
Counterexamples for Complex Data
Structures for a Rust Verifier

Bachelor Thesis

Markus Limbeck

August 14, 2022

Advisors: Prof. Dr. Peter Müller, Vytautas Astrauskas, Aurel B́ılý

Department of Computer Science, ETH Zürich

Abstract

Prusti is a deductive verification tool for the programming language
Rust. It is built on top of the Viper verification infrastructure and al-
lows users to write specifications directly in the source code and prove
their correctness. In limited cases a counterexample is automatically
generated for a verification failure. Counterexamples provide essential
information to speed up the debugging process.

This thesis aims to improve the current counterexample support in
Prusti. This is done by using a different Viper encoding and taking
advantage of recent changes in Viper’s backend Silicon. Specifically, a
new algorithm is implemented to translate a counterexample of Silicon
back to a suitable representation in Rust which can be reported back
to the user. This approach is not only capable of generating counterex-
amples for more complex programs, it also provides more detailed
counterexamples than the old approach.

i

Acknowledgements

First of all, I would like to thank my supervisors, Vytautas Astrauskas and
Aurel Bı́lý, for their exceptional support during our weekly meetings and
our countless Zulip conversations. Whenever I needed help, they always
provided valuable advice.

I also want to thank my mother, Sonja Limbeck, for proofreading my thesis.

Finally I would like extend my special thanks to Prof. Dr. Peter Müller
and the Programming Methodology Group for giving me the opportunity
to contribute to their projects and research.

ii

Contents

Contents iii

1 Introduction 1

2 Background 5
2.1 Verification pipeline . 5

2.1.1 Translation . 5
2.1.2 Back translation . 7

2.2 Type encodings . 7
2.2.1 Heap-based type encoding 8
2.2.2 Snapshot-based type encoding 8
2.2.3 Heap-dependent vs heap-independent 10

2.3 Refactored Prusti . 10
2.4 Type models . 12

3 Approach 15
3.1 Variable Mapping . 15

3.1.1 Old version . 15
3.1.2 Refactored version . 16

3.2 Back translation . 17
3.3 Reporting . 17

4 Implementation 19
4.1 Functions . 19

4.1.1 Extraction process . 19
4.1.2 Interpretation . 20
4.1.3 Default value . 20

4.2 Back translation . 21
4.2.1 Old version . 22
4.2.2 Refactored Prusti . 25

iii

Contents

4.2.3 Presentation . 35
4.2.4 Type models . 37

4.3 Customizable Counterexample 39
4.3.1 Syntax . 40
4.3.2 Implementation . 41

5 Evaluation 43
5.1 Comparison . 43
5.2 Complex data structures . 46

5.2.1 Vector . 46
5.2.2 Binary tree . 47

5.3 Timing Analysis . 51

6 Conclusion 53
6.1 Future Work . 54

Bibliography 55

iv

Chapter 1

Introduction

Individuals and businesses throughout the world are using software on a
daily basis. They often entrust their software with critical tasks, and a faulty
implementation can cause serious problems. As a consequence ensuring
correctness, although very difficult, is an important goal in software devel-
opment.

The general-purpose programming language Rust [6] can help achieving
this goal. It guarantees rich memory safety properties, e.g. well-typed Rust
programs do not exhibit unexpected side effects through aliased references.
This prevents a variety of errors commonly present in languages like C/C++
[1].

Further guarantees for Rust programs can be provided by external tools.
A deductive verification tool like Prusti [9] can be used to provide func-
tional correctness to Rust programs. Prusti is based on the Viper verifi-
cation infrastructure [12] developed at ETH Zurich. Functional properties
like pre-/postconditions are written directly into the source code, while the
sophisticated logic for formal proofs is hidden.

Listing 1.1 shows a function annotated with pre-/postconditions. Verifica-

1 struct X {

2 val: i32,

3 }

4

5 #[requires(x.val == 0)]

6 #[ensures(result)]

7 fn always_equal(x: X, y: X) -> bool {

8 x.val == y.val

9 }

Listing 1.1: Prusti annotations.

1

1. Introduction

1 error: [Prusti: verification error] postcondition might not hold.

2 --> test.rs:2:11

3 |

4 6 | #[ensures(result)]

5 | ^^^^^^

6 |

7 note: counterexample for "x"

8 initial value: X { val: 0, }

9 final value: X { val: 0, }

10 --> test.rs:8:17

11 note: counterexample for "y"

12 initial value: X { val: 1, }

13 final value: X { val: 1, }

14 --> test.rs:8:25

15 note: counterexample for "result"

16 final value: false

17 --> test.rs:9:1

Listing 1.2: Counterexample for always equal.

tion of this function by Prusti will fail and will report that the postcondition
might not hold. Rather than identifying the reason manually, Prusti can be
configured to generate a counterexample.

The counterexample seen in Listing 1.2 provides variable assignments af-
ter the verification error. For example, the variable x has an initial value
X{val: 0,} and a final value X{val: 0,}. If always_equal(x, y) would
be executed with X{val: 0,} (initial value) as its first argument, x would
hold the value X{val: 0,} (final value) at the point of verification failure.
The second parameter y is analogous. The variable result corresponds
to the return value of the function. It only contains a final value, in this
case false. Using this information, it is easy to see why the precondition
is not strong enough to guarantee the postcondition. Adding a stronger
precondition, e.g. #[requires(x.val == 0 && y.val == 0)], results in a
successfully verifiable function.

Unfortunately, this counterexample generation has its limitations. If data
types increase in complexity, Prusti often fails to produce a counterexample.

Listing 1.3 shows an implementation of a LinkedList and the same function
as before but with different parameter types. A verification of this changed
function will obviously still fail. Unfortunately, Prusti will not report a coun-
terexample back. Its counterexample generation algorithm cannot deal with
recursive data structures and, as a result, will fail to produce one.

The main goal of this thesis is to improve Prusti’s support for counterexam-

2

1 struct LinkedList {

2 val: i32,

3 next: Option<Box<LinkedList>>,

4 }

5

6 #[requires(x.val == 0)]

7 #[ensures(result)]

8 fn always_equal(x: LinkedList, y: LinkedList) -> bool { ... }

Listing 1.3: Implementation of a LinkedList.

ples with the focus on complex data structures. This will be achieved by
using a different type encoding.

At the time of writing Prusti is being refactored. As a result the counterex-
ample support has to be changed as well. We will focus more on improving
the counterexample algorithm for the refactored version than for the old
version.

Since more complex data structures naturally result in more complex coun-
terexamples, part of the effort is providing an improved way of presenting
counterexamples back to users.

The main contributions of this project were:

• We improved Prusti’s counterexample generation by using a different
type encoding.

• We provided a new customizable way to present a counterexample.

• We adapt Prusti’s counterexample generation algorithm to make it
compatible with the refactored version.

• We discussed current limitations and how they could be resolved in
the future.

In the following chapter we provide necessary information about Prusti and
how it interacts with the Viper verification infrastructure. In Chapter 3 we
give a high-level overview of our approach before we dive into the details
in Chapter 4. In Chapter 5 we evaluate our implementation and compare it
with Prusti’s current one. Chapter 6 summarizes our project and describes
potential future improvements.

3

Chapter 2

Background

In this chapter we describe the technical details needed for this thesis. We
start by looking at Prusti’s verification pipeline. In Section 2.2 we explain
what a type encoding is and how it is used by Prusti. Section 2.3 describes
relevant changes between the old and the refactored version. In the last
section we introduce a Prusti feature called model.

2.1 Verification pipeline

In this section we will explain the verification process of Prusti on a very
high level. In general, the program under verification is translated into the
Viper intermediate verification language. Details about this language can
be found in the Viper tutorial [8]. We assume at this point that the reader
is familiar with the basics of this language. Once a program is translated,
it can be verified by Silicon [13]. Silicon is one of Viper’s backends and
is based on symbolic execution. In the case of a failed verification, Silicon
obtains a counterexample from the underlying SMT solver, Z3 [11]. This
counterexample is translated back to the level of Rust and presented to the
user in the form of additional information attached to the error message.

2.1.1 Translation

Here we will explain the translation process from Rust to the Viper inter-
mediate verification language in more detail. While the whole translation
is very complicated, the parts relevant for counterexamples are much more
understandable.

Prusti is an extension of the Rust compiler and as such it has access to
the compiler’s internal information. The compiler transforms Rust code
into various intermediate representations. One of these is called the mid-
level intermediate representation (MIR) [3]. Prusti’s translation is heavily

5

2. Background

based on the information given by this representation. Therefore we want
to inspect it a bit more closely.

The MIR is based on a control-flow graph. It is made up of basic blocks
which are uniquely identified by labels. All variables in the MIR, e.g. func-
tion arguments, have explicit types and are identified by an index written
with a leading underscore, like 1. The variable name 0 refers to the return
value of a function and the variable i corresponds to the i-th argument of
the function.

Prusti uses all of this information to generate a Viper program. Let us see
how the Rust function from Listing 1.1 would look like in Viper.

1 method always_equal() returns (_0: Ref)

2 {

3 var _1: Ref

4 var _2: Ref

5 var __t0: Bool

6 var __t1: Bool

7 var __t2: Bool

8 var __t3: Bool

9 label start

10 __t0 := true

11 ... // Preconditions

12 label pre

13 __t1 := true

14 label l0

15 __t2 := true

16 _0.val_bool := _1.f_a.val_int == _2.f_a.val_int

17 label l1

18 __t3 := true

19 assert _0.val_bool //Postcondition

20 }

Listing 2.1: We can see how the structure of the Viper program is influenced by the MIR. The
variables 0, 1, 2 correspond to the equally named ones in the MIR. Therefore we know that
0 refers to the result value and 1, 2 to the arguments of the original Rust function. The other
four variables indicate if a label, which refers to a basic block of the MIR, has been visited. The
first label and its code block deal with preconditions and the last one deals with postconditions.
The code in between encodes the actual functionality of the Rust function.

