of the Scala language specification1, but hiding them inside
comment blocks (as done in JML) might be more appropriate for an initial reference
implementation. The proof obligations that must be discharged in order to verify such
specifications will be presented in Section 4.

For the sake of simplicity, we presume that classes do not declare auxiliary constructors
and thus only implement a primary constructor.

2.1 Method specifications

We specify Scala methods in terms of pre- and postconditions expressed in first-order
logic, extended by the possibility of referencing other specifications by means of spe-
cification references, which are actually simplified specification functions as defined by
[KM10].

The pre- and postconditions are declared as requires and ensures clauses directly following
the method signature, as done in e.g. Boogie [Lei08]. Note that these clauses are not part
of the Scala language, but our own extension. Postconditions support two additional
keywords which may not occur in preconditions: result, denoting the return value
of a method and old(e), denoting the evaluation of an expression e in the old heap, i.e.
the heap as it existed before the method invocation and in which the precondition held.
old(e) can be written as just e if e contains only objects that are not modified during
the method execution. The code snippet in Listing 2.1 illustrates the use of the constructs
introduced so far.

1Which implies that the sources presented in this report will not compile as is

14
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Listing 2.1: Basic method specifications
def m(x: Int, y: Int): Int =

requires: y > 0
ensures: ∃ r : Int • old(x) = result · sqrt(old(y)) + r ∧ 0 ≤ r ∧ r < sqrt(old(y))

{ x / sqrt(y) }

Considering the Doubling trait from our running example we quickly see that we can-
not specify its set() method without referencing the specifications of the super.set()
method, where super is yet unbound. We therefore adopt the concept of super-
references to our specification language, as shown in Listing 2.2, and we use the term
abstract specification to indicate that a specification contains super-references and concrete
specification to indicate that it does not. A detailed description of the form specification
references may have can be found in the appendix.

We also adopt the concept of this-references, where this.m.pre in a specification de-
notes the composed precondition (i.e. the one resulting from a mixin composition,
see Section 2.2) of a method m, just like this.m() invokes the composed method m
as resulting from a mixin composition. Such a this-reference is used in Listing 2.2 to
specify the constructor of the IntCell class in terms of its method set, which the
constructor invokes. In case of class M the postcondition this.set.post(x) is now linea-
rised to get() = 2x. If we would also mix in trait Incrementing, it would be either
get() = 2x+ 1 or get() = 2(x+ 1), depending on the order of the traits.

Listing 2.2: Specifications with super- and this-references
class IntCell(x: Int)

requires: this.set.pre(x)
ensures: this.set.post(x)

{
this.set(x)

...

def set(x: Int)
ensures: get() = x

{. . .}
}

class M(x: Int) extends IntCell(x) with Doubling

trait Doubling extends IntCell {
override def set(x: Int)
requires: super.set.pre(2x)
ensures: super.set.post(2x)

{ super.set(2 * x) }
}
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The precondition of IntCell.set in Listing 2.2 has been omitted and thereby defaults
to true, which is perfectly fine. The precondition of IntCell’s constructor, however,
has not been omitted, since that would make the verification of the constructor fail. If it
would have been omitted it would also default to true, which would be ok as long as the
precondition of set is true. Since this cannot be guaranteed – a trait with a precondition
other than true might be mixed into the IntCell – it is mandatory for the constructor
to reference set’s precondition.

2.2 Specification linearisation

The operational behaviour of a class resulting from a mixin composition, e.g.

class OddCell extends IntCell with Incrementing with Doubling

is determined by the composed classes and traits and their linearisation, as mentioned
before. Similarly, we need to compose the corresponding specifications in order to
determine a valid specification for the resulting class. Since the composition must be
done with respect to a given class linearisation, we call it the specification linearisation
algorithm.

The specification linearisation algorithm applied to a class M yields a so-called contract
CM . Contracts will be introduced in Section 2.3, they may be seen as Java interfaces
equipped with method specifications. The specification linearisation algorithm performs
textual substitution on both pre- and postconditions alike:

• for each method m and for each specification clause m.s (in any order, i.e. there is
no need to topologically sort methods or clauses according to their dependencies)

– recursively replace all super-references inside m.s by the actually referenced
specifications, where super is bound to the next class in the class linearisation
chain, which is advanced by one at each recursive descent

– substitute the actual arguments passed to the referenced specification function
for the formal arguments of that specification function

– bind all this-references to CM



2.2 Specification linearisation 17

If the specification linearisation algorithm reaches a state where the class linearisation
chain has already been traversed completely, i.e. the end of the chain has been reached,
but where there still are super-references to resolve, it will terminate with an exception.

Listing 2.3: A mixin composition
class B {

def m(x: Double): Double =
{ return x }

}

trait T2 extends B {
def m(x: Double): Double =

requires: x ≥ 0
∧ super.m.pre(sqrt(x))

ensures: super.m.post(sqrt(x))
{ return super.m(sqrt(x)) }

}

trait T1 extends B {
def m(x: Double): Double =
requires: super.m.pre(−x)
ensures: super.m.post(−x)

{ return super.m(-x) }
}

trait T3 extends B {
def m(x: Double): Double =
requires: x 6= 0

∧ super.m.pre(1/x)
ensures: super.m.post(1/x)

{ return super.m(1 / x) }
}

class M1 extends B with T1 with T2 with T3
class M2 extends B with T3 with T1 with T2
class M3 extends B with T2 with T1 with T3

The following derivations correspond to the work of the specification linearisation
algorithm when applied to the classes M1, M2 and M3 as declared in Listing 2.3. The
triple-bar equality symbol as used in φ ≡ ρ indicates that ρ follows from φ in zero, one or
more steps of the specification linearisation algorithm. Zero steps imply that the formula
has been simplified or otherwise rewritten.

