Verification of Rust Generics, Typestates, and Traits
Master Thesis Project Description

Matthias Erdin

Supervised by Prof. Dr. Peter Miiller
Vytautas Astrauskas, Federico Poli

Department of Computer Science
ETH Ziirich
Ziirich, Switzerland

September 6, 2018

1 Introduction

Rust [I] is a systems programming language that aims to be a safe replace-
ment for C and C++. The Rust features most relevant for this thesis are
the ownership type system with generic types and traits. These concepts
are briefly illustrated in this section.

Rust generics are similar to generics in other languages such as Java,
Scala, and C#. Generics allow using type parameters as placeholders for
some concrete type in the definition of functions, structs and other enti-
ties. Examples are struct Vec<T> as dynamic array of some type T, or
fn max<T: Ord>(vl: T, v2: T) -> T, a function that returns the larger
of two values of some ordered type T. As in Java, Scala, and C#, gener-
ics are checked once at the definition side. At compile time however, Rust
monomorphizes generics for performance reasons, meaning that for each in-
stantiation with a concrete type, the parameter is replaced with the concrete
type, producing separate machine code for each separate concrete type.

In Rust, memory is managed through the ownership type system. This
system enables Rust to make memory safety guarantees without needing a
garbage collector. An important rule is that each memory location has a
single owner. As a side effect of that, this system can be used to encode
typestates, such that the compiler enforces that methods are called only in
appropriate states. Consider the following example:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

// socket states
struct Bound;

struct Listening;
struct Connected;

/o

// base structure for any state
struct Socket<S> {
fd: i32; // normal fields for socket type
state: S; // empty state field, does nmot use memory

// functions that operate on sockets in bound state
impl Socket<Bound> {
fn listen(mut self) -> Socket<Listening> {
/7
b

// functions that operate on sockets in listening state
impl Socket<Listening> {
fn accept(&mut self) -> Socket<Connected> {
VZaes
b

Note the difference in the first parameters of the functions; fn listen
consumes, i.e. takes ownership, of a socket in bound state, and returns a
new socket in listening state. This is a common Rust idiom to express state
change. On the other hand, fn accept expects a reference, and returns a
new socket in connected state. Because it does not consume its argument,
the passed socket can be said to remain in its original state.

The main motivation for using typestates as shown is to restrict method
calls to those appropriate for the type’s current state at compile time. Our
goal is to find and develop convenient means to enable verification of such
idiomatic code.

Rust traits are comparable to interfaces in languages such as C# and
Java. Much like interfaces, traits primarily specify methods and their sig-
natures that implementers must provide, which is checked by the compiler.
Methods of traits are sometimes accompanied by pre- and postcondition
in the documentation, which implementations are expected to uphold. We
would like to be able to specify and verify such pre- and postconditions.

In this thesis, we aim to grow the set of Rust code that can be veri-
fied. To that end, the existing Rust frontend [2] for the Viper verification

infrastructure [3] is extended. These extensions should allow verification
of structs, enums, generics, pre- and postconditions for trait methods and
idiomatic Rust code with typestates. Further possibilities are finding more
concise and expressive ways to deal with typestates that are not encoded
into Rust types, and enabling verification of certain trait properties that are
not captured by pre- and postconditions of methods.

2 Design Considerations

In this thesis we aim to consider the following design aspects:

2.1 Soundness

The developed extensions should be sound. This means in particular that
successful verification implies that specifications then actually hold at run-
time. Also, functions that were verified with generic type parameters should
work with any concrete types allowed by the Rust type system.

2.2 Usability

Throughout the thesis, an important aspect is usability, meaning that the
tools and techniques developed should fit well to existing idioms and real-
world code that uses traits and typestates. In the end, using the developed
methods should feel natural to the Rust programmer.

