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Chapter 1

Introduction

Graphical processing units (GPUs) are highly-parallel computing devices, commonly built
into today’s computers and smartphones. They are important for the speed-up of many
different applications, reaching from graphic-intense software like games to fast numerical
computation tools like MATLAB. Programs written for the execution on GPUs are called
kernels. In order to achieve optimal GPU kernel performance, various aspects need to be
considered when writing kernel code. The goal of this thesis is to design a static analysis of
GPU kernels that analyzes properties that have an effect on the performance of the kernel
execution. Such a static analysis can point out possible code inefficiencies and, thus, help
a programmer to write faster kernels. We focus on three properties, which are

1. whether the kernel contains control flow statements that lead to branch divergence
(which is bad for instruction throughput),

2. whether the kernel contains accesses to shared memory that lead to shared memory
bank conflicts (which is bad for memory throughput), and

3. whether the kernel contains accesses to global memory that allow for global memory
coalescing (which increases the memory throughput).

These three properties belong to a class of program properties called hyperproperties which
are properties that relate multiple program executions.

Related and Previous Work

The GPUVerify project [2] is a project dedicated to the analysis of GPU kernel correctness
through invariant guessing. GPUVerify does not analyze hyperproperties related to kernel
performance but proves the absence of data races and barrier divergence, which are
correctness properties.

In 2018, Eilers et al. [7] have proposed k-modular product programs as a means to express
hyperproperties as properties of a single program execution trace. Thus, using product
programs, it is possible to analyze hyperproperties with off-the-shelf verifiers.

Building upon product programs, Knabenhans [9] has implemented a hyperproperty analysis
framework in the Sample static analyzer1 as part of the Viper verification infrastructure
[10]. This framework performs abstract interpretation on product programs with standard
relational abstract domains like Octagons or Polyhedra and uses a technique called trace

1https://www.pm.inf.ethz.ch/research/sample.html
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partitioning. We extend this framework with the ability to analyze GPU kernels regarding
performance hyperproperties.

Contributions and Overview

In this thesis, we make the following contributions:

• We introduce a so-called m-alignment transformation, a program transformation that
allows to leverage standard numerical static analyses to capture division and modulo
constraints.

• We use the above m-alignment transformation to develop a static analysis of GPU
kernel performance hyperproperties, thus proving m-aligned programs useful.

• We implement this static analysis in the Sample static analyzer and show that
the analysis is able to reason about GPU kernel performance hyperproperties in
interesting kernels.

Chapter 2 contains all the preliminaries for the rest of this thesis that can be skipped if the
reader is familiar with the individual topics. In Chapter 3, we formalize the aforementioned
GPU kernel performance hyperproperties and explain our approach for statically analyzing
them. We describe the m-alignment transformation which simplifies our task significantly.
More details on the implementation of our static analysis are given in Chapter 4 and
evaluation results are shown in Chapter 5. We summarize all findings and propose future
work in the conclusion in Chapter 6. The appendix contains a list of all m-alignment
transformations on one hand and the listing of all GPU kernels used in the evaluation on
the other hand.
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Chapter 2

Preliminaries

2.1 Language Syntax

Since this thesis contains many definitions and explanations that contain programming
language constructs like statements and expressions, we define a language syntax below,
which we will be using in the following. It is similar to the syntax used in [7]. V denotes
the set of program variables.

(Programs) Prog ::= procedure main(x) returns (y) {s} | Proc :: Prog
(Procedures) Proc ::= procedure f(x) returns (y) {s}
(Statements) s ::= skip | x := e | s; s | if (b) then {s} else {s} |

while (b) do {s} | y := call f(e)
(BoolExps) b ::= true | false | ¬b | b ∧ b | b ∨ b |

e ◦ e, where ◦ ∈ {=, 6=, <,>,≤,≥}
(IntExps) e ::= x ∈ V | c ∈ Z | e ? e, where ? ∈ {+,−, ∗, /,%}

Some remarks on notation:

• We write x to denote zero or more variables, i.e., x = x1, . . . , xn for n ≥ 0. Similarly,
we write e to denote zero or more expressions.

• If the precedence of operations in some expression is clear using the usual rules (e.g.,
∗, /, and % have higher precedence than + and −), then we do not insert parentheses.

• Instead of nesting if statements, we use the common notation else if to state
multiple alternative conditional clauses.

• The unary negation expression −e is syntactic sugar for the subtraction 0− e. For
simplicity, we do not explicitly include negation expressions in our language syntax.

• Similarly, we treat the implication expression b1 ⇒ b2 as syntactic sugar for ¬b1 ∨ b2.

• / denotes C-like integer division with truncation (rounding towards zero). If in some
formula, we want to denote integer division with rounding towards negative infinity
instead, we write

⌊ ·
·
⌋
.

• Analogously, % denotes the C-like modulo operation, which is defined with respect
to / such that n = (n / m) ∗m + n % m = n. In particular, if n < 0 above, then
n % m ≤ 0 for all integers m 6= 0. If we want to refer to the mathematical remainder,
which is always non-negative, we write n mod m instead.
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2.2 Abstract Interpretation

Abstract interpretation is a theory formalized by Patrick and Radhia Cousot [5] that is used
in static analysis for the sound approximation of the semantics of a program. A concrete
program trace is a (possibly infinite) sequence of program states where a state can be seen
as a function that assigns values to all program variables. Without actually executing a
given program on any inputs, abstract interpretation can provide an overapproximation
of all possible concrete program traces using abstract program states. We do not go into
all the details of abstract interpretation in static analysis here, more information can be
found in [4].

It is important to note that while concrete program states live in a concrete universe
of integers, pointers etc., the abstract states that approximate the concrete states live
in an abstract universe called an abstract domain. These abstract domains are usually
based on lattices and are part of the abstract interpretation configuration which is chosen
appropriately for a specific problem. For our purposes, we consider numerical abstract
domains which are relational, i.e., which approximate the values of numerical variables and
the relations between them. Specifically, we use one of the two following abstract domains:

• Octagons.
The Octagons domain can store inequalities of the form

± x ± y ≤ c,

where x and y are any two numerical program variables and c is a constant number.

• Polyhedra.
The Polyhedra domain is more powerful than the Octagons domain since it can store
inequalities of the form

a1x1 + a2x2 + . . .+ anxn ≤ c,

where x1 through xn are some n numerical program variables, a1 through an are
constant coefficients, and c is a constant number.

In contrast to the Octagons domain, the Polyhedra domain can represent relations between
more than two variables as well as weighted sums and differences using the coefficients ai
for i = 1, · · · , n. The tradeoff here is precision against runtime: the Polyhedra domain
can store more complex constraints than the Octagons domain but it also has a much
worse runtime complexity which is a decisive factor when used with programs that contain
many numerical variables. In the evaluation in Chapter 5, we argue that for the abstract
interpretation of GPU kernel hyperproperties, the Octagons domain is the preferable
abstract domain.
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2.3 Hyperproperties

In this section, we first explain the concept of hyperproperties. In the first subsection,
we discuss product programs, which allow hyperproperties to be expressed as properties
of single execution traces. The second subsection is about trace partitioning, which is a
technique that we use for the more precise abstract interpretation of product programs.

Hyperproperties are program properties that relate multiple execution traces. More precisely,
k-safety hyperproperties relate finite prefixes of k execution traces. In contrast to liveness
properties, safety properties (“Something bad never happens”) are violated in finite time.

Example. Determinism is a 2-safety hyperproperty because it relates two finite execution
traces: A procedure f with inputs x and outputs y is deterministic if and only if two
executions with the same inputs x produce the same outputs y. Further examples of
2-safety hyperproperties are non-interference, injectivity, monotonicity etc. 4

The three aforementioned hyperproperties on branch divergence, shared memory bank
conflicts, and global memory coalescing are 2-safety hyperproperties as well. The following
subsection shows how k-safety hyperproperties can be analyzed using product programs.

2.3.1 Product Programs

The idea behind k-modular product programs is to use self-composition in order to represent
k simultaneous executions of the program. To this end, each statement in the original
program is replicated k times and every replicated statement is executed under the condition
that the corresponding execution is active. Whether or not a particular execution is active,
is stored in boolean activation variables, in the following denoted by p0, . . ., pk−1.

k-safety hyperproperties relate multiple execution traces. One way to reason about such
properties is to transform the given program into a so-called k-modular product program such
that the hyperproperties of the original program become properties of a single execution
trace of the product program. A detailed discussion of k-modular product programs can
be found in [7].

Example. We want to show that the following simple procedure increment is deterministic:

procedure increment(x) returns (y) { y := x + 1 }.

As mentioned before, determinism is a 2-safety hyperproperty. Therefore, we transform
increment into a 2-product program that looks as follows:

procedure increment(p0, p1, x0, x1) returns (y0, y1) {
if (p0) then { y0 := x0 + 1 };
if (p1) then { y1 := x1 + 1 }
}.

In order to verify that increment is deterministic, we verify the implication

p0 ∧ p1 ∧ x0 = x1 ⇒ y0 = y1. 4

Remark. In the rest of this thesis, we continue to use the superscript notation x0, x1 to
denote some variable x in executions 0 and 1, respectively.
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2.3.2 Trace Partitioning

Product programs are constructed in such a way that the control flow of the original
program is altered and, in some sense, erased. Trace partitioning helps to restore the
original control flow by partitioning all execution traces into sets of traces that agree on
all activation variables in the product program (which are the traces that have the same
control flow in the original program). Each set is analyzed separately which leads to more
precise results, as explained further below.

To understand how the program traces are partitioned, recall from the previous subsection
that boolean activation variables are added in product programs. Activation variables are
needed to condition the execution of a statement in the product program on whether the
corresponding execution is active at the statement in the original program. During the
abstract interpretation of product programs with trace partitioning, the set of possible
program traces is partitioned according to each activation variable being true or false.
Intuitively, for each conditional statement in the original program, trace partitioning makes
that all program trace partitions are, individually, split into 2k partitions where each of
the k executions is either active in this conditional branch or not. Abstract interpretation
is then performed separately on every trace partition.

If abstract interpretation is performed on a product program without trace partitioning, it
may yield very imprecise results. To illustrate this, consider the statement

if (p0) then { y0 := x0 + 1 }

from our product program example in the previous subsection. In the abstract state before
the interpretation of this statement, x0 and y0 are unrelated. If p0 is false (i.e., execution
0 is inactive at this point in the original program), the abstract state does not change. If,
however, p0 is true (i.e., execution 0 is active at this point), then the new abstract state
in a sufficiently powerful abstract domain contains the constraint y0 − x0 = 1. Since, in
general, activation variables can be both true or false, abstract interpretation chooses
an approximation that is sound in both cases, and hence, the constraint y0 − x0 = 1 is
dropped. If trace partitioning is used instead, we get two different abstract states, for the
traces in which p0 is true or false, respectively.

Trace partitioning can be implemented through a special abstract domain called a Binary
Decision Tree (BDT) domain which is parametric in the abstract domain that is used for the
abstract interpretation of every individual trace partition, e.g., Octagons or Polyhedra. As
mentioned in the introduction, Knabenhans [9] has implemented an abstract interpretation
framework for hyperproperties which uses a parametric BDT domain internally. The main
drawback of this BDT domain is that the number of abstract states and interpretation
steps to perform is exponential in the number of activation variables. However, heuristic
optimizations can be applied to reduce this number of abstract states.
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2.4 GPU Architecture Model

In this thesis, we statically analyze GPU kernels with respect to a concrete GPU architec-
ture. The following section discusses the chosen architectural GPU model. There are two
perspectives on the GPU architecture, the programmer’s perspective and the hardware’s
perspective, each with a dedicated subsection. The hardware model also contains informa-
tion about factors that have a positive or negative impact on the performance of kernels
running on such GPU architectures.

2.4.1 Programming Model

The programming model defines an abstraction of the GPU architecture that is visible
to the programmer. Since there are many different GPU designs and implementations,
such an abstraction makes life easier for the programmer who thereby does not have to
worry about compatibility issues. However, in order to make code run faster on a GPU,
the programmer still needs some understanding of how the code is executed in hardware.

CUDA vs OpenCL

The two major GPU programming models are CUDA (Compute Unified Device Architec-
ture) and OpenCL (Open Computing Language). CUDA is being developed by Nvidia
for the proprietary use with their GPUs; OpenCL is an open standard maintained by the
Khronos Group and implemented by GPU architectures of different manufacturers.

In our thesis, we refer to the CUDA programming model and use terms that are specific to
CUDA. One reason for this decision is that Nvidia provides a detailed CUDA programming
guide [11] which also contains information about the hardware model in Nvidia’s GPU
design. All explanations given in the rest of this section are paraphrased from the CUDA
programming guide.

One important thing to note is that we analyze hyperproperties that are not properties
of the high-level GPU kernel as much as properties of the concrete execution traces on a
GPU multiprocessor. This implies that, although the hyperproperties are defined in terms
of the given kernel (since we are doing a static analysis), these definitions need to take into
account the concrete underlying GPU architecture.

Choosing OpenCL as a programming model is fine if, for the chosen GPU architecture,
the hardware implementation of the OpenCL standard is known. However, in contrast to
OpenCL, CUDA kernels can be related to their execution in hardware more easily because
CUDA is only used with Nvidia GPUs which all implement a similar hardware model.
That is why, in this thesis, we focus on CUDA kernels executed on Nvidia GPUs.

Multithreaded Kernels in CUDA

CUDA is not a programming language on its own but can be used in different programming
languages (C, C++, Fortran etc.) and provides a language extension for these languages.
In such an environment, a kernel is a function written in the extended language, which
can be run with the same arguments N times in parallel by N different threads on a
CUDA-enabled GPU.
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The parallel execution of kernels in separate threads makes little sense if all threads
perform the same sequence of instructions on the exact same values. Therefore, kernels are
parametrized by a non-negative integer t, called the thread ID, which starts at zero and is
unique for each and every thread. In other words, if the kernel runs N times in total, then
it runs once for every t = 0, 1, 2, . . . , N − 1.

In CUDA, threads are organized in so-called blocks of at most 1024 threads. Several thread
blocks are executed concurrently if a GPU has several multiprocessors. Inside a kernel, the
thread ID is not directly available to the programmer but can in many cases be computed
as follows:

t := 〈block index 〉 · 〈block size〉+ 〈thread index 〉.
Blocks can, however, be set up in multiple dimensions which makes the above computation
more complicated. Therefore, we make the simplifying assumption that blocks are one-
dimensional and model the thread ID t as an additional input variable t. Given the block
size, which is usually constant, the block index can be computed from t by

〈block index〉 := t / 〈block size〉

if needed.

Example. The copy kernel efficiently copies a large array a to b, where both a and b

have size N ≥ 0. Both the thread ID and the array size are given to the kernel as input
variables t, N:

procedure copy(t, a, b, N) {
if (t < N) { a[t] := b[t] }
} 4

Remark. In OpenCL, threads are called work items and blocks are called work groups.

2.4.2 Hardware Model

The hardware model specifies how a specific GPU architecture implements the execution of
instructions in hardware. Because this is a vast subject, we only introduce three topics that
are relevant to this thesis: SIMT architecture, shared memory, and global memory. Each
of these topics are, respectively, associated to an important factor in kernel performance:
branch divergence, shared memory bank conflicts, and global memory coalescing.