Class linearisation of M12:

[M1, T3, T2, T1, B]

Specification linearisation:

M1.m.pre(x)
≡ T3.m.pre(x)
≡ x 6= 0 ∧ T2.m.pre(1/x)
≡ x 6= 0 ∧ 1/x ≥ 0 ∧ T1.m.pre(sqrt(1/x))

2Omitting Scala’s base classes such as AnyRef or Any
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≡ x 6= 0 ∧ 1/x ≥ 0 ∧B.m.pre(−sqrt(1/x))
≡ x 6= 0 ∧ 1/x ≥ 0 ∧ true
≡ x 6= 0 ∧ 1/x ≥ 0
≡ x > 0

Class linearisation of M2:

[M2, T2, T1, T3, B]

Specification linearisation:

M2.m.pre(x)
≡ T2.m.pre(x)
≡ x ≥ 0 ∧ T1.m.pre(sqrt(x))
≡ x ≥ 0 ∧ T3.m.pre(−sqrt(x))
≡ x ≥ 0 ∧ −sqrt(x) 6= 0 ∧B.m.pre(1/− sqrt(x))
≡ x ≥ 0 ∧ −sqrt(x) 6= 0 ∧ true
≡ x ≥ 0 ∧ −sqrt(x) 6= 0
≡ x > 0

Class linearisation of M3:

[M3, T3, T1, T2, B]

Specification linearisation:

M3.m.pre(x)
≡ T3.m.pre(x)
≡ x 6= 0 ∧ T1.m.pre(1/x)
≡ x 6= 0 ∧ T2.m.pre(−(1/x))
≡ x 6= 0 ∧ −(1/x) ≥ 0 ∧B.m.pre(sqrt(−(1/x)))
≡ x 6= 0 ∧ −(1/x) ≥ 0 ∧ true
≡ x 6= 0 ∧ −(1/x) ≥ 0
≡ x < 0

The specification linearisation algorithm can also be used to detect cyclic references (e.g.
m.pre (transitively) references g.pre which in turn (transitively) depends on m.pre) in
the specifications by maintaining a closed set of fully-qualified names of the classes, traits
and contracts visited while following specification references in the specifications of a
method m. Since all references are either static or can at least be resolved statically with
respect to a given class linearisation, such a closed set is already sufficient to detect cycles
(and thereby to guarantee soundness). If a cycle is detected the linearisation algorithm
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terminates with a corresponding exception. Note that this simple approach prohibits
recursive specifications, but note also that this is a limitation of the implementation
presented in this report, not a general limitation of our technique (see also Section 6).

2.3 Contract declarations

For this section we assume a basic understanding of the so-called refinement relation
between specifications, which will be introduced formally in Section 3.5. Intuitively, if a
method specification (m.pre,m.post) refines another method specification (g.pre, g.post),
invocations of m may be safely substituted for invocations of g without introducing
errors to the overall programme. On the class level, if a class A refines a class B, or more
precisely, if the specifications of A refine those of B, it is safe to substitute objects of type
A for objects of type B. This property is called the Liskov substitution principle [LW94].

The specification constructs introduced so far enable developers to directly equip me-
thods with abstract or concrete specifications. Directly in the sense that the specifications
are part of the method declaration. Such specifications, however, are not yet sufficient to
enforce behavioural subtyping:

1. In order to require some kind of behaviour we must be able to uniquely address a
set of specifications, as in def m(x: IntCell respects C) {. . .}, where C is a
set of specifications for a subset of the methods defined by IntCell.

2. Let cell hold an object of type T, where T is a subtype of IntCell. If we pass
that cell to m we must ensure that it behaves according to the set C of method spe-
cifications, i.e. that it refines them. However, verifying this relation is impossible if
the specifications of class T or those in C are abstract, since the super-references
are still unbound.

3. As stated initially, it might not always be desirable to enforce behavioural sub-
typing. Hence, we need a mechanism to explicitly declare for which classes
behavioural subtyping is to be enforced.

We therefore extend our specification technique by a concept we call contracts, which is
undeniably related to, but not to be confused with contracts as defined by [Mey97]. Our
contracts are uniquely named entities consisting of method signatures and corresponding
pre- and postconditions only (i.e. no method bodies), somewhat analogous to Java
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interfaces. Contract method signatures are just like regular class method signatures, they
thus have to be unique with respect to the pair 〈method name, method type〉.

Unlike the method specifications introduced so far, contracts may only contain concrete
specifications, i.e. no super-references. Hence, it is always possible to check for two given
contracts if one is a refinement of the other. Listing 2.4 shows two contracts suitable for
our running example. The keyword contract beginning a contract declaration is not
part of the Scala language, but our own extension.

In contrast to method specifications, where this-references are essential in order to
reference the specifications as resulting from a mixin composition (see Section 2.2), this-
references inside contracts are only syntactic sugar. A this-reference such as this.m.pre
inside a contract C can simply be replaced by C.m.pre3 because contract specifications
always have to be concrete.

Listing 2.4: Contracts suitable for IntCells
contract OddGetter {

def set(x: Int)
ensures: get() mod 2 = 1

}

contract EvenGetter {
def set(x: Int)
ensures: get() mod 2 = 0

}

2.4 Contract annotations

Contracts can now be used to require a certain behaviour from objects passed to methods
and also to declare that behavioural subtyping is to be enforced for certain classes (or
traits). Listing 2.5 shows such contract annotations in the context of our running example.
The keyword respects declaring a contract annotation is not part of the Scala language,
but our own extension.

Listing 2.5: Annotating IntCell with a contract
class OddCell extends IntCell with Incrementing with Doubling

respects OddGetter

def m(c: IntCell respects OddGetter) {. . .}

m(new OddCell) /* Valid */

3This-references inside contracts can be convenient if the contract name is long or if the contract is renamed
often, but they do not increase the expressiveness
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Specifications are linearised (see Section 2.2) only when a class is declared to respect a
contract C, since we then expect the linearised specification to be concrete4 in order to be
able to verify that the linearised specification refines C. This implies that a trait declara-
tion containing a respects-clause will be valid only if the trait specification contains no
super-references5.
The linearised specification is discarded once the refinement relation has been veri-
fied and only the contracts that a class has been annotated with are used for further
verifications.

By definition, annotating a class B with a contract C enforces behavioural subtyping for
all methods specified by the contract, so that all subtypes of B must have methods that
refine the methods contained in C. Listing 2.6 illustrates the enforcement of behavioural
subtyping.