2.3 Modularity

Modularity refers to the ability to treat individual components separately,
for the sake of decreased interdependence of such components and reduction
of overall system complexity. Concretely, functions should, if possible, still
be verifiable independently, as is currently the case with the Rust verification
frontend. Client code should be verifiable against supplier specifications.
Invariants that only refer to private fields should not need be exposed to
functions and methods that cannot access these fields.

2.4 Expressiveness

Expressiveness refers the range of ideas that can be represented and commu-
nicated. Compactness is also relevant. Mechanisms developed should match
well to common use cases, and allow expressing ideas concisely. Ideally, all
common Rust idioms for expressing typestates are supported.

2.5 Extensibility

Extensibility refers to the degree to which future growth is taken into con-
sideration by system design. In this thesis, the focus will be on extensibility
with respect to new states for existing stateful types.

Because traits can be organized in hierarchies, and because there might
be a use case for requiring not a single state, but a subset of states as
precondition, there is some similarity to the problem of extensibility with
respect to typestates and inheritance [4]. Rust does not feature inheritance,
and it models aliasing in the type system directly, so not the same challenges
apply. It is unclear to what degree extensibility of typestates themselves is
needed and useful. Finding an answer to that question is part of this thesis.

3 Core Goals

3.1 Collect Samples

The first task is to collect Rust code samples that can be used for the follow-
ing design and implementation tasks. Also, research papers about typestates
are used as a source for samples. The challenge is to find good examples
that use different kinds of entities, namely functions, structs, enums, gener-
ics, and trait methods that have pre- and postconditions. Ideally, samples
cover a range of sophistication. These samples should be helpful in the
following design and implementation steps.

While collecting samples, the basics and relevant terms and features of
Rust are learned.

3.2 Support for Generics

Initially, support for generics in general must be implemented. The main
challenge is to ensure that generics are verified upfront such that any instan-
tiation that is legal according to the Rust type system upholds the speci-
fications at runtime. Another likely challenge will be the handling of any
unforeseen interactions with other language features. Attention is required
with respect to the efficiency of the encoding.

This step also serves to get comfortable working with the existing infras-
tructure.

3.3 Invariants for Structs and Enums

As the next enhancement to the Rust verification frontend, the possibility
to write invariants for structs and enums is implemented. In particular,
handling public versus private invariants is looked at.

Writing meaningful invariants in contexts with type parameters should
then also be possible. One idea is to allow type comparisons in specifications;
it has to be investigated what the limitations of that approach would be.

The challenges are at least the following: The design should yield an
encoding that is compact and works in the general case, especially in contexts
with type parameters. It must be determined what specifications are allowed
to express, e.g., whether a struct invariant is allowed to refer to content of
private fields; such decisions must take into account how permissions can
be handled in the Viper encoding. Also, it must be defined at which points
invariants must hold, and means provided by which methods can indicate
that at certain points of execution some invariants may only partially hold;
and similar concerns [5].

3.4 Specifications for Trait Methods

The next step would be to attach pre- and postconditions to trait methods,
against which implementations will be checked. This also applies to generics
with trait bounds. One challenge is to define whether it useful that imple-
mentations can weaken precondition or strengthen postconditions, and what
design best captures common use cases.

Note that this does not include any properties of traits that are not cap-
tured by method pre- and postconditions. Basic support for such properties
would be covered with extension [£.3]

3.5 Invariants for Typestates Based on Rust Type System

One of the programming styles in Rust is encoding typestates with generics,
like Socket<T: SocketState>. The main task here is generally to find and
implement techniques to attach invariants to the common styles used in
existing Rust code for modeling typestates.

The main challenges here are to figure out syntax and semantics that
work for a wide range of common idioms, and that will be easy to use and
feel natural to the Rust programmer. The focus clearly is on usability, but
also on extensibility with respect to typestates.

4 Extensions

The following are possible extensions to the core goals. The aim is to com-
plete 2 extensions.