Since we use the CUDA programming model, we refer to a hardware model that is similar
to the one implemented by Nvidia’s Maxwell Architecture. All subsequent architectures
(Pascal, Volta, Turing) are compatible enhancements of the Maxwell Architecture and
are therefore also valid hardware models for our considerations, although some of the
performance issues mentioned in this subsection might be nonexistent in later architectures.

SIMT Architecture and Branch Divergence

Like all Nvidia GPU architectures, the Maxwell Architecture follows a SIMT (Single
Instruction, Multiple Threads) approach, meaning that the same instruction is issued
to multiple threads at the same time. More precisely, a GPU consists of one or more
multiprocessors, and every multiprocessor executes a given instruction in groups of 32
threads, so-called warps (or wavefronts in OpenCL).

10



Remark. Unlike thread blocks, warps are not visible to the programmer. However, threads
belonging to the same warp have successive thread IDs, with the first thread in the first
warp having ID zero. Hence, for i ≥ 0, the i-th warp contains all threads with thread IDs

32i, 32i+ 1, . . . , 32i+ 31.

In the Maxwell Architecture, warps execute in lockstep, which means that all threads
in a warp have to execute the same instruction. This leads to a problem called branch
divergence when two threads in the same warp take a different branch after a control
flow instruction. Since the two threads cannot execute different instructions at the same
time, the two branches are executed serially and, in most cases, lead to a lower instruction
throughput. The threads that are not meant to execute the respective branch are called
inactive and are masked by the responsible control flow instruction. Inactive threads do
not commit any instruction until they are unmasked and become active again.

Example. Consider the following kernel:

procedure divergence(t) {
// (1) branch divergence

if (t % 2 = 0) then { . . . } else { . . . }
// (2) no branch divergence

if ((t / 32) % 2 = 0) then { . . . } else { . . . }
}

In (1), all threads with even IDs take the then branch, all threads with odd IDs take the
else branch. Thus, the threads diverge inside their warp. In (2), every second warp takes
the then branch, all other warps take the else branch. As a general rule, as soon as the
branch condition only depends on t / 32, there can be no branch divergence. 4

It is worth noting that performance is not necessarily affected by every diverging branch,
as suggested above. An idiomatic example is when the kernel operates on arrays (e.g.,
vector addition) and does some bound-checking:

if (t < N) { c[t] := a[t] + b[t] }

If N is not a multiple of 32, the warp will contain some inactive threads, namely the ones
with thread ID t ≥ N . In spite of the diverging branch, the instruction throughput is
optimal for this scenario since there is no else branch and, thus, no other instructions
that have to be serialized.

Shared Memory and Bank Conflicts

Shared memory (called local memory in OpenCL) is fast memory located on all of the
GPU’s multiprocessors. In CUDA, data in shared memory is declared as shared . The
Maxwell Architecture specifies that shared memory is organized in 32 memory banks where
successive banks store successive 32-bit words (4 bytes) of data. All 32 memory banks
can be accessed in parallel, meaning that all threads can be served at once if they access
memory addresses located at pairwise different memory banks.

So-called bank conflicts can happen when memory banks are accessed simultaneously by
two or more threads of the same warp. In case of a bank conflict, the conflicting memory
accesses have to be serialized and lower the memory throughput.
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Example. The following kernel shows two different access patterns to shared memory:

procedure conflicts(t) {
shared s[32];

// (1) bank conflicts

s[t ∗ 32] := . . .

// (2) no bank conflicts

. . . := s[t]

}

(1) shows the worst case for shared memory accesses: all threads in the same warp write to
the same memory bank, bank zero. All 32 accesses have to be serialized and we expect
a 32-fold slow-down. In (2), all threads read from shared memory through a different
memory bank. Therefore, no bank conflicts happen. 4

There is a special case where no bank conflicts happen although two memory banks are
accessed simultaneously, namely if the accessed address location is exactly the same. When
multiple threads read from the same address, the memory bank broadcasts the value to all
those threads at once. Similarly, when multiple threads concurrently write to the same
address, the memory bank does not serialize all writes but arbitrarily executes a single
write.

Global Memory and Coalescing

Unlike shared memory, global memory (marked as device in CUDA) is not located
on the different multiprocessors but in the GPU’s DRAM and is therefore much slower
compared to shared memory. A warp can access global memory via 32-, 64-, or 128-byte
memory transactions, each aligned to their size.

To speed up global memory accesses, a warp coalesces accesses to memory locations that
lie in the same address range, aligned to 128 bytes at most, into one memory transaction.
The fewer memory transactions are needed, the bigger the speed-up is in executing the
memory access. Hence, coalescing increases the memory throughput.

Example. Consider this kernel, containing different accesses to global memory:

procedure coalescing(t) {
device g[4048];

// (1) coalescing

. . . := g[t]

// (2) no coalescing

g[t ∗ 128] := . . .

}

In (1), all threads read from the global array g in a linear fashion. The indices all lie in a
range aligned to 32. If, say, g is an array of 32-bit integers, all accessed memory locations
lie in a range of 128 bytes and can be coalesced into one or two memory transactions at
most. In (2), all global memory accesses go to memory locations that are at least 128 bytes
apart from each other. This is the worst case because for every access, a new memory
transaction has to be issued. 4
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Chapter 3

Approach

3.1 Problem Statement

In this thesis, we develop a static analysis for the following three hyperproperties related
to GPU kernel performance: no branch divergence at control flow statements, no bank
conflicts at shared memory accesses, and coalescing at global memory accesses. In contrast
with hyperproperties like determinism or injectivity, these properties are not about the
end result of a program or method, but about branch conditions and accessed memory
addresses. We first give an intuition for all three hyperproperties and then discuss each of
them in more detail below.

1. No branch divergence.
A control flow statement (i.e., if or while statement) has diverging branches if two
threads in the same warp disagree on the value of the branch condition and take a
different execution path. Diverging control flow is bad for instruction throughput,
hence, the goal of our analysis is, for every control flow statement, to prove that its
branches are non-diverging or to report a possible branch divergence otherwise. The
analysis is sound if and only if it never misses any diverging branches.

2. No shared memory bank conflicts.
A shared memory bank conflict happens if two threads in the same warp access
different memory addresses that map to the same shared memory bank. Bank
conflicts reduce memory throughput, therefore, for every shared memory access, our
analysis aims to prove that it is conflict-free or, otherwise, reports a possible bank
conflict. If and only if it never misses a bank conflict, the analysis is sound.

3. Global memory coalescing.
A global memory access is well coalesced if the total number of memory transactions
produced by the warp’s access pattern is not greater than the number of memory
transactions produced by a linear access pattern. This is the case if, for all pairs
of threads in the same warp, their access indices fall into the same range of size 32,
starting at a multiple of 32. The converse is not true in general (i.e., we check a
stronger statement), but this stronger statement has a form that is more convenient
to prove in our analysis. For every global memory access, we either want to prove
that it is well coalesced or report that it is possibly not. Our analysis is sound if it
overapproximates global memory transactions.

These are 2-safety hyperproperties because they relate finite prefixes of two execution
traces. The execution traces have to stem from two threads that belong to the same warp.
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Before we formalize each hyperproperty, we therefore first formalize the requirement that
two threads belong to the same warp.

We use the notation introduced in Section 2.3 and write superscript 0 and 1 to distinguish
variables from the respective executions. Thus, let t0 and t1 be the thread IDs in both
executions. All three hyperproperties can then be written as implications of the form

SameWarp(t0, t1) ⇒ P (3.1)

where the predicate SameWarp(t0, t1) is true if and only if t0’s and t1’s respective threads
belong to the same warp and P is some appropriate predicate that is defined differently for
each hyperproperty. As described in Section 2.4.2, for any q ≥ 0, the q-th warp contains
all threads with IDs

32q, 32q + 1, . . . , 32q + 31.

Therefore, we can define SameWarp as follows:

SameWarp(t0, t1) := ∃ q ≥ 0 : t0 = 32q + r0 ∧ t1 = 32q + r1, (3.2)

for some 0 ≤ r0 < r1 < 32. We impose r0 < r1 (and thus, t0 < t1) without loss of generality
because we only consider executions from different threads and we choose execution 0 to
be the execution with lower thread ID.

Now, we formalize the aforementioned hyperproperties and define the right-hand side P of
the implication in (3.1) for each of them. Note that all hyperproperties are defined with
respect to the Nvidia Maxwell Architecture. Different hardware models might require a
different definition for each hyperproperty but this would exceed the scope of this thesis.

3.1.1 No Branch Divergence

For each control flow statement s with condition c, we try to prove that s does not cause a
branch divergence. Since c can depend on the thread ID t, we write c as a function of the
thread ID t. Then the control flow in s is non-diverging if and only if c(t) evaluates to the
same truth value for all t in the same warp.

Instead of quantifying over all t in the same warp, it is equivalent to say that in any two
executions in the same warp, with respective thread IDs t0 and t1, the condition c evaluates
to the same truth value. Hence, an if or while statement with condition c(t) has no
branch divergence if

SameWarp(t0, t1) ⇒ c(t0)⇔ c(t1). (3.3)

As mentioned in Section 2.4.2, the occurrence of branch divergence does not always have
a negative effect on instruction throughput. Conversely, the instruction throughput is
optimal if no branch divergence happens. Therefore, the static analysis remains sound if
we ignore special cases, like checks on array bounds, where performance is not affected.

Remark. When we say that an expression e is a function of t or can depend on t, this
includes hidden dependencies, i.e., dependencies via other variables.

3.1.2 No Shared Memory Bank Conflicts

For each shared memory access, we try to prove the absence of bank conflicts. For
convenience, we assume that shared memory is accessed through an index i on bank-sized
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memory chunks (4 bytes) such that two successive indices i, i+ 1 map to two successive
memory banks. Since i can depend on the thread ID t, we write i as a function of t.

A shared memory access with index i(t) is bank conflict-free if for any two thread executions
in the same warp, the indices i(t0), i(t1) map to different memory banks, or if the indices
are equal. The latter case allows for simultaneous reads and writes to the same address.
Since there are 32 banks, i(t0) and i(t1) map to different banks if and only if they are not
congruent modulo 32. Hence, a shared memory access with index i(t) has no bank conflicts
if

SameWarp(t0, t1) ⇒ i(t0) 6≡32 i(t
1) ∨ i(t0) = i(t1). (3.4)

3.1.3 Global Memory Coalescing

As with shared memory, we assume that we can access global memory through an index i
which is a function of t. We waive the restriction that the stride S between two indices is
4 bytes. However, we still require that i and i+ 1 map to consecutive address chunks of
size S.

For every global memory access, we try to show that it is well coalesced, which is true if
the warp’s accessed indices i lie in a range aligned to 32 and of size 32 at most. Intuitively,
if all accessed indices are close to each other, in a range of size ≤ 32, then the accessed
addresses in global memory must also be close to each other, in a range of size ≤ 32S,
where S is the stride between two consecutive indices.

Remark. The requirement that the accessed indices need to be aligned to 32 is actually
stronger than necessary but lets the hyperproperty be expressed as a property of two
execution traces and has a form that is convenient in our approach. A case where this
leads to imprecision is when we have sparse accesses to memory chunks of 1 or 2 bytes
but where these accesses are still in a range aligned to 128 bytes. However, this is not a
soundness issue for our analysis and we estimate that in most reasonable scenarios, the
checked property gives a good measure for how well global memory accesses are coalesced.

Formally, a global memory access with index i(t) is well coalesced if

SameWarp(t0, t1) ⇒
⌊
i(t0)

32

⌋
=

⌊
i(t1)

32

⌋
. (3.5)

Example. Suppose that, in some kernel, the j-th warp is accessing successive elements in
an array of 32-bit integers, i.e., S = 4 bytes and i(t) = t with t ∈ {32j, 32j+1, . . . , 32j+31}.
Since b i(t)32 c = j for all threads in the j-th warp, the implication in (3.5) holds and we
expect a low number of memory transactions. The range of locations accessed by the warp
is 32S = 128 bytes. If additionally the address at i(32j) is a multiple of 128 bytes, all
memory accesses can be coalesced into a single 128-byte memory transaction. Otherwise
we get two memory transactions which is still acceptable. 4
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3.2 Method

In this section, we give an overview of our method to statically analyze the aforementioned
GPU kernel performance hyperproperties. From a high-level perspective, we perform the
static analysis in three steps:

1. Adding specifications and assertions.
In the first step, we annotate the kernel with the specifications and assertions
that are needed in order to check each hyperproperty. Recall from (3.1) that all
hyperproperties in question can be formalized as implications with common left-hand
side SameWarp(t0, t1). Hence, we add SameWarp(t0, t1) as a precondition to the
beginning of the kernel and insert the right-hand sides of the respective implications
(3.3), (3.4), and (3.5) as assertions before all corresponding statements. We state
these preconditions and assertions as relational specifications about variables from
two different executions in a way such that the product transformation in the second
step can translate them correctly.

2. Program transformation.
Secondly, the kernel is put in a form that allows us to check the hyperproperties
more easily. In particular, we apply the k-product transformation introduced in
Section 2.3.1 for k = 2, reducing the 2-safety hyperproperties to properties of single
execution traces.

3. Abstract interpretation.
In the final step, abstract interpretation is used to analyze the modified kernel and to
verify the assertions added in the previous step. As abstract domains, we use a Binary
Decision Tree (BDT) domain, which enables trace partitioning (see Section 2.3.2).
We parametrize the BDT domain with a relational numerical abstract domain like
Octagon or Polyhedra to relate variables from both execution traces.
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3.3 Alignment Transformation

3.3.1 Motivation

We first discuss a direct approach to our task that and show why it fails. From there we
show how to develop a more sophisticated approach and why.

Direct Approach

Recall from Section 3.1 that the thread ID t of the r-th thread in the q-th warp can be
written as

t = 32q + r,

for q ≥ 0 and 0 ≤ r < 32. Necessarily, two different threads in the same warp have equal
q’s and different r’s. Hence, the idea of the direct approach is as follows.

Assume that not only the thread ID t is given as an input variable t to the kernel but also
two input variables q and r which, respectively, represent q and r such that t = 32q + r.
We proceed in four steps.

Step one. Make the above relationship explicit by adding the precondition

t = 32 ∗ q + r ∧ q ≥ 0 ∧ 0 ≤ r ∧ r < 32

to the kernel. To state the assumption that both threads are different but belong to the
same warp, add a second precondition, now using the transformed variables:

q0 = q1 ∧ r0 < r1.

Remember that r0 < r1 is equivalent to r0 6= r1 without loss of generality because we can
choose execution 0 to be the execution with the lower thread ID.

Step two. Next, apply a 2-product transformation to the given kernel such that every
variable x in the original kernel is replaced by two variables x0, x1, each xk for k ∈ {0, 1}
representing x in execution k. In particular, the kernel is given six input variables t0,
t1, q0, q1, r0, r1. The precondition above is automatically duplicated by the 2-product
transformation, and the new input variables are substituted accordingly.

Step three. For each hyperproperty, insert assertions before the corresponding statements
to check whether this property holds:

• To check for branch divergence, add the following assertion before every if or while
statement with condition c(t), as well as at the end of the while loop:

(c(t0) ∧ c(t1)) ∨ (¬c(t0) ∧ ¬c(t1)).

• Insert the following assertion before every shared memory access with index i(t) to
check the absence of bank conflicts:

i(t0) % 32 6= i(t1) % 32 ∨ i(t0) = i(t1).