Listing 2.6: Behavioural subtyping for an IntCell

/* Let OddCell be declared as before. */

/* Valid, since GoodCell is a behavioural subtype of OddCell. */
class GoodCell extends OddCell {

override def set(x: Int)
requires: super.set.pre(−x)
ensures: super.set.post(−x)

{ super.set(-x) }
}

/* Invalid, since BadCell is not a behavioural subtype of OddCell,

* i.e. BadCell does not respect contract OddGetter.

*/
class BadCell extends OddCell {

override def set(x: Int)
ensures: get() = x

{ this.x = x }
}

Multiple contracts C1, . . . , Cn may be used conjointly to express that a class respects all
of them, as shown in Listing 2.7. The example also demonstrates that the contracts do
not override each others specifications.

4At least for the methods specified by C
5Again, only for the methods specified by that contract
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Listing 2.7: Annotating IntCells with multiple contracts
val cell: IntCell respects OddGetter, PositiveGetter = . . .

def m(c: IntCell respects OddGetter) {. . .}
def g(c: IntCell respects PositiveGetter) {. . .}

m(cell) /* Valid */
g(cell) /* Valid */

m(new IntCell with Incrementing with Doubling) /* Invalid*

Contracts can also declare constructors and fields, just like any regular Scala class. When
annotating a class or trait with a contract the verifier has to check that the annotated class
declares at least the fields declared by the contract. An example of a contract specifying
a constructor can be found in the appendix in Listing 6.3.

Given method m as defined in Listing 2.7, it would be possible to allow an invocation
such as

m(new IntCell with Incrementing with Doubling)

by having the system automatically verify that the resulting object respects the required
contract OddGetter. Such an automatisation would result in less code by relieving
developers from the need of explicitly declaring respects-clauses. However, this might
result in programmes that verify although the developer did not want them to verify.
We therefore require developers to always explicitly declare respects-clauses (and also
refines-clauses introduced in Section 2.6).

Contracts may appear in specification references, as illustrated in Listing 2.8.

Listing 2.8: Referencing contracts
contract PositiveSetter {

def set(x: Int)
requires: x > 0

}

def m(var cell: IntCell respects PositiveSetter, x: Int)
requires: PositiveSetter.set.pre(x)

{ cell.set(x) }
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2.5 Contract casts

When working with third-party libraries situations like the one illustrated in Listing 2.9
can occur, where the developer is not able to modify the declarations of classes from that
library in order to add certain respects-clauses.

Listing 2.9: 3rd-party libraries and contracts
/* Let ExternalClass and ECFactory be declared by a third-party

* library.

* Let contract MyContract be defined in the client code.

*/

def m(var ec: ExternalClass respects MyContract) { . . . }

val factory = new ECFactory()

val ec: ExternalClass = factory.create()

m(ec) /* Invalid, since ExternalClass is not declared to

* respect MyContract.

*/

val ec2: ExternalClass respects MyContract = factory.create()
/* Invalid for the same reason. */

To be able to cope with such situations we extend Scala with contract casts, which enable
developers to declare that a given object is of a type respecting a certain contract. This is
demonstrated in Listing 2.10.

Listing 2.10: Using contract casts
/* Let ExternalClass, ECFactory and MyContract be declared

* as before

*/

def m(var ec: ExternalClass respects MyContract) { . . . }

val factory = new ECFactory()

val ec: ExternalClass respects MyContract
= (MyContract) factory.create() /* Valid */
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m(ec) /* Valid */
m((MyContract) factory.create()) /* Valid */

Unlike type casts6, whose validity must be checked during run-time, contract casts only
consider statically declared types and thus can be checked at compile-time by a static
verifier.

2.6 Refinement declarations

Considering Listing 2.5 again, we might want to pass objects of a class

class MyCell extends IntCell with MyTrait respects MyContract

to m (as declared in Listing 2.7), where contract MyContract is a refinement of contract
OddGetter required by m. In order to address such situations developers can explicitly
declare refinement relations between contracts by means of refinement declarations. Once
established, these declarations enable the system to immediately decide by a simple
look-up whether or not two objects (i.e. their types) are compatible in the sense of the
refinement relation. Listing 2.11 illustrates the use of refinement relations. The keyword
refines denoting refinement declarations is not part of the Scala language, but our own
extension.

Listing 2.11: Declaring refinement relations I
contract MyGetter refines OddGetter {

def set(x: Int)
ensures: get() mod 2 == 1 ∧ get() > 77

}

val cell: IntCell respects MyGetter = . . .

/* cid and m as before */
m(cid) /* Valid */
m(cell) /* Valid */

A declaration such as contract C refines D is only valid if the set of methods decla-
red by contract D is a subset of the set of methods declared by contract C.

6Type down-casts, that is
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In general, it is not sufficient to only support refinement relation declarations when
declaring a new contract, since developers might want to establish a refinement relation
between contracts that are declared in external libraries. Developers may use the
contract keyword without a contract body, as shown in Listing 2.12, to establish
a refinement relation between two (or more) classes under such circumstances.

Listing 2.12: Declaring refinement relations II
/* Let C, D, E and F be contracts defined in an external library. */

/* Declares that the already declared contract C refines the

* contracts D and E.

*/
contract C refines D, E

/* Fails, since C is already declared. */
contract C refines F {

...
}



3 Definitions

This chapter introduces the toolset necessary to formalise the proof obligations generated
by the Scala language extensions we previously established:

• several utility functions that are needed to formalise the proof obligations

• specification functions, corresponding to the specifications given to methods in
terms of pre- and postconditions

• the refinement relation between contracts

3.1 Types

We use the following types to state the signatures of the functions defined in following
sections:

• Class, Trait and Object, denoting Scala classes, traits and objects, respectively

• Type, denoting Scala types; types are of form T or T1 × . . .× Tn → TR

• Heap, denoting programme heaps

• Bool, denoting Boolean values

• Ident, denoting identifier names

• Contract, denoting both explicitly declared and linearised contracts

• Method, denoting Scala methods; every method has a type T : Type, a name
N : Ident and a declaring contract C: Contract

26
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Moreover, we use set[T ] and list[T ] to denote a set or a list, respectively, containing
elements of type T .