4.1 Verification of Real-World Code

The tools developed could be applied to various real-world code. One pos-
sibility might be validating parts of the rustls [6] library that implements

TLS in Rust utilizing typestates.

4.2 Typestates via Specification Only

The main motivation for encoding typestates using specifications only is that
existing code may use types that have states, but without having employed
the idiom that uses Rust types to encode state. Such code can be enhanced
with specification-only typestate information without breaking backwards
compatibility.

Encoding typestates in the Rust type system is advantageous in that the
Rust compiler checks and enforces states. It can be cumbersome however,
because it complicates code structure and requires runtime operations that
may or may not be fully optimized away. It is desirable that the Viper
frontend for Rust allows to express typestates even if they are not reflected
by types of the program. Such extensions must harmonize well with exist-
ing typestate idioms that use Rust types to encode state, such that both
approaches are usable simultaneously.

The focus here should be on expressiveness. See the Appendiz for an
illustrative comparison of the two approaches.

4.3 Specifications for Intrinsic Properties of Traits

Support for trait method pre- and postconditions was established in core
goal This can be extended such that certain trait properties that are
not captured by method pre- and postconditions can be verified also.

In Rust, traits are also commonly used to mark types with intrinsic
properties [7] or to impose specific requirements. As an example, the Rust
standard library provides the trait PartialEq [§]:

pub trait PartialEq<Rhs = Self>
{
fn eq(&self, other: &Rhs) -> bool;
fn ne(&self, other: &Rhs) -> bool { ... }

The library reference however also defines requirements expressed as in-
variants on this trait that implementations must obey, specified as follows [8]:

Formally, the equality must be (for all a, b and c):

e symmetric: a == b impliesb == a; and
e transitive: a == b and b == c implies a == c.
Moreover, the standard library provides a so-called marker trait Eq [9],

derived from PartialEq, that does not define further methods at all, but
imposes additional requirements only [9]:

[-..] in addition to a == b and a !'= b being strict inverses, the
equality must be (for all a, b and c):

o reflexive: a == a;
o symmetric: a == b implies b == a; and
e transitive: a == b and b == c implies a == c.

Note well that the invariants imposed by the PartialEq and Eq traits
are hyperproperties. General support for verification of such hyperproperties
is out of scope for this thesis.

We do not aim for a generic solution for verying intrinsic properties of
traits, but to group use cases into classes and find solutions to some of these
classes. Examples of such classes of properties would be:

e PartialEq and Eq, whose invariants are hyperproperties
e Sync and Send, which are related to concurrency and safety

e Copy, which is related to optimization and receives special treatment
by the compiler.

5 Schedule

Calculating with 20 weeks (not counting holidays and pre-description):
1 week | Core Goal: Collect Samples

3 weeks | Core Goal: Support for Generics

2 weeks | Core Goal: Invariants for Structs and Enums

2 weeks | Core Goal: Specifications for Trait Methods

3 weeks | Core Goal: Invariants for Typestates |[...]

4 weeks | Extensions (2)

5 weeks | Writing Report and Preparing Final Presentation

Considering holidays and variable work intensity during the semester yields
the following expected times of completion:

2018-09-07 | Core Goal: Collect Samples

2018-09-28 | Core Goal: Support for Generics

2018-10-18 | Core Goal: Invariants for Structs and Enums
2018-11-02 | Core Goal: Specifications for Trait Methods
2018-11-30 | Core Goal: Invariants for Typestates |...]
2019-01-10 | Extensions (2)

2019-02-08 | Writing Report and Preparing Final Presentation

References

1]

2]

3]

“The Rust programming language.” https://www.rust-lang.org/.
Accessed on 2018-08-31.

“A Viper front-end for Rust.” https://github.com/viperproject/
prusti. Accessed on 2018-08-31.