While Listing 2.1 demonstrates the idea of this translation process, it is only
a simplified version of the actual Viper program. We have changed and
shortened some names and omitted irrelevant information to improve read-
ability. The key elements to understand here are that basic blocks in the MIR
correspond to the code blocks after the labels and that each MIR variable has

6

2.2. Type encodings

1 __t0 <- true

2 __t1 <- true

3 __t2 <- true

4 __t3 <- true

5 _0 <- Ref (Ref!val!0) {

6 val_bool(perm: 1/1) <- false

7 }

8 _1 <- Ref (Ref!val!1) {

9 f_a(perm: 1/1) <- Ref (Ref!val!3) {

10 val_int(perm: 1/1) <- 0

11 }

12 }

13 _2 <- Ref (Ref!val!2) {

14 f_a(perm: 1/1) <- Ref (Ref!val!4) {

15 val_int(perm: 1/1) <- 1

16 }

17 }

Listing 2.2: In Silicon’s counterexample all variables are assigned some values. Primitive vari-
ables, e.g. t0, are directly assigned a value, in this case true. References, like 0, contain fields
which are assigned some values, in this case val bool and false.

an equally named Viper variable.

2.1.2 Back translation

Once a Rust program is translated, it can be verified by Silicon. If the ver-
ification fails, Silicon provides a counterexample. The Viper program from
Listing 2.1 would result in the following counterexample:

The counterexample from Listing 2.2 has to be translated back to Rust. This
involves two steps. First, we filter out irrelevant variables. Second, we
extract the values from Silicon’s counterexample.

As already mentioned Viper variables have their equally named MIR coun-
terparts. In addition, the compiler knows the relationship between MIR
variables and the original Rust Variables. We can use this knowledge to col-
lect tuples of Rust and Viper variables, e.g. (0, return value), (1, x) and (2,
y). We see that t0, t1, t2, t3 are not part of the final counterexample as
they do not refer to any Rust variables. Extracting all the information from
Silicon’s counterexample results in the counterexample seen in Listing 1.2.

2.2 Type encodings

In the translation process all Rust types have to be encoded in Viper. This
can be done via two different methods. The heap-based type encoding [2]

7

2. Background

uses Viper’s predicates and references, while the snapshot-based type encoding
[7] uses Viper’s domains. We assume the reader is familiar with Viper’s
predicates and domains.

For the Section 2.2.1 and the Section 2.2.2 we assume we have a Rust variable
x of type struct X { val: i32 }. We will explain how Prusti encodes
the type using the two different methods. While the following examples
showcase the idea of this translation process, the actual names in the real
encoding are slightly different.

2.2.1 Heap-based type encoding

The heap-based type encoding produces a new predicate for each type
which holds permissions for all of its fields. The encoding for our variable
x looks the following way:

field X_a: Int

predicate X(self:Ref) {

acc(self.X_a, write)

}

1 method fail(x: Ref)

2 requires X(x)

3 {

4 unfold X(x)

5 assert (x.X_a != 0)

6 fold X(x)

7 }

Listing 2.3: Failing method using a heap-based
encoded type.

1 x <- Ref(ref!val!0) {

2 X_a(perm: 1/1) <- 0

3 }

Listing 2.4: Counterexample for a heap-
based encoded type.

Silicon will fail to verify the method from Listing 2.3 and will produce the
counterexample shown in Listing 2.4. This counterexample looks similar to
what we have previously seen, and Prusti is fully capable of translating it
back to Rust.

2.2.2 Snapshot-based type encoding

The snapshot-based type encoding of the old version of Prusti and that of the
refactored one only differ slightly. In the following section we only explain
the newer encoding since most of the work of this project focuses on the
refactored version. Detailed information about the old one can be obtained
in the Prusti Developer Guide [7].

8

2.2. Type encodings

1 domain Snap_X {

2 function constructor_Snap_X(f_a: Int): Snap_X

3 function destructor_Snap_X_f_a(value: Snap_X): Int

4 ...

5 axiom ...

6 }

Listing 2.5: Snapshot-based encoding of struct X.

1 method fail(val: Int)

2 {

3 var x: Snap_X

4 x := constructor_Snap_X(val)

5 assert (destructor_Snap_X_f_a(x) != 0)

6 }

Listing 2.6: Failing method using a snapshot-based encoded type.

1 constructor_Snap_X(Int) : Snap_X {

2 0 -> x

3 else -> #unspecified

4 }

5 destructor_Snap_X(Snap_X) : Int {

6 x -> 0

7 else -> #unspecified

8 }

Listing 2.7: Counterexample for a snapshot-based encoded type.

The snapshot-based type encoding uses domains instead of predicates. Each
domain contains multiple functions and axioms. Since domain functions
cannot have a body, axioms are needed to provide meaning to them.

Listing 2.5 shows the parts of the type encoding which are relevant for us.
While the complete encoding contains more functions, we are mostly inter-
ested in constructor and destructor functions. Each field in the original type
has a destructor function. Given a variable with this domain as its type, we
can use them to “destruct” the variable to its field. The constructor does,
as the name suggests, the opposite. Given variables for each field, we can
“construct” the domain variable.

Again we use Silicon to verify the method seen in Listing 2.6. This will, of
course, fail and will produce the counterexample shown in Listing 2.7. This
counterexample looks vastly different to the one previously seen in Listing
2.4. The counterexample is now function-based rather than variable-based.

A function has entries in the form of input-output pairs and exactly one
default case. We can think about these entries in the following way: Given

9

2. Background

some input for a function, the return value of a function is either the output
of an entry or the default case. More details about this are found in Chapter
4.

This highlights why Prusti is not able to generate a counterexample anymore
and why a new algorithm is needed. Fulfilling this need is the main goal of
this thesis.

2.2.3 Heap-dependent vs heap-independent

We have now seen that the two encodings result in syntactically different
counterexamples but we also want to emphasize that they might also be
different semantically. This is due to the fact that one encoding depends on
the heap and the other does not.

The heap-based type encoding is, as the name suggests, heap-dependent.
In Viper, heap-dependent variables can only be accessed if the necessary
permissions are held. We can think of variables whose permissions are not
held at a certain program state as irrelevant at that program state, assuming
permissions are correct. A counterexample produced by Silicon will only
contain relevant variables. This means, depending on the program state of
the verification error, a counterexample might be less precise than it would
have been at an earlier program state because of missing permissions. More
about this problem can be found in the previous work on counterexamples
[10].

The snapshot-based type encoding is heap-independent. A counterexample
for a domain function at a certain program state will be at least as precise as
a counterexample at another earlier program state. This solves the problem
and results in a more detailed counterexample in many cases.

In Listing 2.8 we see an example of the previously described problem. At the
point of verification failure, line 17, the permissions for the field X a are not
held anymore and therefore Silicon does not provide a counterexample for
x2. For the function destructor(x1) Silicon does provide a counterexample.
This shows that the heap-independence of the snapshot type encoding can
result in more precise counterexamples.

2.3 Refactored Prusti

In this section we cover some important changes in the refactored version
which are relevant to counterexamples.

First, the old version uses the snapshot-based type encoding only on de-
mand, e.g. for checking structural equality, and therefore limits the places
where the new counterexample algorithm can be used. In the refactored

10

2.3. Refactored Prusti

1 field X_a: Int

2 predicate X(self:Ref) {

3 acc(self.X_a, write)

4 }

5 domain Snap_X {

6 function destructor(self: Snap_X) : Int

7 }

8

9 method fail(x1: Snap_X, x2: Ref)

10 requires X(x2)

11 {

12 var tmp: Int

13 unfold X(x2)

14 tmp := x2.X_a + 1

15 tmp := destructor(x1) + 1

16 fold X(x2)

17 assert(false)

18 }

Listing 2.8: The method fail() has two parameters. The first one has a domain type while
the second one is a reference. A verification of the method will always fail and does not depend
on the parameters. Line 13 and line 16 gain and release permissions for x2 respectively.

1 fn some_method(mut x: i32) {

2 x = 1;

3 x = 2;

4 }

Listing 2.9: Rust function with a mutable parameter.

version every type is encoded via the snapshot-based type encoding and the
new algorithm can always be used.

Another major change is the use of static single assignment (SSA). While in
the old version Rust variables and Viper variables had a one-to-one relation,
in the refactored version Rust variables and Viper variables have a one-to-
many relation. Let us consider a simple example.

In Listing 2.9 we see a simple function which changes the value of its param-
eter. Furthermore, we assume that the MIR variable name of this variable is
1. In the old encoding, seen in Listing 2.10, a variables is assigned multiple

times, e.g. in line 12 and line 17. In contrast, the refactored version, seen in
Listing 2.11, creates a new variable for each assignment. The MIR variable
1 corresponds to the set { 1 snap 0, 1 snap 1} of Viper variables.

11

2. Background

1 field value: Int

2 predicate Ints(self:Ref) {

3 acc(self.value, write)

4 }

5 method some_method()

6 {

7 var _1 : Ref

8 inhale Ints(_1)

9 ...

10 label l1

11 unfold Ints(_1)

12 _1.value := 1

13 fold Ints(_1)

14 ...

15 label l2

16 unfold Ints(_1)

17 _1.value := 2

18 fold Ints(_1)

19 ...

20 }

Listing 2.10: In the old version of Prusti
variables like 1 are assigned multiple times.
This is done by gaining permissions for the
value field, assigning a new value to it and
releasing its permission.

1 domain Snap_Ints {

2 function constructor

3 (self: Int) : Snap_Ints

4 ...

5 }

6 method some_method()

7 {

8 var _1_snap_0 : Snap_Ints

9 var _1_snap_1 : Snap_Ints

10 ...

11 label l1

12 inhale _1_snap_0

13 == constructor(1)

14 ...

15 label l2

16 inhale _1_snap_1

17 == constructor(2)

18 ...

19 }

Listing 2.11: The refactored version of
Prusti uses SSA. Each variable is assigned
exactly once. This is done via the inhale

keyword and the constructor() function
of the snapshot domain.

This poses new challenges, e.g. how to map Viper variables back to Rust
variables for counterexamples, but it also provides new opportunities such
as more fined-grained counterexamples. This is possible because we now
have intermediate values stored in those Viper variables.

2.4 Type models

Structs might contain fields that are currently not supported by Prusti. A
simple example would be struct X { values: Vec<i32>}. Fortunately, in
this case Prusti supports a more straightforward mathematical representa-
tion: sequence.

The feature type models allows us to abstract our unsupported field via the
supported mathematical type. A more detailed explanation of this feature
can be found in Prusti’s User Guide [4].

As we can see in Listing 2.12 the unsupported field in the original type
is changed to its mathematical representation. Listing 2.13 demonstrates

12

2.4. Type models

1 #[model]

2 struct X {

3 values: Seq<i32>,

4 }

Listing 2.12: A model is created by annotated a type via #[model].

1 #[requires(x.model().values == ...)]

2 fn some_method(x: X) {

3 ...

4 }

Listing 2.13: A model can be accessed in the specifications via model().

how the model is used in specifications. This bypassing of unsupported
features is very helpful, especially in the refactored version, for complex
data structures.