We do not yet address the framing problem, but note that our verification technique is
independent of a particular framing technique. Consequently, we leave our heap model
abstract for as long as possible, until it is eventually necessary to refine it (e.g. as done in
the examples Listing 6.2 and Listing 6.4 in the appendix).

3.2 Utility functions

This sections introduces several utility functions that are necessary in order to formulate
the proof obligations generated by our trait verification technique. We usually proceed
by defining a function over single items, e.g. contracts, and then take the liberty to
generalise (to overload, if one likes) the function to also accept sets of the same type as
the single items.

To indicate that the argument to a function f(x) can be of one out of several types,
e.g. of type Class or of type Trait, we make use of union types [Pie02], by declaring
f : Class t Trait.

We write T1 <: T2 to denote that T1 is a subtype of T2.

We define

name : Method→ Ident
contract : Method→ Contract

as the name and the declaring contract, respectively, of a method, and

type : Method tObject→ Type

as the type of a method or of an object, where the type is the static type in the latter
case.

We define

meth : Contract t Class t Trait→ set[Method]

as the set of methods (including the constructors) declared by a contract, class or trait,
and we generalise it to
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meth : set[Contract t Class t Trait]→ set[Method]
meth(G1, . . . , Gn)⇔ meth(G1) ∪ . . . ∪meth(Gn)

for multiple contracts, classes and traits.

Analogously, we define (and generalise)

const : Contract t Class t Trait→Method

as the constructor declared by a contract, class or trait.

We define

matches : Method×Method→ Bool
matches(m, m′)⇔ name(m) = name(m′) ∧ type(m) = type(m′)

to hold whenever two given methods m and m′ have the same name and signature.
Observe thatm′ is always unique, since contracts may not declare more than one method
with the same name and signature.

We define

classlin : Class t Trait→ list[Class t Trait]

as the linearisation of a class or trait. Consult [Ode09, p. 52 ff.] for a definition of Scala’s
class linearisation algorithm.

We define

speclin : Class t Trait→ Contract

as the linearisation of the specifications of a class or trait M with respect to M ’s class
linearisation, as described in Section 2.2. The specification linearisation function depends
on the class linearisation function, as apparent from the referenced description.

Finally, we define

con : Class t Trait→ set[Contract]

as the set of contracts that a given class or trait respects, and we generalise it to

con : set[Class t Trait]→ set[Contract].

The set returned by con(M) for a class or trait M is transitively closed with respect to the
inheritance relation, i.e. the set contains all contracts that M or one of M ’s super-classes
(or super-traits) has been annotated with. See Listing 3.1 for an example.
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Listing 3.1: Respected contracts of a class
/* Let C, D, E and F be contracts defined in an external library. */

contract G refines F {. . .}

class B respects C, D {. . .}
trait T1 respects G {. . .}
trait T2 extends T1 {. . .}
class M extends B with T2 respects E

/* con(M) = {C, D, G, E}

* Note that F is not part of con(M)!

*/

3.3 Specification functions

Following [KM10], we associate a specification function with each method specification
clause, i.e. with each pre- and postcondition stated as requires and ensures clauses.
Specification functions are global functions (one function per method type) determining
whether the corresponding condition holds in a given state.

A precondition of any n-ary (possibly nullary) method of type S is an (n+3)-ary boolean
function

preS : Method×Heap× TT × T1 × . . .× Tn → Bool

where Heap represents the current heap, TT is the type of the receiver object (the this-
object) and where the Ti’s are the types of the n method arguments.
Recall, that we defined objects of type Method such that they contain the method name,
the declaring contract and the method type.

Similarly, a postcondition of any n-ary method is an (n+ 5)-ary boolean function

postS : Method×Heap×Heap× TT × T1 × . . .× Tn × TR→ Bool

where Heap×Heap represents the old heap (in which the precondition held) and the
current heap, i.e. the heap resulting from the method invocation, and where TR is the
method’s return type. If the method does not return anything, its return type will be
Unit and we assume that () is the only value of type Unit.
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For the sake of readability we will use specification functions as m.pre(. . .) instead of
pretype(m)(m, . . .), where m is a method, and likewise for postconditions.

3.4 Special contracts

Let C> be a contract that declares no methods. According to our definition of contract
refinement (Section 3.5), C> is the top contract, i.e. the contract that does not refine any
other contract, but itself is refined by all other contracts.

Let C⊥ be a contract such that

∀m : Method ∃m′ ∈ meth(C⊥) •

∀ p1 : T1, . . . , pn : Tn, result : TR •

matches(m, m′) ∧m′.pre(p1, . . . , pn) = true
∧m′.post(p1, . . . , pn, result) = false

C⊥ is the bottom contract, i.e. the contract that is not refined by any other contract, but
itself refines all other contracts.

Given a method m declared by some contract D, i.e. m ∈ meth(D), we define the
notation C.m such that

(C.m ∈ meth(C) ∧matches(m, C.m)) ∨ C.m = C⊥.m

That is, C.m either denotes a methodm′ that is declared by a contract C and that matches
m or it denotes a corresponding method declared by the bottom contract. Thus, C.m is
always well-defined for any contract C and any method m.

An obvious optimisation for an implementation of our verification technique would
be to not generate proof obligations corresponding to m v C⊥.m, but rather to abort
immediately, since the refinement relation never holds anyway.
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3.5 Refinement relation

The refinement relation that has been introduced intuitively in Section 2.3 is formally
defined over methods as

v : Method×Method→ Bool

m v m′ ⇔
∀ h, h′ : Heap, obj : TT, p1 : T1, . . . , pn : Tn, r : TR •

(m′.pre(h, obj, p1, . . . , pn)⇒ m.pre(h, obj, p1, . . . , pn))
∧

(m′.pre(h, obj, p1, . . . , pn)
⇒ (m.post(h, h′, obj, p1, . . . , pn, r)⇒ m′.post(h, h′, obj, p1, . . . , pn, r)))

where

• m and m′ are methods such that type(m) = type(m′)

• obj is a receiver object

• h and h′ are the old and the current heap, respectively

• T1, . . . , Tn are the types of the n (possibly zero) arguments of m and m′

• TR is the return type of m and m′

Consequently, we generalise the refinement relation to range over contracts as a whole
and then to range over sets of contracts:

v : Contract× Contract→ Bool
C v D ⇔ ∀m ∈ meth(D) • C.m v D.m

v : Contract× set[Contract]→ Bool

C v D1, . . . , Dn ⇔
n∧

i=1
C v Di

Note that the above definition of the refinement relation corresponds to the proof
obligations generated by a refinement declaration such as contract C refines D.
Thus, the refines keyword is the syntactic equivalent of the relation C v D.
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This chapter presents all proof obligations arising from our verification technique. Since
the majority of proof obligations corresponds directly to the verification of refinement
relations as presented in Section 3.5, being familiar with the relation is crucial for the
understanding of this section.

