
Verification of Rust
Generics, Typestates, and Traits

Master Thesis

Matthias Erdin

February 13, 2019

Advisors: Prof. Dr. Peter Müller, Vytautas Astrauskas, Federico Poli

Department of Computer Science, ETH Zürich

Abstract

Prusti is the Viper verification infrastructure frontend for the Rust pro-
gramming language. It allows us to statically guarantee desirable prop-
erties of Rust programs, from the absence of unwanted behaviours to
the functional correctness according to specifications. The usefulness of
verification tools depends on the range of supported language features
and idioms. We aim to extend this range and specifically address sup-
port for generics, traits, invariants and typestates. Generics and traits are
the primary mechanism to achieve polymorphism and code-reuse in
Rust and are pervasively used. The concept of type invariants is well-
known and its usefulness established. The ownership type system of
Rust allows expressing and enforcing typestates at compile time, which
is useful in security-critical applications. We define semantics and con-
structs that should be familiar to Rust programmers, and demonstrate
their effectiveness in the form of proof-of-work implementations for
Prusti.

i

Acknowledgements

I would like to thank my supervisor Vytautas Astrauskas for the count-
less hours of support, for the many instructive discussions, and for all
the valuable feedback and suggestions I have received. It is most ap-
preciated. I would also like to thank Federico Poli for all the help
provided, especially for taking care of issues with the code. I am grate-
ful to Prof. Dr. Peter Müller for the opportunity to work on the topic
of verification in the context of Rust; I have learned a lot. Last but not
least, I want to thank the entire Programming Methodology group for
their feedback and kindness.

ii

Contents

Contents iii

1 Introduction 1

2 Background 5
2.1 Rust . 5

2.1.1 Generics . 5
2.1.2 Traits . 5

2.2 Viper . 6
2.3 Prusti . 6

2.3.1 Type Encoding . 6
2.3.2 Pure Functions . 8
2.3.3 References and Lifetimes 12

3 Design 15
3.1 Generics . 15

3.1.1 Type Parameters . 15
3.1.2 Pure Functions . 16

3.2 Traits . 19
3.2.1 Refinement . 19
3.2.2 Substitutability . 24
3.2.3 Pure Functions . 25
3.2.4 Abstract Pure . 27

3.3 Invariants . 29
3.3.1 Basic Support . 29
3.3.2 Enum Variants . 32
3.3.3 Inhibition . 33
3.3.4 Assert On Expiry . 35

3.4 Typestates . 40
3.4.1 Generics-based . 40

iii

Contents

3.4.2 Specification-Only Typestates 42

4 Evaluation 47
4.1 Implementation . 47
4.2 Performance Measurements . 48

4.2.1 Methodology . 48
4.2.2 Results and Discussion 49

4.3 Example Test Cases . 50
4.3.1 Generics . 50
4.3.2 Traits . 53
4.3.3 Invariants . 55
4.3.4 Assert On Expiry . 57
4.3.5 Typestates . 59

5 Conclusion 63
5.1 Future Work . 63

5.1.1 Trait Invariants . 63
5.1.2 Specifications for Intrinsic Properties of Traits 64

Bibliography 67

iv

Chapter 1

Introduction

Rust [2] is a new programming language whose type system and ownership
model guarantee memory-safety and thread-safety, while supporting low-
level programming and providing performance that aims to be competitive
with well-known low-level programming languages such as C++ and C.

The ownership type system statically prevents otherwise common issues in
low-level programming, such as dangling pointers, data races, and other
flavors of undefined behaviour, without the need for a garbage collector.

As helpful as the Rust type system is, it cannot prevent every programmer
error, let alone statically. Program verification provides the tools and tech-
niques that allow us to check desirable properties of a program beyond the
guarantees of the type system statically; from the absence of assertion fail-
ures and other kinds of violations of internal assumptions, to the functional
correctness of the program, where we show that programs indeed exhibit
the specified behaviour.

Rust is a particularly interesting target for verification. Among other rea-
sons, its type system enforces restrictions on aliasing, which allows deriving
essential information needed for verification from the Rust program directly.
In other programming languages, the burden of providing that information
is on the programmer. Because we can derive much verification-relevant in-
formation from the Rust program, the barrier to achieve useful verification
results is lowered significantly for the Rust programmer [8].

We can increase static safety of our programs further by employing types-
tates [10], which are an established concept where objects can be in different
(named) states in different program locations; states statically restrict which
operations on objects are considered valid. Typestates are useful to express
these sets of allowed operations, and have the validity of state transitions
checked at compile time. They are often used in security-critical software,
like the Rust TLS library rustls [1].

1

1. Introduction

An important rule of the Rust ownership type system is that each memory
location has a single owner. This property is checked statically and can
be used to express typestates in the Rust type system directly [15] such that
the compiler then enforces that state transitions are valid and ensures that
methods can only be called in appropriate states.

Consider the following example:

1 // socket states
2 struct Bound;
3 struct Listening;
4 struct Connected;
5 // ...
6

7 // base structure for any state
8 struct Socket<S> {
9 fd: i32; // normal fields for socket type

10 state: S; // empty state field, does not use memory
11 }
12

13 // functions that operate on sockets in bound state
14 impl Socket<Bound> {
15 fn listen(mut self) -> Socket<Listening> {
16 // ...
17 }
18 }
19

20 // functions that operate on sockets in listening state
21 impl Socket<Listening> {
22 fn accept(&mut self) -> Socket<Connected> {
23 // ...
24 }
25 }

Note the difference in the first parameters of the functions; the parameter
of fn listen is passed by value, meaning that fn listen consumes, i.e. takes
ownership, of a socket in bound state, and returns a new socket in listening
state. This is a common Rust idiom to express state change. On the other
hand, fn accept expects a reference, and returns a new socket in connected
state. Because it does not consume its argument, the passed socket can be
said to remain in its original state.

The main motivation for using typestates as shown is to restrict method calls
to those appropriate for the type’s current state at compile time. Our goal is to
find and develop convenient means to enable verification of such idiomatic

2

code. In order to enable support for typestates, we need to look at support
for generics, traits, and invariants first.

In this thesis, we design the semantics (where necessary) and the encoding
for generics, traits, invariants and finally typestates. We implement basic sup-
port for each in Prusti [7], the Viper [13] frontend for Rust. Specifically, our
contributions encompass the addition of the following items in the form of
encoding design and proof-of-work implementation in Prusti:

1. We add basic support for generics, which enables verification of func-
tions and methods that are type-parametric.

2. We add support for trait bounds, which enables more useful examples
with generics.

3. We enforce the checking of sound substitutability for trait function and
trait method implementers.

4. We allow the user to define type invariants for structs.

5. We provide the construct assert_on_expiry, with which an obligation
can be imposed on callers to be fulfilled after the call, which enables
safe access to internal representation while upholding invariants.

6. We add basic support for type conditions in type invariants, pre- and
postconditions, which allows specifying invariants for generics-based
typestates.