13

Chapter 3

Approach

In this chapter we give an overview of how the snapshot-based type encod-
ing is used to improve Prusti’s counterexample generation. On a high level,
we can split the changes into three parts: First, described in Section 3.1, we
find a new mapping from Rust variables to Viper variables with domain
types. From this point forward we will call these variables snapshot variables.
Second, explained in Section 3.2, we extract the information from Silicon’s
counterexample and translate it back to the level of Rust. In Section 3.3 we
describe how we provide the counterexample in a suitable way to the user.

3.1 Variable Mapping

We start by giving an idea of how the algorithm finds the Viper counterpart
of a Rust variable. This works differently depending on the version of Prusti.

In Section 3.1.1 and Section 3.1.2 we assume we have a variable x with type
struct X { val: i32 } and MIR name 1. Let us see how we find the
corresponding snapshot variable.

3.1.1 Old version

As the snapshot-based type encoding is only used on demand in the old
version, we might not be able to find a snapshot variable. If the encoding is
used and a snapshot domain is constructed, there is also an associated heap-
dependent function: function snap_X(self: Ref): Snap_X { ... } . This
function links heap-dependent variables with snapshot variables.

In Listing 3.1 we have a heap-based variable and a snapshot variable. Both
variables represent the same Rust variable. If we want to switch from the
heap-based variable to the other one we simply call the heap-dependent
function as seen in line 5.

15

3. Approach

1 method fail() {

2 var _1: Ref

3 var _1_snap: Snap_X

4 ...

5 _1_snap := snap_X(_1)

6 ...

7 }

Listing 3.1: Heap-dependent function us-
age.

1 function snap_X(Ref): Snap_X {

2 _1 -> _1_snap

3 else -> #unspecified

4 }

Listing 3.2: Counterexample of heap-
dependent function.

Assuming verification of fail() fails, Silicon will provide a counterexam-
ple for the heap-dependent function. Listing 3.2 shows the counterexample
which contains the link between 1 and 1 snap in line 2. Since we already
know that 1 corresponds to x, we have found a snapshot variable for x.

3.1.2 Refactored version

In the refactored version Rust variables are directly translated into snap-
shot variables. As explained in Section 2.3, Prusti uses SSA and we loose
the one-to-one relationship between Rust and Viper variables. So instead of
searching for a single snapshot variable we are searching for a set of vari-
ables. Let us look at an example:

1 method fail() {

2 var _1_snap_0: Snap_X

3 var _1_snap_1: Snap_X

4 var _2_snap_0: Snap_X

5 var _2_snap_1: Snap_X

6 ...

7 }

Listing 3.3: Method with multiple snapshot variables.

What we see in Listing 3.3 is a method with various snapshot variables.
We make use of the common prefix of these variable names to link them
to MIR variables, e.g. 1 → { 1 snap 0, 1 snap 1}. We utilize this set, a
concrete counterexample and the control-flow graph of the MIR to extract a
list of relevant snapshot variables. This part is quite challenging and will be
explained in full detail in Chapter 4. At this point, we have found a list of
snapshot variables for our x.

16

3.2. Back translation

3.2 Back translation

Once we have found a snapshot variable for x, we can translate it back to
the level of Rust. As already explained in Chapter 2, the snapshot-based
encoding contains destructor functions. We use these functions combined
with the type information of a Rust variable, e.g. which fields are part of it,
to construct a counterexample. Let us assume we have failed to verify some
method with Silicon and were presented with the following counterexample:

1 destructor_Snap_X_f_val(Snap_X) : Int {

2 _1_snap_0 -> 1

3 _2_snap_1 -> 2

4 else -> #unspecified

5 }

Listing 3.4: Back translation.

Our goal is to find a counterexample for x by extracting a value for its
field val. In Listing 3.4 we see the destructor function of our field. In this
function we find two key-value pairs: (1 snap 0, 1) and (2 snap 1, 2).
If we assume the snapshot variable of x is 1 snap 0, we learn that the value
of our field val is 1. If a value of a key-value pair is not a primitive type
this process is continued recursively. The back translation is possible for
Booleans, characters, integers, references, tuples, structs, enums, arrays and
unions.

3.3 Reporting

At this point we have a final counterexample and want to report it back to
the user. This is different depending on which version of Prusti is used. In
addition to the standard format, we also provide a new customizable format
for both versions.

We start with the old version. While the final output has not changed at
all for the user, internally it works a bit differently. We have to understand
that Prusti produces one counterexample for both type encodings. The user
should receive the best possible combination of these two. This is achieved
by a new merging process which iterates through the variables and creates
the most informative counterexample possible.

In the refactored version the format completely changes. Instead of only
providing an initial and a final value, we can now reflect all variable changes
in the counterexample. The following listings demonstrates the difference
between both versions:

17

3. Approach

1 struct X {

2 val: i32,

3 }

4

5 #[ensures(x != 3)]

6 fn fail(x: X) -> i32 {

7 x.val += 1;

8 x.val += 2;

9 x.val

10 }

Listing 3.5: Simple Rust function.

1 counterexample for "x"

2 initial value:

3 X { val: 1, }

4 final value:

5 X { val: 3, }

Listing 3.6: Part of the counterexample
output in the old version. We see that
a variable has an initial value and a final
value.

1 counterexample for "x"

2 value: X { val: 1, }

3 counterexample for "x"

4 value: X { val: 2, }

5 counterexample for "x"

6 value: X { val: 3, }

Listing 3.7: Part of the counterexample
output in the refactored version. We see
that each change is presented to the user
individually.

Even though we want our counterexamples to be as detailed as possible,
at some point, especially for nested types, they will be very hard to read
and not helpful anymore. As a countermeasure we provide the user with
an option to customize how types will be presented in the counterexample.
This is done via a new procedural macro. The user can specify a custom
format and choose which fields in which order should be included. As we
will see later this improves the readability of more complex types massively.

1 #[print_counterexample("custom output of X: val = {}", val)]

2 struct X {

3 val: i32,

4 }

Listing 3.8: Macro for custom counterexample in Prusti.

1 note: counterexample for "x"

2 custom output of X: val = 1

Listing 3.9: Customized counterexample format.

18

Chapter 4

Implementation

In this chapter we take a detailed look into the implementation of the coun-
terexample generation algorithm. Section 4.1 explains how information is
extracted from functions in counterexamples from Silicon. What follows,
in Section 4.2, is a detailed discussion of the back translation algorithm for
both versions of Prusti. As a last point, in Section 4.3, we discuss the new
procedural macro for customizing counterexamples.

4.1 Functions

In this section we explain how to extract information from functions. It is
divided into three parts. The first part, Section 4.1.1, discusses the extrac-
tion process. In the second part, Section 4.1.2, we interpret the meaning of
extracted information in terms of counterexamples and domains. The last
and third part, Section 4.1.3 explains a special case, called the default case, in
more detail.

4.1.1 Extraction process

In general, a function defines a relation between some input values and
some output values. Whenever we are given an input, we can uniquely
identify the function’s output. Let us look at a general form of a function in
a counterexample:

In order to extract information we store all entries from a function body in
a map. In this map the key is defined by the list of types in the header and
the value is defined by the return type. Once we have this map, extracting
information from a function is equal to checking if a certain key exists in its
map or not. If the key exists, we return the value of this map’s entry. If the
key does not exist, we return the default case.

19

4. Implementation

1 function_name(type_1, ..., type_n) : type_re {

2

3 (val_1 : type_1, ..., val_n : type_n)_1 -> val_re_1 : type_re

4 ...

5 (val_1 : type_1, ..., val_n : type_n)_k -> val_re_k : type_re

6

7 else -> val_default : type_re //default case

8 }

Listing 4.1: The function consists of a function header and a function body. The header is
made up by a unique name, a list of types and exactly one return type. In the function body we
always have exactly one default case and an arbitrary amount of entries. Each entry consists of
a list of concrete values, where each value’s type is defined by the list of types from the function
header, and a single return value.

4.1.2 Interpretation

While general functions in a counterexample just capture a relation between
inputs and outputs, domain functions can be interpreted in a different way.
A domain function of the form

function_name(a: Domain_name): return_type

can be interpreted as a function that destructs a domain into a smaller sub-
part, similar to getter functions in programming languages like Java. Then, a
counterexample of an instance of a domain type can be interpreted as all the
extracted information from all these functions for a given snapshot variable.

1 domain Snap {

2 function value(self: Snap) : Int

3 }

Listing 4.2: In this simple domain the function value defines the relation between an instance
of a domain type and a smaller subpart of it.

In the domain Snap we find one function of the previously described form.
Therefore a counterexample for variables of type Snap, can be interpreted
as extracting the information from the function value(). In other words, a
counterexample for variables of type Snap is isomorphic to a single integer.

4.1.3 Default value

An extraction process for the function value in Listing 4.2 either returns
the value of an entry or it returns the default value. If it is the former we
definitely have found a counterexample. If it is the latter we might have one.

If we use the extraction process on the function value for both variables x

and y, we get x = 0 and y = 0. This cannot be a valid counterexample for

20

4.2. Back translation

the method fail because it violates the precondition y != 0. This means
we have found a counterexample for x but not for y. Therefore the default
value only might return a counterexample.

1 method fail(x: Snap, y: Snap)

2 returns (res:Int)

3 requires value(y) != 0

4 ensures res != 0

5 {

6 res:= value(x)

7 }

Listing 4.3: A verification of this method will fail. The
variable y is restricted by the precondition, but x is unre-
stricted and therefore the postcondition cannot be guar-
anteed.

1 value(Snap) : Int {

2 else -> 0

3 }

Listing 4.4: This is part of the
counterexample provided by Sili-
con. The function body only con-
tains the default case and no other
entries.

The problem is the generation of the default case. Whenever a counterexam-
ple for a function is generated, Silicon’s SMT solver Z3 chooses arbitrarily
one of the function’s entries as the default case. While this is a highly sim-
plified explanation, it explains why we gain a default case by losing one
function entry.

This default case generation process can be changed by passing a flag called
model.partial = true via Silicon to Z3. Now Z3 creates an unspecified
default case and does not use an entry anymore.

1 value(Int) : Int {

2 x -> 0

3 else -> #unspecified

4 }

Listing 4.5: The new counterexample for Listing 4.3 created by Silicon with the flag
model.partial = true. The function body contains an unspecified default case and an addi-
tional entry.

If we use our extraction process on the counterexample from Listing 4.5,
we get x = 0 and y = unknown, which is a valid counterexample for our
method fail().