We will not consider well-known verification aspects that are not affected by traits and
class mixin compositions, e.g. verifying that the precondition of a method m holds at a
call-site.

4.1 Method specifications

Let m be a Scala method (or constructor) with n parameters and a method body bodym, a
precondition P and a postcondition Q. This corresponds to a Hoare-style [Hoa69] triple
{P} bodym {Q}which must be proven to hold.

Considering our verification framework, we thus have to show that

wp(bodym, m.post)⇒ m.pre

where m.pre and m.post are the specification functions corresponding to P and Q,
respectively, and where wp(. . .) represents Hoare’s weakest precondition.
This is the only proof obligation requiring access to the method body. Once the proof
obligation is discharged we only need the pre- and postconditions to verify any future
use of method m.

4.2 Refinement declarations

Proof obligation 1: A mere contract declaration such as contract C {...} does not
generate proof obligations, since there is nothing to verify yet. Refinement declarations

32
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such as contract C refines D, on the other hand, generate proof obligations, since
we must verify that the declared refinement relation actually holds. The generated proof
obligations directly correspond to the verification of C v D.

4.3 Class annotations

Let B be a Scala class, let T1, . . . , Tn be Scala traits and let C be a contract. We create a
new contract-annotated class M by declaring

class M(~p) extends B(f(~p)) with T1 with . . . with Tn respects C {. . .}

where p is the formal argument vector (possibly of length zero) and f is a pure function
returning a vector.

4.3.1 Refining an annotated contract

Let us at first consider the relation speclin(M) v C only, i.e. the proof obligations
that must be discharged in order to verify that the linearised contract of M refines the
contract C that M is annotated with.

Methods

Proof obligation 2: The proof obligations arising from the methods (excluding the
constructors!) are all of the form

∀m ∈ meth(C)r const(C) • speclin(M).m v C.m

i.e. each method declared by a contract C generates a proof obligation directly corres-
ponding to the refinement relation.
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Constructors

The proof obligations generated by a constructor specification are more intricate, since
Scala subsequently (following the class linearisation order) invokes all constructors
participating in the mixin.

To be able to follow the proof obligation presented below, it is crucial to know that
primary constructors in Scala cannot call a super-constructor directly, e.g.

class A(x: Int) extends B

{ super.this(-x) /*NOT valid Scala code */}

because that call is already made ”inside” the class declaration, e.g.

class A(x: Int) extends B(-x)

Valid constructor specifications therefore do not contain super-references, but only
contract references and this-references. For class M as defined in Section 4.3, let

• L = classlin(M) be the class linearisation of M (of length n)

• Li be the i-th element of L

• CM = speclin(M) be the specification linearisation of M

• Si be the specification of Li where each this-references is bound to CM

Proof obligation 3: To ensure that the invocation sequence conforms to the constructor
specifications of C, the following proof obligation has to be discharged:

∀ h, h′ : Heap, t : TT, ~p : TC • C.pre(h, f1(~p))
⇒ S1.pre(h, t, f1(~p)) ∧

(∀ h1 : Heap • S1.post(h, h1, t, f1(~p))
⇒ S2.pre(h1, t, f2(~p)) ∧

(∀ h2 : Heap • S2.post(h1, h2, t, f2(~p))
⇒ S3.pre(h2, t, f3(~p)) ∧

(∀ h3 : Heap • S3.post(h2, h3, t, f3(~p))
⇒ S4.pre(h3, t, f4(~p)) ∧

...
⇒ Sn.pre(hn−1, t, fn(~p)) ∧

(Sn.post(hn−1, h
′, t, fn(~p))⇒ C.post(h, h′, t, f1(~p))) . . .)))
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where

• TC is the type of the argument vector of C’s constructor

• fi are pure functions that return the arguments as passed to the i-th constructor (if
a constructor does not take arguments, fi returns nothing and e.g. Si.pre(h, fi(~p))
actually is just Si.pre(h))

• hi are intermediate heaps

To illustrate how the constructor argument functions fi look like, let us consider the
declarations

class A1(x: Int, b: Boolean)

class A2(z: Int) extends A1(2*z, true)

trait T extends A2

class A3(y: Int, s: String) extends A2(-y) with T

resulting in a class linearisation of classlin(A3) = [A3, T, A2, A1] and corresponding
constructor argument functions such that

f1(y, s) = (y, s)
f2(y, s) = ()
f3(y, s) = (−y)
f4(y, s) = (−2y, true)

Observe that f1 will always be the identity function and hence could be removed from
the above formula, but we nevertheless keep it for the sake of uniformity.

It is important to note that the intricate constructor proof obligation presented above is
always and exclusively generated when verifying that a linearised specification refines
a given contract, i.e. when verifying that speclin(M) v C. We will therefore continue
to use the refinement relation v to express proof obligations, but the reader must be
aware of the different forms of proof obligations generated for the verification of the
refinement relation.

4.3.2 Refining inherited contracts

Proof obligation 4: Let us examine the declaration of M in Section 4.3 again (omitting
constructor arguments, since they are of no interest here):

class M extends B with T1 with . . . with Tn respects C
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According to Scala’s type system, we have it that M <: B, M <: T1, . . . and M <: Tn. If
B and Ti have been annotated with contracts in order to enforce behavioural subtyping,
we have to ensure that speclin(M) is a behavioural subtype of each of them. Thus, we
also have to verify that speclin(M) v con(B, T1, . . . , Tn).