The outline of the thesis is as follows: Chapter 2 on page 5 introduces back-
ground knowledge that is useful for understanding the following chapters.
Chapter 3 on page 15 presents the design decisions made, including the cho-
sen semantics for our constructs and the intended Viper encoding. Chapter 4
on page 47 discusses aspects of the implementation including performance
statistics, and presents working examples that use the newly added features.
Chapter 5 on page 63 finally sums up the results and presents ideas for fu-
ture work.

3

Chapter 2

Background

This chapters aims to provide the necessary background knowledge to un-
derstand the following chapters. It contains basic concepts; more in-depth
and specialized knowledge may only be introduced in later chapters as it
becomes necessary.

2.1 Rust

2.1.1 Generics

Rust generics are similar to generics in other languages such as Java, Scala,
and C#. Generics allow using type parameters as placeholders for some
concrete type in the definition of functions, structs and other entities. Exam-
ples are fn max<T: Ord>(v1: T, v2: T) -> T, a function that returns the
larger of two values of some ordered type T, or struct Vec<T> as a dynamic
array of some type T. As in Java, Scala, and C#, generics are typechecked
once at the definition side. At compile time however, Rust monomorphizes
generics for performance reasons, meaning that for each instantiation with
a concrete type, the parameter is replaced with the concrete type, producing
separate machine code for each separate concrete type.

2.1.2 Traits

Rust traits are comparable to interfaces in languages such as C# and Java.
Much like interfaces, traits primarily specify methods and their signatures
that implementers must provide, which is checked by the compiler. Meth-
ods of traits are sometimes accompanied by pre- and postconditions in the
documentation, which implementations are expected to uphold. We would
like to be able to specify and verify such pre- and postconditions.

5

2. Background

2.2 Viper
Viper [13] is the verification infrastructure for permission-based reasoning. In a
nutshell, it consists of an intermediate verification language based on per-
mission logic, a translator and backends that ultimately use Z3 [9] for ver-
ification. It provides an abstraction layer for verification that greatly facil-
itates implementing frontends, program verifiers for specific programming
languages.

The Viper language features that are relevant for this thesis are fields, predi-
cates, functions, and magic wands. These are introduced in [13].

2.3 Prusti
Prusti [7] is the Rust frontend for Viper. Its purpose is to allow verification
of a range of desirable properties of Rust programs, including the absence of
panics (out-of-bounds accesses, assertion failures, and other kinds of viola-
tions of internal assumptions), the absence of integer overflows, and finally
the functional correctness of functions and methods.

2.3.1 Type Encoding
Prusti encodes Rust types as Viper predicates. Each distinct Rust type is
encoded as a separate Viper predicate; it will be explained what this means
in detail. Rust types supported are integral primitive types, structs, enums
and tuples, among others. This section explains how type encoding works
for integral types, structs, and generic structs. Other types are omitted, as
they work in a similar way to how structs and generic structs are encoded.

Types are not encoded per se, that is, the encoding of types is not triggered
by type definitions in Rust, but as-needed based on their usage in functions
or methods.

Primitive Types

Rust primitive types, such as bool, u8, i32 etc., are encoded utilizing Viper
built-in types Bool and Int as field types in the definition of their predicates.
With overflow checking enabled, the predicates of signed and unsigned inte-
gral types include the technical range of the respective types. See Fig. 2.1 on
the facing page for a representation of the Rust type u8, the unsigned 8-bit
integral type (the byte).

Viper fields are global, and in principle available on every reference. We use
accessibility predicates, like acc(self.val_int), to express that the field
val int is accessible on the reference self. This effectively models that any
reference that is an u8 has the field val int of type Int.

6

2.3. Prusti

1 field val_int: Int
2

3 predicate u8(self: Ref) {
4 acc(self.val_int) && self.val_int >= 0 && self.val_int <= 255
5 }

Figure 2.1: Encoding of the Rust primitive type u8, with overflow checking enabled in Prusti.
The construct acc(...) is called an accessibility predicate; it expresses that we have permission
to access field val int on the reference self. The predicate definition can be interpreted to
mean that if self is an u8, then it has a field val int of type Int, and the integer is in the
given range.

Viper integers (type Int) are mathematical, unbounded integers. The primi-
tive integral types in Rust correspond to the integers provided by hardware,
and are bounded. This is modeled by explicitly specifying the range of al-
lowed values in the predicate. Note that the range of representable values
for integers is a technical limitation, not a logical restriction. This is unlike a
user-defined invariant, which can be broken and is only expected to hold at
certain defined points in the program.

Simple Structs

Structs are encoded by constructing a predicate that is named after the
struct. The predicate definition is straightforward: for every field of the
Rust struct, the corresponding Viper field accessibility and Viper predicate
becomes part the definition, conjoined. Fig. 2.2 shows a simple struct and
Fig. 2.3 shows its encoding.

1 struct Foo {
2 bar: u8,
3 baz: i32,
4 }

Figure 2.2: A simple Rust struct with two fields.

1 field enum_0_bar: Ref
2 field enum_0_baz: Ref
3

4 predicate Foo(self: Ref) {
5 acc(self.enum_0_bar) && u8(self.enum_0_bar) &&
6 acc(self.enum_0_baz) && i32(self.enum_0_baz)
7 }

Figure 2.3: The encoding of the struct shown in Fig. 2.2. Each struct field is encoded with an
accessibility predicate and a type predicate.

7

2. Background

As a side note, the enum_0_ prefix of the field names originates from the
fact that Rust structs and enums are both represented in the Rust compiler
internal datastructures as “ADTs” (algebraic data types), with the distinction
that structs have one variant, whereas enums may have more than one. Prusti
chooses to not make a distinction in the encoding as far as Viper field names
are concerned.

Generic Structs and Monomorphisation

Prusti supports generic structs (structs with type parameters), as long as in the
functions and methods under test the generic structs are fully instantiated,
that is, used non-generically, in that every type argument provided does not
contain type parameters (of the function or method under test). An example
follows.

Fig. 2.4 shows a generic struct that is used by function test with two distinct
type arguments, namely i32 and i64, for type parameter T of struct Packet.
Fig. 2.5 on the facing page shows the encoding of types Packet<i32> and
Packet<i64> via monomorphization [8]. This process produces separate en-
codings as if the Rust programmer had manually written distinct types
struct Packet__i32 and struct Packet__i64 with the parameter T re-
placed accordingly in their definitions. Note that in the bodies of the predi-
cates, the types of the payload fields differ.

1 struct Packet<T> {
2 urgency: u8,
3 payload: T,
4 }
5

6 fn test(p1: Packet<i32>, p2: Packet<i64>) {
7 // ...
8 }

Figure 2.4: A generic Rust struct, used with two different type arguments in fn test. In
fn test, the struct is fully instantiated in two different ways; the type arguments (i32 and i64)
are concrete types. The function under test itself, fn test, is not parametric; there are no type
parameters used in fn test.

2.3.2 Pure Functions

Rust functions and methods can be annotated with the #[pure] attribute. It
marks a function as being deterministic and side-effect-free. Rust functions and
methods not marked pure will be translated to Viper methods, whereas Rust
functions and methods marked as pure will be translated to Viper functions.