4.2 Back translation

In this section we explain how Prusti translates a Silicon counterexample
into its internal representation and how this representation gets reported

21

4. Implementation

back to the user. This process has to be explicitly enabled via the environ-
ment variable PRUSTI COUNTEREXAMPLE = true.

Since the algorithm differs in the two versions, we split this section into
two parts. Section 4.2.1 explains the translation for the old version and
Section 4.2.2 explains the translation for the refactored version. It is worth
mentioning here that in the following sections names of variables, functions,
etc. have slightly been changed and shortened for better readability.

4.2.1 Old version

In the old version of Prusti the counterexample generation algorithm con-
sists of three steps. Each step is repeated for each variable from the Rust
program. The first step, called variable mapping, tries to find a snapshot
variable for a Rust variable. The next step translates this snapshot variable
into an internal representation of Prusti. This is explained in detail in the
refactored version in Section 4.2.2 and skipped at this point. Instead we will
talk about some limitations of the algorithm. The last section and final step
is presenting the counterexample to the user.

Variable Mapping

Let us assume we want to find a snapshot variable for the Rust variable x of
type struct X { val: i32 }. For simplicity we assume we already know
that 1 is the MIR variable name of x.

1 method fail() returns (_0: Ref)

2 {

3 var _1: Ref

4 ...

5 label start

6 ... // Preconditions

7 label l0

8 ...

9 assert (... snap_X(_1)) //failing assertion

10 ...

11 }

Listing 4.6: The method fail() is a simplified
Viper program generated by Prusti. It contains
the variable 1 as a result of the heap-based type
encoding. We see in line 9 how the snapshot
function links the variable 1 to a snapshot do-
main. This is typically done in assertions.

1 snap_X(Ref): Snap_X {

2 _1 -> snap_0

3 else -> #unspecified

4 }

Listing 4.7: Counterexample for the
snapshot function.

22

4.2. Back translation

Given this information, there exists a Viper variable of type Ref called
1. As outlined in Chapter 3, we can use the snapshot function
snap_X(self: Ref) : Snap_X to find a snapshot value.

If we extract the information from the snapshot function in Listing 4.7 we
find the snapshot variable of x, in this case snap 0.

Limitations

We are going into detail about two limitations of the snapshot function that
restrict the ability of the counterexample generation.

First, Prusti’s heap-based counterexample algorithm produces an initial and
a final value for each variable. The snapshot-based counterexample algo-
rithm can only produce a single value because the snapshot function con-
tains only one entry per variable. Since snapshot functions are called inside
assertions, this entry corresponds to the final value of a variable. In the fu-
ture this could be fixed by calling snapshot functions at multiple places, but
for the moment we can only produce final values.

The second limitation that we are discussing is about the MIR. As explained
in Chapter 2, the encoded Viper program is strongly influenced by the MIR
of the Rust program. If, in the MIR, one variable is assigned to another
variable, e.g. 2 = 1, this is also done in the Viper program.

1 field val_ref: Ref

2 method fail() returns (_0: Ref)

3 {

4 var _1: Ref

5 var _2: Ref

6 ...

7 label start

8 ... // Preconditions

9 label l0

10 ...

11 _1.val_ref := _2 //encodes an assignment in the MIR

12 ...

13 assert (... snap_X(_2))

14 ...

15 }

Listing 4.8: This method is similar to the one in Listing 4.6. In line 11 we see how an assignment
is encoded in Viper. After this line the variable 2 is used to represent x instead of 1. For that
reason, the snapshot function is called with 2 instead of 1.

Even though the change in Listing 4.8 is only minor, it has a major impact

23

4. Implementation

on the counterexample.

snap_X(Ref): Snap_X {

_2 -> snap_0

else -> #unspecified

}

The function’s counterexample contains the entry 2 -> snap 0 instead of
the entry 1 -> snap 0. Prusti’s counterexample algorithm does not know
about the relation between 1 and 2, and an attempt to find a snapshot
variable for 1 will fail and therefore a counterexample cannot be generated.
Unfortunately, this problem cannot easily be fixed and for the time being we
have to accept this limitation.

Presentation

Let us assume the previously mentioned limitations do not apply and we
were able to translate a snapshot variable back to the level of Rust. At
this point we have produced two counterexamples for our variable x, one
with the heap-based type encoding and one with the snapshot-based type
encoding. Before we can present a final counterexample to the user, the two
counterexamples have to be merged.

The goal of this merging process is to collect as much information as possi-
ble. This is achieved by iterating through each entry of the heap-based coun-
terexample and fill missing values with their counterparts in the snapshot-
based counterexample.

1 heap-based counterexample:

2 X {

3 a: 1,

4 b: ?,

5 }

6 snapshot-based counterexample:

7 X {

8 a: ?,

9 b: 2,

10 }

Listing 4.9: We see a fictitious
counterexample for a variable of type
struct X{ a: i32, b:i32 }. The heap-
based counterexample has a missing value
for b. Fortunately, it can be replaced by
the value produced by the snapshot-based
counterexample.

1 merged counterexample:

2 X {

3 a: 1,

4 b: 2,

5 }

Listing 4.10: The merged counterexample
for the type struct X{ a: i32, b:i32 }

combines the information of each individual
counterexample.

24

4.2. Back translation

1 fn fail(mut x: i32, y: i32)

2 {

3 x = 1;

4 if (x == 1) {

5 x = 2;

6 } else {

7 x = 3;

8 }

9 assert!(x == 3)

10 }

Listing 4.11: The function body contains a control sequence (if-else block) and three variable
assignments for x. The final assertion will always fail regardless of concrete function arguments.

After we merged the counterexamples, as seen in Listing 4.10, the algorithm
is finished. This concludes the extension of Prusti’s counterexample genera-
tion for the old version.

4.2.2 Refactored Prusti

At the time of writing the refactored version has to be explicitly enabled
via the environment variable PRUSTI UNSAFE CORE PROOF = true. Similarly
to the old version, the algorithm can be summarized in three steps, which
are repeated for each variable in the Rust program. In the first step, we
find a mapping to snapshot variables. After that we translate each snapshot
variable back to Prusti’s intermediate representation, and finally we report
it back to the user.

Variable mapping

As outlined in Chapter 2 the refactored version directly encodes Rust vari-
ables into snapshot variables. In addition, it uses Static Single Assignment
(SSA). This means whenever a Rust variable is changed, it will be encoded
as a fresh snapshot variable. For that reason, we do not have a one-to-one
relation between a snapshot and a Rust variable, and our objective changes
to finding a list of snapshot variables instead of a single one.

We describe this process with an example. Let us assume we have a simple
Rust function with two parameters, x and y, and want to find x’s list of
snapshot variables.

The Viper program in Listing 4.12 contains four snapshot variables. Not
all of them are relevant for x. As a first step, we collect all variables with
the prefix 1 (the MIR variable name of x) and obtain { 1 snap 0, 1 snap 1,
1 snap 2}.

25

4. Implementation

1 method fail()

2 {

3 var _1_snap_0: Snap_i32

4 var _1_snap_1: Snap_i32

5 var _1_snap_2: Snap_i32

6 var _2_snap_0: Snap_i32

7 var marker_l2: Bool

8 var marker_l3: Bool

9 var marker_l4: Bool

10 var marker_l5: Bool

11

12 label l2

13 marker_l2 := true

14 //equal to x = 1

15 inhale _1_snap_0 == constructor(1)

16 //equal to if (x == 1)

17 if (destructor(_1_snap_0) == 1) {

18 goto l4

19 }

20 goto l3

21

22 label l3

23 marker_l3 := true

24 //equal to x = 3

25 inhale _1_snap_1 == constructor(3)

26 goto l5

27

28 label l4

29 marker_l4 := true

30 //equal to x = 2

31 inhale _1_snap_2 == constructor(2)

32 assert destructor(_1_snap_0) == 3

33 goto l5

34

35 label l5

36 marker_l5 := true

37 }

Listing 4.12: This is a simplified version of the encoded Viper program for Listing 4.11. We
used comments to indicate which line of Viper code corresponds to which part of the Rust source
code.

26

4.2. Back translation

var _1_snap_0: Snap_i32

var _1_snap_1: Snap_i32

var _1_snap_2: Snap_i32

...

l1

marker_l2 := true

inhale _1_snap_0 == constructor(1)

...

l2

marker_l3 := true

inhale _1_snap_1 == constructor(3)

...

l3

marker_l4 := true

inhale _1_snap_2 == constructor(2)

assert destructor(_1_snap_0) == 2

...

l4

marker_l5 := true

...

l5

Figure 4.1: Each basic block in the control-flow graph of Listing 4.12 is uniquely named. All
blocks, except the first one, set their marker to true as their first statement. This indicates that
if a basic block was visited or not in a concrete counterexample. The first basic block is always
visited and therefore does not have to be marked.

Some elements from this set are relevant for a counterexample and some are
not. As a next step, we have to filter and to order it. This is done via the
control-flow graph (CFG) of the Rust program.

In each basic block of Figure 4.1 we search for inhale statements. In the con-
text of counterexamples an inhale statement means that a Rust variable, in
our case x, was assigned a new value. Since Prusti uses SSA, each snapshot
variable occurs in exactly one inhale statement. We store this information
in our set of snapshot variables as follows: {(1 snap 0, l2), (1 snap 1,

l3), (1 snap 2, l4)}.

Everything up to this point is done before the actual verification takes place.

27

4. Implementation

1 marker_l2 <- true

2 marker_l3 <- false

3 marker_l4 <- true

4 marker_l5 <- false

Listing 4.13: Silicon produces this counterexample for Listing 4.12. Of course, the whole
counterexample is much bigger, but at this point we are only interested in the markers. Each
marker indicates whether its basic block was visited or not.

Since the next steps depend on a concrete counterexample, Prusti has to ver-
ify the program next. This provides us with a counterexample from Silicon.

We use the markers from Listing 4.13 to construct a path in the CFG. In this
case the visited basic blocks are l1, l2 and l4 in that particular order. This
knowledge is enough to filter and order our previously obtained set, and we
get the desired list of snapshot variables: (1 snap 0, 1 snap 2).

Note that the list captures all changes of x. In general, this is much more
detailed than the mapping in the old version. For that reason, we are able
to produce more fine-grained counterexamples.

Types

Once we have found a list of snapshot variables, we have to translate them
back into a Prusti-internal representation. The representation is an enum.
Each variant represents a support type for counterexamples.