4.4 Multiple class annotations

Proof obligation 5: Generalising the above declaration of M by annotating M with
multiple contracts, as in

class M extends B with T1 with . . . with Tn respects C1, . . . , Cm

is straight forward and generates the following proof obligations:

1. speclin(M) v {C1, . . . , Cm}

2. speclin(M) v con(B, T1, . . . , Tn)

It is interesting to observe that, if we consider contracts similar to types, a class such as
M is of union type B t T1 t . . . t Tn and of ”union contract” C1 t . . . t Cm.

4.5 Trait annotations

Proof obligation 6: It is also possible to enforce behavioural subtyping for traits, e.g. by
a declaration such as

trait T extends B with T1 with . . . with Tn respects C

which generates the same proof obligations as in the case of the so far considered class
M . As already mentioned in Section 2.2, T may not contain any super-references in
specifications of methods that are also specified by C, since the class linearisation of
T is undefined and the verification would therefore fail while trying to resolve the
super-references.
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4.6 Variable declarations

A variable declaration such as

var x: B with T respects C

does not generate proof obligations, since it is not necessary that the corresponding
empty class declared as

class Mx extends B with T

already respects contract C, but rather, that an object obj that x eventually points to
respects C.

4.7 Assignments

Let a:A, b:B be two variables, where A <: B. An assignment such as b = a is only
valid if the system has already verified each refinement relation occurring in

∀ C ∈ con(B) ∃ C ′ ∈ con(A) • C ′ v C.

Such contributions to the system’s refinement knowledge base are either made explicitly
with respects- and refines-clauses or implicitly when verifying class declarations where
a contract-annotated class is extended.

Hence, assignments do not create additional proof obligations that have to be discharged,
but rather trigger look-ups during the verification of specification-enriched Scala code, in
order to see whether the refinement relations of interest have already been verified. That
is, the verifier needs to keep track of the refinement relations for which the corresponding
proof obligations have been generated. See Section 2.4 for an explanation why we do
not generate proof obligations for assignments on the fly, i.e. without an explicit request
from a developer.
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4.8 Methods

Method declarations

The verification of a method declaration such as

def m(x: B with T respects C1): M respects C2 {. . .}

has two aspects to consider: the formal argument type and the return type. However,
analogously to variable declarations already considered in Section 4.6, both aspects do
not create proof obligations.

Return statements

The verification of a return statement such as

def m(x: B with T respects C1): M respects C2 {
...

return y

}

where type(y) <:M is equivalent to the verification of

var result: M respects C2 = y

and thus is already covered by Section 4.7, which deals with assignments.

Method invocations

A method invocation such as m(x) also does not generate proof obligations because the
rules for assignments from Section 4.7 apply once again.
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4.9 Contract casts

Proof obligation 7: The verification of a contract cast such as

val x: B respects C = (C) y

where type(y) <: B and where the system does not already know1 that

∃ C ′ ∈ con(type(y)) • C ′ v C

holds, generates proof obligations corresponding to the verification of

speclin(type(y)) v C.

1Which would render the cast redundant



5 Conclusion

We have introduced a specification and verification technique for Scala traits that has
been designed with automated and responsive verification in mind. The proof obli-
gations have been formalised in first-order logic and are generated in a conservative
manner, i.e. triggered by explicit requests from developers.

Our main tools are specification references and specification functions enabling develo-
pers to specify methods in terms of other methods, especially in terms of yet unknown
super-methods. The concepts of specification super-references and specification lineari-
sations enable developers to compose different specifications to yield new specifications,
just as Scala’s class mixin composition yields new operations.

Our technique distinguishes between (possibly abstract) method specifications and
concrete, type-invariant behaviour declared as contracts and enforced by behavioural
subtyping rules. Regarding their behaviour, the former enables developers to leave
classes and traits open as long as possible, whereas the latter enables them to close the
behaviour if necessary.

We have manually encoded two stackable modification instances in Boogie and success-
fully verified them, thus showing that our technique can be applied to concrete instances
of the stackable modifications use-case.

Reviewing our initial research questions from Section 1.2, we conclude that we were
able to successfully address the question of a suitable specification language and that
of a specification linearisation algorithm. Our technique incorporates behavioural
subtyping but does not force developers to weigh meaningful specifications against
implementational freedom.
The answer to the question of modularity is a mixed blessing: each method body has to
be inspected only once, but the specification linearisation algorithm has to be executed
for each mixin composition. This results in the need to reverify each mixin composition
in which a given class or trait participates whenever the specifications of that class or
trait have been changed.
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6 Future work

We did not yet implement our verification technique, e.g. as an extension of the Scala
compiler. An implementation would enable us to test our verification technique with
more complex specifications and to challenge the interaction with the underlying theo-
rem prover, i.e. Boogie.

For the sake of simplicity we did not yet consider invariants and information hiding
(or data abstraction) (for example by means of abstraction functions [KM10], but we
regard both as orthogonal extensions of our technique.

Auxiliary constructors have also not yet been considered. Since Scala – unlike Java –
requires all auxiliary constructors to (indirectly) invoke the primary constructor as their
first statement, we assume that extending our technique with auxiliary constructors is a
straight-forward technicality.

In order to specify the examples presented in this report we did not need to deal with
the heap and hence we did not incorporate any framing technique, e.g. dynamic frames
[Kas06] in our verification technique. Again, we assume that such an extension is
orthogonal to our technique.

Another limitation of the current state of our technique – but not of the technique itself –
is the strict prohibition of cyclic specifications, which inhibits recursive specifications
(see Section 2.2). Once again, we assume that an extension with recursive specifications
and recursion variants is an orthogonal matter.

A worthwhile extension of our current specification language would be to support
contract inheritance. A contract E declared as contract E extends C,D would in-
herit and thereby reuse the specifications from the contracts C and D, but could also
override them and add new specifications, provided that E stays a refinement of C and
of D.