• Before every global memory access with index i(t), assert

i(t0) / 32 = i(t1) / 32

to check whether it is well coalesced.
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Step four. After that, analyze the modified kernel by means of abstract interpretation,
using a relational numerical abstract domain embedded in a BDT domain.

Shortcomings of the Direct Approach

Although the kernel contains all information that is needed to infer the desired hyperprop-
erties, standard abstract domains like Octagon and Polyhedra are not able to prove them
in any interesting cases and imprecisely report possible assertion violations that are false
positives.

Some very simple examples where the analysis is precise when used with Polyhedra:

• non-diverging branch conditions t < N , where N is constant and a multiple of 32,

• conflict-free shared memory accesses with constant index N ≥ 0,

• well coalesced global memory accesses with constant index N ≥ 0.

In the following basic cases, the abstract domains Octagon, Polyhedra, and a reduced
product of Polyhedra with support for linear congruences are imprecise:

• any non-diverging branch condition that is a function of t / 32, e.g., t / 32 = 0,

• conflict-free shared memory accesses with indices t +N , for N ≥ 0,

• well coalesced global memory accesses with index t.

We draw the conclusion that Octagon and Polyhedra are both unable to derive

(32 ∗ q + r) / 32 = q, given that q ≥ 0 and 0 ≤ r < 32,

and, similarly,

(32 ∗ q + r) % 32 = r, given that q ≥ 0 and 0 ≤ r < 32.

These derivations are essential for the inference of GPU kernel performance hyperproperties.
Since Octagon and Polyhedra are uncapable of doing these derivations, we make the
derivations explicit in the kernel itself via the m-alignment transformation. While this
might not be the only solution (see Section 3.6 for a discussion), it is clear that the direct
approach using the aforesaid abstract domains is not sufficient to carry out our task.

General Idea of the m-Alignment Transformation

Given any integer-typed expression e where it is known that e = 32eq + er for expressions
eq ≥ 0 and 0 ≤ er < 32, we want to derive that e / 32 = eq and e % 32 = er.

Our solution is similar to the direct approach in that we introduce new variables q, r for
the thread ID variable t, however, in this case not only for t but for all integer-typed
program variables. Also, we do not keep any of the “original” variables but use the new
variables instead. We can then redefine all statements, in particular also division by 32
and modulo 32 operations, in terms of these new variables.

Although we are only interested in division and modulo involving 32, due to the warp size
in Nvidia GPUs being 32, we define the m-alignment transformation for all m > 1 instead
of only m = 32, so that we can adapt the transformation to different warp sizes or use it
for other applications (see discussion in Section 3.6). The next subsection provides some
mathematical results that show why this is possible, and introduces important terminology.
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3.3.2 m-Aligned Integer Representation

The following theorem is known as the (Euclidean) Division Algorithm and can be found
together with a complete proof in [3].

Theorem (Division Algorithm). Given integers n ∈ Z and m ∈ Z, with m 6= 0, there exist
unique integers q ∈ Z and r ∈ Z satisfying

n = mq + r, and 0 ≤ r < |m|.

q and r are called, respectively, the quotient and remainder in the division of n by m.

Remark. In a closed form, q and r are given by

q = sgn(m) ·
⌊
n

|m|

⌋
and r = n−m

⌊
n

|m|

⌋
.

For m > 1, a short proof is given in Section 3.5.

A consequence of this theorem is that for every non-zero integer m there is a bijection

φm : Z 7→ Z × {0, . . . , |m| − 1}, given by φm(n) = (q, r),

where q and r are the quotient and remainder in the division of n by m. In other words,
for a fixed m, the tuple (q, r) is a unique representation of n. This allows us to state the
general idea from above more precisely:

The idea in our approach is to choose m = 32 and to rewrite a given kernel as an equivalent
kernel where every integer-typed variable x and constant k in the original kernel is replaced
and represented, respectively, by two variables xq, xr and constants kq, kr according to the
bijection φm.

Definitions. We call above an m-alignment transformation and the transformed kernel
an m-aligned kernel. In a broader context, we speak of m-aligned programs. Let x be
a variable in the original program with value n, and xq and xr the corresponding two
variables in the m-aligned program with values q and r, respectively. We say that xq and
xr are an m-aligned representation of x if (q, r) = φm(n), or, equivalently, if

n = mq + r and 0 ≤ r < |m|.

The term m-alignment owes to the fact that for a fixed m 6= 0 and a given q, the set

Sm(q) = {mq, mq + 1, . . . , mq + |m| − 1}

defines a range of size m that is aligned to a multiple of m.

All procedures, statements and expressions in m-aligned programs have to be rewritten
appropriately such that they operate on quotient and remainder variables, and such that
the semantics of the program does not change. The latter is achieved by satisfying the
invariant that for any integer variable x in the original program, its two corresponding
variables xq, xr in the transformed program are an m-aligned representation of x, at any
time during the program execution. We further discuss this invariant in Section 3.5.

Example. Let m = 2. In a 2-aligned program, the assignment x := 15 is replaced by
xq := 7; xr := 1. We can verify that xq and xr are indeed a 2-aligned representation of x
by checking that x = 2xq + xr, and 0 ≤ xr < 2. In a 2-aligned program, the remainder
variable xr tells us whether x in the original program is even or odd. 4
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3.3.3 Problem Reformulation

After applying a 32-aligned program transformation, the three hyperproperties concerning
branch divergence, shared memory bank conflicts, and global memory coalescing can be
rephrased more simply. Recall from Section 3.1 that every hyperproperty can be analyzed
using an implication of the form

SameWarp(t0, t1) ⇒ P,

where t0 and t1 denote the respective thread IDs from the original kernel in both executions,
the predicate SameWarp(t0, t1) is true if and only if t0 and t1 belong to the same warp, and
P is a predicate defined separately for each hyperproperty. We can rewrite the definition
of SameWarp in (3.2) using new variables tq, tr which are a 32-aligned representation of t
(i.e., t = 32tq + tr):

SameWarp(t0q , t
0
r , t

1
q , t

1
r) := t0q = t1q ∧ t0r < t1r . (3.6)

No Branch Divergence

The implication that checks for branch divergence does not change much. Since we now
write t in terms of tq and tr, we need to make every branch condition c a function of
both tq, tr. Then an if or while statement with branch condition c(tq, tr) has no branch
divergence if

SameWarp(t0q , t
0
r , t

1
q , t

1
r) ⇒ c(t0q , t

0
r)⇔ c(t1q , t

1
r). (3.7)

No Shared Memory Bank Conflicts

Similarly, we rewrite the shared memory access index i as a function of both tq and tr. In
addition, since i is an integer, we split i into iq and ir such that they too are a 32-aligned
representation of i. This allows us to rephrase the hyperproperty as follows: a shared
memory access at index i(tq, tr) = 32iq(tq, tr) + ir(tq, tr) is bank conflict-free if

SameWarp(t0q , t
0
r , t

1
q , t

1
r) ⇒ ir(t

0
q , t

0
r) 6= ir(t

1
q , t

1
r) ∨ iq(t0q , t0r) = iq(t

1
q , t

1
r). (3.8)

Global Memory Coalescing

Using the same notation as before, we say that a global memory access at index i(tq, tr) =
32iq(tq, tr) + ir(tq, tr) is well coalesced if

SameWarp(t0q , t
0
r , t

1
q , t

1
r) ⇒ iq(t

0
q , t

0
r) = iq(t

1
q , t

1
r). (3.9)

3.4 Construction of m-Aligned Programs

This section defines how to construct an m-aligned program Pm from a program P such
that Pm and P are equivalent. Our definition of program equivalence and an informal
correctness proof for our construction are given in Section 3.5.

We denote the m-alignment transformation of any language construct by J . Km. The
transformation parameter m ∈ N \ {0} remains constant during the entire program
construction. As a simplification, we define the transformation for m > 1 only. Note that

φ1(n) = (n, 0), and φ−m(n) = (−q, r)⇔ (q, r) = φm(n).
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In other words, for m = 1, the quotient q equals the original value n and the remainder r
is always 0, and for negative m, q is simply the negation of the quotient corresponding to
m’s positive counterpart. Therefore, we think that the m-alignment transformation is of
little interest if m = 1 or m < 0, and we assume from now on that m > 1.

Furthermore, we write ≡ and :≡ for syntactic equality and definition, in order to make a
clear distinction from semantic equality and definition which are denoted by = and :=.

3.4.1 Programs and Procedures

A program is a set of one or more procedures. The alignment transformation is modular
in the sense that every procedure can be transformed independently. Therefore, the
transformation of a program consists in transforming all its procedures.

A procedure f with body s takes a list x of zero or more parameters and returns a list y of
zero or more return variables. The transformation of such a procedure f is given by

J procedure f(x) returns (y) {s} Km :≡ procedure f(xqr) returns (yqr) {J s Km},

where each parameter x in x is replaced by two new variables xq and xr in xqr, and each
return variable y in y is replaced by yq and yr in yqr. The transformation of s ensures that
if all parameters xq, xr are m-aligned representations of x, all return variables yq, yr too
are m-aligned representations of y when the procedure returns.

3.4.2 Statements and Expressions

The transformation of statements and expressions is intertwined. Hence, we describe the
transformations for each statement type and add explanations on the transformation of
expressions where it is appropriate.

Skip

The skip statement remains unchanged under transformation: J skip Km :≡ skip.

Sequence

Sequences are transformed sequentially: J s; s Km :≡ J s Km ; J s Km

Assignment

The assignment statement x := e assigns an integer-typed expression e to a variable x.
Since x in the original program is replaced by two variables xq, xr in the aligned program,
both xq and xr will be assigned in the transformed assignment statement. Yet, the way
in which an assignment is transformed depends on the structure of the right-hand side
expression. We distinguish between atomic and compound expressions.

Atomic expressions (or atoms) are expressions that contain no proper subexpressions.
Hence, atoms are either variables (denoted by x, y) or constant literals (denoted by k). To
designate arbitrary atoms, we use the letters a, b throughout this section.
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Compound expressions, on the other hand, are of the form e?e, where ? ∈ {+,−, ∗, /,%}
and e, e are arbitrary integer-typed subexpressions. If all proper subexpressions of a
compound expression are atomic, we call it simple, otherwise we call it complex.

First of all, we consider assignments with atomic right-hand sides. Then, for assignments
with compound right-hand sides, we start by defining the transformation in the simple case,
and thereafter reduce the complex to the simple case through an additional extraction
step.

Atomic right-hand sides. The transformation of an assignment x := a is given by

J x := a Km :≡ xq := aq; xr := ar. (3.10)

We define the syntactic meaning of aq and ar for an arbitrary atom a as

aq :≡

{
yq if a ≡ y

kq if a ≡ k,where kq =
⌊
k
m

⌋
,

(3.11)

ar :≡

{
yr if a ≡ y

kr if a ≡ k,where kr = k −m
⌊
k
m

⌋
.

(3.12)

Simple compound right-hand sides. We consider assignments of the form x := a ? b,
for ? ∈ {+,−, ∗, /,%} and atoms a, b. Given m-aligned representations aq, ar of a and bq, br
of b, the goal is to define the m-aligned representation xq, xr of x such that

mxq + xr
!

= (maq + ar) ? (mbq + br). (3.13)

In theory, we could define a trivial transformation that assigns (maq + ar) ? (mbq + br)
to a new variable xnew (which is equivalent to the original program variable x) and finds
xq, xr by applying the division algorithm to xnew (and thus to x):

J x := a ? b Km :≡ xnew := (m ∗ aq + ar) ? (m ∗ bq + br);

if (xnew % m ≥ 0) then {
xq := xnew / m

} else {
xq := xnew / m− 1

};
xr := xnew − (m ∗ xq)

(3.14)

However, such a transformation is not of much interest. If a static analyzer could infer
reasonable constraints for assignments transformed in that way, it would most likely also
perform well on the original assignments. Aside from that, the transformation is long and
cumbersome. The point of constructing an m-aligned program is to take advantage of
mathematical properties of the m-aligned representation of integers, in order to transform
assignments and arithmetic expressions in a way that helps the static analysis to produce
more precise results. Therefore, there is a distinct transformation for every arithmetic
operation. We derive the complete transformation of addition assignments as a showcase
to illustrate this.
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Recall from (3.13) above that we want to find xq, xr such that

mxq + xr
!

= (maq + ar) + (mbq + br) = m (aq + bq)︸ ︷︷ ︸
xq

+ (ar + br)︸ ︷︷ ︸
xr

.

We see immediately that this equation holds with xq = aq + bq and xr = ar + br. However,
for m-alignment we also require that 0 ≤ xr < m. Since we assume that 0 ≤ ar, br < m,
we know that 0 ≤ ar + br < 2m. So in the case where ar + br ≥ m, it suffices to subtract m
from xr and to add 1 to xq. The resulting transformation is

J x := a + b Km :≡ if (ar + br < m) then {
xq := aq + bq;

xr := ar + br

} else { // “overflow”

xq := aq + bq + 1;

xr := ar + br −m
}.

The subtraction (and negation) transformation works analogously. For multiplication, we
can use the distributive law:

mxq + xr
!

= (maq + ar)(mbq + br)

= m2aqbq +maqbr +marbq + arbr

= m

(
maqbq + aqbr + arbq +

⌊
arbr
m

⌋)
︸ ︷︷ ︸

xq

+ (arbr mod m)︸ ︷︷ ︸
xr

.

Thus, the multiplication transformation can be stated as

J x := a ∗ b Km :≡ xq = m ∗ aq ∗ bq + aq ∗ br + ar ∗ bq + (ar ∗ br) / m;

xr = (ar ∗ br) % m.

Remark. In the above transformation, we have translated the mathematical
⌊
n
m

⌋
(integer

division rounded towards negative infinity) as n / m whose semantics is integer division
rounded towards zero, and the mathematical n mod m which is always positive, as n % m
whose sign depends on n. For non-negative n, the two division and modulo operations are
semantically equivalent. Since we know that ar ≥ 0 and br ≥ 0, we have arbr ≥ 0 and our
translation is therefore correct. For negative expressions, the respective operations have
different semantics and must be used with care.

The transformations of division and modulo expressions have much in common. In general,
they are both difficult to handle, except for the cases where the divisor and the modulus
are, respectively, non-zero multiples of m:

mxq + xr
!

= (maq + ar) / (mbq) = aq / bq = m

⌊
aq / bq
m

⌋
︸ ︷︷ ︸

xq

+ (aq / bq mod m)︸ ︷︷ ︸
xr

,

mxq + xr
!

= (maq + ar) % (mbq) = m (aq % bq)︸ ︷︷ ︸
xq

+ ar︸︷︷︸
xr

.
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There is another case that has simple transformations, namely when the divisor and the
modulus divide m, respectively. However, for the remaining cases there is no simple
transformation, and we have to handle these cases by computing quotient and remainder
explicitly, as shown in (3.14). The complete transformations for division and modulo can
be found in the appendix, along with all other transformations.