While in the old version we only translated a single snapshot variable back
to the level of Rust, in the refactored version the variable mapping produced
a list of snapshot variables. Therefore the translation algorithm will also
produce a list of translated variables.

For the following explanation we assume we have the list (1 snap 0,

1 snap 1) and want to translate it into Prusti’s intermediate representation.

Primitive types We consider integers, Booleans and characters as primitive
types. Integers and Booleans have direct counterparts in Viper, while char-
acters have to be converted to integers first. Apart from that, they all work
analogously.

For a Rust type like i32, the snapshot-based type encoding produces a do-
main called Snap I32. This domain contains a function called
destructor_Snap_I32_value(value: Snap_I32): Int. This function “de-
structs” the domain type and gives us our desired value of type Int.

In Listing 4.14 we see a fictitious counterexample of the destructor function.
Extracting information from this function for each element of (1 snap 0,

28

4.2. Back translation

1 destructor_Snap_I32_value(Snap_I32): Int {

2 _1_snap_0 -> 1

3 _1_snap_1 -> 2

4 _2_snap_1 -> 3

5 else #unspecified

6 }

Listing 4.14: Silicon counterexample for the Rust type i32.

1 domain Snap_I32 { ... }

2 domain Snap_ref_I32 {

3 function destructor_Snap_ref_I32_target_final

4 (self: Snap_ref_I32): Snap_I32

5

6 function destructor_Snap_ref_I32_target_current

7 (self: Snap_ref_I32): Snap_I32

8 ...

9 }

Listing 4.15: These are the domains created by the snapshot-based type encoding for the type
&i32.

1 snap 1) results in the following list of Prusti’s internal representation:
[Int('1'), Int('2'))].

References If the type to be translated is a reference in Rust, e.g. &i32, the
snapshot-based type encoding produces two domains, one for the underly-
ing type, in this case i32, and one for the actual reference.

The domain Snap ref I32 in Listing 4.15 contains two different destructor
functions. Both functions return a value of type Snap I32. Therefore we
have to apply the destructor twice. First, we use one of the two functions
from Listing 4.15 to obtain a new snapshot variable with type Snap I32.
Second, we destruct the domain Snap I32 as previously described.

To understand which function we should use, we have to look at a concrete
counterexample.

In Listing 4.16 we see that the function target final returns the same snapshot
variable for both 1 snap 0 and 1 snap 1, while the other function returns
different snapshot variables. In other words, the former function returns
a final snapshot variable and the latter returns intermediate snapshot vari-
ables. Since we want intermediate variables, we have to use the function
target current.

Assuming the destructor function of Snap I32 contains the entries 3 snap 2

→ 1 and 3 snap 1 → 2, the translated counterexample looks like this:
[Ref(Int('1')), Ref(Int('2')))].

29

4. Implementation

1 destructor_Snap_ref_I32_target_final(Snap_ref_I32): Snap_I32 {

2 _1_snap_0 -> _3_snap_2

3 _1_snap_1 -> _3_snap_2

4 _2_snap_1 -> _3_snap_1

5 else #unspecified

6 }

7 destructor_Snap_ref_I32_target_current(Snap_ref_I32): Snap_I32 {

8 _1_snap_0 -> _3_snap_1

9 _1_snap_1 -> _3_snap_2

10 _2_snap_1 -> _3_snap_1

11 else #unspecified

12 }

Listing 4.16: Silicon provides counterexamples for both destructor functions for references.

1 domain Snap_I32 { ... }

2 domain Snap_struct_X {

3 function destructor_Snap_struct_X_val

4 (self: Snap_struct_X): Snap_I32

5 ...

6 }

Listing 4.17: These are the domains created by the snapshot-based type encoding for the type
struct X { val: i32 }.

Tuples and structs Tuples and structs work in a very similar manner, we
can look at them together. A tuple can be thought of as a struct with un-
named fields.

Let us assume we want to translate the Rust type struct X { val: i32 }.
The snapshot-based type encoding generates a domain for the struct itself
and domains for all types occurring in the fields.

In Listing 4.17 we see the destructor function for our field val. In general,
there is a destructor function for each field. While for named fields those
function names end with the field name, in the case of unnamed fields those
function names end with indices. Apart from that they are equivalent and
are used in the exact same way.

We translate a struct by translating each field. The destructor function of
a field returns a new snapshot variable which has to be translated as well.
Therefore the whole process is recursive.

30

4.2. Back translation

1 [Struct {

2 name: "X",

3 field_entries: [val: Int('1')],
4 },

5 Struct {

6 name: "X",

7 field_entries: [val: Int('2')],
8 }]

Listing 4.19: Prusti’s counterexample entry for a struct.

1 destructor_Snap_struct_X_f_val(Snap_struct_X): Snap_I32 {

2 _1_snap_0 -> _3_snap_1

3 _1_snap_1 -> _3_snap_2

4 else #unspecified

5 }

Listing 4.18: Silicon counterexample for struct.

In Listing 4.18 we see a counterexample for our struct. The translation of
the field val gives us two new snapshot variables. If we assume those can
be recursively translated, we end up with the following counterexample:

Enums and Unions We can view an enum as a collection of structs. Each
element of this collection is called a variant. At run time exactly one variant
is active. If we want to translate an enum, we have to figure out which
variant is currently active.

Rust does this internally by storing a discriminant. A discriminant is an
integer, which indicates which variant is active. This is also encoded in
Viper, and we can use a special function to determine the discriminant.

Even though unions and enums are different in Rust, the snapshot-based
type encoding encodes both types in the same way. Therefore their transla-
tion process is identical.

Let us assume we have to translate the type enum X { First, Second(i32) }.
The snapshot-based type encoding will create a domain for the enum itself
and a domain for each variant. Since variants are struct-like, it will also
create more domains for all types occurring in fields.

We already explained how structs are translated, and therefore we are only
interested in finding the correct variant. For that purpose, in Listing 4.20 we
only look at the domain for the enum itself and omit the rest.

In Listing 4.20 we have three relevant functions in the domain Snap enum X.
The first two functions destruct our enum to a specific variant. The third

31

4. Implementation

1 domain Snap_enum_X {

2 function destructor_Snap_enum_X_first

3 (self: Snap_enum_X): Snap_First

4

5 function destructor_Snap_enum_X_Second

6 (self: Snap_enum_X): Snap_Second

7

8 function discriminant_Snap_enum_X

9 (self: Snap_enum_X): Int

10 ...

11 }

Listing 4.20: This is the domain created by the snapshot-based type encoding for the type
enum X { First, Second(i32) }.

1 discriminant_Snap_enum_X(Snap_enum_X): Int {

2 _1_snap_0 -> 1

3 _1_snap_1 -> 2

4 else #unspecified

5 }

6 destructor_Snap_enum_X_first(Snap_enum_X): Snap_First {

7 _1_snap_0 -> _4_snap_1

8 else #unspecified

9 }

10 destructor_Snap_enum_X_Second(Snap_enum_X): Snap_Second {

11 _1_snap_2 -> _3_snap_0

12 else #unspecified

13 }

Listing 4.21: Silicon counterexample for an enum.

function supplies us with the discriminant.

The translation process works in the following way: First, we extract the
discriminant. Depending on the discriminant, we choose a destructor func-
tion and destruct the domain Snap enum X. This gives us a new snapshot
variable, which can be recursively destructed as described earlier.

Since the snapshot variable 1 snap 0 in Listing 4.21 has a discriminant of
1, we destruct it to the domain Snap struct First. The snapshot vari-
able 1 snap 1 has a discriminant of 2 and we destruct it to the domain
Snap struct Second. Both of those domains represent structs which can
be translated recursively. Assuming this translation was successful, a coun-
terexample could look like this:

32

4.2. Back translation

1 [Enum {

2 super_name: "X",

3 name: "First",

4 fields_entries: [],

5 },

6 Enum {

7 super_name: "X",

8 name: "Second",

9 fields_entries: [0: Lit('2')],
10 }]

Listing 4.22: Prusti’s counterexample entry for an enum.

1 domain Snap_I32 { ... }

2 domain Snap_struct_box_I32 {

3 function destructor_Snap_struct_box_I32_val_ref

4 (self: Snap_struct_box_I32): Snap_I32

5 ...

6 }

Listing 4.23: These are the domains created by the snapshot-based type encoding for the type
Box<i32>.

1 destructor_Snap_struct_box_I32_val_ref(Snap_struct_box_I32): Snap_I32 {

2 _1_snap_0 -> _3_snap_1

3 _1_snap_1 -> _3_snap_2

4 else #unspecified

5 }

Listing 4.24: Silicon counterexample for box.

Box Even though technically this type is a struct, it is handled differently in
Rust and as a consequence in Prusti. It has to be translated differently. Note
that at the time of writing this type is not fully supported in the refactored
version. Nonetheless, we still want to provide a counterexample.

We begin by looking at the domains generated by the snapshot-based type
encoding for the Rust type Box<i32>.

As we can see in Listing 4.23 the Viper domain of a box type contains a dif-
ferent destructor function than a domain of a normally encoded struct type
would have. Nonetheless, we can use this function to destruct the domain
to get a new snapshot variable. The domain type of this new snapshot refers
to the inner type of the box.

The destructor function in Listing 4.24 returns snapshot variables of the type
Snap_I32. Assuming those can be translated, the counterexample looks like
this: [Box(Int('1')), Box(Int('2')))].

33

4. Implementation

1 _1_snap_0 <- [_3_snap_1, _3_snap_1]

2 _1_snap_1 <- [_3_snap_0, _3_snap_0, _3_snap_0]

Listing 4.25: Silicon counterexample for a sequence.

1 domain Functions {

2 function m_foo(_1: Snap_I32, _2: Snap_I32, ...): Snap_I32

3 ...

4 }

5 function caller_for_m_foo(_1: Snap_I32, _2: Snap_I32): Snap_I32

6 requires ...

7 ensures ...

8 {

9 m_foo(_1, _2, ...)

10 }

Listing 4.26: A pure function in Rust has a counterpart in the Functions domain in Viper.
This domain function has an additional parameter which is not relevant for counterexamples and
will be omitted. Whenever a pure function is called in Rust, the function caller for m foo()

is called in Viper.

Sequences and arrays A sequence is a mathematical type available in
Prusti’s specifications and has a direct counterpart in Viper. An array is
encoded in a similar way as a sequence and therefore translated in an iden-
tical manner.

The domain for a sequence or array created by the snapshot-based type
encoding does not contain any destructor functions. A counterexample has
to be extracted differently.