8

2.3. Prusti

1 field enum_0_urgency: Ref
2 field enum_0_payload: Ref
3

4 predicate Packet__i32(self: Ref) {
5 acc(self.enum_0_urgency) && u8(self.enum_0_urgency) &&
6 acc(self.enum_0_payload) && i32(self.enum_0_payload)
7 }
8

9 predicate Packet__i64(self: Ref) {
10 acc(self.enum_0_urgency) && u8(self.enum_0_urgency) &&
11 acc(self.enum_0_payload) && i64(self.enum_0_payload)
12 }

Figure 2.5: The encoding of the struct shown in Fig. 2.4 on the facing page, illustrating the
monomorphization of generic types.

The encoding as Viper function enables clients of the pure function or pure
method to see and reason with its definition.

Fig. 2.6 on the next page illustrates the difference between a pure and a
non-pure function. Fig. 2.7 on the following page shows the corresponding
encoding – significantly simplified. Note that the first assert verifies because
clients can reason with the body of the pure function (fn add_pure). If
the function is not marked pure (fn add_non_pure), its behaviour must be
specified explicitly, by adding a postcondition (#[ensures]) that tells clients
how the result can be expected to relate to the arguments.

Fig. 2.8 on page 11 shows an example with a non-generic pure function
that is defined on the generic user-defined type struct Packet. Fig. 2.9
on page 11 shows the corresponding illustrative encoding, showcasing type
monomorphization, as explained in section 2.3.1 on page 6. The aspect to
be highlighted is that the Viper function in Fig. 2.9 on page 11 has a param-
eter that is typed by the precondition requires Packet__i16(self), which
makes the field accesses in the function body possible. Note that the neces-
sary unfoldings have been omitted for readability.

9

2. Background

1 extern crate prusti_contracts;
2

3 #[pure]
4 fn add_pure(a: i32, b: i32) -> i32 {
5 a + b
6 }
7

8 #[ensures= "result == a + b"] // necessary!
9 fn add_non_pure(a: i32, b: i32) -> i32 {

10 a + b
11 }
12

13 fn main() {
14 assert!(add_pure(2, 3) == 5); // verifies!
15 assert!(add_non_pure(2, 3) == 5); // verifies!
16 }

Figure 2.6: An example that illustrates the difference between pure and non-pure functions.
Annotating a function with the #[pure] attribute allows clients to see and reason with its body.

1 function add_pure(a: Int, b: Int): Int
2 {
3 a + b
4 }
5

6 method add_non_pure(a: Int, b: Int): Int
7 ensures result == a + b
8 {
9 a + b

10 }
11

12 method main()
13 {
14 assert add_pure(2, 3) == 5 // verifies!
15 assert add_non_pure(2, 3) == 5 // verifies!
16 }

Figure 2.7: The significantly simplified encoding of the snippet shown in Fig. 2.6. For the sake
of readability, overflow checking was not enabled, hence there are no range limitations on the
Viper integers.

10

2.3. Prusti

1 struct Packet<T> {
2 urgency: u8,
3 payload: T,
4 }
5

6 #[pure]
7 fn is_urgent(p: &Packet<i16>) -> bool {
8 p.urgency > 0
9 }

10

11 fn test(p: &mut Packet<i16>) {
12 p.urgency = 0;
13 assert!(!is_urgent(p)); // holds
14 }

Figure 2.8: A pure function with a user-defined generic type as parameter. Note that the pure
function itself is not generic.

1 field enum_0_urgency: Ref
2 field enum_0_payload: Ref
3 field val_int: Int
4

5 predicate u8(self: Ref) {
6 acc(self.val_int) && self.val_int >= 0 && self.val_int <= 255
7 }
8

9 predicate i16(self: Ref) {
10 acc(self.val_int) && self.val_int >= -32768 && self.val_int <= 32767
11 }
12

13 predicate Packet__i16(self: Ref) {
14 acc(self.enum_0_urgency) && u8(self.enum_0_urgency) &&
15 acc(self.enum_0_payload) && i16(self.enum_0_payload)
16 }
17

18 function is_urgent(self: Ref) requires Packet__i16(self) {
19 self.enum_0_urgency.val_int > 0
20 }
21

22 method test(p: Ref) requires Packet__i16(p) {
23 p.enum_0_urgency.val_int := 0
24 assert !is_urgent(p) // holds
25 }

Figure 2.9: Shows a nearly self-contained simplified encoding of the code in Fig. 2.8. As always,
folding and unfolding is omitted for readability.

11

2. Background

2.3.3 References and Lifetimes

Rust guarantees memory safety without garbage collection. In order to
provide such guarantees and allow for flexibility in referencing memory,
a number of core features are necessary; among them borrows and lifetimes.
This section aims to provide a quick introduction in how references that
are passed to a function but cannot be used immediately again, sometimes
called blocked references, are handled and translated from Rust to Viper.

The situation is best explained on an example. Consider Fig. 2.10 that illus-
trates a basic case. Function fn foo has two parameters, both references to
struct Outer. The first parameter reference bears lifetime 'a, the second
parameter reference bears lifetime 'b, and most importantly, the returned
reference also bears lifetime 'b.

1 struct Outer { x: i32, inner: Inner }
2 struct Inner { y: i32 }
3

4 fn foo<'a, 'b>(one: &'a mut Outer, two: &'b mut Outer) -> &'b mut Inner {
5 &mut two.inner
6 }
7

8 fn bar(one: &mut Outer, two: &mut Outer) {
9 let two_inner = foo(one, two);

10 one.x = 42;
11 //two.x = 42; // error: two is "borrowed from" (blocked)
12 two_inner.y = 42;
13 two.x = 42;
14 }

Figure 2.10: Rust snippet showing fn foo that features in its signature references with lifetime
annotations ('a and 'b), and the basic semantics of such references; shown in fn bar. (This
snippet is only valid under the assumption that we have the newer non-lexical-lifetimes feature
of Rust available.)

The significance is the following: The linking of the returned reference with
the second parameter reference, via lifetime, signals to the caller that the
returned reference may alias the reference that is passed as the second argu-
ment (two) or refer to a subobject reachable from it. Therefore, in the calling
context, it must be ensured that the reference that was passed as the sec-
ond argument is blocked (inactive, be inaccessible) while the reference that is
returned is alive. This ensures the core rule in the Rust type system: That
at any time, there cannot exist two active (usable) mutable references to the
same object.

How this works can be illustrated on the call site, with fn bar: We start

12

2.3. Prusti

with two active references one and two (our function parameters) in line 8.
We pass both references to fn foo in line 9 to obtain a third reference, stored
in the local variable two inner. In line 10, reference one is usable (active)
immediately again, because it was not blocked; we use it to set a field in the
structure.

To understand the error in the following line, we need to look at how the
returned reference is used in our function. In line 12, we use it to set a
field in the referred-to structure. Let us assume that we have the new “non-
lexical-lifetimes” feature of Rust available; then this line 12 marks the last
usage of the returned reference two inner. The reference is said to be alive
to line 12; this marks its lifetime.

This has then the following consequences: Via the signature of fn foo, the
lifetime of two inner determines the lifetime of the borrow of two: The
reference two remains borrowed from (or blocked) until line 12, to ensure that
at no point in the execution there exist two (mutable) references that would
allow referring to the place two.inner.

