
Counterexamples for Complex Data Structures for a
Rust Verifier

Bachelor’s Thesis Project Description

Markus Limbeck
Supervised by Vytautas Astrauskas, Aurel Bílý

under Prof. Dr. Peter Müller
Department of Computer Science

ETH Zürich
Zürich, Switzerland

I. Introduction
Rust [1] is a general-purpose programming language

which guarantees rich memory safety properties, e.g.
well-typed Rust programs do not exhibit unexpected
side effects through aliased references. Prusti [2] is a
verification tool which uses this type system to simplify
the specification and verification of Rust programs. Prusti
is based on the Viper verification infrastructure [3]. Viper
was developed at ETH Zurich and provides an architecture
on which new verification tools can be developed simply
and quickly. While the verification process constructs
formal proofs in a sophisticated logic, most of these
details are hidden behind a layer of abstraction. This
allows a user of Prusti to write functional properties, e.g.
assertions, pre-/postconditions, within the source code
with a syntax similar to that of Rust program expressions.

If a verification fails, Prusti has some support for
counterexamples. A counterexample is a list of assigned
variables that demonstrate why a specific property does
not hold. This is very helpful in detecting the root
cause of an error. Therefore counterexamples have many
advantages and are always desired in any verification tool.

While Prusti is often able to generate counterexamples
for primitive data types [4], it struggles with more complex
data structures. Therefore the main goal of this thesis is to
extend the support of counterexamples for more advance
data types, e.g. recursive enums. Even simple programs
often need these complex data structures. Hence, it will
improve Prusti’s ability to generate counterexamples for
many more programs and, as a result, it will help users
identifying the root cause of their error.

II. Approach
To extend the support of counterexamples for complex

data structures we need to find the current limiting factors
for Prusti. This is best explained by an example. Listing
1 demonstrates how a Linked List can be implemented in
Rust.

1 struct LinkedList {
2 val: i32,
3 next: Option<Box<LinkedList>>
4 }

Listing 1: implementation of a Linked List in Rust

Rust needs to know the amount of space a type takes up
at compile time. To define a recursive type one needs to
use an indirection such as a box. Then the space is known
statically and the recursive type can be compiled. A box
is a smart pointer which points to a heap allocated value
of a generic type, in this case LinkedList. Listing 1 shows
that the box type is essential for complex data structures.
Prusti cannot generate a counterexample for a box type
as listing 2 and listing 3 demonstrate:

1 fn box_panic(x: i32) {
2 let y = Box::new(x);
3 if *y > 0 {
4 panic!();
5 }
6 }

Listing 2: example with box type

1 note: counterexample for "x"
2 initial value: 1
3 final value: 1
4 note: counterexample for "y"
5 final value: Box {
6 0: Unique {
7 pointer: ?,
8 _marker: ?,
9 },

10 1: Global,
11 }

Listing 3: counterexample for box type

While Prusti is able to generate a counterexample for
the variable x, in this case 1, it is not able to find a

1

counterexample for the variable y. Since the box type is
essential for complex data structures, it is a good starting
point to extend Prusti for this type.

Another limiting factor for Prusti’s counterexample
generation is the available information generated by the
backend Silicon [5]. Prusti works the following way: Prusti
translates the Rust program into a Viper program which
is then verified by Silicon. If verification fails, Silicon
generates a counterexample which Prusti translates back
to Rust. If Silicon does not provide enough information,
it is not possible for Prusti to generate a counterexample
without making changes to Silicon. Nevertheless, in many
cases Prusti has all the information needed but is not able
to make use of it. Listing 4 demonstrates what is meant
by this.

1 #[ensures(result)]
2 fn sorted(list: LinkedList) -> bool { ... }

Listing 4: sorted function for Linked List

This function checks if a Linked List is sorted in as-
cending order. Of course the postcondition will not hold if
the parameter is not sorted. Prusti is not able to generate
a counterexample even though Silicon provides enough
information for a counterexample. Listing 5 is a simplified
output of Silicon’s counterexample.

1 _1 <- Ref (\$Ref!val!0) {
2 f\$next(perm: 1/1) <- Ref (\$Ref!val!2) {
3 f\$val(perm: 1/1) <- Ref (\$Ref!val!3) {
4 val_int(perm: 1/1) <- -2147479462
5 }
6 }
7 f\$val(perm: 1/1) <- Ref (\$Ref!val!2) {
8 f\$val(perm: 1/1) <- Ref (\$Ref!val!3) {
9 val_int(perm: 1/1) <- -2147479462

10 }
11 val_int(perm: 1/1) <- 1
12 }
13 }
14 _5 <- 1
15 _6 <- -2147479462

Listing 5: counterexample for Linked List from Silicon

In this case _1 corresponds to the Linked List given by
the parameter and _5 and _6 correspond to the value
stored in the first and second element in that Linked List.
In other words, the counterexample in Prusti would be
a Linked List with two elements with the values 1 and
-2147479462.

