
Verifying the IO Behaviour of the SCION Router

Practical Work Project Report

Markus Limbeck
Supervised by João Pereira, Dionysios Spiliopoulos

under Prof. Dr. Peter Müller
Department of Computer Science, ETH Zürich

March 23, 2024

1 Introduction

SCION [1] is a path-based internet architecture. In contrast to conventional destination-based
routing, path-based architectures provide control over network paths by enabling endpoints to
access relevant information.

The SCION protocol is designed to be resilient and secure. In particular, the protocol has been
proven to satisfy properties like valley-freedom, loop-freedom, and path authorisation [2].

To guarantee that the aforementioned properties hold, there has been a joint effort, under the
VerifiedSCION project, to prove the properties at the protocol level, and to prove that the open-
source implementation of SCION behaves according to the protocol.

VerifiedSCION achieves this by stepwise refinement [3] using the Igloo approach [4]. In Igloo’s
first step, a very abstract model of the system is formally developed. Next, the model is incremen-
tally refined by incorporating further details of system requirements and environment assumptions
and decomposed into smaller components. Finally, IO specifications which describe the functional
behaviour of each component are obtained. These specifications can then be used in combination
with a deductive verifier, e.g. Gobra [5], to prove functional correctness of the implementation.
The soundness of Igloo guarantees that properties proven on higher abstraction levels hold in the
actual implementation as well.

At the time of writing, VerifiedSCION has almost fully proven memory safety of the implemen-
tation of the SCION border router, the component responsible for forwarding the packets between
Autonomous Systems (AS). Furthermore, IO specifications were already obtained using the Igloo
approach. The next step involves proving that the implementation adheres to the IO specification,
ensuring the correct functional behaviour. Therefore the main objective of this project is verifying
the implementation against the IO specification using Gobra.

2 Background

Verification methodologies typically expect programs to be specified via method contracts contain-
ing pre- and postconditions. They check that every program execution, fulfilling its precondition,

1



•

t1 t2 t3 t4

recv(t1, pkt, t2) exit(t2, pkt, t3) send(t3, pkt, t4)

Figure 1: Simple illustrative Petri net.

1 requires token(t_1)

2 requires recv(t_1, pkt, t_2)

3 requires exit(t_2, pkt, t_3)

4 requires send(t_3, pkt, t_4)

5 ensures token(t_4)

6 method client(pkt : Int)

Listing 1: Simple Petri net from figure 1 written as Hoare triple.

guarantees its postcondition after execution. This permits reasoning about the program’s initial and
final state, which is sufficient for properties like memory safety. In order to specify the IO behaviour
of a program using method contracts, one must first find a way to encode these specifications in
terms of contracts.

2.1 Specifying the IO behaviour via contracts

One approach is using separation logic over Petri nets [6]. The high-level idea is assigning permis-
sions to places via so-called tokens. An event can be executed only if the corresponding token is
available. When an event is executed, the token is consumed and replaced with a new one. This
concept is visualised using Petri nets and demonstrated in Figure 1. In the graph the nodes are
called places, the edges denote IO events and the black dot represents the current token. Whenever
an event is executed, the black dot moves along the edge to the next place. If a token transitions
from an initial place to a final one, it guarantees the execution of all IO events along that path.

Given such a Petri net, it can easily be translated into a method contract as demonstrated in
Listing 1. The precondition consists of all IO events with an initial token, while the postcondition
only consists of the final token, ensuring that all IO events have happened.

2.2 Igloo

While the previous section clarifies how to specify which IO operations are allowed, it does not
assist in obtaining the IO specification in the first place. To address this, a formal framework
called Igloo is applied to soundly relate event-based systems to program specifications. The Igloo
methodology follows a six-step process outlined in Figure 2. It begins with the definition of an
abstract system model for which desired properties can be proven. Next, the model is refined to a
distributed view, including an environment. Further refinement considers the IO library interfaces
to be used in its implementation. The model is then decomposed from its monolithic form into
system components. Each of these components is translated into a trace equivalent IO specification.
Finally, these specifications are used to verify the implementation of a component to prove that
they adhere to their intended IO behaviour. The overall soundness of this approach guarantees

2



that successful verification of implemented components against their IO specifications implies that
all properties proven at higher abstract levels hold for the implementation.

Figure 2: Overview of the six steps in the Igloo methodology. This figure is taken from the Igloo
project website [4].