Because two is considered borrowed in line 11, we cannot use it at all, and
therefore this access would cause a compiler error. Assuming that we are
under the “non-lexical-lifetimes” semantics, the reference two inner, and
consequently the borrow on two, expire at end of line 12. Therefore, the use
of two succeeds in line 13, because it is then no longer borrowed.

How borrows are translated to Viper is illustrated in Fig. 2.11, in a much
simplified way. It shows the signature that would correspond to fn foo.
(The encoding shown ignores several details of the real encoding. Among
others, it does not reflect the fact the references themselves are encoded too,
with their own predicates.)

1 method foo(one: Ref, two: Ref) returns (res: Ref)
2 requires
3 Outer(one)
4 && Outer(two)
5 ensures
6 Outer(one)
7 && (Inner(res) --* Outer(two))
8 && Inner(res)

Figure 2.11: Viper snippet that shows a simplified encoding of the signature of fn foo from
Fig. 2.10 on the facing page; the blocking/linking of references is encoded as a magic wand.

The important aspect is the following: The precondition plainly states that
we expect to gain full access to two Outer instances, with the names one and
two. The postcondition states that we return to the caller the full permission
to access one (line 6); this corresponds to the most common usage of refer-

13

2. Background

ences in Rust, where the borrow is alive only during the call, and we regain
access immediately on return.

The returned reference is also encoded as expected: It communicates that we
gain full access to an instance of Inner (line 8). The interesting difference
however is how the second parameter is encoded in the postcondition: The
full permission to use it is returned conditionally, expressed with a magic
wand (line 7).

The magic wand codifies the fact that full access to two (on the wand right-
hand-side) is only possible after we give up access to res (the returned
reference): This encodes rather directly the restriction that the Rust type
system (and the borrow checker) impose on the caller.

How the call site is encoded is not shown. What happens is essentially this:
as the returned reference expires after line 12, Prusti automatically performs
an apply of the magic wand, thereby converting our permission to access
two inner back into the permission to access two, as the rules of the Rust
type system dictate.

Note that fn foo bears explicit lifetime annotations because it has more than
one reference argument; this allows specifying which of the parameters are
linked with the returned reference. If there is only one reference argument
(and one reference returned), the lifetimes can be elided. Nonetheless, the
semantics then are still the same; in particular, all the beforementioned re-
strictions on call-site and effects for the encoding still apply.

14

Chapter 3

Design

This chapter discusses semantics and presents the proposed design and en-
coding to enable support for generics, traits, invariants, and finally typestates.
It does not address the implementation or the results yet; these are discussed
in chapter 4 on page 47.

3.1 Generics
As first step towards reasoning with typestates, we must add support for
generics and type parameters. We aim to enable verification of functions
and methods that are themselves generic, and that we verify definition-side
instead of on instantiation, as generics are type-checked definition-side in
Rust.

This section focuses on the core support, namely type parameters on func-
tions and methods; we do not address traits or trait bounds yet; these are
discussed in section 3.2 on page 19.

3.1.1 Type Parameters
We have seen in section 2.3.1 on page 6 that generic types are encoded via
monomorphization. This works as long as type arguments do not contain type
parameters. In this section, we are going to extend the encoding to support
this particular case.

Consider for example Fig. 3.1 on the following page, where the generic type
struct Packet<T> is used by the function fn increase_urgency<X>, which
is itself generic. As was shown in the background chapter, types are encoded
as-needed; the need here is however to encode type struct Packet where
the type argument for the type parameter T of struct Packet is the type
parameter X of fn increase_urgency. The monomorphization fails because
the type parameter X does not have a defined encoding.

15

3. Design

1 struct Packet<T> {
2 urgency: u8,
3 payload: T,
4 }
5

6 fn increase_urgency<X>(p: &mut Packet<X>) {
7 if p.urgency < 255 {
8 p.urgency += 1
9 }

10 }

Figure 3.1: An example where a generic struct is used generically, that is, with the type argument
for parameter T being a type parameter X in the context of usage.

The proposed solution is simple: type parameters shall be considered a spe-
cial fundamental type, where the encoding of that type is an abstract predicate
typaram. Fig. 3.2 shows the encoding of struct Packet where its type argu-
ment is the type parameter of fn increase_urgency. The abstract predicate
communicates that there may be state behind the field payload, but that
its structure and properties are not known at this location. From a princi-
pal point of view, using a single predicate for any type parameter should
suffice and be helpful to avoid generating redundant monomorphizations,
especially for pure functions, as we shall see in the next section.

1 field enum_0_flags: Ref
2 field enum_0_payload: Ref
3

4 // abstract (bodyless)!
5 predicate typaram(self: Ref)
6

7 // "monomorphized" encoding of Packet<X>
8 predicate Packet__typaram(self: Ref) {
9 acc(self.enum_0_flags) && u8(self.enum_0_flags) &&

10 acc(self.enum_0_payload) && typaram(self.enum_0_payload)
11 }

Figure 3.2: The encoding of the struct shown in Fig. 3.1, illustrating the monomorphization of
generic types, where the type argument of the struct is a type parameter in the context of the
type’s use.

3.1.2 Pure Functions

Pure functions with type parameters need an additional mechanisms for full
support. In the background chapter it was shown that Rust functions and
methods that are marked pure are encoded as Viper functions. Recall that

16

3.1. Generics

the Rust type of a function or method parameter is encoded to Viper as a
precondition with a type predicate, which then allows access to the fields as
defined for the type in question.

If the types of the parameters of pure functions or pure methods contain
type parameters, the respective Viper functions will be encoded using the
type parameter monomorphization shown in the previous section. As long
as such pure functions are used from generic contexts, no problem arises.
When they are used from specialized contexts however, where the type pa-
rameter is substituted with a concrete type, we encounter the issue that the
specialized predicate (for a local variable, for example) does not match the
typaram-predicate that is used by the generic Viper function.

In order to solve this mismatch in a simple but effective way, we propose
to extend monomorphization to pure functions: In the encoding, Viper
functions that correspond to pure functions shall be monomorphized analo-
gously as to how it is performed for types and type predicates. An example
follows.

Consider Fig. 3.3 on the following page that shows the generic pure func-
tion is urgent. It evaluates a field of its argument, but that field does
not depend on the type parameter at all. Because of type monomorphiza-
tion, the functions test1 and test2 will be encoded using Viper predicates
Packet i32 and Packet i64, which are distinct in Viper. The pure function
is urgent itself can be encoded with the typaram-aware monomorphization
introduced before with the predicate Packet typaram, but this would not
be useful: The pure function is used in test1 and test2, where the predi-
cates will be different. To make the encoding work, the predicates need to
agree. The encoding would therefore need to have monomorphized versions
of is urgent. Fig. 3.4 on the next page shows these monomorphized vari-
ants along with the test functions; the encoded Viper functions only differ
in the predicate that is expected in the precondition.

