
Refining and Applying a Framework for

Automatic Inference of Hyperproperties

Bachelor’s Thesis Description

Mathias Blarer

Supervised by
Marco Eilers, Jérôme Dohrau, Prof. Dr. Peter Müller

Department of Computer Science, ETH Zurich, Switzerland

March 20, 2019

1 Introduction

Frequent news about serious system vulnerabilities and expensive software de-
fects demonstrate how hard it is to manually reason about the security and
reliability of programs. A lot of effort is therefore put into the development of
tools that automatically reason about program behaviour.

Hyperproperties are an interesting class of program properties to be looked
at. These are properties that can make a statement not only about single execu-
tion traces but also about sets of execution traces. Examples of hyperproperties
are determinism, non-interference, monotonicity, injectivity, and many more.
From the perspective of program analysis, hyperproperties require reasoning
about multiple program executions at the same time.

So-called k-product programs are constructions that self-compose a program
k times, representing a set of k program executions with a single product pro-
gram. Eilers et al. [2] have called their product program construction a modular
product program because it allows hyperproperties to be modularly specified
for procedures. A program is turned into a modular product program by in-
terleaving multiple copies of the same program, renaming variables and using
additional boolean activation variables to keep track for every execution under
which conditions it is active. It is important to note that by construction, prod-
uct programs reduce hyperproperties to properties of a single execution trace
and thus, can be statically analyzed using existing tools and techniques like
abstract interpretation and deductive verification.

Based on this concept of modular product programs, Knabenhans [4] de-
veloped a static analysis framework for hyperproperties which he implemented
inside the static analyzer Sample1, as part of the Viper2 verification infrastruc-
ture [5]. His analysis uses abstract interpretation equipped with a binary deci-
sion tree (BDT) abstract domain, a heap domain and a numerical domain. The

1http://www.pm.inf.ethz.ch/research/sample.html
2http://www.pm.inf.ethz.ch/research/viper.html

1

http://www.pm.inf.ethz.ch/research/sample.html
http://www.pm.inf.ethz.ch/research/viper.html


BDT domain is needed for trace partitioning, a technique to perform abstract
interpretation over a partition of the set of execution traces rather than over
the set of traces itself. In our case, we are interested in distinguishing program
traces in which every activation variable is respectively true or false, leading
to more precise results. We also want the set of traces to be partitioned with
respect to conditions that relate different input variables. Trace partitioning
has proven suitable for the inference of hyperproperties and its implementa-
tion works well for many programs, however, there are still cases in which the
analysis fails to infer the correct hyperproperties due to lack of precision.

The main goal of this thesis is to build upon the work of Knabenhans in
order to make his framework more precise and to extend the framework to
another application of hyperproperties. We are going to choose one of the two
applications presented in the next section. In Sections 3 and 4, the goals of this
thesis project are worked out in more detail.

2 Applications

Below, we introduce two applications for the automatic inference of hyperprop-
erties: on one hand the analysis of execution paths and parallel memory accesses
in GPU kernels, on the other hand the secure information flow of methods and
programs.

2.1 GPU Kernels

In modern GPU design, SIMT (Single Instruction Multiple Threads) is a very
common approach where multiple threads execute the same instruction in par-
allel. The following terminology stems from NVIDIA GPUs as it can be found
in the CUDA programming guide [1] but the same concepts apply in a similar
fashion to GPUs from other companies.

Warps are groups of 32 parallel threads that execute a single common in-
struction at a time. If within a warp the execution path differs, the warp will
run the threads that have the same instruction and disable the others. There-
fore, optimal performance can be achieved only if all threads within a warp have
the same execution path.

Every thread has an ID that is consecutive within a warp. Inside a kernel
definition, the programmer has access to the thread index threadIdx, a vector
with three components x, y, and z, from which the ID can be computed.

For illustration purposes, we look at a simple kernel that reverses an array
with CUDA. The code is taken and slightly modified from [3].

__global__ void reverse(int *data, int len)

{

__shared__ int s[64];

int i = threadIdx.x;

int j = len-i-1;

s[i] = data[i];

__syncthreads(); // wait for all threads to finish

data[i] = s[j];

}

When a warp accesses memory in global memory like data in the kernel

2



above, the warp initiates a 32-, 64-, or 128-byte memory transaction, depend-
ing on the size of the requested data and on the distribution of the accessed
memory locations. If multiple memory addresses lie within the same chunk of
data, only one memory transaction has to be performed, thus increasing overall
throughput. To optimize the throughput of global memory accesses, it is there-
fore necessary that all memory locations, accessed simultaneously by a warp,
are dense in global memory chunks of at least 32 bytes. In the given kernel code,
threads with consecutive indices are accessing consecutive addresses in global
memory, thereby minimizing the number of transactions needed.