2.3 VerifiedSCION

Igloo allows to formally prove properties like valley freedom or path authorisation on the abstract
model rather than the actual implementation via Isabelle/HOL [7]. Valley-freedom protects the
economic interests of ASes by preventing routes that include ASes that do not financially benefit
from the transmitted traffic. Path authorisation, on the other hand, ensures that packets are
exclusively forwarded along authorised segments.

The generated IO specification can be used to prove that some implementation behaves according
to the protocol. For the verification the IO specification is manually rewritten from Isabelle/HOL
to Go, enabling their use in the deductive verifier Gobra. It consists of a local state and five IO
events. The local state has an input buffer for incoming packets and an output buffer for outgoing
packets. An IO event may require specific elements to be present in one of the buffers and can
also guarantee that certain elements will be in one of the buffers after its execution. The following
section offers a more detailed explanation of the IO events.

• Recv This event is responsible for processing all incoming packets. It lacks a guard allowing
it to accept all types of packets. However, a packet is only added into the local state’s input
buffer if its type is subject to verification, e.g. a SCION packet will be added, whereas an
EPIC packet will not.

• Enter All inbound packets, i.e. packets received from another autonomous system (AS), are
managed by this event. Unless a segment change is necessary during processing, the enter
event is always executed. Thus, the event’s guard verifies whether packets destined for internal
or external destinations are processed correctly. If this condition holds, the packet is placed
into the local state’s output buffer.

3



• Xover This event is similar to the enter event. It is needed when a segment change is required
during processing. Otherwise, the enter event is used. A segment change involves additional
processing steps which have to be checked by the event’s guard, resulting in the differentiation
between xover and enter. Furthermore, the event’s handling depends on whether a core
segment is involved or not, which is why the event is internally divided into two. Like the
enter event, the xover event adds the packet to the local state’s output buffer if all conditions
are satisfied.

• Exit This event handles packets which have been received from the local AS and are destined
for another AS. It requires a packet to be present in the local state’s input buffer and processed
correctly by the codebase. If both conditions are met, the packet is placed into the local state’s
output buffer.

• Send All outgoing packets are handled by this event. Once a packet is put into the local
state’s output buffer it is guaranteed that it has been processed correctly and can be forwarded
to its destination. Once these criteria are met, the send event can be executed.

•

t1 t2 t3 t4

recv(t1, , pkt, t2) enter(t2, pkt
′, pkt, t3)

xover(t2, pkt
′, pkt, t3)

exit(t2, pkt
′, pkt, t3)

send(t3, pkt
′, pkt′, t4)

Figure 3: Petri net for the IO specification.

3 Challenges

The overall objective of this work was to prove that the implementation satisfies the functional
behaviour provided by the IO specification. This was further subdivided into three smaller goals:
translating bytes into an abstract representation, annotating the codebase and ultimately verifying
against the IO specification. Although substantial progress has been made on the first two objec-
tives, verification remains an active effort at the time of writing. The subsequent section provides
a description of the challenges encountered and their respective solutions.

3.1 Abstract state

One challenge lay in the disparities between the IO specification and the implementation. In some
cases, events were handled differently even though they were logically equivalent. For instance, the
IO specification differentiated between segment changes based on the involvement of a core router,
whereas the implementation treated them uniformly.

This challenge was addressed by introducing a ghost state for the dataplane of the router. This
ghost state stores information about the network that was not available in the actual dataplane, such

4



as whether the router is part of the core routers. A further challenge was ensuring coherence between
the actual dataplane and the abstract dataplane. However, this immediately led to performance
issues because too much information had to be exposed to the verifier. While reducing the amount
of exposed information, it uncovered incompleteness issues within the verifier. Overall, resolving
this challenge took a significant amount of time.

3.2 Egress Interface

Inbound packets destined for the local AS posed a challenge as well. According to the definition,
a packet is classified as inbound only if its ingress interface is not equal to 0. While this definition
aligns with both the IO specification and the implementation, the classification of packets destined
for the local AS differs. In the IO specification, these packets require the egress interface to be equal
to 0, whereas the implementation relies on matching the source address with its own AS source
address.

Although initially perceived as an issue, it was discovered during the verification of this case
that using the egress interface or the source address makes no difference in the verification process.
Consequently, this challenge was easily resolved.

3.3 Internal packets

The IO specification requires the link type to be of an allowed form, such as provider-child, which
poses an issue. Firstly, the interfaces of the final hopfield (no further hopfields are involved for local
destinations) do not form a valid link type. Secondly, the implementation imposes fewer constraints
compared to the IO specification and consequently does not entirely align with the IO specification.