Complex compound right-hand sides. The more general case is when the right-hand
side of the assignment is a complex compound expression e1 ? e2, where ? ∈ {+,−, ∗, /,%}
and where e1 or e2 (or both) are non-atomic. The transformation of such an assignment is
defined recursively and has the form

J x := e1 ? e2 Km :≡ J y1 := e1 Km ; J y2 := e2 Km ; J x := y1 ? y2 Km ,

where y1, y2 are fresh variables. Extracting the expressions e1, e2 to new variables y1, y2
recursively reduces the transformation of assignments with complex compound right-hand
sides to the case with simple compound right-hand sides. Note that if one of e1 or e2 is
already atomic, there is no need to extract the respective expression to a new variable, but
it is not wrong to do so, either. In the implementation, we use this optimization and do
not extract atomic expressions. In general, it may be possible to define the transformation
with no extraction at all, however, this is likely to yield very complex and redundant
expressions.

Procedure Call

In procedure calls y := call f(e), we need to provide two target variables yq, yr for each
original target variable y in y. As in the section on program and procedure transformation,
we will denote this transformed set of target variables by yqr. Every argument expression
ei in e is extracted to a new variable xi and transformed before calling the procedure.
Calls to procedures with empty argument lists are thus transformed as

J y := call f() Km :≡ yqr := call f(),

and calls to procedures with k ≥ 1 arguments as

J y := call f(e) Km :≡ J x1 := e1 Km ; . . . J xk := ek Km ; yqr := call f(xqr),

where xqr ≡ x1q, x1r, . . . , xkq, xkr. As before, if ei ≡ a for some atom a, the extraction to
a new variable xi is optional and aq, ar can be passed to the procedure directly.

If Statement

The if statement’s then and else branches are statements and can be transformed
accordingly. If the boolean branch condition does not contain any comparison of integer
expressions, it remains unchanged. In most cases, however, the condition contains one or
more expressions of the form e1 ◦ e2, where e1 and e2 are integer-typed expressions and
◦ ∈ {=, 6=, <,>,≤,≥}.

Similarly to the definition of the m-aligned assignment transformation, we start by stating
the transformation for if statements with simple branch conditions and use this to
recursively define the transformation for more complex branch conditions. More specifically,
we begin with if statements whose branch condition is a comparison of atoms a, b. We then
look at conditions that are comparisons of compound expressions, and lastly at conditions of
any form, namely conditions containing boolean literals and multiple comparisons contained
in logical expressions.
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Comparisons of atoms. Consider if statements with branch condition a ◦ b, where
◦ is a comparison operator as defined above. Their transformation is given by

J if (a ◦ b) then {s} else {s} Km :≡ if (J a ◦ b Km) then { J s Km } else { J s Km },

where comparisons are transformed as follows:

J a ◦ b Km :≡


aq = bq ∧ ar = br if ◦ ≡ =

aq 6= bq ∨ ar 6= br if ◦ ≡ 6=
aq < bq ∨ (aq = bq ∧ ar ◦ br) if ◦ ∈ {<,≤}
aq > bq ∨ (aq = bq ∧ ar ◦ br) if ◦ ∈ {>,≥}.

(3.15)

Conditions of any form. In the case where the branch condition c is a boolean expres-
sion that contains any number of comparisons on any kind of integer-typed expressions,
we want to extract all non-atomic integer expressions from these comparisons and assign
them to fresh variables. This step is similar to the extraction applied to assignments with
complex compound right-hand sides, however, we do not extract any boolean expressions
and must therefore proceed differently.

The extraction can be done by recursively traversing c, by “collecting” all extraction
assignments and by replacing all comparisons with their transformed version. To this end,
we define a new extraction operator L . Mm for boolean expressions that takes a condition c
and returns a tuple (s̃, c̃), where s̃ is the sequence of all collected assignment statements
and c̃ is the transformed condition.

More formally,

L c Mm :≡



(y1 := e1; y2 := e2, J y1 ◦ y2 Km) if c ≡ e ◦ e and ◦ ∈ {=, 6=, <,>,≤,≥},
(skip, c) if c ∈ {true, false},
(s̃0, ¬c̃0) if c ≡ ¬c,
(s̃1; s̃2, c̃1 ∧ c̃2) if c ≡ c ∧ c,
(s̃1; s̃2, c̃1 ∨ c̃2) if c ≡ c ∨ c,

where (s̃0, c̃0) = L c0 Mm, (s̃1, c̃1) = L c1 Mm, and (s̃2, c̃2) = L c2 Mm.

Using this extraction operator, we can state the m-alignment transformation for if

statements with an arbitrary branch condition c. Let (s̃, c̃) = L c Mm. The transformation is
defined as

J if (c) then {s} else {s} Km :≡ J s̃ Km ; if (c̃) then { J s Km } else { J s Km }.

While Loop

The transformation of while loops is very similar to the transformation of if statements.
The main difference is that all statements that stem from extracting the condition have
to be added to the end of the loop body as well. Therefore, the transformation of while
loops is defined as

J while (c) do {s} Km :≡ J s̃ Km ; while (c̃) do {J s Km ; J s̃ Km},

where (s̃, c̃) ≡ L c Mm.
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3.5 Correctness

This section reasons about the correctness of the m-aligned program construction, as
defined in the previous section. We do not give a complete formal proof but rather prove
some parts of the construction and provide informal reasoning for the rest. The m-aligned
program construction is correct if the m-aligned program is equivalent to the original
program in a way that is defined below.

3.5.1 Definition of Program Equivalence

Since the original and the transformed program do not operate on the same set of variables,
it is important to define exactly what we mean when we say that a program P and its
m-aligned version Pm are equivalent.

Intuitively, this is the case if for every variable x in P , Pm contains two variables xq, xr
such that the following holds: if Pm’s inputs are m-aligned representations of P ’s inputs
and if P and Pm are executed simultaneously step-by-step, then xq and xr are a valid
m-aligned representation of x at every step, i.e., before and afterwards. One such step
consists of executing the next statement s in P and its transformed statement(s) J s Km in
Pm.

In terms of small-step semantics, we can define program equivalence more precisely as
follows. A configuration of the program P with set of integer variables V is a tuple 〈s, σ〉
where s is the sequence of remaining statements in P and the state function σ : V 7→ Z
maps integer variables in P to their values. Similarly, let σm : Vm 7→ Z denote the state
function of the m-aligned program Pm with set of integer variables Vm. Let 〈s, σ〉 → 〈s′, σ′〉
denote one step of the small-step transition between two program configurations. Arbitrary
numbers of steps are denoted by →∗. Also, let φm be as defined in Section 3.3.2.

Then P and Pm are equivalent if and only if for every possible configuration 〈s, σ〉 of P
and every variable x ∈ V with corresponding quotient and remainder variables xq, xr ∈ Vm

in Pm, it holds that

〈s, σ〉 → 〈s′, σ′〉 ∧ φm(σ(x)) = (σ̃(xq), σ̃(xr))

⇒ (3.16)

〈J s Km , σ̃〉 →
∗ 〈

q
s′

y
m
, σ̃′〉 ∧ φm(σ′(x)) = (σ̃′(xq), σ̃

′(xr)).

The only statements that alter the state function are procedure calls and assignment
statements. We only need to consider the latter because procedures and their return
variables are transformed correctly by assumption. We also have to make sure that the
transformed program has the same control flow as the original program, such that there
always exists a transition 〈J s Km , σ̃〉 →∗ 〈J s′ Km , σ̃′〉.

We claim without proof that the m-aligned program is equivalent to the original program
if the transformation of assignments with atomic or simple compound right-hand sides,
and of branch conditions with comparisons are correct. The correctness of all other
transformations follows from the correctness of these basic transformations and from the
fact that extracting an expression to a fresh variable does not change the semantics of a
program.

In the following proofs, we do not explicitly refer to (3.16) or use any small-step notation
in order to keep them short and comprehensible.
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3.5.2 Correctness of the Comparison Transformation

The transformation for comparisons of atoms is given in (3.15). We briefly show that
the transformed comparisons applied to integers aq, ar, bq, br are equivalent to the original
comparisons applied to integers a, b. To this end, we assume that m > 1 is fixed and that

φm(a) = (aq, ar), and φm(b) = (bq, br).

More formally, we prove for every comparison operator ◦ ∈ {=, 6=, <,>,≤,≥} that a ◦ b ⇔
J a ◦ b Km:

• a = b ⇔ aq = bq ∧ ar = br (equality):

This equivalence follows directly from the fact that φm is a bijection.

• a 6= b ⇔ aq 6= bq ∨ ar 6= br (disequality):

This equivalence can be obtained from the one above by applying De Morgan’s laws.

• a < b ⇔ aq < bq ∨ (aq = bq ∧ ar < br) (strict inequality):

We show both directions separately:

⇒) We know that maq + ar = a < b = mbq + br. Suppose aq 6= bq. If aq > bq,
a − b = m(aq − bq) + (ar − br) > m + (ar − br) > m − br > 0. This is a
contradiction to a < b. Hence, aq < bq. Suppose aq = bq. By subtraction we get
ar = a−maq < b−mbq = br.

⇐) Suppose aq < bq. Then a = maq + ar < m(aq + 1) ≤ mbq ≤ mbq + br = b.
Suppose aq = bq ∧ ar < br. Then a = maq + ar = mbq + ar < mbq + br = b.

• a ≤ b ⇔ aq < bq ∨ (aq = bq ∧ ar ≤ br) (non-strict inequality):

The proof is analogous to the previous proof for strict inequalities.

• The equivalences for the reverse inequalities follow directly from flipping a and b.

Since the transformed comparisons are equivalent when comparing integers, they are also
equivalent when comparing integer-typed program variables and literals.

3.5.3 Correctness of the Assignment Transformation

We consider assignments where the left-hand side in the original program is a variable x.
The hypothesis is that, before the assignment, all transformed program variables are m-
aligned representations of their respective corresponding variables in the original program.
We show that, after the assignment, the variables xq, xr in the transformed program are an
m-aligned representation of x.

Atomic right-hand sides. First, consider an assignment where the right-hand side is
an atom. The transformation of such an assignment is defined in (3.10), (3.11) and (3.12).
If the original right-hand side is a variable y, then the transformed assignment is

J x := y Km :≡ xq := yq; xr := yr.

By assumption, yq and yr are an m-aligned representation of y, hence, xq and xr are an
m-aligned representation of x. Otherwise, if the original right-hand side is a constant literal
k, then the assignment is transformed as

J x := k Km :≡ xq := kq; xr := kr,
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where kq =
⌊
k
m

⌋
and kr = k−m

⌊
k
m

⌋
. In this case, xq and xr are an m-aligned representation

of x because kq and kr are defined such that φm(k) = (kq, kr). This can be shown by
proving (a) mkq + kr = k and (b) 0 ≤ kr < m.

(a) mkq + kr = m

⌊
k

m

⌋
+ k −m

⌊
k

m

⌋
= k,

(b) 0 = k −m k

m
≤ kr = k −m

⌊
k

m

⌋
< k −mk −m

m
= m.32

In (b) we used the fact that k
m ≥

⌊
k
m

⌋
> k−m

m and that m > 1.

Simple compound right-hand sides. Recall that assignments with simple compound
right-hand sides are of the form x := a ? b where a and b are atoms and ? ∈ {+,−, ∗, /,%}.
We have derived a specific transformation for each operation, and these can be found in
the appendix.

Using the online frontend1 of the Viper verification infrastructure [10], we are able to
automatically verify the correctness of these transformations for assignments involving
addition, subtraction, multiplication, negation, and the general cases for division and
modulo. For the special cases of division and modulo (divisor/modulus is a multiple of m,
divisor/modulus divides m), the verification times out.

As an example, Listing 3.1 shows the Viper program used for verifying the transformation
of assignments with simple addition expressions.

Listing 3.1: Viper program proving the transformation of addition assignments correct.

1 method add(a: Int, a_q: Int, a_r: Int, b: Int, b_q: Int, b_r: Int, m: Int)

2 returns (x: Int, x_q: Int, x_r: Int)

3 requires 0 <= a_r && a_r < m

4 requires a == m * a_q + a_r

5 requires 0 <= b_r && b_r < m

6 requires b == m * b_q + b_r

7 ensures 0 <= x_r && x_r < m

8 ensures x == m * x_q + x_r

9 {

10 x := a + b

11

12 if (a_r + b_r < m) {

13 x_q := a_q + b_q

14 x_r := a_r + b_r

15 } else {

16 x_q := a_q + b_q + 1

17 x_r := a_r + b_r - m

18 }

19 }

1http://viper.ethz.ch/examples/blank-example.html
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3.6 Discussion

In this section, we discuss the benefits and limitations of our approach. We also give
examples of alternative approaches for our task or for the m-alignment transformation in
general. Lastly, we discuss further applications for the m-alignment transformation.

3.6.1 Benefits of the m-Alignment Transformation

There are two essential benefits of our m-alignment transformation regarding the static
analysis of GPU kernel performance hyperproperties:

1. Even if we use abstract domains that do not handle integer division and modulo
operations well, we have a good chance of inferring the desired GPU kernel hyper-
properties if we apply an alignment transformation with m = 32, i.e., if we choose m
to be equal to the warp size. The m-alignment transformation is not more precise
for all division and modulo operations except for division and modulo by 32 which
are the operations by means of which our hyperproperties are defined and, thus, the
operations we are most interested in.

2. We can statically analyze the transformed GPU kernel using any existing analysis
framework that is capable of dealing with hyperproperties. In particular, we can
apply a product program transformation and perform abstract interpretation on the
twice transformed kernel.

The m-alignment transformation may have much more useful applications than only the
static analysis of GPU kernel performance hyperproperties. We suggest some possible
applications later in this section.

3.6.2 Limitations

The main drawback of our method is that m-aligned programs tend to become very long.
Nested expressions get factored out and introduce two new variables per subexpression.
Even a simple addition or subtraction of two variables becomes an if statement with two
branches containing two assignments each, not to mention division or modulo expressions.
In Chapter 4 on the implementation of our approach, we explain how the length of m-aligned
programs can be reduced heuristically. In addition, after the m-alignment transformation,
we are constructing a product program from the m-aligned program, additionally doubling
the number of variables and statements.

Since the program to analyze becomes longer, the static analysis has to perform more steps.
Furthermore, the number of program variables is increased and for standard relational
abstract domains, the runtime complexity of each analysis step is superlinear in the number
of program variables. Therefore, the m-alignment transformation leads to a substantial
increase in runtime. In other words, we trade longer runtime for higher precision.

3.6.3 Alternative Approaches

One alternative approach to the m-aligned transformation of a kernel is presented in
Section 3.3.1. This direct approach is too weak to prove the desired hyperproperties but
can serve as a basis for more sophisticated approaches.
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m-Alignment Transformation as Abstract Domain

It is also possible to create a specialized abstract domain that implements our m-aligned
transformation through its abstract transformers. Such an abstract domain runs on
the original program but internally uses the m-aligned representation of integers as an
abstraction of the program variables. Additionally, the domain takes another abstract
domain as parameter and applies it to its internal set of variables. Since the m-alignment
transformation is performed by the abstract domain internally, this method probably makes
the static analysis faster.

Note, however, that for the static analysis of GPU kernel hyperproperties, such a domain
cannot be used in the same way as the explicit m-alignment transformation. Either it has
to be used in conjunction with a specialized domain for hyperproperties, or it runs on the
product program in which case the order of transformations is switched.

Direct Approach with Specialized Abstract Domain

As mentioned before, Octagons and Polyhedra are unable to derive that, given an integer
m > 1, and non-constant integer expressions e = meq + er, eq ≥ 0, and 0 ≤ er < m, the
following equalities hold:

e / m = (meq + er) / m = eq and e % m = (meq + er) % m = er.