Shared memory such as the array s has lower latency than global memory.
It is stored on the multiprocessor and organized in memory banks. If memory
locations in distinct banks are requested simultaneously by multiple threads,
the requests can be served in parallel. Otherwise a bank conflict occurs and
the affected requests are served sequentially. To optimize performance, bank
conflicts should be avoided. Successive 32 bits in shared memory are assigned
to successive memory banks; in the kernel code above, s in an array of 32-bit
integers. The threads with consecutive indices will therefore access consecutive
shared memory banks which optimizes the throughput of the instruction.

A useful application for our framework is to identify inefficient branching,
sparse global memory accesses and shared memory bank conflicts in kernels
written for SIMT GPUs.

2.2 Secure Information Flow

One way to test for security leaks in a program is to look at its secure information
flow. Informally, the information flow of a method or program is secure if and
only if its observable output is not influenced by any secret data.

To illustrate this property, we are looking at two simple examples. The first
method, foo, leaks information about secret data and therefore does not have
a secure information flow:

method foo(secret:Int) returns (res:Int) {

x := 0

if (secret >= 0) { x := 1 }

res := x

}

The second method, bar, also uses secret data but only in encrypted form
using a secure encryption scheme:

method bar(secret:Int, key:Int) returns (res:Int) {

x := 0

if (secret >= 0) { x := 1 }

res := enc(x, key)

}

An existing analysis would typically infer that bar has a secure information flow.
Still, this example shows how a chosen-plaintext attack can break the security of
this method. By testing the method with many different values for secret and
key, an attacker can observe for every key two different return values, one for
secret >= 0 and one for secret < 0. He will later be able to draw conclusions
about secret when only looking at key and res.

3



We aim to devise an analysis that detects insecure information flow including
vulnerabilities for chosen-plaintext attacks.

3 Core Goals

1. Identify imprecisions in current framework
The existing analysis framework is imprecise for a number of programs.
It is a challenge to optimize the precision of the BDT domain while keep-
ing the abstract interpretation tractable. For instance, the BDT domain
provides a mechanism for splitting the program traces at one point and
for merging them back at another point. For different merge strategies,
there is this tradeoff between precision and speed. A case where the anal-
ysis is particularly imprecise, is early loop termination through break,
continue and return statements. In the context of checking asymmetry
for comparator functions, we will test the current framework thoroughly
on examples taken from [6], identify problems like the ones stated above
and determine their cause.

2. Resolve issues from previous goal
Having determined and examined issues related to precision and perfor-
mance within the analysis framework, we will put forward options how
to resolve these issues. Possible options might include, e.g., modifying
the construction of the product program, adjusting the merge strategy for
the BDT domain or making changes to the numerical domain. For each
solution, we will implement it if feasible or explain why it is infeasible.

3. Apply framework to a new problem
We will choose one application mentioned in Section 2, i.e., either GPU
kernels or secure information flow. In our framework, we will develop an
analysis that is able to reason about this hyperproperty and implement it
in Sample.

4. Evaluate framework performance
Finally, we will measure and evaluate the performance and precision of
the existing analysis framework and compare it to other tools.

4 Extension Goals

• Building on top of the existing framework, we can create an interproce-
dural analysis for non-recursive methods. Such an analysis can be run in
the topological order of the method dependencies.

• We can extend the interprocedural analysis to handle recursive programs.

• We can build a lightweight frontend that is suitable for the application we
implemented as part of the core goals. Such a frontend takes source code
and translates it to Viper, an intermediate language that is analyzable
using our framework.

4



• We can use our analysis for more applications, an obvious choice is to take
the application described in Section 2 that we do not choose as 3rd core
goal.

References

[1] NVIDIA Corporation. CUDA C Programming Guide. https://

docs.nvidia.com/cuda/cuda-c-programming-guide/index.html, Febru-
ary 2019. Accessed: 2019-03-12.

[2] Marco Eilers, Peter Müller, and Samuel Hitz. Modular Product Programs.
European Symposion on Programming (ESOP), 2018.

[3] Mark Harris. Using Shared Memory in CUDA C/C++. https://devblogs.
nvidia.com/using-shared-memory-cuda-cc/, January 2013. Accessed:
2019-03-15.

[4] Christian Knabenhans. Automatic Inference of Hyperproperties. Bachelor’s
Thesis, ETH Zurich, August 2018.

[5] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A Ver-
fification Infrastructure for Permission-Based Reasoning. In B. Jobstmann
and K. R. M. Leino, editors, Verification, Model Checking, and Abstract
Interpretation (VMCAI), pages 41–62. Springer-Verlag, 2016.

[6] Marcelo Sousa and Isil Dillig. Cartesian Hoare Logic for Verifying k-Safety
Properties. ACM SIGPLAN conference on Programming Language Design
and Implementation (PLDI), 2016.

5

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://devblogs.nvidia.com/using-shared-memory-cuda-cc/
https://devblogs.nvidia.com/using-shared-memory-cuda-cc/

	Introduction
	Applications
	GPU Kernels
	Secure Information Flow

	Core Goals
	Extension Goals