This challenge required changing IO specification. It turned out that this was a corner case
which was mishandled by the IO specification. Now the IO specification handles internal packets
differently than external packets. While these changes only minimally affected the verification of the
codebase, fixing all the proofs on the protocol side required a substantial amount of time. Although
this task was outside the scope of the project, it is still worth mentioning here.

3.4 Providing Witnesses

The IO specification is fairly large and contains numerous constraints, primarily expressed through
existential quantifiers. Unfortunately, existential quantifiers are known to cause performance issues
in SMT-based verifiers. Therefore, it is necessary to replace them with witnesses. This approach
offers the added benefit that many of the constraints are satisfied by construction, meaning that
they are automatically fulfilled by the witness on the call side. Subsequently, determining which
constraints require verification and which are trivially true became necessary. To achieve this, a
small example resembling the actual codebase but with most of the functionality abstracted away
was created. This approach allowed testing the necessary annotations with a verification time
of only a few minutes instead of a few hours. Furthermore, this approach had the advantage of
ensuring the correctness and satisfiability of the IO specification.

3.5 Proving IO guards

Incorporating the extensive ghost code from the above-mentioned example directly into the codebase
would compromise both maintainability and performance due to its size. To circumvent this issue,

5



a significant portion of the ghost code is encapsulated within ghost methods that are subsequently
invoked by the codebase. For that purpose, multiple functions were written to specify the processing
of a packet in terms of how they influence the abstract representation of a packet. This approach
allows for reasoning only about the changes to the abstract packet, while the equivalence between
the actual bytes of the packet and the abstract packet can be proven in separate lemmas. This
splits the proof obligations into smaller chunks, resulting in improved performance.

3.6 Performance Issues

Given the size of the project, performance issues are inevitable. These issues often emerge unex-
pectedly, either due to unfolding complex predicates or by excessively increasing ghost code within
a method. To address this challenge, Gobra introduced opaque functions. This feature enables
the concealment of information within a pure function, thereby reducing the workload of the veri-
fier. Whenever the concealed information is required, it can be explicitly accessed via the reveal

keyword. While this approach offers significant performance benefits, it also places an additional
burden on the user, as the verification could fail due to missing information.

3.7 Importance of triggers

Working with sequences requires a lot of quantifiers, which pose challenges in deductive verification
due to their incompleteness. While identifying an initial working trigger is a critical first step, the
pursuit of more efficient triggers can lead to significant performance enhancements. This approach
not only reduces overall verification time but also plays a decisive role in determining the successful
completion of a proof. This can be seen in the IO specification. While the original trigger sufficed,
its dependency on the heap led to performance issues. Switching to heap-independent triggers solved
the performance issues and decreased verification time. As a general principle, heap-independent
triggers are preferable to heap-dependent ones.

4 Suggestions of improvements for Gobra

Although Gobra is a powerful tool with excellent functionality, several areas could be improved to
enhance the user experience further. The following section outlines potential improvements.

4.1 Fine-grained verification errors

When verification fails for a constraint with several conjuncts, it raises the question of which specific
conjunct failed. Currently, the only way to determine this is by manually testing each conjunct.
While this may not be an issue for smaller problems, it becomes highly time-consuming for projects
the size of the IO specification. Gobra could significantly enhance its utility by offering more
detailed verification error messages, allowing for a more fine-grained understanding of the failure.

4.2 Reducing parsing time

As a first step, Gobra translates Go code into Viper code. Despite the Chopper allowing verification
of individual methods, the entire program is still parsed, type-checked, and translated into Viper.

6



With increasing project size, this process can take several minutes. This is very time-consuming, es-
pecially as methods are verified repeatedly. Implementing encapsulation could significantly decrease
this processing time, thereby improving productivity.

4.3 Syntax error reporting

Syntax errors in Gobra can be quite challenging. Certain mistakes, such as forgetting the keyword in

or mismatched parentheses, can confuse Gobra’s error reporting, making it difficult to pinpoint the
exact error location. Once a syntax error is introduced, it becomes a daunting task to locate. A more
sophisticated parser could significantly improve user experience and productivity. Additionally,
Gobra imposes seemingly arbitrary rules regarding newlines and comments, such as requiring the
opening brace of a function to be on the same line as the function body. These rules can unknowingly
be broken and are time-consuming to rectify.