The type of such a Viper variable will not be of a domain. Instead it will
be a Viper sequence of a domain. For example, if some variable x is of Rust
type Seq<i32>, its Viper variables are of type Seq[Snap_I32]. A Silicon
counterexample for these Viper variables will, of course, look different.

In Listing 4.25 we see that a counterexample of a sequence does not contain
any functions. Instead a snapshot variable, e.g 1 snap 0, directly contains
a list of new snapshot variables. Each of these new snapshot variables must
be translated individually. Assuming 3 snap 0 and 3 snap 1 are trans-
lated to 1 and 2, respectively, the translated counterexample looks like this:
[Seq([Int('2'), Int('2')]), Seq([Int('1'), Int('1'), Int('1')])].

Pure functions In addition to variables we also include pure functions in
our counterexamples. A pure function is encoded as two Viper functions, a
heap-dependent one and a heap-independent one. Given a pure Rust func-
tion foo(x: i32, y: i32) -> i32, its encoding is shown in Listing 4.26.

In order to generate a counterexample for pure functions we need to find

34

4.2. Back translation

1 caller_for_m_fn_name(heap, Snap_I32, Snap_I32): Snap_I32 {

2 heap_0 1_snap_0 1_snap_2 -> 1_snap_3

3 heap_1 2_snap_1 1_snap_1 -> 1_snap_4

4 else #unspecified

5 }

Listing 4.27: Silicon counterexample for a pure function. The caller for m fn name() is a
heap-dependent function and has an additional parameter referring to a heap location. Since
our snapshot variables are heap-independent, the return value of the function does not change
if the heap location changes. Therefore the heap variable has no impact on the counterexample
and we can ignore it. We treat the function as if it only has two parameters.

all relevant caller for m foo() calls. This is equivalent to finding a vari-
able mapping, but instead of searching for snapshot variables we search for
caller for m foo() functions and store all the arguments. Let us call this
process function mapping.

If we assume that the function foo() is called twice in the original Rust
program, the function mapping could find the following list for foo():
([1 snap 0, 1 snap 2], [2 snap 1, 1 snap 1]).

We see that the function mapping is a list that contains lists of snapshot
variables. Each inner list is a collection of all arguments used in a particular
function call.

Given a counterexample for the function caller for m foo() like in Listing
4.27, we can translate a function in the same manner as variables Assuming
1 snap 3 and 1 snap 4 are translated to 1 and 2, respectively, the translated
counterexample looks like this: [Int('1'), Int('2')].

4.2.3 Presentation

Up to this point we have only produced a list with Prusti’s internal repre-
sentation, one for each Rust variable. The final step is presenting this to the
user.

We decided to format the counterexample similarly to the old version. The
only difference is that each variable has an arbitrary number of values in-
stead of just an initial and a final value.

We are demonstrating this with the following example: The function in
Listing 4.28 has an immutable variable x and a mutable variable y. It is clear
that a single value in a counterexample for the variable x is sufficient since it
cannot change its value. The variable y is assigned twice and therefore two
values are can be shown in a counterexample.

The major advantage and the reason for its similarity to the old version is
its compatibility with the VSCode extension Prusti-Assistant [5]. The coun-

35

4. Implementation

1 #[requires(x > 0)]

2 #[ensures(result != 2)]

3 fn fail (x: i32) -> i32 {

4 let mut y = x;

5 y = y + 1;

6 y

7 }

Listing 4.28: Rust function with multiple assignments.

1 note: counterexample for "x"

2 value: 1

3 --> output.rs:9:10

4 |

5 9 | fn fail (x: i32) -> i32

6 | ^

7 note: counterexample for "y"

8 value: 1

9 --> output.rs:10:17

10 |

11 10 | let mut y = x;

12 | ^

13 note: counterexample for "y"

14 value: 2

15 --> output.rs:11:5

16 |

17 11 | y = y + 1;

18 | ^^^^^^^^^

19 note: counterexample for "result"

20 value: 2

21 --> output.rs:12:5

22 |

23 12 | y

24 | ^

Listing 4.29: A counterexample for Listing 4.28. While the variable x only has one value, the
variable y has two. In addition, each note is annotated by a line number to refer to the Rust
code.

36

4.2. Back translation

Figure 4.2: Counterexample output in Prusti assistant.

1 struct X {

2 val: Vec<i32>,

3 }

4

5 #[model]

6 struct X {

7 val: Seq<i32>,

8 }

Listing 4.30: A simple model which replaces the complicated type Vec<i32> with a much simpler
mathematical type Seq<i32> in the form of a model.

terexample can be compactly presented as seen in Figure 4.2. The user can
simply click on a note and jump to the correct code line.

4.2.4 Type models

In this section we explain how we provided counterexample support for
type models. For that purpose, we have to understand how such models are
encoded in Viper. Let us consider a simple model in Rust:

We keep a list of all models in Prusti. This allows us to check easily whether
a given type has a model or not. Whenever this is the case we want to trans-
late the model type instead of the original type. This requires translating a
different snapshot variable.

In order to understand how we find this other snapshot variable, we have to
take a look at the snapshot-based type encoding of a model.

As we can see in Listing 4.31 the snapshot-based type encoding will create
four relevant domains:

• Snap struct X: This is the encoding of the original Rust type.

• Snap model X: This is the encoding of the model type.

• Snap ref X: This is the encoding of a reference to the original Rust
type, in this case &X.

37

4. Implementation

1 domain Snap_struct_X { ... }

2 domain Snap_model_X { ... }

3 domain Snap_ref_X {

4 function constructor_Snap_ref_X

5 (self: Snap_struct_X): Snap_ref_X

6 ...

7 }

8 domain Functions {

9 function to_model_X

10 (model_ref: Snap_ref_X) : Snap_model_X

11 }

Listing 4.31: These are all the domains created by the snapshot-based type encoding for the
example in Listing 4.30.

• Functions: This domain contains various heap-independent functions.
The function relevant for us is called to model X.

Each snapshot variable of type Snap struct X has a counterpart of type
Snap model X. Let us assume the former is called 1 snap 0 and the latter is
called 2 snap 0. In Viper this relation is encoded in the following way:

_2_snap_0 := caller_to_model_X(constructor_Snap_ref_X(_1_snap_0))

If we want to extract a counterexample for a model while only knowing the
snapshot variable of the original type, we have to traverse these function
calls to find the desired snapshot variable.

1 constructor_Snap_ref_X(Snap_struct_X): Snap_ref_X {

2 _1_snap_0 -> _2_snap_0

3 else #unspecified

4 }

5 caller_to_model_X(Snap_ref_X): Snap_model_X {

6 _2_snap_0 -> _3_snap_0

7 else #unspecified

8 }

Listing 4.32: Silicon’s counterexample for the model from Listing 4.30.

Given the counterexample from Listing 4.32, we see how we find the desired
snapshot variable 2 snap 0 by only knowing 1 snap 0.

The last remaining step is to translate this new snapshot variable with the
Rust type definition of the model back to a Prusti-internal representation.
Unfortunately, this would always result in an unknown counterexample.
This is due to the fact that destructor functions of domains which encode
models are never explicitly called by Prusti encoded Viper programs. For

38

4.3. Customizable Counterexample

that reason Silicon cannot provide a counterexample and as a result we
cannot either.

This problem can be solved by explicitly forcing Prusti to call destructor
functions. For that purpose we provide a new flag called PRUSTI UNROLL -

MODEL = x, where x is an integer which denotes the depth of a type. We
define the depth of a type as how many destructor functions have to be
called to fully translate a type, e.g. the type i32 (domain Snap I32) has
depth 1 while the type &i32 (domain Snap ref I32) has depth 2.

While this adds more complexity to the Viper program, which is not opti-
mal, it is justifiable for small x. Since the purpose of models is mainly to
simplify complex types, it is a reasonable assumption that the depth of its
type is relatively small.

Note that the described process replaces a counterexample of the original
type by a counterexample of its model. While this is the desired behaviour
in most cases, it might be the case that the user needs both counterexamples.
For cases like this, we provide a new flag called PRUSTI PRINT COUNTEREX-

AMPLE IF MODEL IS PRESENT = true. This flag forces Prusti to produce two
counterexamples, one for the original type and one for the model type.

4.3 Customizable Counterexample

In this section we describe a new customizable format of a counterexample.
We provide a new procedural macro attribute called print counterexample(),
which can be used to annotate structs and enums.

Let us revisit a recursive type definition for a LinkedList. Assuming we
have some fictitious counterexample with three elements. The standard for-
mat of Prusti’s counterexample output is very verbose, but it can be hard-
to-read for e.g. a LinkedList.

The counterexample in Listing 4.33 already measures 15 lines of text with
just three elements. Once the number of elements increases it will get even
more difficult to read.

Our procedural macro print counterexample() allows the user to omit ir-
relevant information and format the relevant information in a different way.
Its syntax is a simplified version of the formatted print in Rust and should
not be too alien for the user. Listing 4.35 and Listing 4.36 show an example
of how a counterexample for the same LinkedList could look like.

39

4. Implementation

1 counterexample for "list"

2 value: LinkedList {

3 val: 0,

4 next: Some(

5 box(LinkedList {

6 val: 1,

7 next: Some(

8 box(LinkedList {

9 val: 2,

10 next: None,

11 }),

12),

13 }),

14),

15 }

Listing 4.33: Prusti’s counterexample for a
LinkedList with three elements.

1 struct LinkedList {

2 val: i32,

3 next: Option<Box<LinkedList>>,

4 }

Listing 4.34: Simple recursive type defini-
tion for a LinkedList.

1 #[print_counterexample("[{}] -> {}", val, next)]

2 struct LinkedList {

3 val: i32,

4 next: Option<Box<LinkedList>>,

5 }

Listing 4.35: Custom counterexample macro in Prusti.

1 counterexample for "list"

2 value: [0] -> Some(box([1] -> Some(box([2] -> None))))

Listing 4.36: Customized counterexample for a LinkedList.

4.3.1 Syntax

In this section we describe the syntax for the procedural macro. It can only
be used with structs and enums. Since the syntax is slightly different for the
two types, we explain it separately.

Struct If a struct is annotated, the macro must have at least one argument
and the first argument must be of type String and can contain an arbitrary
number of curly brackets. The number of curly brackets must match the
number of the remaining arguments. The remaining arguments must ei-
ther be a field name, if the fields are named, or an index, if the fields are

40

4.3. Customizable Counterexample

1 #[print_counterexample()]

2 enum Name {

3 #[print_counterexample(...)]