17

3. Design

1 struct Packet<T> {
2 urgency: u8,
3 payload: T,
4 }
5

6 #[pure]
7 fn is_urgent<X>(p: &Packet<X>) -> bool {
8 p.urgency > 0
9 }

10

11 fn test1(p: &mut Packet<i32>) {
12 p.urgency = 0;
13 assert!(!is_urgent(p)); // holds
14 }
15

16 fn test2(p: &mut Packet<i64>) {
17 p.urgency = 42;
18 assert!(is_urgent(p)); // holds
19 }

Figure 3.3: Rust snippet showing fn is_urgent that is both pure and type-parametric
(generic). It is used in two specialized contexts (X == i32 and X == i64). The proposed
encoding is shown in Fig. 3.4, where the pure function is monomorphized.

1 function is_urgent__i32(self: Ref) requires Packet__i32(self) {
2 self.enum_0_urgency.val_int > 0
3 }
4

5 function is_urgent__i64(self: Ref) requires Packet__i64(self) {
6 self.enum_0_urgency.val_int > 0
7 }
8

9 method test1(p: Ref) requires Packet__i32(p) {
10 p.enum_0_urgency.val_int := 0
11 assert !is_urgent__i32(p) // holds
12 }
13

14 method test2(p: Ref) requires Packet__i64(p) {
15 p.enum_0_urgency.val_int := 0
16 assert !is_urgent__i64(p) // holds
17 }

Figure 3.4: Shows the encoding for Fig. 3.3. The pure function is monomorphized to make
Viper predicates agree with the local variable p in both test functions.

18

3.2. Traits

3.2 Traits
We have established basic support for generics in the previous section. Gener-
ics can only be fully useful if we have support for traits and trait bounds,
because this will allow using methods on generic types. In this section, we
look at various missing aspects towards support for traits.

We would like to start with enabling client-side support for trait bounds, so
that generics can be more useful. Fig. 3.5 shows a code snippet that we want
to support. It turns out that to support this, there is no further encoding or
further rules necessary; the existing support for generics is sufficient. The
trait bound is transparent for our design. It is of course relevant in the
realization: The bound lets us find the definition of the function we call in
line 10, which allows us to use the relevant specifications from lines 2–3, in
order to make verification work.

1 trait Rng {
2 #[requires= "low < high"]
3 #[ensures= "low <= result && result < high"]
4 fn gen_range(&mut self, low: usize, high: usize) -> usize;
5 }
6

7 #[requires= "values.len() > 0"]
8 fn pick<R: Rng>(rng: &mut R, values: &[i32]) -> i32 {
9 // asserts that index in range!

10 values[rng.gen_range(0, values.len())]
11 }

Figure 3.5: Rust code snippet showing a simple use of generics with trait bounds. We assume
that there is an implicit assert in line 10 that checks whether the supplied index is within bounds,
which is guaranteed by the postcondition of fn gen_range.

3.2.1 Refinement

Traits are used to specify an interface an implementer must adhere to. It
is desirable to uphold the substitutability principle [11] with respect to the
specifications of the base trait method and the trait method implementation.

In this section, we are going to look at specification refinement. We will look
at reasons for and against supporting it in the context of Rust, then different
ways to support it, and which of these suits the common cases best.

Motivation and Non-Motivation

The motivation for supporting specification refinement for trait methods is
to allow clients that are aware of the implementer (are using the implement-

19

3. Design

ing type) can work with more refined specifications than those clients that
are unaware (coding against the specifications of the (base) trait method).

Consider Fig. 3.6 that shows an example for specification refinement. We
have a trait method fn produce_answer that produces an integer result.
The (base) trait method ensures that the result is within certain loose bounds
(-100 to 100). An implementing type, here struct DeepThought, might want
to provide stronger guarantees, and/or have weaker requirements.

1 trait Answer {
2 #[ensures= "result >= -100 && result <= 100"]
3 fn produce_answer(&self) -> i32;
4 }
5

6 struct DeepThought { /* ... */ }
7 impl Answer for DeepThought {
8 #[ensures= "result == 42"]
9 fn produce_answer(&self) -> i32 { /* ... */ 42 }

10 }
11

12 fn test(dt: &DeepThought) {
13 let answer = dt.produce_answer();
14 // desirable: should hold
15 assert!(answer == 42);
16 }

Figure 3.6: Rust code snippet showing the case of trait method specification refinement.

The desired behaviour is that the assert!(..) in line 15 holds. We can
argue that it is statically known, from the type declarations in fn test, that
the call to fn produce_answer in line 13 dispatches to the implementation
defined in line 9, and hence its specifications should be effective in the call
location.

Consider std::io::Write::write as a more realistic example from the Rust
standard library: The (base) trait method would have the following postcon-
dition (simplified):

1 #[ensures= "result >= 0 && result <= buf.len()"]

This indicates that anything from nothing to everything may be written from
the buffer by a call to fn write. The implementation of this trait method for
std::vec::Vec (the dynamic array type) however can give stronger guaran-
tees, namely

1 #[ensures= "result == buf.len()"]

20

3.2. Traits

because writing to the vector is guaranteed to succeed in full (modulo mem-
ory exhaustion, which is handled by a different mechanism in Rust).

Support for specification refinement is not strictly speaking necessary, to
achieve the desired effect. In Rust, there exists a workaround that can be
built easily: The trait method implementation can dispatch manually (call)
the inherent method implementation that is defined on the implementing
type directly. A client that operates on the implementing type (and not the
trait), will call (and be bound to) the inherent method implementation, be-
cause it shadows the identically named method from the trait. An example
follows.

1 trait Answer {
2 #[ensures= "result >= -100 && result <= 100"]
3 fn produce_answer(&self) -> i32;
4 }
5

6 struct DeepThought { /* ... */ }
7 impl Answer for DeepThought {
8 // assuming: we cannot refine; therefore just dispatch!
9 fn produce_answer(&self) -> i32 { self.produce_answer() }

10 }
11 impl DeepThought {
12 #[ensures= "result == 42"]
13 fn produce_answer(&self) -> i32 { /* ... */ 42 }
14 }
15

16 fn test(dt: &DeepThought) {
17 let answer = dt.produce_answer();
18 // will hold!
19 assert!(answer == 42);
20 }

Figure 3.7: Rust code snippet showing the workaround for when trait method specification
refinement is not available. This is in contrast to Fig. 3.6 on the preceding page.

Consider Fig. 3.7 that shows how the workaround works. We have intro-
duced an identically named function fn produce_answer that is defined on
the implementing type directly in line 13. This so-called inherent (as op-
posed to trait) implementation now bears the actual code. The trait method
implementation only dispatches (calls) the inherent implementation. This
workaround has the same observable effects as the code shown in Fig. 3.6
on the preceding page, namely that the assert in line 19 holds. The main
reason why this works is that both in lines 9 and 17, by Rust lookup rules,
the inherent method shadows the identically named trait method.

21

3. Design

Refinement Designs

For the following discussion of refinement designs, let P and Q be the pre-
and postconditions declared and effective on the (base) trait method, let U
and V be those declared on the trait method implementation, and let X and
Y denote the effective pre- and postconditions of the trait method implemen-
tation. The declared ones are given by user-supplied attributes (annotations),
whereas the effective ones are used for verification (the “contract”).