Therefore, one alternative approach is to proceed as described in the direct approach but
to use a new abstract domain, call it D, that is both relational and numerical, and that is
able to make these derivations automatically. If, for example, the expressions e, eq and er
are some variables t, q, r as in the direct approach, the constraints t = m ∗ q + r, q ≥ 0,
and 0 ≤ r < m can be captured by the Polyhedra domain. Thus, such a new abstract
domain D can perhaps be implemented as a wrapper around Polyhedra.

The main benefit of using a specialized abstract domain is that the m-alignment transfor-
mation is not needed and that the analysis can therefore run faster. The difficulty of this
method lies in making it precise for a bigger variety of expressions, e.g., when eq and er
are not atomic but compound expressions.

3.6.4 Further Applications

Cache Performance Properties

Cache accesses (on CPUs or GPUs) are similar to both shared and global memory accesses
on GPUs. On the one hand, like shared memory, caches are organized in cache banks
which can serve multiple memory accesses simultaneously if the accessed memory locations
map to different banks. On the other hand, dense memory accesses lead to a much bigger
cache hit rate than sparse memory accesses, just as dense global memory accesses lead to
better coalescing.

It is probable that the m-alignment transformation can be used to analyze the cache usage
of a program and that our static analysis of GPU kernel performance hyperproperties can
be applied to the analysis of cache performance properties with relatively few changes to
the implementation.
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Mathematical Proofs by Case Distinction

In some mathematical proofs, it is necessary to perform a case distinction on some integer
n. A common case distinction is the distinction between n being a) even, or b) odd. In
mathematical terms, we write

a) n = 2q for some integer q, and b) n = 2q + 1 for some integer q.

Further case distinctions following the same principle are:

• Distinguish n = 3q, 3q + 1, 3q + 2 for some integer q.

• Distinguish n = 4q, 4q + 1, 4q + 2, 4q + 3 for some integer q.
...

• Distinguish n = mq,mq + 1,mq + 2, . . . ,mq +m− 1 for some integers m > 1, q.

The mathematical way of making such case distinctions is by rewriting n in terms of the
constant m > 1, multiplied with some integer q, plus a constant rest r such that 0 ≤ r < m.
It is easy to see that this rewriting step is analogous to our m-alignment transformation.

Next, we provide an example of such a proof by case distinction. Mathematically, it
is straightforward to prove. Then we automate the proof using Viper and analyze two
different programs, with and without m-alignment transformation.

Example. Let n be an integer. Prove that if 3 does not divide n, then 3 divides n2 − 1.

Proof. We make a case distinction on n: a) n = 3q, b) n = 3q + 1, c) n = 3q + 2. In every
case we need to prove that either n = 0 mod 3 or n2 − 1 = 0 mod 3.

a) Let n = 3q for some integer q. Then n = 0 mod 3.

b) Let n = 3q + 1 for some integer q. Then n = 1 mod 3, and thus also n2 = 1 mod 3.
We get n2 − 1 = 0 mod 3 as desired.

c) Let n = 3q + 2 for some integer q. Then n = 2 mod 3, and thus also n2 = 1 mod 3.
Again, we get n2 − 1 = 0 mod 3 which concludes this proof. 4

We can write the statement above as an assertion that

n % 3 = 0 ∨ (n ∗ n− 1) % 3 = 0.

A simple Viper program containing this assertion can be found in Listing 3.2 below. Using
this program, Viper is not able to prove the desired statement.

After applying an m-alignment transformation for m = 3, the resulting program looks like
in Listing 3.3. We have manually simplified the modulo assignments to make the program
more concise. For this program, Viper is capable of proving it without any further hints. A
possible hint would be to assume nr = 0, 1, 2 in three separate analyses, thus covering all
cases. This can be done efficiently since the number of cases to consider is always constant
in such proofs.

As an improvement, it would make sense to extend the analyzed language and the m-
alignment transformation by a mathematical mod function or operator because this is
more appropriate for the use in such proofs. The % modulo operator is only semantically
equivalent to mod if the left-hand operand is non-negative or divisible by the modulus.
The latter is true for our example, therefore we can use the % operator as a replacement
for mod in the programs listed below.
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Listing 3.2: Viper encoding of proof without m-alignment transformation.

1 method proof(n: Int)

2 {

3 assert n % 3 == 0 || (n * n - 1) % 3 == 0

4 }

Listing 3.3: Viper encoding of proof with m-alignment transformation for m = 3.

1 method proof(n_q: Int, n_r: Int)

2 requires 0 <= n_r && n_r < 3

3 {

4 var w_q: Int

5 var w_r: Int

6 var x_q: Int

7 var x_r: Int

8 var y_q: Int

9 var y_r: Int

10 var z_q: Int

11 var z_r: Int

12

13 // w := n mod 3

14 w_q := 0

15 w_r := n_r

16

17 // x := n * n

18 x_q := 3 * n_q * n_q + n_q * n_r + n_r * n_q + n_r * n_r / 3

19 x_r := n_r * n_r % 3

20

21 // y := x - 1

22 if (x_r - 1 >= 0) {

23 y_q := x_q - 0

24 y_r := x_r - 1

25 } else {

26 y_q := x_q - 0 - 1

27 y_r := x_r - 1 + 3

28 }

29

30 // z := y mod 3

31 z_q := 0

32 z_r := y_r

33

34 assert (w_q == 0 && w_r == 0) || (z_q == 0 && z_r == 0)

35 }
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Chapter 4

Implementation

As part of this thesis, a static analysis for GPU kernel performance hyperproperties
according to the approach described in the previous chapter was implemented. Our
implementation is written in Scala and extends an existing framework [9] which is part
of the Viper [10] verification infrastructure. This framework provides code for the static
analysis of hyperproperties, using k-product programs and abstract interpretation with
trace partitioning. An introduction of these topics can be found in the preliminaries in
Chapter 2.

On a high level, we implement our analysis by adding two classes to the existing analysis
framework. On the one hand, the AlignmentTransformer class takes a parameter m > 1
and a program in form of its abstract syntax tree (AST) on which it operates, and
returns the AST of the m-aligned program. On the other hand, the GPUAnalysis class
performs the whole static analysis of GPU kernel performance hyperproperties, using the
AlignmentTransformer class for the 32-alignment transformation as well as other classes for
the product transformation and the abstract interpretation with trace partitioning. In this
chapter, we present these two main parts of our implementation. We focus on practical
issues and various optimizations that are not explained in the approach.

4.1 m-Alignment Transformation

The m-alignment transformation, as described in Section 3.4, can be implemented for any
C-like programming language. Since the m-alignment transformation is implemented within
the Viper infrastructure, our implementation is designed to work with Viper programs. We
support the m-alignment transformation of programs using any integer parameter m > 1.

This section briefly discusses two problems that can arise when constructing an m-aligned
program and how to solve them. The first problem addresses the transformation of method
pre- and postconditions which is special compared to the transformations described in the
previous chapter. The second problem lies in potentially useless statements introduced by
the m-alignment transformation.

4.1.1 Translating Pre- and Postconditions

Method pre- and postconditions are an important part of Viper programs because Viper
is a language used for program analysis and verification purposes. A method’s pre- and
postconditions are expressions that specify constraints on the arguments passed to the
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method and guarantees for its return variables, respectively. They are different from
assertions or loop invariants in that they do not contain local variables and that no
statements can be put in front of them.

Therefore, compound expressions occuring in pre- and postconditions cannot be extracted
to fresh variables as usual but have to be transformed inside the respective condition.
The only place in which pre- and postconditions, and boolean expressions in general,
contain integer-typed expressions are arithmetic comparisons. In the paragraph on the
transformation of if statements in Section 3.4.2 we describe how such comparisons are
translated. Recall that comparisons of atomic expressions like program variables or constant
literals do not require an additional extraction step but can be transformed directly as a
combination of multiple comparisons. Hence, every comparison c of atomic expressions
that is contained in a pre- or postcondition can be transformed in this way.

If, however, for some comparison operator ◦, c is a comparison c ≡ e1 ◦ e2 where either e1
or e2 or both are compound expressions, the comparison cannot be transformed as before
without extracting the compound expression to a fresh variable. The straightforward
solution to this is to replace all variables x in c with their explicit m-aligned representation
m∗xq +xr in the aligned program. A comparison transformed in this way is less expressive
and loses one great benefit of the m-alignment transformation, that being the possibility
to operate on the quotient and remainder variables separately. However, it is a working
solution and keeps the transformation simple. It is the solution we use in our implemention.

Example. We assume that a method is transformed using an m-alignment transformation
with m = 2. If the original method with parameters x and y contains a precondition that
requires

x = 5 ∧ x + y = 6,

then we translate this precondition in the aligned program as follows:

xq = 2 ∧ xr = 1 ∧ (2 ∗ xq + xr) + (2 ∗ yq + yr) = 6. 4

An alternative, yet more complex solution would be to rewrite the precondition as several
implications such that the implications imitate the transformation of the corresponding
operation.

Example. In the same alignment transformation for m = 2, the precondition from the
previous example could be rewritten as follows:

xq = 2 ∧ xr = 1

∧ (xr + yr < 2 ⇒ xq + yq = 3 ∧ xr + yr = 0)

∧ (xr + yr ≥ 2 ⇒ xq + yq + 1 = 3 ∧ xr + yr − 2 = 0).

Compare this transformation to the transformation of an assignment x := a + b for m = 2
as described in Section 3.4.2. 4

For more complex preconditions, this solution will result in long and complicated im-
plications chains. For simplicity and performance reasons, we use the previous solution
instead.

4.1.2 Simplification of Redundancies

The alignment transformation can create redundant statements and expressions that
introduce an avoidable overhead to the program execution or analysis. We simplify these
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redundancies by applying a set of simplification rules after the transformation. This is
primarily a performance optimization, meant to speed up the static analysis. In the
evaluation of our static analysis which can be found in the next chapter, we compare the
runtimes of the analysis with and without this simplification.

Note that in most cases, these simplifications do not only apply to m-aligned GPU kernels
but to any m-aligned program that contains redundant statements and expressions due to
the m-alignment transformation.

Artificial examples of redundant expressions are operations on two integer literals, for
instance in an assignment x := 1 + 1. Without any simplifications, this assignment is
transformed as

J x := 1 + 1 Km ≡ if (1 + 1 < m) then {
xq := 0 + 0;

xr := 1 + 1

} else { // “overflow”

xq := 0 + 0 + 1;

xr := 1 + 1−m
}.

For a concrete m, say m = 2, the transformation can be simplified to

xq := 1; xr := 0,

either by evaluating all constant expressions and removing unreachable code, or by simpli-
fying the original assignment to x := 2 in the first place. The redundancy in this example
is caused by a redundancy in the original program. However, this is not always the case.
Let m = 5 and consider the statement x := y+ 10 whose alignment transformation is given
by

J x := y + 10 K5 ≡ if (yr + 0 < 5) then {
xq := yq + 2;

xr := yr + 0

} else { // “overflow”

xq := yq + 2 + 1;

xr := yr + 0− 5

}.

Since we know that yr < m = 5, the code in the else branch is unreachable and can be
removed, just like the branch condition which always evaluates to true. Furthermore, any
addition with zero is redundant and can be removed as well. The simplified statement is
thus

xq := yq + 2; xr := yr.

We now state a set of rules which are not meant to be complete but to cover the basic
redundant statements and expressions. We use the symbol |= to denote a simplification
rule, e.g., we write s |= s′ if the statement s can be simplified to the statement s′. We
can simplify statements and both integer and boolean expressions. The simplification
makes most sense if it applies the simplification rules recursively, i.e., before an expression
is simplified, all its subexpressions are simplified first. Similarly, before a statement is
simplified, all the statements and expressions it consists of are simplified first.
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Arithmetic Expressions

Any arithmetic operation between two constant literals is redundant and can be simplified
by directly replacing the expression with the evaluated constant. We do not state this
simplification explicitly.

Let e be an arbitrary integer-typed expression. We have the following rules:

• Addition:
e+ 0 |= e, 0 + e |= e.

• Subtraction/Negation:
e− 0 |= e, 0− e |= −e, −(−e) |= e.

• Multiplication:
e ∗ 0 |= 0, 0 ∗ e |= 0, e ∗ 1 |= e, 1 ∗ e |= e, e ∗ −1 |= −e, −1 ∗ e |= −e.

• Division:
0 / e |= 0, e / 1 |= e, e / − 1 |= −e.

• Modulo:
e % 1 |= 0, e % − 1 |= 0.

Comparisons

As before, any comparison between two constant literals can be replaced by the direct
evaluation true or false for this comparison.

Let xr be an arbitrary remainder variable in an m-aligned program. We write k<c, k≤c,
k>c and k≥c to denote all integers k such that the subscript condition holds for k and the
specified constant c. Note that m denotes the parameter of the m-alignment transformation.
The follwing rules apply:

• Less or equal than:
k≤0 ≤ xr |= true, xr ≤ k≥m−1 |= true, k≥m ≤ xr |= false, xr ≤ k<0 |= false.

• Less than:
k<0 < xr |= true, xr < k≥m |= true, k≥m−1 < xr |= false, xr < k≤0 |= false.

For greater or equal than and greater than, the same simplifications apply with flipped left-
and right-hand sides.

A more interesting simplification applicable to GPU kernels takes advantage of the fact
that we model the thread ID t as an additional input variable t which is non-negative.
In the m-aligned kernel, t is replaced by tq and tr. Since the division and modulo
transformations are if statements that contain branch conditions with non-negativity
constraints, we can simplify these transformed statements a lot if we simplify comparisons
of the form tq ≥ 0 |= true.

Boolean Logic Expressions

Let b be an arbitrary boolean expression. For logical boolean expressions, we can use the
following simplifications:

• Negation:
¬true |= false, ¬false |= true.
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• Conjunction:
b ∧ false |= false, false ∧ b |= false, b ∧ true |= b, true ∧ b |= b.

• Disjunction:
b ∨ false |= b, false ∨ b |= b, b ∨ true |= true, true ∨ b |= true.

Statements

Given arbitrary statements s, s1, s2, and an arbitrary variable x, we can state the following
simplification rules for statements:

• Assignment:
x := x |= skip.

• Sequence:
s; skip |= s, skip; s |= s.

• If statement:
if (true) then {s1} else {s2} |= s1, if (false) then {s1} else {s2} |= s2.

• While loop:
while (false) do {s} |= skip.

4.2 GPU Kernel Analysis

In order to statically analyze performance hyperproperties for GPU kernels, we have
implemented a static analysis that takes as input one or more files with GPU kernels
encoded in Viper, and that outputs a detailed report for every kernel, indicating all possible
performance issues.

The approach to this static analysis is described in detail in Chapter 3. In this section,
we cover different implementation-specific topics, including precision and performance
optimizations.

4.2.1 Check Keyword

The hyperproperties that we are analyzing have to be checked right before the concerned
statements, i.e., for non-diverging control flow before the if or while statement, for
conflict-free shared memory accesses and well-coalesced global memory accesses before
the respective memory access. We check a hyperproperty by verifying the right-hand
sides of the implications (3.7), (3.8), and (3.9) in Section 3.3.3, after having assumed the
corresponding left-hand side in the kernel preconditions.