4 Variant_1(...),

5 Variant_2(...)

6 ...

7 }

Listing 4.38: The general form of the procedural macro for enums. The outer annotation must
not contain any arguments. Each variant can be annotated as if it were a struct.

unnamed. A field can be used multiple times.

1 #[print_counterexample("... {} ...", var_i, ...)]

2 struct Name {

3 var_1: typ_1,

4 ...

5 var_n: typ_n,

6 }

Listing 4.37: The general form of the procedural macro for structs.

Enums If an enum is annotated, the macro must not contain any argu-
ments. Each variant can be annotated in the exact same way as previously
described. Only annotating a variant without the enum itself will result in a
compile time error.

4.3.2 Implementation

In this section we explain the implementation of this procedural macro.

Rust procedural macros are executed in a separate sandboxed process. This
makes it difficult to pass data to the rest of Prusti’s verification pipeline.
Information has to be stored in specially created dummy functions and then
revisited at a later stage. The reason why we use such functions is to make
the compiler type check expressions for us.

The design process of our dummy function was driven by three main factors.
First, it had to be able to encode all necessary information, e.g. arguments
of the macro. Second, it should be able to detect syntax errors as early as
possible. It would be very wasteful to verify a Rust program and then fail
to produce a counterexample because of a syntax error. Third, the function
should work in a similar fashion for both structs and enums.

In Listing 4.40 we can see how the procedural macro is encoded. Note that
if the type would be a struct instead of a variant of an enum, only the if

41

4. Implementation

1 #[print_counterexample()]

2 enum X {

3 #[print_counterexample("a = {}, b = {}", a, b)]

4 V1 { a :i32, b: i32 },

5 #[print_counterexample("V2.0 = {}, V2.1 = {}", 0, 1)]

6 V2(i32, i32, i32),

7 V3(i32),

8 }

Listing 4.39: In this example we have two variants annotated with print counterexample().
Prusti will internally produce two dummy functions to encode the macro for the first two variants
and ignore the third one.

1 impl X{

2 fn print_X_V1(self) {

3 if let X::V1{a, b, ..} = self {

4 "a = {}, b = {}"; a; b;

5 }

6 }

7 fn print_X_V2(self) {

8 if let X::V2{..} = self {

9 "V2.0 = {}, V2.1 = {}"; 0; 1;

10 }

11 }

12 }

Listing 4.40: The example in Listing 4.39 will be encoded using these two dummy functions.
Each function contains an if block to explicitly cast the type to a specific variant. This allows
the compiler to check for type errors.

condition slightly changes. The major advantages of this form is that the
compiler can automatically check for type errors.

The arguments of the macro are written inside the if block. Once a coun-
terexample of type enum X { ... } should be produced, the arguments
can be extracted and the format of the counterexample can be changed ac-
cordingly.

42

Chapter 5

Evaluation

In this chapter we evaluate our work. In Section 5.1 we compare our two
versions of Prusti’s counterexample generation algorithm with the original
version. After that, in Section 5.2, we test the capabilities and limitations of
the refactored version against complex data structures. Finally, in Section
5.3, evaluate the performance of the refactored version.

5.1 Comparison

In this section we compare our two extensions to the counterexample gen-
eration algorithm with the original version. In the thesis of the original
counterexample algorithm [10], a collection of handpicked functions where
chosen to evaluate its weaknesses and strengths. We are using the same
collection of functions to showcase our improvements.

In the following, we will not discuss the details of these functions since this
is already been done in the original thesis. Instead we talk about the changes
in the counterexample.

Table 5.1 summarizes the findings of our comparison. We can see that the
refactored version is able to improve the counterexamples in all cases ex-
cept the last one, while the improved old version only provided a better
counterexample in the case account-fail.rs.

We begin by discussing the counterexample of tuple.rs. Listing 5.1 and
Listing 5.2 show the counterexample of the improved old version and of the
refactored version respectively. We can see that the improved old version
cannot produce an initial value for the variable x. This is due to the heap-
dependence of the variable x and its missing permissions at verification fail-
ure. This is discussed in detail in Section 2.2.3. Since no snapshot-based

43

5. Evaluation

Example Original ver. Improved old ver. Refactored ver. LOC
sum.rs complete complete complete 10

replace.rs complete complete complete 13

tuple.rs partial partial complete 8

account.rs partial partial complete 18

enum.rs partial partial complete 13

account-fail.rs non partial complete 11

loop.rs spurious spurious spurious 11

Table 5.1: The table compares the counterexample of all functions used in the original evalu-
ation for the original version, the improved old version and the refactored version. A generated
counterexample can either be complete, i.e. all variables are assigned some values, or it can
be partial, i.e. some variables are assigned some values, or it can be non, i.e. no variables are
assigned any value, or it can be spurious, i.e. assigned values are incorrect. The table also shows
the lines of code (LOC).

type encoding is used, the improved old version and the original version
generate the same counterexample.

The refactored version is able to provide a complete counterexample. Since
the variable x is immutable, it is sufficient to only generate a single entry for
x. The rest of the counterexample is similar to the other versions.

1 counterexample for "x"

2 initial value: (1, ?)

3 final value: (1, 'c')

4 counterexample for "y"

5 final value: -1

6 counterexample for "z"

7 final value: 'c'
8 counterexample for "result"

9 final value: ('c', -1)

Listing 5.1: Counterexample provided by
the improved old version of Prusti for
tuple.rs.

1 counterexample for "x"

2 value: (1, 'c')

3 counterexample for "y"

4 value: -1

5 counterexample for "z"

6 value: 'c'
7 counterexample for "result"

8 value: ('c', -1)

Listing 5.2: Counterexample provided
by the refactored version of Prusti for
tuple.rs.

The improved old version of Prusti does only provide partial counterexam-
ples for account.rs and enum.rs for similar reasons. We will not go into
more detail and discuss the program account-fail.rs instead.

To understand the counterexample we have to look at the program code in
Listing 5.3. The function under verification is called has money(). In its
body it calls a pure function.

44

5.1. Comparison

1 pub struct Account {

2 balance: i32,

3 }

4 #[pure]

5 fn get_balance(acc: Account) -> i32 {

6 acc.balance

7 }

8 #[ensures(result)]

9 fn has_money(acc: Account) -> bool {

10 get_balance(acc) > 0

11 }

Listing 5.3: account-fail.rs.

There are two reasons why the original version cannot produce a coun-
terexample. First, the original version does not support pure functions for
counterexamples and second, the variable acc is not accessible anymore at
the point of verification failure.

The improved old version of Prusti can generate a partial counterexample
because the snapshot-based type encoding is used. As we have already dis-
cussed, a counterexample generated via the snapshot-based type encoding
can only produce a final value. The counterexample can be seen in Listing
5.4.

The refactored version does support counterexamples for pure functions.
Therefore, in addition to generating a counterexample for the variable acc,
it also generates a counterexample for the function get balance(). The
counterexample can be seen in Listing 5.5.

1 counterexample for "acc"

2 initial value:

3 Account { balance: ? }

4 final value:

5 Account { balance: 0 }

Listing 5.4: Counterexample provided by
the improved old version of Prusti for
account-fail.rs.

1 counterexample for "x"

2 value:

3 Account { balance: 0 }

4 counterexample for

5 "get_balance()"

6 value: 0

Listing 5.5: Counterexample provided
by the refactored version of Prusti for
account-fail.rs.

The last program we talk about is loop.rs. As the name suggests, it con-
tains a loop. This loop is annotated with a weak loop invariant. This weak
loop invariant leads to an over-approximation and a verification failure even
though the functions should succeed verification. In cases like this a coun-
terexample is spurious. Since the counterexample depends on the wrong

45

5. Evaluation

1 #[trusted]

2 struct VecWrapper<i8> {

3 values: Vec<i8>,

4 }

5

6 #[model]

7 struct VecWrapper<i8> {

8 values: Seq<i8>,

9 }

10

11 impl VecWrapper<i8> {

12 #[trusted]

13 #[requires(self.model().values.len() > Int::new(index))]

14 #[ensures(self.model().values[Int::new(index)] == result)]

15 fn lookup(&self, index: i64) -> i8 {

16 self.values[index as usize]

17 }

18 }

Listing 5.6: VecWrapper is a wrapper for the Rust type Vec. Since the wrapper is trusted, its
field cannot be accessed directly. For that reason the trusted function lookup() is implemented.
This function returns the element corresponding to the given index. The model is used inside
the specifications to give meaning to this function.

verification result, all three versions of Prusti produce an equally wrong
counterexample. Unfortunately, this is a general problem of program verifi-
cation and out of scope for this work.

5.2 Complex data structures

In this section we evaluate the capabilities and the limitations of the coun-
terexample generation for the refactored version in terms of complex data
structures. For that reason we have picked out two data structures and ex-
plain the resulting counterexamples for some functions.

5.2.1 Vector

The first data structure we are investigating is the Rust type Vec. Even
though this type is not supported by Prusti, we can bypass this problem by
defining a trusted wrapper and implement trusted functions to access its field.
A model is used to abstract the wrapper such that it can be used in the
function’s specifications.

In Listing 5.6 we see an example on how this can be accomplished. It is
worth noting that the VecWrapper can be defined with any arbitrary copy-

46

5.2. Complex data structures

1 #[requires(v.model().values.len() == Int::new(4))]

2 fn sum(v: &VecWrapper<i8>) {

3 assert!(v.lookup(0) + v.lookup(1) + v.lookup(2)

4 + v.lookup(3) == 15)

5 }

Listing 5.7: Simple function using the VecWrapper.

1 assertion might fail with "attempt to add with overflow"

2 counterexample for "v"

3 value: ref(VecWrapper_model {

4 values: Seq(94, 34, ?, ?,),

5 })

Listing 5.8: Counterexample provided by the refactored version of Prusti for function sum().

able type, but for simplicity we chose i8. For our example we only need
the function lookup(), but the implementation can be easily extended with
other functions if needed.

Next, let us consider a function which uses our previously defined
VecWrapper and examine the counterexample. In Listing 5.7 we see a simple
function that checks whether the sum of the vector’s elements is equal to 15.

Of course the verification will fail and a counterexample is seen in Listing
5.8. Unfortunately, Prusti only provides us with a partial counterexample.
Nevertheless, this counterexample is informative enough to reconstruct the
error of verification. We can see that adding 94 and 34 is larger than 127

and therefore will overflow i8.