Note that in order for overriding to be sound (obey behavioral subtyping),
it must hold that

P =⇒ X
Y =⇒ Q

which must be established by construction, or be checked as necessary, de-
pending on the refinement solution chosen. At least the following designs
are possible:

(A) No Refinement The most straightforward design would simply pro-
hibit specification refinement. Trait method implementations would always
inherit the specifications declared on the (base) trait method:

X ≡ P
Y ≡ Q

The advantage is that substitutability does not need to be checked, because
it is trivially given since the specifications of base and implementation are
identical. The main disadvantage is the lack of flexibility; albeit that might
not weigh as heavily, given the arguments made and the workaround pre-
sented above.

(B) No Relation The other straightforward design would be to let the ef-
fective and declared specifications be identical:

X ≡ U
Y ≡ V

The advantage is that this is explicit: Every function and method always
bears the specifications that are effective for it; this helps readability and
understandability. The main disadvantage is that it does not fit well to the
most common use case, namely that the specifications of trait method im-
plementations do not deviate from the ones defined in the trait.

22

3.2. Traits

(C) Selective Replacement The designs (A) and (B) can be combined as
follows: If any precondition is declared on the trait method implementation
(with at least one attribute), then that precondition is effective, otherwise
the precondition of the (base) trait method is effective. The same rule would
apply identically but separately for the postcondition.

If any U declared, X ≡ U, otherwise X ≡ P.
If any V declared, Y ≡ V, otherwise Y ≡ Q.

This has the advantage that the most common use case is respected (where
no specification refinement happens), but the rules still allow refinement
where necessary.

(D) Supplementing Another approach would be to ensure that the effec-
tive specifications are correct by construction. The declared precondition on
the trait method implementation would be combined with the (base) trait
method precondition by disjunction (OR-ed), and postcondition accordingly
by conjunction (AND-ed).

X ≡ P ∨ U
Y ≡ Q ∧ V

The advantage is that these rules make the refinement correct by construc-
tion; it would allow refinement but not require checking for correct behav-
ioral subtyping. The disadvantages are that it may be rarely useful; and that
the disjunction may cause slowdowns in the verification process.

(E) Conditional Precondition Strengthening There are more possibilities.
One is “conditional precondition strengthening”; the pre- and postcondi-
tions declared on the trait method implementation would state that if callers
obey stronger requirements, they gain stronger guarantees:

X ≡ P
Y ≡ Q ∧ (old(U) =⇒ V)

These and similar constructions are interesting, but the main disadvantage
is that these are quite specialized; they may not be useful in general. If in
specific cases such constructions are desired, they can be specified manually,
as long as specification refinement is permitted at all.

Compromise It seems to us that (C) provides a good compromise. We as-
sume that in most cases, a trait method implementation would want inherit
the specifications of the (base) trait method, which is what solution (C) does
by default. But in some cases, refinement would be desirable, and solution
(C) allows for that.

23

3. Design

3.2.2 Substitutability
The previous section discussed reasons and ways in which to support spec-
ification refinement. In this section we take a step back again, and look at
the general case where specifications of the trait method implementation can
differ from the specifications of the base trait method arbitrarily.

We look at how substitutability checks with respect to specifications can be
performed. Special rules and checks that apply for pure functions and pure
methods are discussed in the next section.

Let’s assume that BaseRequires and BaseEnsures denote the pre- and post-
conditions defined on the (base) trait method respectively, while ImplRequires
and ImplEnsures denote the pre- and postconditions defined on the imple-
menting (overriding) method respectively; see Fig. 3.8 for an illustration. As
was mentioned before, to ensure that it is valid to substitute the base with
the implementer, it must hold that

BaseRequires(args) =⇒ ImplRequires(args)
ImplEnsures(args, result) =⇒ BaseEnsures(args, result)

1 trait Trait {
2 #[requires= "BaseRequires(args)"]
3 #[ensures= "BaseEnsures(args, result)"]
4 fn method(/* args */) -> /* result */ ;
5 }
6

7 struct Impl {}
8 impl Trait for Impl {
9 #[requires= "ImplRequires(args)"]

10 #[ensures= "ImplEnsures(args, result)"]
11 fn method(/* args */) -> /* result */ { /* code */ }
12 }

Figure 3.8: Snippet of Rust code showing the basic case for implementing (or overriding) a
trait method. The pseudo-functions BaseRequires, BaseEnsures, ImplRequires, ImplEnsures are
meant as placeholders for the actual expressions.

If these implications were encoded as such, they would bear the limitation
that the expressions must not contain Viper permissions or predicates; a
Viper restriction. Since in Prusti parameters and returns are encoded with
predicates though, it is desirable to perform these checks in a way that al-
lows left-hand-side and right-hand-side of the implications to contain pred-
icates.

The necessary checks can be performed with the (hereby dubbed) “envelope
technique“; see Fig. 3.9 on the next page for an illustration. The technique

24

3.2. Traits

entails the following: For each trait method implementation that does not
trivially conform to the base trait method specification (because it simply
inherited them, for example), two methods are generated in the encoding.

1 method Trait__method__Impl(/* args */) returns (/* result */)
2 requires ImplRequires(args)
3 ensures ImplEnsures(args, result)
4 // bodyless
5

6 method Trait__method__Impl_(/* args */) returns (/* result */)
7 requires BaseRequires(args)
8 ensures BaseEnsures(args, result)
9 {

10 // substitutability check
11 result := Trait__method__Impl(args)
12 }

Figure 3.9: The “envelope method” technique, where the refined specifications are checked to
conform to the base method specifications. Note that this is pseudo-Viper code; especially the
result value would need proper treatment, syntactically.

The first generated method bears the specifications of the trait method im-
plementation (the override). It can be bodyless; its purpose is to serve the
substitutability check. The second generated method bears the specifications
of the base trait method base, and its body calls the first generated method,
passing arguments, and handling the returned value accordingly.

This is not the only way to check for these implications; but this way is
intuitive: It effectively models dynamic dispatch, calling the implementation
(override) from the base method.

3.2.3 Pure Functions

Recall that marking a function or method as pure has two effects: It asserts
that the function is deterministic and side-effect-free, and it exposes the
definition (the body) of the function or method to the caller to reason with.

The first property is easily dealt with: For a trait function or method, being
pure must put the same restrictions on the implementer. In other words,
if the (base) trait function or method is marked pure, then, as a rule, the
implementing (overriding) function or method must be marked pure, too.

The second property is not so obvious to handle; there are some design de-
icisions to be made. There are two cases to be discussed: Functions and
methods without a body, henceforth called “required methods”, and those
with a body (a default implementation), henceforth called “provided meth-

25

3. Design

ods”; see Fig. 3.10 for a commonly used example from the Rust standard
library.

1 trait PartialEq {
2 // required method
3 fn eq(&self, other: &Self) -> bool;
4

5 // provided method
6 fn ne(&self, other: &Self) -> bool
7 { !self.eq(other) }
8 }

Figure 3.10: Simplified version of the PartialEq trait from the Rust standard library.

