
Extending Viper with user-defined permission
models

Master’s Thesis Project Description

Matthias Roshardt
Supervisors: Thibault Dardinier, Prof. Peter Müller

March 2021

1 Introduction
Computer program behaviour deviating from what the programmer expects
is a fundamental problem in software engineering with potentially severe con-
sequences. The traditional approach of probing programs with test cases is
error-prone, or as Edsger Dijkstra put it: "Testing can be used to show the
presence of bugs, but never show their absence". This is what makes formal verifi-
cation techniques, which can guarantee desirable properties about a program for
all possible executions, a promising option. Particularly for heap-manipulating
programs and thread interactions in concurrent software, this is a challenging
task. Based on earlier theoretical work, automated verifiers such as Viper [1]
have been created to make formal verification more accessible by providing the
user with strong automation for advanced language features. Viper in particular,
which this thesis revolves around, aims at providing a common abstraction layer
that can be built on to create verifiers for any choice of programming language
(e.g. Nagini [2] for Python, Prusti [3] for Rust, VerCors [4] for OpenCL).

When verifying the correctness of a large computer program, a modular
approach on the level of individual functions and methods is needed, both
for reasons of time complexity and accessibility. In the end, we would like to
be able to be able to state pre- and postconditions for a method, as well as
make assertions about the program state within the method. This requires
reasoning about the values of local variables but also of values on the heap. The
latter introduces a threefold problem. One, the verifier needs to able to reason
about the method in question without having to consider every possible heap
configuration that has been created by the program at large. Two, it needs to be
able to verify whether a method call modifies any of the heap values accessed in
the current method. Three, in a concurrent setting, it needs to be able to reason
about whether another thread might have modified a heap value accessed in the
current method.

1



1.1 Separation Logic
To address the above requirements, separation logic [5] was formulated. It is
in essence an extension of Hoare Logic, where in addition to statements about
variables in the store we can make statements about the heap. The heap is
usually defined as a partial map from the set of addresses to the set of values.
The simplest heap is the empty one, i.e. the one where the map is undefined
for all addresses. The next simplest type of heap has a single value stored at a
particular address. Such a heap can be described with the following separation
logic assertion: a 7→ v, which is to say “at address a on the heap, the value v
is stored”, or simply “a points to v”. Heaps can be combined if their (address)
domains are disjoint. Given two assertions about heaps P,Q (which might be
points-to assertions as seen above), the assertion P ∗Q denotes the statement
“There exist two heaps h1, h2 such that this heap can be created by combining
h1 with h2, P holds for h1 and Q holds for h2”. This gives us all the language
we need to reason about heaps. On the calculus side, the central addition of
separation logic is the the so-called frame rule,

{P}C{Q}
{P ∗R}C{Q ∗R}

mod(C) ∩ fv(R) = ∅

which, put simply, states that if a program C executes safely in a small state
1, then it also executes safely in a larger state, and moreover, nothing beyond
the smaller state is affected by the program. It is this rule that allows for local
reasoning about programs - the local context can be logically isolated from the
broader one.

1.2 Permissions
What a verifier still needs to actually succeed at proving e.g. that a heap value
is still the same after a function call, is a notion of ownership. At a basic level,
we want to encode the semantics that a program location may only perform
operations (such as reading or writing) on a heap value if it owns that heap
value, or in other words, has permission to perform that operation on it. The
points-to assertion we saw before already provides us with a basic notion of
ownership, as in: if a program section has a 7→ v as a precondition, then it can
be said to own this heap value and is free to read and modify it.

To enable more sophisticated permissions than all-or-nothing, we extend our
notion of state, such that the heap is now not just a map from addresses to
values, but instead a map from addresses to a value paired with a share2 (which
encodes the permission).3 Our points-to statements now take the form a 7→ (s, v)

1A state consists of a store, i.e. a map of variables to values, and a heap, i.e. a partial map
of addresses to values

2As in, a share of a resource (in this case the value associated with the address), which is a
phrase that lends itself well to a natural interpretation that one can either own the resource
completely, only some parts of it, or none at all.

3Of course, this requires extending our earlier notion of "joining" states required e.g. by
the separating conjunction (∗) operator of separation logic, such that shares can be joined in a

2



(more commonly denoted a 7→s v), which is to say “I have s permission to the
value v stored at address a”. Let’s have a look at what x might be.

1.2.1 Boolean shares

The most straightforward option is to simply give two permissions: no permission
at all and full permission. Obviously we must ensure that it is impossible for two
or more locations to hold a full permission to the same reference. Along that
same vein, we must have a way to specify which program section is supposed to
hold which permission.

In Viper, this can be expressed as part of method preconditions (keyword
requires) and postconditions (keyword ensures). As can be seen in listing 1,
the increment method requires permission to access field f before it can read
from or write to it. At the end, we must ensure that the method still holds the
permission, so that it can be “given back” to the client method. If this were
omitted, the verifier could not prove that the client method can reacquire the
necessary permission to subsequently read from the field, the permission could
have been leaked. Analogously, the client method requires a full permission to
f, because otherwise it might not be possible to satisfy increment’s precondition.

In this example, the permission transfer is implicit through the use of pre-
and postconditions. Viper also provides the keywords inhale and exhale which
explicitly express that a piece of code (within a function) acquires or relinquishes
the specified permissions.

field f: Int

method client(a: Ref)
requires acc(a.f)
ensures acc(x.f) {
increment(a)

var b : Int
b := a.f

}

method increment(x: Ref)
requires acc(x.f)
ensures acc(x.f) {
x.f := x.f + 1

}

Listing 1: Example use of permissions in Viper

1.2.2 Fractional shares and beyond

The Boolean share model presented above is too restrictive; many useful concepts
cannot be expressed, such as (concurrent) read-only access. We could envision a

way that preserves their semantics.