The obvious method to verify an assumption about the program state at some point in the
program is to insert an assertion and to let the static analysis check whether the assertion
always holds or whether it might fail, in which case we report a possible assertion violation.
In Viper, the keyword introducing an assertion is assert.

The problem with using assertions to check hyperproperties is that they are not intended to
be used to test expressions that might be false, but rather for sanity checks that should never
fail. In fact, if the program analyzed through abstract interpretation contains an assertion,
the abstract domain verifies it, reports a possible violation, and subsequently assumes that
it holds. We, however, do not want the abstract domain to assume our hyperproperty
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checks because then, property violations from two identical branch conditions or memory
accesses might be reported only once by the static analysis.

Therefore, we extend Viper with the keyword check that introduces an expression that
should be checked by the static analysis but is not required to be true. As with assertions,
the static analysis should report a possible check violation if the checked expressions might
be false. However, the difference is that the checked expression must not be assumed
in the subsequent program states. Additionally, the check statement is given the line
number of the statement from which the hyperproperty check originates. Thus, when
reporting a possible check violation, the analysis can specify in which line in the kernel the
hyperproperty might not hold.

4.2.2 Equality Assumptions

There is a frequent setting which is a consequence of the product construction and that
makes the Octagons domain and sometimes the Polyhedra domain lose knowledge about
the information flow during the analysis of product programs. The scenario in which
precision is lost can be described in three steps:

1. Let x be some variable in the original program and x1, x2, . . ., xk be k copies of x
in the product program. Assume that at some point in the program, the abstract
domain knows that

x1 = x2 = . . . = xk.

2. Assume that, in terms of the original program, the next statement to analyze is an
assignment to a different variable, y, and that the right-hand side expression e of
this assignment only depends on variables with equal values and on constants, e.g.,
y := 2 ∗ x + 1. Since such an expression e is equal in all executions, it follows that
after this statement, the variable y is equal in all executions, given that all executions
executed the assignment.

3. Abstract interpretation with Octagons is in most cases unable to derive that y is
equal in all executions. To illustrate what happens, we consider the example above,
an assignment y := 2 ∗ x+ 1. In the k-product program, this assignment is translated
as a sequence of assignments

if (p1) then { y1 := 2 ∗ x1 + 1 },

if (p2) then { y2 := 2 ∗ x2 + 1 },
...

if (pk) then { yk := 2 ∗ xk + 1 },
where pi is the activation variable in the i-th execution. We assume that all activation
variables are set to true. There are two reasons why the Octagon domain cannot
derive that y is equal in all executions:

(a) because Octagons can only store constraints of the form ±x± y ≤ c, and

(b) because the assignments in the product program are interpreted sequentially
and not all at once.

It is the combination of both (a) and (b) that prevents Octagons from inferring the
equality constraints for y between the different assignments. Note that Polyhedra is
better in keeping track of such constraints but also fails to do so for more complex
assignments like y := x % 2.
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For the static analysis of GPU kernels, we need to know whether epressions or variables are
equal in several executions in order to prove the absence of branch divergences. To decide
whether, for an if or while statement, all threads in a warp have the same control flow, we
have to check whether a given branch condition evaluates to the same value in all threads
belonging to the same warp. To this end, let tq and tr be the m-aligned representation of
the thread ID variable t in an m-aligned kernel with m = 32 and consider two executions
from threads in the same warp. Recall that in such a setting, all input variables, and
in particular tq, are equal in both executions, except tr. To prove non-divergence, it is
sufficient to show that the branch condition only depends on variables with equal values in
both executions like tq.

Since Octagons runs much faster than Polyhedra with a big number of program variables,
we want to benefit from the perfomance of the Octagons domain while still being able
to infer equality constraints. In our implementation of the alignment transformation, we
therefore optionally insert relational assumptions which tell Octagons and Polyhedra that
assignments with equivalent right-hand sides result in equivalent left-hand sides, given that
the assignments are executed in both threads. More formally, let Equal(x) be a predicate
defined as

Equal(x) := x1 = x2 = . . . = xk,

and consider an assignment y := e after which we then insert the following assumption:

(∀ x occurring in e : Equal(x)) ⇒ Equal(y).

In Viper, such an assumption can be stated using the keyword inhale.

We also add a similar hint for injective operations like addition and subtraction that if all
variables in the assignment’s right-hand side are equal except one, then the left-hand side
is different in all executions. For the analysis of GPU kernels, this is useful to infer the
absence of bank conflicts in shared memory accesses.

More equality assumptions could be given to the abstract domain for procedure calls,
however, we have not implemented this because GPU kernels do not usually contain many
procedure calls.

Remark. As mentioned before, this precision issue is common to all k-product programs.
Therefore, we suggest that in the future, the precision optimization described above is
moved to the code logic that implements the product transformation, as an optional
optimization, and that it is generalized to support any k ≥ 2.

4.2.3 Program Slicing

Since GPU kernels tend to contain many complex computations that do not affect branch
conditions or memory access indices, the performance of the static analysis can be improved
if all irrelevant statements in the kernel are removed. It is important to clarify the
difference with the optimization proposed in Section 4.1.2. With program slicing, we
consider statements that are not redundant but irrelevant for the analysis of GPU kernel
performance hyperproperties, i.e., all statements on which branch conditions and memory
access indices are not dependent, in particular all assignments to variables that are not
contained in the dependency graph of any branch condition or memory access index.

We have not implemented automatic program slicing in our framework but we have
extensively applied it manually while preparing sample GPU kernels for the evaluation
of our analysis. Automatic program slicing can be done efficiently and is a possible
improvement of our analysis.
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Chapter 5

Evaluation

The evaluation of our static GPU kernel analysis is based on the analysis of 13 different
kernels. 12 out of the 13 kernels were originally written in CUDA C and CUDA C++, one
of them was written in OpenCL. Three kernels are taken from the CUDA C Programming
Guide [11], an Nvidia tutorial [8], and the Nvidia developer forum [6]. The remaining
ten kernels are real kernels used in practice and originate from the benchmark set of the
GPUVerify project [1]. We have translated all kernels to Viper and manually applied the
program slicing mentioned in Section 4.2.3.

The transformed kernels are between 8 and 93 lines of code (LOC) in size, three of
them contain while loops, and all kernels implement functions of different computational
complexity. In total, the kernels contain

• 39 branch conditions,

• 46 shared memory accesses, and

• 54 global memory accesses.

In this chapter, we evaluate our static analysis of GPU kernel performance hyperproperties
on these kernels using various measures: precision, accuracy, transformed program size,
and runtime. We analyze each kernel with and without the following optimizations:

E : Insertion of equality assumptions that help the abstract domain to maintain equality
constraints during the abstract interpretation of arithmetic expressions in product
programs, thus making the analysis more precise. This optimization is presented in
Section 4.2.2.

S : Simplification of redundant statements and expressions introduced by the m-alignment
transformation (see Section 4.1.2). This is a performance optimization.

We have analyzed the kernels using different relational numerical abstract domains and
implementations: Sample Octagons, Apron Octagons, and Apron Polyhedra. However, as
we will explain in Section 5.3, the latter two are not appropriate for our purposes. In the
following, we therefore focus on results coming from the evaluation with Sample Octagons.

5.1 Precision and Accuracy

Intuitively, precision and accuracy are measures that indicate how well the analysis can
decide a specific hyperproperty. Our static analysis can be seen as a binary classifier that
divides branch conditions and memory accesses into two classes: positive (the corresponding
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hyperproperty is violated), and negative (the hyperproperty holds). In binary classification,
precision and accuracy are defined as follows:

Precision =
TP

TP + FP
, Accuracy =

TP + TN

P + N
,

where TP (True Positives) and TN (True Negatives) are the number of correctly classified
negatives and positives, respectively, and P and N are the number of actual positives and
negatives.

Since the analysis is sound, the number of false negatives (FN), i.e., the number of missed
hyperproperty violations is zero. The analysis is precise if it yields a relatively small
number of false alarms (FP), i.e., if it can prove a hyperproperty whenever it holds, and
the analysis is accurate if it correctly classifies a relatively large number of negatives and
positives.

Table 5.1 gives an overview of the number of branch conditions, shared memory accesses,
and global memory accesses, and serves as a reference for the following evaluation tables.
The true number of positives and negatives was determined manually.

Kernel BD (P+N) SMBC (P+N) GMC (P+N)

InlinePTX 1 (1+0) 0 (0+0) 1 (0+1)
Divergence 2 (1+1) 0 (0+0) 2 (0+2)
DxInterOp 0 (0+0) 0 (0+0) 8 (2+6)
UniformUpdate 1 (1+0) 1 (0+1) 3 (0+3)
ReduceKernel 1 (1+0) 0 (0+0) 2 (0+2)
VectorAdd 1 (1+0) 0 (0+0) 3 (0+3)
Reverse 1 (1+0) 2 (0+2) 2 (0+2)
ScanExclusive 2 (2+0) 0 (0+0) 3 (2+1)
Particles 5 (5+0) 3 (0+3) 8 (2+6)
FastWalsh 0 (0+0) 0 (0+0) 8 (0+8)
Reduction 16 (3+13) 20 (0+20) 3 (2+1)
ShflScan 8 (4+4) 4 (0+4) 3 (0+3)
MergeSort 1 (0+1) 16 (4+12) 8 (0+8)

Table 5.1: Total number of branch conditions and shared/global memory accesses for each
analyzed kernel, corresponding to the hyperproperties branch divergence (BD), shared
memory bank conflicts (SMBC), and global memory coalescing (GMC), together with the
number of positives and negatives (P+N).

The precision of our analysis evaluated on each kernel is presented in Table 5.2 and the
accuracy in Table 5.3. Interesting results are highlighted using bold font. The analysis of
the MergeSort kernel runs out of memory, which is why we have no results for this kernel.
If the MergeSort kernel is not considered, our evaluation yields an average precision of
81.6% and an average accuracy of 87.1% for the analysis with the insertion of equality
assumptions (E). Without this optimization, the analysis is precise in 73.8% and accurate
in 82.7% of the cases, on average.

Interpretation

In the Divergence, Reduction, and ShflScan kernels, the analysis results are more
precise for the branch divergence hyperproperty when enabling the optimization E. The
reason for that is that these kernels contain branch conditions which, in the 32-aligned
kernel, only depend on the quotient variable of the thread ID which is equal in both
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BD SMBC GMC Total Precision
Kernel E off E on E off E on E off E on E off E on

InlinePTX 1/1 1/1 0/0 0/0 0/0 0/0 100.0% 100.0%
Divergence 1/2 1/1 0/0 0/0 0/0 0/0 50.0% 100.0%
DxInterOp 0/0 0/0 0/0 0/0 2/2 2/2 100.0% 100.0%
UniformUpdate 1/1 1/1 0/0 0/0 0/0 0/0 100.0% 100.0%
ReduceKernel 1/1 1/1 0/0 0/0 0/1 0/1 50.0% 50.0%
VectorAdd 1/1 1/1 0/0 0/0 0/0 0/0 100.0% 100.0%
Reverse 1/1 1/1 0/0 0/0 0/0 0/0 100.0% 100.0%
ScanExclusive 2/2 2/2 0/0 0/0 2/2 2/2 100.0% 100.0%
Particles 5/5 5/5 0/0 0/0 2/2 2/2 100.0% 100.0%
FastWalsh 0/0 0/0 0/0 0/0 0/8 0/8 0.0% 0.0%
Reduction 3/12 3/6 0/0 0/0 2/2 2/2 35.7% 62.5%
ShflScan 4/8 4/6 0/0 0/0 0/0 0/0 50.0% 66.7%
MergeSort Analysis runs out of memory before termination.

Table 5.2: Precision as a fraction TP/(TP+FP) with and without the optimization E for
each hyperproperty: branch divergence (BD), shared memory bank conflicts (SMBC), and
global memory coalescing (GMC). The total precision is computed per kernel over all three
hyperproperties.

executions (i.e., there is no branch divergence) but are too complex for the abstract domain
to know that thus the whole branch condition has the same truth value in both executions.
However, with the insertion of equality assumptions we explicitly state that this equality
holds such that the analysis is precise enough to prove the absence of branch divergence.

In the kernel called ReduceKernel, the analysis is imprecise due to widening.

The FastWalsh kernel contains a complex computation at the beginning such that we
get a very imprecise abstract state at the beginning of the kernel and the analysis remains
imprecise subsequently.

As mentioned before, our analysis is precise in most cases. To some extent, the precision
traded against runtime which seems to be exponential in the program size. In the next
section, we show how kernel size and analysis runtime behave in our evaluated kernels.

5.2 Kernel Size and Runtime

While the previous section was about evaluating precision and accuracy of our GPU kernel
analysis, we now focus on two efficiency measures and how they relate. First, we look
at the size of the transformed kernels that result from the 32-alignment and 2-product
transformations. We give the size in lines of code (LOC). Second, we show the runtime
of our analysis run on the transformed kernels, with and without the simplification S
introduced at the beginning of the chapter.

Table 5.4 contains the sizes of the original and transformed kernels as well as the runtimes of
the analysis for each kernel. The analysis configuration used for the creation of these results
is the optimal configuration regarding precision and runtime. It includes the precision
optimization E which leads to slightly longer runtime but to more precise results in some
cases. Further optimizations were applied to reduce the number and complexity of abstract
states, as described later in this section. Again, interesting results are highlighted in the
table with a bold font.
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BD SMBC GMC Total Accuracy
Kernel E off E on E off E on E off E on E off E on

InlinePTX 1/1 1/1 0/0 0/0 1/1 1/1 100.0% 100.0%
Divergence 1/2 2/2 0/0 0/0 2/2 2/2 75.0% 100.0%
DxInterOp 0/0 0/0 0/0 0/0 8/8 8/8 100.0% 100.0%
UniformUpdate 1/1 1/1 1/1 1/1 3/3 3/3 100.0% 100.0%
ReduceKernel 1/1 1/1 0/0 0/0 1/2 1/2 66.7% 66.7%
VectorAdd 1/1 1/1 0/0 0/0 3/3 3/3 100.0% 100.0%
Reverse 1/1 1/1 2/2 2/2 2/2 2/2 100.0% 100.0%
ScanExclusive 2/2 2/2 0/0 0/0 3/3 3/3 100.0% 100.0%
Particles 5/5 5/5 3/3 3/3 8/8 8/8 100.0% 100.0%
FastWalsh 0/0 0/0 0/0 0/0 0/8 0/8 0.0% 0.0%
Reduction 7/16 13/16 20/20 20/20 3/3 3/3 76.9% 92.3%
ShflScan 4/8 6/8 4/4 4/4 3/3 3/3 73.3% 86.7%
MergeSort Analysis runs out of memory before termination.

Table 5.3: Accuracy as a fraction (TP+TN)/(P+N) with and without the optimization E
for each hyperproperty: branch divergence (BD), shared memory bank conflicts (SMBC),
and global memory coalescing (GMC). The total accuracy is computed per kernel over all
three hyperproperties.

Interpretation

For many kernels, the simplification S shows little to no effect on the alignment which
follows from the fact that the respective aligned kernels with and without applying S have
the same number of lines. Still, there usually is a difference in the runtimes which does
not come from the analysis itself but from a slightly different execution speed of the CPU.
These differences could be reduced by averaging the runtimes over several executions.