P. Miiller, M. Schwerhoff, and A. J. Summers, “Viper: A verification
infrastructure for permission-based reasoning,” in Verification, Model
Checking, and Abstract Interpretation (VMCAI) (B. Jobstmann and
K. R. M. Leino, eds.), vol. 9583 of LNCS, pp. 41-62, Springer-Verlag,
2016.

R. DeLine and M. Fahndrich, “Typestates for objects,” in ECOOP 200/
— Object-Oriented Programming (M. Odersky, ed.), (Berlin, Heidelberg),
pp- 465-490, Springer Berlin Heidelberg, 2004.

A. J. Summers, S. Drossopoulou, and P. Miiller, “The need for flexible
object invariants,” in International Workshop on Aliasing, Confinement
and Qwnership in object-oriented programming (IWACO), 20009.

“A modern TLS library in Rust.” https://github.com/ctz/rustls.
Accessed on 2018-08-31.

“The Rust standard library: Module std::marker.” https://doc.
rust-lang.org/std/marker/index.html. Accessed on 2018-08-31.

“The Rust standard library: Trait std::cmp::PartialEq.” https://doc.
rust-lang.org/std/cmp/trait.PartialEq.html. Accessed on 2018-
08-31.

“The Rust standard library: Trait std::cmp::Eq.” https://doc.
rust-lang.org/std/cmp/trait.Eq.html. Accessed on 2018-08-31.

https://www.rust-lang.org/
https://github.com/viperproject/prusti
https://github.com/viperproject/prusti
https://github.com/ctz/rustls
https://doc.rust-lang.org/std/marker/index.html
https://doc.rust-lang.org/std/marker/index.html
https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
https://doc.rust-lang.org/std/cmp/trait.Eq.html
https://doc.rust-lang.org/std/cmp/trait.Eq.html

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

Appendix

This following code snippet uses the Type<S: State> idiom for encod-
ing typestate via Rust types. Note the boilerplate in each state-changing
method, and also note that the client must be explicit about state changes,
in that after each state change a new variable must be used; albeit identically
named in this example.

use std::marker::PhantomData;

struct New;
struct Bound;
struct Listening;

struct Socket<S> {
fd: i32,
state: PhantomData<S>,

impl<S8> Socket<S> {
fn print_fd(&self) {
println! ("{}", self.fd);
}

impl Socket<New> {
fn new() -> Self {
Socket {
fd: raw_socket(),
state: PhantomData,

fn bind(self) -> Socket<Bound> {
raw_bind(self.fd);
Socket {
fd: self.fd,
state: PhantomData,

impl Socket<Bound> {
fn listen(self) -> Socket<Listening> {

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

raw_listen(self.fd);
Socket {

fd: self.fd,

state: PhantomData,

fn main() {

let £ = Socket::new();
let £ = £.bind();
let £ = f.listen();

f.print_£fdQ);

The following code snippet is the hypothetical variant that uses specification-
only state information instead of the Type<S: State> idiom to encode state
in the previous snippet.

#[states="new,bound,listening"]
struct Socket {
fd: i32

impl Socket {
fn print_fd(&self) {
println! ("{}", self.fd);
}

#[state="result (=>new)"]/
fn new() -> Self {
Socket {
fd: raw_socket(),

#[state="self (new=>bound) "]
fn bind(&mut self) -> {
raw_bind(self.fd);

#[state="self (bound=>listening)"]
fn listen(&mut self) {

10

25

26

27

28

30

31

32

33

34

35

raw_listen(self.fd);

fn main() {
let f = Socket::new();
f.bind();
f.listen();

f.print_£fd(0);

11

	Introduction
	Design Considerations
	Soundness
	Usability
	Modularity
	Expressiveness
	Extensibility

	Core Goals
	Collect Samples
	Support for Generics
	Invariants for Structs and Enums
	Specifications for Trait Methods
	Invariants for Typestates Based on Rust Type System

	Extensions
	Verification of Real-World Code
	Typestates via Specification Only
	Specifications for Intrinsic Properties of Traits

	Schedule