4.4 Folding

In this project, necessary permissions for slices are concealed within predicates for performance
reasons. However, this implies that whenever working with these slices, these predicates must first
be unfolded. In many instances, it would be advantageous to have a folding syntax within pure
functions. Particularly, proving properties of subslices in pure functions becomes challenging when
only the predicate of the original slice is accessible. Even though there are possible workarounds,
introducing such a syntax would make managing permissions much more straightforward and effi-
cient.

4.5 Asserting

Once again, it can be found that working with quantifiers is very tricky, especially within pure
functions. Within a method, a trigger can always be explicitly forced by asserting it. However, in
a pure function, such an option does not exist. Even though an easy workaround is available, it is
often resorted to, leading to the question of whether assert statements should be allowed in pure
expressions.

5 Conclusion

In conclusion, this work aimed at verifying the IO behaviour of the SCION router ensuring the func-
tional correctness of the router’s implementation in alignment with its IO specification. Through
the use of Gobra and the Igloo methodology, a structured process was undertaken to translate ab-
stract protocol specifications into verifiable code constraints. This work highlights the complexities
involved in aligning theoretical models with practical implementations.

Furthermore, the project illuminated areas for improvement within verification tools like Gobra
and Viper. These insights could lead to a more efficient and user-friendly verification process in
future projects.

7



6 Acknowledgements

I would like to thank my supervisors, João Pereira and Dionysios Spiliopoulos for their exceptional
support during our countless meetings. Whenever I needed help, they always provided valuable
advice. Working with them has been an incredibly rewarding experience.

Additionally, I would like to extend my special thanks to Prof. Dr. Peter Müller and the
Programming Methodology Group for granting me the opportunity to contribute to their projects
and research.

8



References

[1] Scion-architecture. Accessed on 2024-04-22. [Online]. Available: https://scion-architecture.net/

[2] L. Chuat, M. Legner, D. Basin, D. Hausheer, S. Hitz, P. Müller, and A. Perrig, The Complete
Guide to SCION. Springer Cham, 16 May 2022.

[3] M. Abadi and L. Lamport, “The existence of refinement mappings,” Theoreti-
cal Computer Science, vol. 82, no. 2, pp. 253–284, 1991. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/030439759190224P

[4] Igloo: End-to-end verification of distributed systems. Accessed on 2024-04-22. [Online].
Available: https://infsec.ethz.ch/research/projects/igloo.html

[5] Gobra. Accessed on 2024-04-22. [Online]. Available:
https://www.pm.inf.ethz.ch/research/gobra.html

[6] W. Penninckx, B. Jacobs, and F. Piessens, “Sound, modular and compositional verification
of the input/output behavior of programs,” in European Symposium on Programming, 2015.
[Online]. Available: https://api.semanticscholar.org/CorpusID:18589224

[7] Isabelle. Accessed on 2024-04-22. [Online]. Available: https://isabelle.in.tum.de/

9



Declaration of originality 
The signed declaration of originality is a component of every written paper or thesis authored during the 
course of studies. In consultation with the supervisor, one of the following three options must be selected: 

Title of paper or thesis: 

Authored by: 
If the work was compiled in a group, the names of all authors are required. 

Last name(s): First name(s): 

With my signature I confirm the following: 
− I have adhered to the rules set out in the Citation Guide.
− I have documented all methods, data and processes truthfully and fully.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for originality. 

Place, date Signature(s) 

If the work was compiled in a group, the names of all authors 
are required. Through their signatures they vouch jointly for the 
entire content of the written work. 

1 E.g. ChatGPT, DALL E 2, Google Bard 
2 E.g. ChatGPT, DALL E 2, Google Bard 
3 E.g. ChatGPT, DALL E 2, Google Bard 

I confirm that I authored the work in question independently and in my own words, i.e. that no one 
helped me to author it. Suggestions from the supervisor regarding language and content are 
excepted. I used no generative artificial intelligence technologies1.

I confirm that I authored the work in question independently and in my own words, i.e. that no one 
helped me to author it. Suggestions from the supervisor regarding language and content are 
excepted. I used and cited generative artificial intelligence technologies2.

I confirm that I authored the work in question independently and in my own words, i.e. that no one 
helped me to author it. Suggestions from the supervisor regarding language and content are 
excepted. I used generative artificial intelligence technologies3. In consultation with the supervisor, I 
did not cite them.

Verifying the IO Behaviour of the SCION Router

Limbeck Markus

March 23, 2024