For required methods, the usual semantics of pure cannot apply, since there
is no body to be exposed that clients then could use to reason with. A
solution could be to encode these functions as abstract (bodyless) functions
in Viper; so that they can still be used in specifications, albeit only to the
extent user-provided specifications provide explicit meaning to them. (The
next section will explain this further.)

For provided methods, the usual semantics of pure can apply, but it is not
immediately clear that they should: provided methods can be overridden;
if the body of the provided method is exposed, it determines the final be-
haviour of this method, without allowing implementers to change. In other
words, since clients of the provided method use the body (the definition),
they must be able to trust that the given method, even when overridden,
obeys the base method definition. Marking provided methods as pure then
effectively ‘locks’ the definition for implementers.

The Rust standard library uses provided methods abundandtly, and in many
cases the definition does restrict the implementer. One well-known exam-
ple is PartialEq::ne (see Fig. 3.10), where the interface documentation of
trait PartialEq [6] explicitly requires implementers of PartialEq::ne to
obey the semantics shown in the default implementation, namely that it is
the strict logical negation of PartialEq::eq.

We believe that cases where the default implementation should be usable for
clients is more common. We also believe that having a simple and uniform
semantics for the #[pure] attribute is better for usability and understand-
ability.

We therefore make the following conclusions and design decisions: Trait
functions and methods that are marked pure have the same semantics as
non-trait functions and methods marked so. Concretely it means that these
functions are always encoded as Viper functions with a body, that is, the

26

3.2. Traits

definition of the pure function or pure method is exposed.

Consequently, we want to impose the following restriction: Since pure should
always imply that the body is available for reasoning, “required methods”
cannot be marked pure, as they do not have a body. (The next section will
provide an alternative.)

Last, we must enforce that implementers (overriders) of pure functions and
pure methods do not deviate from the definition in the trait. In addition to the
substitutability checks that are performed for all trait functions and meth-
ods, we must check that the override has the same observable behaviour.

Fig. 3.11 sketches how such checking can be encoded. Here we assume that
we are looking at trait PartialEq, where the implementer has overridden
fn ne to use three negations instead of one. This is not a very useful exam-
ple, but it shall demonstrate the principle. Lines 3–5 encode the (authorita-
tive) base implementation, lines 7–9 encode the to-be-checked override; lines
11–13 encode the check that these two implementations yield the same re-
sult. Of course, both implementations use the same definition of function eq,
as there is only ever one definition active.

1 function eq(self: Ref, other: Ref): Bool
2

3 function ne__base(self: Ref, other: Ref): Bool {
4 !eq(self, other)
5 }
6

7 function ne__impl(self: Ref, other: Ref): Bool {
8 !!!eq(self, other)
9 }

10

11 method test(self: Ref, other: Ref) {
12 assert ne__base(self, other) == ne__impl(self, other)
13 }

Figure 3.11: A self-contained Viper snippet that attempts to provide a sketch of how substi-
tutability checking for pure functions can be encoded.

3.2.4 Abstract Pure
We have established in the previous section that #[pure] should always
have the same effect: among others, the function or method so marked
should have its definition (the body) exposed to clients and usable for rea-
soning. We have imposed the restriction that #[pure] therefore cannot be
used for functions or methods that do not have a body (sometimes called
“required methods” in traits).

27

3. Design

Recall that marking functions or methods pure has two main effects: (1) it
marks the function as deterministic and side-effect-free (meaning it is en-
coded as Viper function and can be used in specifications), and (2) it enables
clients to reason with the body, by encoding the Rust function body as the
Viper function body.

There are cases where only effect (1) is desired, but effect (2) is not. We
therefore propose the new attribute #[abstract_pure] , a weaker variant of
#[pure] that differs only in that the function or method definition (its body)
is not exposed. Functions and methods marked abstract pure are encoded to
abstract (bodyless) Viper functions.

The first use case for #[abstract_pure] are trait methods that should be
pure but have no default implementation. Albeit one could use #[pure]
in such cases, and have it automatically be encoded abstractly if there is no
body, we have decided against these semantics for uniformity and under-
standability (see previous section).

For example, consider Fig. 3.12 where trait PartialEq is now fully anno-
tated. Note that fn ne could be annotated as abstract pure, but this would
change semantics: It would then not expose to clients that fn ne is the strict
negation of fn eq.

1 trait PartialEq {
2 #[abstract_pure]
3 fn eq(&self, other: &Self) -> bool;
4

5 #[pure]
6 fn ne(&self, other: &Self) -> bool
7 { !self.eq(other) }
8 }

Figure 3.12: Simplified version of the PartialEq trait from the Rust standard library, with the
recommended usage of annotations.

The second, and rarer, use case for #[abstract_pure] are (pure) trait meth-
ods that do have a default implementation, but that should not expose that
default implementation for reasoning to clients, nor restrict overriders to
that definition. See Fig. 3.13 on the facing page for an example taken
from the Rust standard library. One of the “provided methods” of a stan-
dard library iterator is fn size_hint whose purpose is to give an estimate
(lower/upper bounds) of how many elements the iterator is still going to
yield. The default implementation is simply the least specific estimate (maxi-
mally loose bounds); clearly, implementers want to change that definition.

28

3.3. Invariants

1 trait Iterator {
2 /* ... */
3 #[abstract_pure]
4 fn size_hint(&self) -> (usize, Option<usize>)
5 { (0, None) }
6 /* ... */
7 }

Figure 3.13: An excerpt from trait Iterator from the Rust standard library. Since we may
want to use fn size_hint in specifications, it should be pure. Because the default implemen-
tation however is not an authoritative definition and will be overridden, we annotate as abstract
pure.

3.3 Invariants

In this section, we will explain how support for invariants of Rust structs and
enums can be added. For simplicity, we assume that visibility and privacy are
no concern; it is assumed that all types and fields are accessible from all
functions, methods and specifications (all types and fields are public).

3.3.1 Basic Support

The concept of type invariants, or class invariants [12], is well known within
the field of computer science. They specify assertions that are meant to
hold for all instances of a particular type, across functions and methods.
They encode truths and basic assumptions that are thought to hold “always”
about every instance of the type.

We would like to use the attribute #[invariant] to let users specify in-
variants for user-defined types (structs and enums). (This attribute already
exists in Prusti, for loop invariants, which are otherwise orthogonal to this
thesis; using the same attribute for struct and enum invariants does not
pose a conflict.) Users may use multiple such annotations; their expressions
will be logically conjoined.

We propose that as part of the invariant expression, the instance of the struct
or enum can be referred to with the self keyword. Since in Rust, methods
always use self to refer to the instance, this will be what Rust programmers
expect and understand.

Invariant expressions may refer to self, pure functions and pure methods.
Any memory location reachable through self and field access may be men-
tioned.

Examples for invariants can be seen in Fig. 3.14 on the next page for structs,
and in Fig. 3.18 on page 33 for an enum. Enums are discussed in more

29

3. Design

detail in the next section, where we propose syntactic sugar for expressing
invariants for enum variants.