Another extension worth considering might be contract combinations. The developer
could declare that the combination of several existing contracts refines another existing
contract, as in contract C ⊕ D refines E.
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Appendix

Specification references

Specification references may be of the following form:

• (full-qualified) method specification references p.n.m.s, where

– p is a Scala package, e.g. Scala.utils or ch.ethz.dinfk

– n is the name of a contract, e.g. OddGetter; p may be omitted if n can be
resolved uniquely

– m is the name of a method, e.g. set

– s is either pre or post

• (full-qualified) constructor specification references p.n.s

• this-references this.m.s and this.s, respectively

• super-references super.m.s (but not super.s, since Scala does not support the
invocation of super-constructors inside sub-constructors)

Examples

The examples presented in this section have been encoded manually, their linearised
specifications have also been manually computed. They serve illustrative purposes only
and do not comprise all aspects of our verification technique. Note especially, that they
do not contain an encoding of the Scala method bodies in Boogie, which is necessary to
initially verify and thereby establish the pre- and postconditions. A possible encoding of
Scala programmes for the Boogie verifier can be found in [Wüs09].
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The proof obligations – presented in Section 4 as closed formulae with nested quantifiers
– are encoded in a sequence of assert and assume pairs. This in a sense more operational
encoding makes it easier to analyse failing verifications: in the case of a closed formula
encoding, Boogie’s error messages contain only the number of the formula’s first line,
whereas they contain the exact line number of the failing assertion in the case of the
sequential encoding.

Both examples have been verified without errors or warnings using Boogie 2.0 (with the
/smoke option) and Z3 2.4.

The first example encoded in Boogie is our running example.

Listing 6.1: IntCells with specifications
class IntCell {

var v: Int = 0

def get() = this.v /* A pure function */

def set(x: Int)
/* ensures: get() = x */

{ this.v = x }
}

trait Doubling extends IntCell {
override def set(x: Int)

/* ensures: super.set.post(2x) */
{ super.set(2 * x) }

}

trait Incrementing extends IntCell {
override def set(x: Int)

/* ensures: super.set.post(x + 1) */
{ super.set(x + 1) }

}

/*
contract OddGetter {

def set(x)
ensures: get() mod 2 == 1

}

contract EvenGetter {
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def set(x)
ensures: get() mod 2 == 0

}

*/

class OddCell extends IntCell
with Incrementing with Doubling
/* respects OddGetter */

class EvenCell extends IntCell
with Doubling with Incrementing
/* respects EvenGetter */

Listing 6.2: Boogie encoding of the IntCells
/*
* Preamble

*/

/* The modulo operation */
axiom (forall x: int, y: int :: {x % y} {x / y}

x % y == x - (x / y) * y
);

axiom (forall x: int, y: int :: {x % y}
(0 < y ==> 0 <= x % y && x % y < y) &&
(y < 0 ==> y < x % y && x % y <= 0)

);

/* Heap model */
type IntCell;
type Field _;
type Heap = <beta>[IntCell, Field beta] beta;

/*
* IntCell’s fields and pure functions

*/

const v: Field int; /* Field IntCell.v */

/* Pure function IntCell.get */
function get(h: Heap, this: IntCell) returns (int);
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axiom (forall h: Heap, this: IntCell :: { get(h, this) }
get(h, this) == h[this, v]

);

/*
* Contracts

*/

/* Contract OddGetter */
function OddGetter.set.pre(h: Heap, this:IntCell, x: int)

returns (bool) { true }

function OddGetter.set.post(oh: Heap, h: Heap, this:IntCell, x: int)
returns (bool) {

get(h, this) % 2 == 1
}

/* Contract EvenGetter */
function EvenGetter.set.pre(h: Heap, this:IntCell, x: int)

returns (bool) { true }

function EvenGetter.set.post(oh: Heap, h: Heap, this:IntCell, x: int)
returns (bool) {

get(h, this) % 2 == 0
}

/*
* Linearised specifications

*/

/* Linearised specifications of the OddCell */
function OddCell.set.pre(h: Heap, this:IntCell, x: int)

returns (bool) { true }

function OddCell.set.post(oh: Heap, h: Heap, this:IntCell, x: int)
returns (bool) {

get(h, this) == 2 * x + 1
}

/* Linearised specifications of the EvenCell */
function EvenCell.set.pre(h: Heap, this:IntCell, x: int)
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returns (bool) { true }

function EvenCell.set.post(oh: Heap, h: Heap, this:IntCell, x: int)
returns (bool) {

get(h, this) == 2 * (x + 1)
}

/*
* Refinement verifications

*/

/* Verify that the linearised specifications of the OddCell refine

* contract OddGetter

*/
procedure OddCell_set_refines_contract_OddGetter() {

var oh, h: Heap;
var x: int;
var cell: IntCell;

/* OddGetter.set.pre ⇒ OddCell.set.pre */
havoc oh, x, cell;
assume OddGetter.set.pre(oh, cell, x);
assert OddCell.set.pre(oh, cell, x);

/* OddCell.set.post ⇒ OddGetter.set.post -- Requires the

* previous steps

*/
havoc h;
assume OddCell.set.post(oh, h, cell, x);
assert OddGetter.set.post(oh, h, cell, x);

}

/* Verify that the linearised specifications of the EvenCell refine

* contract EvenGetter

*/
procedure EvenCell_set_refines_contract_EvenGetter() {

var oh, h: Heap;
var x: int;
var cell: IntCell;

/* EvenGetter.set.pre ⇒ EvenCell.set.pre */
havoc oh, x, cell;
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assume EvenGetter.set.pre(oh, cell, x);
assert EvenCell.set.pre(oh, cell, x);

/* EvenCell.set.post ⇒ EvenGetter.set.post -- Requires the

* previous steps */
havoc h;
assume EvenCell.set.post(oh, h, cell, x);
assert EvenGetter.set.post(oh, h, cell, x);

}

The second example is a modified version of the IntCell illustrating the use of constructor
specifications. It is purely artificial and rather short, but it is already non-trivial to
linearise and verify the specifications manually.