Once a counterexample has been generated, it raises the
question on how to present it to the user. An unwise choice
could lead to hard-to-read results which might hinder users
more than help them. One possible way could be using

the type definition. This is how Prusti currently handles
primitive data types. Another way could be to decouple
the references which would lead to a more structured
result. Listing 6 shows what is meant by this.

1 note: counterexample for "list"
2 initial value: LinkedList {
3 val: 1,
4 next: std::option::Option::Some(box1)
5 },
6 box1: Box {
7 0: Unique {
8 pointer: list1,
9 _marker: ?,

10 },
11 1: Global,
12 },
13 list1: LinkedList {
14 val: -2147479462,
15 next: std::option::Option::Some(?)
16 }

Listing 6: sorted function for Linked List

This prevents deeply nested structures, and especially
for bigger data structures it improves readability dra-
matically. Additionally, Prusti could provide a special
annotation for the type definition such that the user can
specify how the output should look like, similar to the
formatted print in Rust.

1 #[c_print("[{}] -> {}", val, next)]
2 struct LinkedList { ... }

Listing 7: annotated type

1 note: counterexample for "list"
2 initial value: LinkedList {
3 [1] -> [-2147479462] -> ?
4 },

Listing 8: counterexample with annotated type

A. Core Goals
• Identify the current limitations of Prusti’s counterex-

ample generation, e.g. the box type, and find ex-
amples with complex data structures where Silicon
provides enough information.

• Design an extension of the current algorithm such
that it supports complex data structures and discuss
how counterexamples should be presented.

• Implement the designed algorithm in Prusti to im-
prove its counterexample generation.

• Test the implementation against the previously col-
lected examples and evaluate its quality.

B. Extension Goals
• More fine-grained counterexamples: At the

moment Prusti’s counterexamples include only

2

values of variables at the beginning and at the end of
a function. In addition to this, it would be beneficial
for a user to analyze the changes for each variable
throughout a function and to provide a more detailed
counterexample in form of a control flow graph.

• Counterexamples for models: Prusti has a fea-
ture called models. A model is an abstraction over a
type which can be used in specifications. For example
the type std::vec::Vec has a very complicated internal
representation but the only interesting part in respect
to counterexamples are the contents stored by it.
As listing 9 shows, it would be very helpful to have
a counterexample for the model to identify why a
specific specification does not hold.

1 #[model]
2 struct std::vec::Vec<T> {
3 contents: GhostSeq<T>,
4 }
5 ...
6 #[requires(vec.model().contents == [1, 2])]
7 fn foo(vec: Vec<i32>) { ... }
8 ...
9 foo(vec![3, 4]); // ERROR: vec should

10 // be [1, 2]
Listing 9: Example for a model in Prusti

• Improve Silicon’s counterexample generation:
As already mentioned Prusti depends on the
information provided by Silicon. While in many cases
this is enough, some shortcomings of Silicon might
be discovered during the work for this thesis. Fixing
these issues in Silicon would further improve Prusti’s
counterexample generation.

• Improve hard-to-read counterexamples: Auto-
matically generated counterexample often have
strange values, like _6 in listing 5. A desirable
goal would be to improve the readability of a
counterexample. This can be done by automatically
adding additional Prusti specifications to the Rust
program if the verification fails. Alternatively, there
might be an option for the Z3 Solver [6] (the SMT
Solver behind Viper) to specify which values should
be preferred for counterexamples.

• Identify spurious counterexamples: In general,
program verifiers have to be conservative and over-
approximate the possible set of counterexamples. In
the worst case this leads to spurious counterexam-
ples. The user might have difficulties to distinguish
between a real one and a spurious one. By adding
additional specifications to the Rust program, Prusti
can detect if a counterexample might be spurious and
can inform the user accordingly.

III. Working Schedule

Task Time
Identify the limitations of
Prusti’s current algorithm 2 weeks
Design the extension to support
complex data structures 2 weeks
Implement the extension into
Prusti 3 weeks
Evaluate the quality of the new
algorithm 1 week
Extension goals 8 weeks
Write final report 4 weeks

References
[1] Rust programming language. Accessed on 2022-03-15. [Online].

Available: https://www.rust-lang.org/
[2] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers, “Leverag-

ing Rust types for modular specification and verification,” ETH
Zurich, Tech. Rep., 2019.

[3] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verifi-
cation infrastructure for permission-based reasoning,” in Verifi-
cation, Model Checking, and Abstract Interpretation (VMCAI),
ser. LNCS, B. Jobstmann and K. R. M. Leino, Eds., vol. 9583.
Springer-Verlag, 2016, pp. 41–62.

[4] C. Hegglin, “Counterexamples for a rust verifier,” Bachelor’s
Thesis, ETH Zurich, 2021.

[5] M. Schwerhoff, “Advancing automated, permission-based pro-
gram verification using symbolic execution,” Ph.D. dissertation,
ETH Zurich, 2016.

[6] Microsoft. Z3 prover. Accessed on 2022-03-15. [Online]. Available:
https://github.com/Z3Prover/

3

https://www.rust-lang.org/
https://github.com/Z3Prover/

	Introduction
	Approach
	Core Goals
	Extension Goals

	Working Schedule
	References