The optimization S makes a significant difference in the Divergence, Reduction,
ShflScan, and MergeSort kernels. The principal reason for that is that these kernels
contain expressions of the form t / e or t % e, where t is the thread ID variable and e
is some integer-valued expression. The alignment transformation of division and modulo
expressions can often be simplified a lot if it is known in advance that the left-hand side
(in our case, the variable t) is non-negative. Since thread IDs are always non-negative,
we implemented this prior knowledge into the simplification S which makes that the
above kernels can be simplified significantly. This idea could be spinned further in the
following way: before the alignment transformation, it would be useful to perform abstract
interpretation on the original kernel using a simple sign domain, in order to know the signs
of the left-hand sides in division and modulo expressions, so as to simplify the corresponding
transformed statements.

Table 5.4 also shows the main drawback of our method, which is the potentially huge
blow-up of the kernel size through the alignment and product transformations. In our
evaluation, the kernels 32-aligned with the simplification S are between 2.4x and 12.8x
longer than the original kernels and 5.6x on average. The product program transformation
again scales up the aligned kernels by a factor between 2.4x and 4.2x, and 3.5x on average.
The total blow-up of the kernel sizes through both transformations lies between 5.8x in our
best case InlinePTX and 49x in our worst case MergeSort. The size increases of both
transformations are explicable: during the alignment transformation, compound expressions
are assigned to fresh variables and these assignments are transformed as statements of
several lines; for instance, the MergeSort kernel is not the longest kernel in size in our
evaluation set, however, it contains a large number of complex compound expressions
which leads to the huge size increase in the alignment transformation. The 2-product
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Kernel Sizes (LOC) Runtime
Kernel S off S on S off S on

InlinePTX 8/19/46 8/19/46 0.041s 0.053s
Divergence 26/114/478 26/77/272 0.91s 0.35s
DxInterOp 20/88/365 20/88/365 0.96s 0.70s
UniformUpdate 19/89/373 19/89/373 0.95s 0.98s
ReduceKernel 19/75/217 19/75/217 2.2s 2.3s
VectorAdd 15/53/181 15/53/181 1.5s 1.5s
Reverse 18/82/258 18/82/258 2.6s 2.5s
ScanExclusive 19/161/481 19/161/481 8.5s 8.1s
Particles 44/168/665 44/168/665 31s 31s
FastWalsh 32/404/1306 32/404/1306 40s 40s
Reduction 93/453/1722 93/417/1594 6min 20s 4min 30s
ShflScan 52/252/1020 52/227/873 11min 20s 10min 10s
MergeSort 60/802/3165 60/770/2933 Out of memory.

Table 5.4: Kernel sizes OS/AS/APS with and without the simplification S to the analysis’
runtime. OS stands for the size of the original kernel, AS for the size of the 32-aligned
kernel, and APS for the size of the 32-aligned 2-product kernel (which is the kernel that
our analysis performs abstract interpretation on). The runtimes were measured on a
Lenovo ThinkPad T480 with an 8-core Intel i7 processor and 16 GB of memory, running
Linux Ubuntu 18.04.3. The runtimes were not averaged over multiple runs, instead we
experimented with many different configurations that are not shown in the table above
because they did not achieve better results and runtimes.

transformation also leads to an increase in kernel size because a single assignment is
translated into two assignments, each conditioned on the respective activation variable,
resulting in six lines of code.

The next observation concerns the relation between transformed kernel size and runtime. If
the sizes of the transformed kernels are plotted in a linear scale against the corresponding
analysis runtimes in a logarithmic scale, we get a graph almost looking like a straight line
which indicates a runtime complexity which is nearly exponential in the kernel size. We
give two possible explanations for this observation:

1. Generally, the analysis is exponential in the number of activation variables which
usually grows with larger kernels. This exponential complexity comes from the Binary
Decision Tree abstract domain used for trace partitioning, which performs abstract
interpretation on all trace partitions separately, and the number of trace partitions is,
in general, exponential in the number of activation variables. Knabenhans proposes
different heuristics to reduce the number of trace partitions by merging partitions
at some point during the abstract interpretation [9]. For our analysis, we chose the
most rigorous merge heuristic, which merges on activation variables after their last
occurrence in the program. This merge strategy can lead to precision loss, however,
in our evaluation, we did not get more precise results when using less rigorous merge
strategies or no merge strategies at all. When merging trace partitions in this way,
there are usually no more than eight trace partitions at a time, meaning that the
BDT domain alone cannot be held responsible for the large increases in runtime.

2. At least as important as trace partitioning is the number of variables that has to
be tracked by the abstract domain. The larger the kernel, the more variables it
usually contains and the more complex every abstract interpretation step becomes.
Since we use relational domains, the runtime and memory complexity of the abstract
interpretation is at least quadratic in the number of variables captured by the
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abstract domain. In our analysis, we reduce the number of variables with the
following optimization: after each partition merge on some activation variable p, we
delete p from the set of variables contained in the current abstract state. With this
optimization, the number of activation variables considered by the abstract domain is
usually not larger than 8. In the configuration used in Table 5.4, it makes the analysis
run up to two times faster, and in other configurations, it prevents execution abortion
due to memory excess. More work can be done on the removal of variables from the
abstract domain once they have no importance for the abstract interpretation of the
remaining statements and expressions. A sophisticated approach would be to create
a dependency graph for the kernel before abstract interpretation and to remove a
variable after its last occurrence in the kernel once no variables in the remaining
statements and expressions depend on it.

5.3 Apron Octagons and Polyhedra

The evaluation results listed in Tables 5.2, 5.3, and 5.4 come from our analysis using
the Sample implementation of the Octagons abstract domain. As mentioned before, we
have also evaluated the analysis using the Apron implementation of the Octagons and the
Polyhedra abstract domains which turn out to be inappropriate for our purposes. Here, we
give a short overview of why this is the case.

In contrast to the Sample Octagons implementation which is written in Scala, the Apron
Octagons implementation is written in C++ and highly optimized, thus being faster than
Sample Octagons. However, we have found that the use of the Apron Octagons domain
can lead to unsound analysis results. Since we use Apron over Java bindings and, thus,
have no direct access to the Apron Octagons implementation, it is difficult to make a
reliable diagnosis why we use Apron Octagons in an unsound way. One possibility is that
there are differences in the way Apron and Sample handle integer variables and certain
operations like integer division, for instance. We have compiled Apron Octagons with
different integer representations but without success. Assuming that the implementations of
Apron Octagons and the Sample BDT domain are sound, we suppose that this unsoundness
stems from an erroneous usage of the Apron interface. Since we require soundness of the
static analysis, it is clear that as long as the analysis using Apron Octagons is unsound, we
have to use the Sample Octagons implementation instead.

Using the Apron Polyhedra domain is not practicable either. For the kernels that we
analyzed, the analysis runs out of memory very quickly, even for the smaller kernels. The
source of the problem is described in the previous section, being the large number of
variables contained in the kernel which result in large abstract interpretation runtime and
memory usage. The computation of an abstract state in the Polyhedra domain is of some
higher-polynomial complexity (both runtime and memory usage) in the number of variables
and therefore worse than the Octagons domain whose memory usage is quadratic and
runtime is cubic in the number of variables. Since our approach introduces a large number
of variables, the Polyhedra domain is currently too inefficient for the analysis to terminate
without exception. Even if the number of variables held in the Polyhedra domain can be
minimized and acceptable runtimes and memory usage can be achieved, we suppose that
the Polyhedra domain will rarely achieve more precise results than the Octagons domain.
The reason for that is that after the m-alignment transformation, the specifications of the
analyzed GPU kernel performance hyperproperties consist of equalities or disequalities,
which are specifications that the Octagons domain is good proving at.
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Chapter 6

Conclusion

6.1 Summary

The goal of this thesis was to develop a static analysis for three GPU kernel performance
hyperproperties concerning branch divergence, shared memory bank conflicts, and global
memory coalescing. We have implemented such a static analysis using a newly developed m-
alignment transformation, an existing k-product transformation, and abstract interpretation
with trace partitioning and the relational Octagons domain.

The m-alignment transformation is a transformation that, for a fixed m > 1, represents
every variable x in the original kernel by two new variables xq, xr such that x = mxq + xr
and 0 ≤ xr < m. For our static analysis, we choose m = 32 because the relational
hyperproperty specifications originally containing division by 32 and modulo 32 expressions
can then be replaced by simpler equalities and disequalities on the new set of variables.
This m-alignment transformation can also be used in other contexts where a precise analysis
of division by m and modulo m expressions is needed.

We transform the 32-aligned kernel using a k-product transformation for k = 2 to reduce the
kernel analysis of 2-safety hyperproperties to the analysis of properties of single execution
traces. This 32-aligned product kernel is statically analyzed using abstract interpretation
with the BDT domain allowing for trace partitioning, parametrized by the Sample Octagons
domain. The Apron Octagons or Polyhedra domains are inappropriate for our purposes
because their usage is unsound or too inefficient, respectively.

Several optimizations are applied to make the analysis faster and more precise. To gain
precision, we extend the m-alignment transformation to insert assumptions that help
the analysis with keeping track of equality constraints. In three out of 13 kernels, this
optimization leads to a more precise analysis, in particular, nine false branch divergence
alarms can be eliminated. With the m-alignment transformation, we include a simplification
that removes newly introduced redundant expressions and statements and that, in our
evaluation, reduces the transformed kernel size by a factor of up to 1.8x and runtime
by a factor of up to 2.7x. Further optimizations address the high runtime and memory
complexity of the abstract interpretation with trace partitioning and relational abstract
domains: trace partitions split on some activation variable p are merged after the last
occurrence of p in the kernel and p is removed from the set of variables tracked by the
abstract domain. The merge strategy keeps the number of trace partitions at a more
or less constant number of usually no more than eight partitions and is essential for the
practicality of our analysis when applied to real kernels. Removing the activation variables
from the abstract domain makes the analysis run up to twice as fast and, in some cases,
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prevents early termination due to memory excess. A last performance optimization was
applied manually during the translation of the evaluated kernels from CUDA/OpenCL
to Viper: we applied program slicing to keep only the statements in the kernel that are
relevant for the hyperproperties to be analyzed. Program slicing can be automated and is
important for the performance of our analysis since most of the actual computations done
by the kernel are not relevant for the analysis itself.

We have evaluated the resulting static analysis on 13 kernels among which ten kernels are
real kernels used in practice. First of all, the analysis is sound. On our evaluation set, it
is precise in more than 80% of the cases (i.e., less than 20% of false alarms), and has an
accuracy rate of over 85%. The drawback of our analysis is that is does not scale very well
with large kernels. The evaluated runtimes reach from around 1

20 seconds for the shortest
kernel to several minutes for the larger kernels. For one kernel, we have no evaluation
results because the analysis runs out of memory despite all optimizations. In the next
section, we summarize some ideas on how our analysis can be made even faster and other
ways in which this thesis could be extended.

6.2 Future Work

We first propose optimizations and extensions specifically for our static analysis of GPU
kernel performance hyperproperties, then, possible improvements of our m-alignment
transformation in general, and lastly, we recapitulate some ideas for further applications of
m-aligned programs. Where possible, we refer to a more detailed explanation in an earlier
section.

Our static analysis of GPU kernel performance hyperproperties can be improved in many
ways:

• The program slicing described in Section 4.2.3 can be automated.

• We suppose that the major reason for the analysis’ large runtimes and memory usage
on some of our evaluated kernels is the great number of program variables tracked
by the relational abstract domain. As explained in Section 5.2, we apply a simple
heuristic for removing unused variables from the abstract domain but more work can
be done to further reduce this number of tracked variables.

• In Section 5.3, we remark that the analysis using the Apron Octagons domain
occasionally leads to unsound results. If the source of this unsoundness problem can
be detected and eliminated, then the Apron Octagons domain can replace Sample
Octagons which will reduce runtime and memory usage due to the more efficient
implementation.

• It is interesting to note that much of our analysis is based on tracking equalities
between quotient variables and disequalities between remainder variables of two
executions. It is possible that this observation can be used to construct a simpler
and more efficient static analysis that is almost as precise as ours and that only
tracks whether specific statements (e.g., assignments) maintain initial equalities or
disequalities between the quotient or remainder parts of variables without explicitly
using the 32-alignment transformation. In support of our approach, it is also important
to note that in some cases, the numerical analysis of quotient and remainder variables
is necessary to get precise results (as an example, consider the branch condition
t < 32 which has no branch divergence, with t being the thread ID). Nevertheless,
the usefulness of such an analysis can be examined.
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The following ideas can be pursued to enhance the m-alignment transformation:

• As described in Section 4.1.2, the alignment transformation can sometimes introduce
redundant statements, especially for the transformation of division and modulo
expressions. In the same section, we propose a simplification heuristic that uses
syntactic rules to eliminate redundant statements or expressions. A more sophisticated
approach would perform a simple static analysis on the initial program, e.g., abstract
interpretation using a Sign, Interval, or Octagons domain, and use information from
the abstract states at each program point to eliminate unused branches or to simplify
expressions. For example, the m-alignment transformation of an assignment y := x/m
can be simplified a lot if abstract interpretation using a Sign domain yields x ≥ 0 at
the program point before this assignment.

• In this thesis, them-alignment transformations of division and modulo assignments are
defined in a way that is as simple as possible but still sufficiently precise for analyzing
GPU kernels. They can be further refined so that more edge cases with simple
transformations can be covered (e.g., if the left-hand side is negative and the right-
hand side is a multiple of m). If used in combination with the previous simplification
approach, this can allow for more precise results while the transformation remains
concise.

• In Section 3.6.3, we suggest that the idea of the m-alignment transformation can
be used to create a new m-alignment abstract domain, which internally represents
every variable x by two variables xq and xr, and which implements the m-alignment
transformation in its abstract transformers.

As mentioned in Section 3.6.4, the m-alignment transformation is promising to have further
applications: the analysis of cache access performance (e.g., cache bank conflicts, temporal
and spatial locality of cache accesses etc.), which is similar to the analysis carried out in
this thesis, the simplification of mathematical proofs by case distinction, and, in general,
every static analysis problem that requires reasoning about division by m or modulo m
expressions for a fixed m.
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Appendix A

m-Alignment Transformations

The following list is intended to give a quick and uncommented overview of all m-alignment
transformations. For more details on the individual transformations, see Section 3.4.