Listing 6.3: AddCell with specifications
class Store(z: Int)

/* requires: this.add.pre(z)

* ensures: this.add.post(z)

*/
{

var x: Int = 0
add(z)

def add(y: Int)
/* ensures: x = old(x) + y */

{ x += y }
}

trait Sqrt extends Store
/* requires: x ≥ 0 this.add.pre(sqrt(x))

* ensures: this.add.post(sqrt(x))

*/
{

add(sqrt(x))

override def add(y: Int)
/* requires: y ≥ 0 ∧ super.add.pre(sqrt(y))

* ensures: super.add.post(sqrt(y))

*/
{ super.add(sqrt(y)) }

}
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trait Neg extends Store {
/* requires: this.add.pre(-x)

* ensures: this.add.post(-x)

*/
add(-x)

override def add(y: Int)
/* requires: super.add.pre(-y)

* ensures: super.add.post(-y)

*/
{ super.add(-y) }

}

/*
contract ContractZero(z: Int) {

requires: z = 0
ensures: x = 0 // Annotated class must have such a field

def add(y: Int)
requires: y ≤ 0
ensures: old(x) ≤ x

}

*/

var ssn = new Store(0) with Sqrt with neg /* respects ContractZero */

Listing 6.4: Boogie encoding of the AddCell
/*
* Preamble

*/

/* Heap model */
type AddCell;
type Field _;
type Heap = <beta>[AddCell, Field beta] beta;

/* A discrete root function (rounding down) */
function sqrt(v: int) returns (int);

axiom (forall v: int :: { sqrt(v) }
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v >= 0
==>

sqrt(v) >= 0 && sqrt(v)*sqrt(v) <= v && v < (sqrt(v)+1)*(sqrt(v)+1)
);

/*
* IntCell’s fields and pure functions

*/

const x: Field int;

/*
* Contracts

*/

/* Contract ContractZero */
function ContractZero.pre(h: Heap, this: AddCell, z: int)

returns (bool) {
z == 0 // Everything else should fail

}

function ContractZero.post(oh: Heap, h: Heap, this: AddCell, z: int)
returns (bool) {

h[this, x] == 0 // Everything else should fail
}

function ContractZero.add.pre(h: Heap, this: AddCell, y: int)
returns (bool) {

y <= 0
}

function ContractZero.add.post(oh: Heap, h: Heap, this: AddCell,
y: int) returns (bool) {

oh[this, x] <= h[this, x]
}

/*
* Linearised specifications

*/

function ssn.add.pre(h: Heap, this: AddCell, y: int)
returns (bool) {
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-y >= 0
}

function ssn.add.post(oh: Heap, h: Heap, this: AddCell, y: int)
returns (bool) {

h[this, x] == oh[this, x] + sqrt(-y)
}

/*
* Constructors

*/

function Store.pre(h: Heap, this: AddCell, z: int)
returns (bool) {

ssn.add.pre(h[this, x := 0], this, z)

/* h[this, x := 0] denotes that the initial value of the field

* ’x’ is zero.

*/
}

function Store.post(oh: Heap, h: Heap, this: AddCell, z: int)
returns (bool) {

ssn.add.post(oh[this, x := 0], h, this, z)
}

function Sqrt.pre(h: Heap, this: AddCell) returns (bool) {
h[this, x] >= 0 && ssn.add.pre(h, this, sqrt(h[this, x]))

}

function Sqrt.post(oh: Heap, h: Heap, this: AddCell) returns (bool) {
ssn.add.post(oh, h, this, sqrt(oh[this, x]))

}

function Neg.pre(h: Heap, this: AddCell) returns (bool) {
ssn.add.pre(h, this, -h[this, x])

}

function Neg.post(oh: Heap, h: Heap, this: AddCell) returns (bool) {
ssn.add.post(oh, h, this, -oh[this, x])

}
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/*
* Method refinement verifications

*/

procedure ssn_add_refines_ContractZero() {
var oh, h: Heap;
var y: int;
var cell: AddCell;

/* ContractZero.add.pre ⇒ ssn.add.pre */
havoc oh, y, cell;
assume ContractZero.add.pre(oh, cell, y);
assert ssn.add.pre(oh, cell, y);

/* ssn.add.post ⇒ ContractZero.add.post -- Requires the previous

* steps

*/
havoc h;
assume ssn.add.post(oh, h, cell, y);
assert ContractZero.add.post(oh, h, cell, y);

}

procedure ssn_add_refines_ContractZero_alternative() {
/* Equivalent closed-formula encoding, presented for illustrative

* purposes only.

*/
assert (

forall oh: Heap, cell: AddCell, y: int ::
ContractZero.add.pre(oh, cell, y)

==> ssn.add.pre(oh, cell, y) &&
(forall h: Heap ::

ssn.add.post(oh, h, cell, y)
==> ContractZero.add.post(oh, h, cell, y)

)
);

}

/*
* Constructor refinement verifications

*/

procedure ssn_refines_ContractZero() {
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var oh,h: Heap;
var h’,h’’: Heap;
var z: int;
var cell: AddCell;

/* ContractZero.pre ⇒ pre */
havoc oh, z, cell;
assume ContractZero.pre(oh, cell, z);
assert Store.pre(oh, cell, z);

havoc h’;
assume Store.post(oh, h’, cell, z);
assert Sqrt.pre(h’, cell);

havoc h’’;
assume Sqrt.post(h’, h’’, cell);
assert Neg.pre(h’’, cell);

/* post ⇒ ContractZero.post -- Requires the previous steps */
havoc h;
assume Neg.post(h’’, h, cell);
assert ContractZero.post(oh, h, cell, z);

}

procedure ssn_refines_ContractZero_alternative() {
/* Equivalent closed-formula encoding, presented for illustrative

* purposes only.

*/
assert (

forall oh: Heap, cell: AddCell, z: int ::
ContractZero.pre(oh, cell, z)

==> Store.pre(oh, cell, z) &&
(forall h’: Heap :: Store.post(oh, h’, cell, z)

==> Sqrt.pre(h’, cell) &&
(forall h’’: Heap :: Sqrt.post(h’, h’’, cell)

==> Neg.pre(h’’, cell) &&
(forall h: Heap ::

Neg.post(h’’, h, cell)
==> ContractZero.post(oh, h, cell, z))

)
)

); }
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