In general, Prusti is only able to provide partial counterexamples for se-
quences. This is due to the fact that Silicon only provides counterexamples
for Viper sequences at accessed indices. In most cases this is not a problem
because it is still enough to reconstruct the error.

Another example to demonstrate this would be preventing overflow in func-
tion sum(). This could be done by adding a precondition that forces each
element of the VecWrapper’s field values to be between zero and ten. In
this case a counterexample would now depend on all elements and the fact
that they do not add up to 15. As we can see in Listing 5.9 Prusti does now
provide a complete counterexample.

5.2.2 Binary tree

The second data structure we are investigating is a binary tree:

struct BinaryTree<i8> {

val: i8,

47

5. Evaluation

1 the asserted expression might not hold

2 counterexample for "v"

3 value: ref(VecWrapper_model {

4 values: Seq(7, 5, 2, 3,),

5 })

Listing 5.9: Counterexample provided by the refactored version of Prusti for function sum()

with added precondition.

1 struct BoxWrapper<T> {

2 value: Box<T>,

3 }

4

5 impl<T> BoxWrapper<T> {

6 #[trusted]

7 fn new(value: T) -> Self {

8 Self { value: Box::new(value) }

9 }

10 #[trusted]

11 fn deref(&self) -> &T {

12 &self.value

13 }

14 }

Listing 5.10: The BoxWrapper is similar to what we have seen in the previous example about
vectors. The major difference is that functions do not have pre-/postconditions.

left: Option<Box<BinaryTree<i8>>>,

right: Option<Box<BinaryTree<i8>>>,

}

This is a recursive data structure and therefore needs the Rust type Box.
Unfortunately, at the time of writing the dereferencing operation was not im-
plemented. We can again bypass this problem by defining a wrapper and
implement functions as seen in Listing 5.10.

We have to leave these functions underspecified because of the missing im-
plementation. This means that Prusti might fail to verify a correct program.
An example of this is in Listing 5.11. Whenever one of the underspecified
functions, deref() or new(), is called Prusti has no information about the
return value and assumes an arbitrary one. This is reflected in the coun-
terexample as well.

Therefore Prusti is not able to produce meaningful counterexamples for re-
cursive types for the time being. However, certain properties of recursive
types can also be described via pure functions.

Verification of the function unbalanced from Listing 5.12 results in the coun-

48

5.2. Complex data structures

1 #[ensures(result == val)]

2 fn correct(val: i8) -> i8{

3 let b = BoxWrapper::new(val);

4 *b.deref()

5 }

1 postcondition might not hold.

2 counterexample for "val"

3 value: 0

4 counterexample for "b"

5 value: BoxWrapper {

6 value: box(1),

7 }

8 counterexample for "v"

9 value: ref(VecWrapper_model {

10 values: Seq(7, 5, 2, 3,),

11 })

12 counterexample for "result"

13 value: 2

Listing 5.11: Even though this function is correct, Prusti cannot prove that the postcondition
holds. Prusti provides a counterexample that seems incorrect compared to the actual Rust code,
but compared to the given specification of the functions new() and deref() it is actually correct.

terexample from Listing 5.13. As expected, Prusti was not able to produce
a meaningful value of the argument t. Nevertheless, it produced values for
the functions height() and number of nodes(). This information is enough
to identify the structure of the binary tree, in this case a binary tree with
exactly one branch.

Of course having a complete counterexample would be preferable. Never-
theless, this is only temporarily and will be resolved once the Rust box type
is fully implemented. After that, Prusti will be able to produce a value for
the binary tree as well.

49

5. Evaluation

1 struct BinaryTree<i8> {

2 val: i8,

3 left: Option<BoxWrapper<BinaryTree<i8>>>,

4 right: Option<BoxWrapper<BinaryTree<i8>>>,

5 }

6

7 impl BinaryTree<i8> {

8 #[pure]

9 #[ensures(result >= Int::new(1))]

10 fn height(&self) -> Int { ... }

11 #[pure]

12 #[ensures(result >= Int::new(1))]

13 fn number_of_nodes(&self) -> Int{ ... }

14 }

15

16 #[requires(t.height() == Int::new(3))]

17 fn unbalanced(t: BinaryTree<i8>){

18 let b = t.height() != t.number_of_nodes()

19 assert!(b)

20 }

Listing 5.12: In the definition of the BinaryTree the box type is replaced by its wrapper. The
functions in the implementation describe two properties of the binary tree, the height and the
number of nodes. We assume that the reader is familiar with binary trees and omit the actual
implementation of those functions. The function unbalanced checks whether the height and the
number of nodes are not equal. The precondition is only used to force a specific counterexample
and could be removed.

1 the asserted expression might not hold

2 counterexample for "t"

3 value: BinaryTree {

4 val: 1,

5 left: Some(BoxWrapper(?)),

6 right: None,

7 }

8 counterexample for "height"

9 value: 3

10 counterexample for "number_of_nodes"

11 value: 3

Listing 5.13: Counterexample provided by the refactored version of Prusti for the function
unbalanced().

50

5.3. Timing Analysis

Figure 5.1: Histogram of relative increase of verification time.

5.3 Timing Analysis

The impact of the counterexample generation algorithm on the refactored
version of Prusti’s overall performance was evaluated using a slightly modi-
fied version of Prusti’s benchmarking script. It runs with 56 Rust programs,
once with Prusti’s counterexample generation enabled and once with it dis-
abled. Each run verified each Rust program ten times and averaged the
verification time.

The test programs contain a variety of different types, different number of
variable and different number of functions. Throughout testing we discov-
ered that verification of Rust programs containing loops tends to take twice
as long with counterexample generation enabled. For that reason we ex-
cluded loops from this analysis.

The result of this timing analysis showed that counterexamples increase veri-
fication time on average by 10%. A histogram of all relative impacts are
shown in Figure 5.1.

While the increase of verification time is below 10% for 75% of all tested
programs, there are a few outliers. In extreme cases the counterexample
generation increased verification time by 50%. A closer inspection of these
extreme cases revealed that the programs either create large Viper programs
or contain a large number of functions. This suggests that the variable map-
ping is currently the performance bottleneck.

Since the counterexample generation feature is meant to be used for debug-
ging and is not expected to be enabled permanently, the overall performance
loss seems tolerable.

51

Chapter 6

Conclusion

In this thesis we have improved the counterexample support of Prusti. This
was achieved by using a different type encoding. Our work has mainly
focused on the refactored version and on how its different implementation
could be leveraged to generate better counterexamples.

For that purpose we have implemented a new algorithm which translates
functions from Silicon’s counterexample back to a level of Rust and reports
this in a customizable way back to the user.

As we saw in the evaluation, the new algorithm improves the counterexam-
ple generation in the refactored version to a great extent, but only provides
little improvement in the old version. This is due to two limiting factors: ei-
ther the snapshot-based type encoding is not created in the first place, or it
is created but not found by the algorithm as described in Section 4.2.1. How-
ever, the snapshot-based type encoding and the refactored version with its
features, e.g. SSA, are a very much more suitable combination for a coun-
terexample generation. It allows Prusti to create much more fine-grained
and detailed counterexamples than before.

In terms of complex data structures, the evaluation shows that the refactored
version of Prusti is now capable of producing counterexamples for complex
types in many cases. It is mainly limited by the fact that the box type is not
fully implemented. Once this is done, we expect that the counterexample
generation will work even better with complex data structures.

Since counterexamples are now more detailed, we gave the user the possibil-
ity to customize the output of the counterexample. This is especially helpful
for complex data structures.

53

6. Conclusion

6.1 Future Work

In this section we present further possible improvements for Prusti’s coun-
terexample generation:

• Prusti’s counterexample algorithm could be extended to support ad-
ditional types, e.g. maps or pointers.

• Prusti is commonly used in VSCode with the extension Prusti Assis-
tant [5]. The counterexamples are presented as clickable messages. If
those messages are clicked on, the cursor automatically jumps to the
corresponding line of code. This could be extended in such a way that
the counterexample is directly inlined within the code.

• The current output of a counterexample is a simple message which
contains a list with all concrete values per variable. The information
gathered during the translation process could be used to generate a
control-flow graph of the Rust program and showcase which path was
taken by the counterexample. This would simplify the user’s debug-
ging process even further.

• We provided a macro to the user to customize the output of a coun-
terexample. At the moment the user is only allowed to inline field
values of structs within a String. In the future Prusti could allow ar-
bitrary functions instead of just fields. This would give the user much
more freedom in changing the output of a counterexample.

• In general, we assume a more detailed counterexample is better than
a less detailed one. However, if programs get larger and use more
variables there might be too much irrelevant information in the coun-
terexample. In cases like this, Prusti could provide an option for the
user to omit certain parts of the counterexample, or alternatively high-
light certain parts.

54

Bibliography

[1] C/C++ reference. https://en.cppreference.com/w/. Online. Ac-
cessed on 2022-08-14.

[2] Heap-based type encoding. https://viperproject.github.io/

prusti-dev/dev-guide/encoding/types-heap.html. Online. Ac-
cessed on 2022-08-14.

[3] Mid-level intermediate representation. https://rustc-dev-guide.

rust-lang.org/mir/index.html. Online. Accessed on 2022-08-14.

[4] Models. https://viperproject.github.io/prusti-dev/

user-guide/verify/type-models.html. Online. Accessed on 2022-08-
14.

[5] Prusti assistant. https://github.com/viperproject/

prusti-assistant. Online. Accessed on 2022-08-14.

[6] Rust programming language. https://www.rust-lang.org/. Online.
Accessed on 2022-08-14.

[7] Snapshot-based type encoding. https://viperproject.github.io/

prusti-dev/dev-guide/encoding/types-snap.html. Online. Ac-
cessed on 2022-08-14.

[8] Viper tutorial. http://viper.ethz.ch/tutorial/. Online. Accessed
on 2022-08-14.

[9] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. Leveraging Rust
types for modular specification and verification. Technical report, ETH
Zurich, 2019.

[10] C. Hegglin. Counterexamples for a rust verifier. Bachelor’s Thesis, ETH
Zurich, 2021.

55

Bibliography

[11] Microsoft. Z3 prover. https://github.com/Z3Prover/. Online. Ac-
cessed on 2022-08-14.

[12] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract Inter-
pretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-Verlag,
2016.

[13] M. Schwerhoff. Advancing Automated, Permission-Based Program Verifica-
tion Using Symbolic Execution. PhD thesis, ETH Zurich, 2016.

56

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Counterexamples for Complex Data Structures for a Rust Verifier

Limbeck Markus

Zurich, 14.08.2022