Procedure

J procedure f(x) returns (y) {s} Km :≡ procedure f(xqr) returns (yqr) {J s Km}

Skip

J skip Km :≡ skip

Sequence

J s; s Km :≡ J s Km ; J s Km

Quotient and Remainder Variables

aq :≡

{
yq if a ≡ y

kq if a ≡ k,where kq =
⌊
k
m

⌋
,

ar :≡

{
yr if a ≡ y

kr if a ≡ k,where kr = k −m
⌊
k
m

⌋
Atom Assignment

J x := a Km :≡ xq := aq; xr := ar
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Negation Assignment

J x := −a Km :≡ if (ar = 0) then {
xq := −aq;

xr := 0

} else {
xq := −aq − 1;

xr := −ar +m

}

Addition Assignment

J x := a + b Km :≡ if (ar + br < m) then {
xq := aq + bq;

xr := ar + br

} else {
xq := aq + bq + 1;

xr := ar + br −m
}

Subtraction Assignment

J x := a− b Km :≡ if (ar − br ≥ 0) then {
xq := aq − bq;

xr := ar − br

} else {
xq := aq − bq − 1;

xr := ar − br +m

}

Multiplication Assignment

J x := a ∗ b Km :≡ xq = m ∗ aq ∗ bq + aq ∗+ar ∗ bq + (ar ∗ br) / m;

xr = (ar ∗ br) % m
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Division Assignment

J x := a / b Km :≡ if (aq ≥ 0 ∧ bq ≥ 0 ∧ br = 0) then {
xq := (aq / bq) / m;

xr := (aq / bq) % m

} else if (aq ≥ 0 ∧ bq = 0 ∧m % br = 0) then {
xq := aq / br;

xr := ar / br +m / br ∗ (aq % br)

} else {
xnew := (m ∗ aq + ar) / (m ∗ bq + br);

if (xnew % m ≥ 0) then {
xq := xnew / m

} else {
xq := xnew / m− 1

};
xr := xnew − (m ∗ xq)
}

Modulo Assignment

J x := a % b Km :≡ if (aq ≥ 0 ∧ bq ≥ 0 ∧ br = 0) then {
xq := aq % bq;

xr := ar

} else if (aq ≥ 0 ∧ bq = 0 ∧m % br = 0) then {
xq := 0;

xr := ar % br

} else {
xnew := (m ∗ aq + ar) % (m ∗ bq + br);

if (xnew % m ≥ 0) then {
xq := xnew / m

} else {
xq := xnew / m− 1

};
xr := xnew − (m ∗ xq)
}

Extraction in Complex Assignment

J x := e1 ? e2 Km :≡ J y1 := e1 Km ; J y2 := e2 Km ; J x := y1 ? y2 Km

Procedure Call

J y := call f(e) Km :≡ J x1 := e1 Km ; . . . J xk := ek Km ; yqr := call f(xqr)
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Comparison

J a ◦ b Km :≡


aq = bq ∧ ar = br if ◦ ≡ =

aq 6= bq ∨ ar 6= br if ◦ ≡ 6=
aq < bq ∨ (aq = bq ∧ ar ◦ br) if ◦ ∈ {<,≤}
aq > bq ∨ (aq = bq ∧ ar ◦ br) if ◦ ∈ {>,≥}

Extraction in Boolean Expression

L c Mm :≡



(y1 := e1; y2 := e2, J y1 ◦ y2 Km) if c ≡ e ◦ e and ◦ ∈ {=, 6=, <,>,≤,≥},
(skip, c) if c ∈ {true, false},
(s̃0, ¬c̃0) if c ≡ ¬c,
(s̃1; s̃2, c̃1 ∧ c̃2) if c ≡ c ∧ c,
(s̃1; s̃2, c̃1 ∨ c̃2) if c ≡ c ∨ c,

where (s̃0, c̃0) = L c0 Mm, (s̃1, c̃1) = L c1 Mm, and (s̃2, c̃2) = L c2 Mm

If Statement

J if (c) then {s} else {s} Km :≡ J s̃ Km ; if (c̃) then { J s Km } else { J s Km },

where (s̃, c̃) = L c Mm

While Loop

J while (c) do {s} Km :≡ J s̃ Km ; while (c̃) do {J s Km ; J s̃ Km},

where (s̃, c̃) ≡ L c Mm
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Appendix B

Evaluation Set

InlinePTX [1]

1 method global_write(i: Int)

2

3 method sequence_gpu(tid: Int, length: Int)

4 {

5 if (tid < length) {

6 global_write(tid)

7 }

8 }

Divergence [6]

1 method global_write(index: Int)

2

3 method badDiv(tid: Int)

4 {

5 var ia: Int

6 var ib: Int

7 if (tid % 2 == 0) {

8 ia := 0

9 } else {

10 ib := 1

11 }

12 global_write(tid)

13 }

14

15

16 method goodDiv(tid: Int)

17 {

18 var ia: Int

19 var ib: Int

20 if ((tid / 32) % 2 == 0) {

21 ia := 0

22 } else {

23 ib := 1

24 }

25 global_write(tid)

26 }
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DxInterOp [1]

1 method global_write(i: Int)

2 method global_read(i: Int) returns (res: Int)

3 method shared_write(i: Int)

4 method shared_read(i: Int) returns (res: Int)

5

6 method run(tid: Int)

7 {

8 var tmp: Int

9

10 tmp := global_read(tid)

11 tmp := global_read(tid)

12 global_write(tid)

13

14 tmp := global_read(tid)

15 tmp := global_read(tid)

16 global_write(tid)

17

18 tmp := global_read(tid+1)

19 global_write(tid+1)

20 }

UniformUpdate [1]

1 method global_write(i: Int)

2 method global_read(i: Int) returns (res: Int)

3 method shared_write(i: Int)

4 method shared_read(i: Int) returns (res: Int)

5

6 method uniformUpdate(tid: Int)

7 {

8 var blockDim: Int := 256

9 var tmp: Int

10

11 if (tid % blockDim == 0)

12 {

13 tmp := global_read(tid / blockDim)

14 shared_write(0)

15 }

16

17 tmp := global_read(tid)

18 global_write(tid)

19 }

ReduceKernel [1]

1 method global_write(i: Int)

2 method global_read(i: Int) returns (res: Int)

3 method shared_write(i: Int)

4 method shared_read(i: Int) returns (res: Int)

5

6 method reduceKernel(tid: Int, N: Int)

7 {
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8 var blockDim: Int := 256

9 var gridDim: Int := 32

10 var threadN: Int := gridDim * blockDim

11 var tmp: Int

12

13 var pos: Int := tid

14 while (pos < N) {

15 tmp := global_read(pos)

16 pos := pos + threadN

17 }

18 global_write(tid)

19 }

VectorAdd [11]

1 method global_read(i: Int) returns (res: Int)

2 method global_write(i: Int)

3

4 method vectorAdd(iNumElements: Int, tid: Int)

5 {

6 if (tid < iNumElements) {

7 var x: Int

8 var y: Int

9 var z: Int

10 x := global_read(tid)

11 y := global_read(tid)

12 z := x + y

13 global_write(tid)

14 }

15 }

Reverse [8]

1 method global_read(i: Int) returns (res: Int)

2 method global_write(i: Int)

3 method shared_read(i: Int) returns (res: Int)

4 method shared_write(i: Int)

5

6 method reverse(tid: Int, n: Int)

7 {

8 var tr: Int

9 var tmp: Int

10

11 if (tid < n) {

12 tr := n - tid - 1

13 tmp := global_read(tid)

14 shared_write(tid)

15 tmp := shared_read(tr)

16 global_write(tid)

17 }

18 }
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ScanExclusive [1]

1 method global_write(i: Int)

2 method global_read(i: Int) returns (res: Int)

3 method shared_write(i: Int)

4 method shared_read(i: Int) returns (res: Int)

5

6 method scanExclusiveShared2(tid: Int, N: Int)

7 {

8 var blockDim: Int := 256

9 var tmp: Int

10

11 if (tid < N) {

12 tmp := global_read(4 * blockDim - 1 + 4 * blockDim * tid)

13 tmp := global_read(4 * blockDim - 1 + 4 * blockDim * tid)

14 }

15

16 if (tid < N) {

17 global_write(tid)

18 }

19 }

Particles [1]

1 method global_write(i: Int)

2 method global_read(i: Int) returns (res: Int)

3 method shared_write(i: Int)

4 method shared_read(i: Int) returns (res: Int)

5

6 method reorderDataAndFindCellStartD(tid: Int, numParticles: Int)

7 {

8 var blockDim: Int := 256

9 var threadIdx: Int := tid % blockDim

10 var hash: Int

11 var tmp: Int

12

13 if (tid < numParticles)

14 {

15 hash := global_read(tid)

16 shared_write(threadIdx + 1)

17

18 if (tid > 0 && threadIdx == 0)

19 {

20 tmp := global_read(tid - 1)

21 shared_write(0)

22 }

23

24 tmp := shared_read(threadIdx)

25 if (tid == 0 || hash != tmp)

26 {

27 global_write(hash)

28

29 if (tid > 0) {

30 tmp := shared_read(threadIdx)

31 global_write(tmp)

32 }
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33 }

34

35 if (tid == numParticles - 1)

36 {

37 global_write(hash)

38 }

39

40 tmp := global_read(tid)

41 global_write(tid)

42 global_write(tid)

43 }

44 }

FastWalsh [1]

1 method global_write(i: Int)

2 method global_read(i: Int) returns (res: Int)

3 method shared_write(i: Int)

4 method shared_read(i: Int) returns (res: Int)

5

6 method fwtBatch2Kernel(tid: Int, blockY: Int, addr_in: Int, addr_out: Int)

7 {

8 var blockDim: Int := 256

9 var gridDim: Int := 8192

10 var N: Int := blockDim * gridDim * 4

11 var stride: Int := 2048

12 var tmp: Int

13

14 var offsetSrc: Int := addr_in + blockY * N

15 var offsetDst: Int := addr_out + blockY * N

16

17 var lo: Int := tid % stride

18 var i0: Int := 4 * (tid - lo) + lo

19 var i1: Int := i0 + stride

20 var i2: Int := i1 + stride

21 var i3: Int := i2 + stride

22

23 tmp := global_read(offsetSrc + i0)

24 tmp := global_read(offsetSrc + i1)

25 tmp := global_read(offsetSrc + i2)

26 tmp := global_read(offsetSrc + i3)

27

28 global_write(offsetDst + i0)

29 global_write(offsetDst + i1)

30 global_write(offsetDst + i2)

31 global_write(offsetDst + i3)

32 }

Reduction [1]

1 method global_write(i: Int)

2 method global_read(i: Int) returns (res: Int)

3 method shared_write(i: Int)

4 method shared_read(i: Int) returns (res: Int)

5
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6 method reduce5(tid: Int, n: Int, blockSize: Int)

7 {

8 var blockDim: Int := 256

9 var threadIdx: Int := tid % blockDim

10 var blockIdx: Int := tid / blockDim

11 var i: Int := blockIdx * (blockSize*2) + threadIdx;

12 var tmp: Int

13

14 if (i < n) {

15 tmp := global_read(i)

16 } else {

17 tmp := 0

18 }

19

20 if (i + blockSize < n) {

21 tmp := global_read(i+blockSize)

22 }

23

24 shared_write(threadIdx)

25

26 if (blockSize >= 512)

27 {

28 if (threadIdx < 256)

29 {

30 tmp := shared_read(threadIdx + 256)

31 shared_write(threadIdx)

32 }

33 }

34 if (blockSize >= 256)

35 {

36 if (threadIdx < 128)

37 {

38 tmp := shared_read(threadIdx + 128)

39 shared_write(threadIdx)

40 }

41 }

42 if (blockSize >= 128)

43 {

44 if (threadIdx < 64)

45 {

46 tmp := shared_read(threadIdx + 64)

47 shared_write(threadIdx)

48 }

49 }

50 if (threadIdx < 32)

51 {

52 if (blockSize >= 64)

53 {

54 tmp := shared_read(threadIdx + 32)

55 shared_write(threadIdx)

56 }

57

58 if (blockSize >= 32)

59 {

60 tmp := shared_read(threadIdx + 16)

61 shared_write(threadIdx)

62 }

63
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64 if (blockSize >= 16)

65 {

66 tmp := shared_read(threadIdx + 8)

67 shared_write(threadIdx)

68 }

69

70 if (blockSize >= 8)

71 {

72 tmp := shared_read(threadIdx + 4)

73 shared_write(threadIdx)

74 }

75

76 if (blockSize >= 4)

77 {

78 tmp := shared_read(threadIdx + 2)

79 shared_write(threadIdx)

80 }

81

82 if (blockSize >= 2)

83 {

84 tmp := shared_read(threadIdx + 1)

85 shared_write(threadIdx)

86 }

87 }

88

89 if (threadIdx == 0) {

90 tmp := shared_read(0)

91 global_write(blockIdx)

92 }

93 }

ShflScan [1]

1 method global_write(i: Int)

2 method global_read(i: Int) returns (res: Int)

3 method shared_write(i: Int)

4 method shared_read(i: Int) returns (res: Int)

5

6 method shfl_scan_test(tid: Int, width: Int)

7 {

8 var blockDim: Int := 256

9 var threadIdx: Int := tid % blockDim

10 var lane_id: Int := tid % 32

11 var warp_id: Int := threadIdx / 32

12 var tmp: Int

13

14 tmp := global_read(tid)

15

16 var i: Int := 1

17 while (i <= width) {

18 if (lane_id >= i) {

19 tmp := tmp

20 }

21 i := i * 2

22 }

23

24 if (threadIdx % 32 == 31)
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25 {

26 shared_write(warp_id)

27 }

28

29 if (warp_id == 0)

30 {

31 tmp := shared_read(lane_id)

32 i := 1

33 while (i <= width) {

34 if (lane_id >= i) {

35 tmp := tmp

36 }

37 i := i * 2

38 }

39 shared_write(lane_id)

40 }

41

42 if (warp_id > 0)

43 {

44 tmp := shared_read(warp_id-1)

45 }

46

47 global_write(tid)

48

49 if (threadIdx == blockDim-1) {

50 global_write(tid/blockDim)

51 }

52 }

MergeSort [1]

1 method global_write(i: Int)

2 method global_read(i: Int) returns (res: Int)

3 method shared_write(i: Int)

4 method shared_read(i: Int) returns (res: Int)

5

6 method binarySearchExclusive() returns (res: Int)

7 method binarySearchInclusive() returns (res: Int)

8

9 method mergeSortSharedKernel(tid: Int, arrayLength: Int)

10 {

11 var blockDim: Int := 512

12 var blockIdx: Int := tid / blockDim

13 var threadIdx: Int := tid % blockDim

14 var sharedSizeLimit: Int := 1024

15 var offset: Int := blockIdx * sharedSizeLimit + threadIdx

16 var tmp: Int

17

18 tmp := global_read(offset)

19 shared_write(threadIdx)

20 tmp := global_read(offset)

21 shared_write(threadIdx)

22 tmp := global_read(offset + sharedSizeLimit / 2)

23 shared_write(threadIdx + sharedSizeLimit / 2)

24 tmp := global_read(offset + sharedSizeLimit / 2)

25 shared_write(threadIdx + sharedSizeLimit / 2)

26
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27 var stride: Int := 1

28 while (stride < arrayLength) {

29 var lPos: Int

30 lPos := threadIdx % stride

31 var offset2: Int := 2 * (threadIdx - lPos)

32

33 tmp := shared_read(offset2 + lPos)

34 tmp := shared_read(offset2 + lPos)

35 tmp := shared_read(offset2 + lPos + stride)

36 tmp := shared_read(offset2 + lPos + stride)

37 var posA: Int

38 var posB: Int

39 tmp := binarySearchExclusive()

40 posA := tmp + lPos

41 tmp := binarySearchInclusive()

42 posB := tmp + lPos

43

44 shared_write(offset2 + posA)

45 shared_write(offset2 + posA)

46 shared_write(offset2 + posB)

47 shared_write(offset2 + posB)

48

49 stride := stride * 2

50 }

51

52 tmp := shared_read(threadIdx)

53 global_write(offset)

54 tmp := shared_read(threadIdx)

55 global_write(offset)

56 tmp := shared_read(threadIdx + sharedSizeLimit / 2)

57 global_write(offset + sharedSizeLimit / 2)

58 tmp := shared_read(threadIdx + sharedSizeLimit / 2)

59 global_write(offset + sharedSizeLimit / 2)

60 }
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