3



ternary share model, with an empty permission, readonly permission and full
permission. However, we quickly run into trouble when defining the semantics of
how to join such permissions together.4 Instead, Viper uses fractional permissions,
where a share is a rational number between 0 and 1. Write access requires a share
of 1, whereas read access requires any share greater than 0. The benefit of this
permission model is that it naturally accommodates concurrent programming:
a thread with some permission may split this permission into fractions, fork a
number of child threads (which might have children of their own) that perform
some sort of computation requiring read access, and recombines the shares as
the child threads join again.

However, this permission model also has some weaknesses: on one hand, the
fact that there can be many identical shares (e.g. two instances of 0.1) leads
to some unexpected behaviour (for instance, if one naively defines trees, one
will end up defining DAGs instead [7]). On the other hand, it is impossible
to know how many shares are out there, as any nonzero share can be split up
indefinitely. A number of alternative models have been proposed [6], each with
their own benefits and drawbacks. The aim of this master’s thesis is to overcome
these limitations in Viper by implementing one or more additional advanced
permission models and ultimately by letting the user define custom models that
suit his or her purposes.

2 Core Goals

2.1 Exploration
The first step in this thesis is to get a good picture of the design space of
permission models. The goal is to include a comprehensive overview of the
landscape of permission models in the thesis. Limitations of the different models,
particularly of fractional permissions, are illustrated with examples. Alternative
memory models (different from the standard address → value map) may also be
explored.

2.2 Automation
Before making the step to fully parametrized models, at least one advanced
permission model (such as tree shares as presented in [6]) is implemented in one
of Viper’s two back-end verifiers. An evaluation is performed vis-à-vis fractional
permissions.

2.3 User-parametrized models
Viper is extended such that users can encode their own permission models. What
the specification looks like is subject to exploration. A specification may be
comprised of:

4The explanation for this is beyond the scope of this document.

4



• the set of shares,

• the algebraic structure of the join operation on them (i.e. what happens
when two permissions are added, multiple permissions are inhaled etc),

• which shares correspond to a read/write/zero permission and

• the product operator for predicates. 5

The soundness of the user-defined permission model would preferably be verified.
If possible, the implementation should check the necessary properties automati-
cally. Alternatively, the user can be charged with proving them, if the former
approach is not feasible or for other reasons less desirable. A hybrid approach
may yield the best results.

2.4 Evaluation
Encode various permission models from the literature using the above extension
and evaluate them versus the previously added advanced model and default
(fractional) model with regards to performance and reliability.

3 Extension Goals

3.1 User-parametrized automation
If the hard-coded model from the automation goal outperforms the models
encoded in the general interface w.r.t. speed and reliability, the thesis explores
how the user can aid the automation carried out by the verifier by specifying
additional properties of the model.

3.2 Properties and soundness
Built into the semantics of Viper is the assumption that several properties hold
for the permission model (e.g. holding a full (write) permission implies that no
other thread can hold a non-zero (read) permission simultaneously). The goal
is to identify what these properties are and evaluate their necessity, providing
examples for unexpected behavior in case they are violated. Lastly, the thesis
explores which properties could be axiomatized and which ones could be left to
the user to prove.

3.3 Advanced features
Beyond the basic support for parametrized permission models as outlined above,
there are a number of advanced features that can be adapted to work with the
new permission models. The goal is to extend the work done in the thesis to
such things as:

5In Viper, fractional amounts of (recursive) predicates can be folded or unfolded, which
requires a multiplication operation.

5



• Known-folded permissions

• Permission introspection

• Magic wand operator

• Permission wildcards

References
[1] P. Müller, M. Schwerhoff and A. J. Summers. Viper: A verification infrastruc-

ture for permission-based reasoning. In: Verification, Model Checking, and
Abstract Interpretation. VMCAI 2016. Lecture Notes in Computer Science,
vol 9583. Springer, Berlin, Heidelberg.

[2] M. Eilers and P. Müller. Nagini: A static verifier for Python. In: Computer
Aided Verification (CAV). CAV 2018. Lecture Notes in Computer Science,
vol 10981. Springer, Cham.

[3] V. Austrauskas, P. Müller, F. Poli and A. J. Summers. Leveraging Rust Types
for Modular Specification and Verification. Proc. ACM Program. Lang. 3,
OOPSLA, Article 147, October 2019.

[4] S. Blom and M. Huisman. The VerCors Tool for Verification of Concurrent
Programs. In: Formal Methods. FM 2014. Lecture Notes in Computer Science,
vol 8442. Springer, Cham.

[5] J. C. Reynolds. Separation Logic: A logic for shared mutable data structures.
Proceedings 17th Annual IEEE Symposium on Logic in Computer Science,
Copenhagen, Denmark, 2002, pp. 55-74.

[6] R. Dockins, A. Hobor and A. W. Appel. A fresh look at separation algebras
and share accounting. In: Programming Languages and Systems. APLAS 2009.
Lecture Notes in Computer Science, vol 5904. Springer, Berlin, Heidelberg.

[7] X. Le, T. Nguyen, W. Chin and A. Hobor. A certified decision procedure for
tree shares. In: Formal Methods and Software Engineering. ICFEM 2017.
Lecture Notes in Computer Science, vol 10610. Springer, Cham.

6