1 #[invariant= "self.left < self.right"]
2 #[invariant= "self.top < self.bottom"]
3 struct Rectangle {
4 left: i32,
5 right: i32,
6 top: i32,
7 bottom: i32,
8 }
9

10 // "tuple struct"
11 #[invariant= "self.0 <= self.1"]
12 struct Range(usize, usize);

Figure 3.14: Example snippet showing invariants for the types struct Rectangle and
struct Range. Most structs are regular structs that use fields like Rectangle, whereas sim-
pler structs like Range are often created as tuple structs where the elements are referred to with
field access syntax, but with an index starting from zero instead of field names.

Invariants shall be encoded as Viper functions. For generic structs and
enums, they are instantiated (monomorphized) as needed; the mechanism
was shown in the background chapter (section 2.3.1 on page 6) and ex-
plained again for generics (section 3.1.2 on page 16).

The body of the Viper functions that represent invariants for structs are con-
structed as follows: It is the logical conjunction of the user-supplied invari-
ant expressions (the assertions supplied with one or more #[invariant]
annotations), and the invariant function of every field of the struct.

Invariants are assumed and checked, by default, at call boundaries. In par-
ticular, invariants are assumed for function arguments, and checked for re-
turn values and function arguments that were passed by mutable reference.
This works as long as no reference argument is blocked; this case will be
discussed in section 3.3.4 on page 35.

We propose to introduce the valid(place) syntactical construct to indicate that
the invariant of place (a variable, the return value, or any field expression
thereof) holds. Since invariants are assumed and asserted by default, using
this construct is normally not necessary. Fig. 3.15 on the facing page illus-
trates, by explicitly asserting valid(place) (redundantly), how the user can
think of how invariants relate to pre- and postconditions. Fig. 3.16 on the
next page shows the corresponding much simplified encoding of the method
signature.

Implicitly breaking invariants (will be illustrated with an example shortly)

30

3.3. Invariants

1 impl SomeType {
2 // these valid(...) expressions are redundant here!
3 #[requires= "valid(self) && valid(arg)"]
4 #[ensures= "valid(self) && valid(arg) && valid(result)"]
5 fn some_method(&mut self, arg: &mut OtherType) -> ThirdType {
6 /* ... */
7 }
8 }

Figure 3.15: Rust snippet that illustrates with the valid(place) construct, which asserts that the
invariant of place holds, how invariants relate to pre- and postconditions (because the equivalent
of these valid(place) expressions are inserted automatically by default).

1 method SomeType__some_method(self: Ref, arg: Ref) returns (res: Ref)
2 requires SomeType(self) && SomeType__valid(self)
3 requires OtherType(arg) && OtherType__valid(arg)
4 ensures SomeType(self) && SomeType__valid(self)
5 ensures OtherType(arg) && OtherType__valid(arg)
6 ensures ThirdType(res) && ThirdType__valid(res)
7 { /* ... */ }

Figure 3.16: Shows a much simplified encoding of Fig. 3.15.

should work without specialized support. The Rust type system enforces
the shared exclusive-or mutable rule. This means in particular the following:
While a function or method holds exclusive access to an instance, it is guar-
anteed by the type system that no other function or method (concurrently
or recursively) can even read that instance. Conversely, while a function or
method holds non-mutable (shared, read-only) access to an instance, it is
guaranteed by the type system that no other function or method can mutate
that instance.

1 #[invariant= "self.even % 2 == 0"]
2 struct Deep { even: i32, /* many other fields, deep structure */ }
3

4 fn test(one: &mut Deep, two: &mut Deep) {
5 one.even += 1;
6 // calling anything on 'two' is okay here (not on 'one' though)
7 one.even += 1;
8 }

Figure 3.17: Rust snippet that illustrates the meaning of implicitly breaking invariants, and how
the strict rules of the Rust type system are helpful here.

What is meant by implictly breaking invariants is illustrated with Fig. 3.17.
We have struct Deep, with one field that is meant to be always even, as

31

3. Design

expressed with the invariant. This struct may have arbitrary fields in addi-
tion. In fn test, we implicitly (without annotation) break the invariant on
the argument one in line 5. While the invariant of one is broken in line 6, we
are free to soundly call any function on two, that is, we can pass two to func-
tions that require the invariants of all observable instances (objects) to hold.
We restore the invariant of one in line 7, and can be sure that the invariants
of both one and two hold in the end, as required.

The above works, because the Rust type system enforces the rule that two
active (usable) mutable references do not alias; and furthermore, that neither
points to a subobject of the other. In this case it guarantees that one and
two refer to completely distinct trees of objects; using one cannot interfere
with the other. As long as we do not pass one to another function, we can
therefore be sure that its broken invariant cannot be observed anywhere,
recursively or concurrently.

3.3.2 Enum Variants
The standard Rust way to write expressions that involve enums is with the
Rust-native construct called the match expression; see Fig. 3.18 for an example.
The consequence is that for enums, one would normally have to write a
single invariant annotation that contains one match expression that specifies
the assertions for all enum variants. This is what is naturally supported
by Rust, but that might get unwieldy for enums with a large number of
variants.

It is a fact that the different ways in which an enum variant can be expressed
(Fig. 3.18) are analogous to the different ways in which a struct can be ex-
pressed (Fig. 3.14 on page 30). Note that the enumeration contains variants
Message::Range and Message::Rectangle that are identical in structure to
struct Range and struct Rectangle, respectively.

Therefore, it might be desirable to allow users to annotate enum variants in
the way they would be annotated if they were structs; Fig. 3.19 illustrates the
idea. The advantages are clear: increased readability and maintainability.

There are issues with this proposal however: Referring to the variant “in-
stance” with self, as if the variant was a type, may be surprising to the Rust
programmer, because Rust currently does not allow this natively. Rust sup-
ports binding patterns to identifiers with the identifier @ pattern syn-
tax [3]. This syntax does not help however: If applied to an enum variant,
the bound identifier still refers to the enum instance, not the variant.

The other issue is that it might introduce an ambiguity: it lets Rust program-
mers use syntax that isn’t available in the language in this form. Concretely,
since the invariant defined on the enum variant can on the one hand re-
fer to fields of the variant (like self.left), but on the other hand also use

32

3.3. Invariants

1 #[invariant= "match self {
2 Message::None => true,
3 Message::Range(a, b) => a <= b,
4 Message::Rectangle { left, right, top, bottom }
5 => left < right && top < bottom,
6 }"]
7 enum Message {
8 None,
9 Range(usize, usize),

10 // "struct-like enum variant"
11 Rectangle { left: i32, right: i32, top: i32, bottom: i32 },
12 }

Figure 3.18: Example snippet showing an invariant for type enum Message. The enumeration
has three variants, None, Range, and Rectangle. These are the three ways (syntaxes) available
to declare enum variants; without fields, with unnamed fields (tuple-like), or with named fields
(struct-like).

1 enum Message {
2 None,
3 #[invariant= "self.0 <= self.1"]
4 Range(usize, usize),
5 #[invariant= "self.left < self.right"]
6 #[invariant= "self.top < self.bottom"]
7 Rectangle { left: i32, right: i32, top: i32, bottom: i32 },
8 }

Figure 3.19: An enum where the enum variants are annotated with invariants, instead of the
entire enum with a match expression. Compare with Fig. 3.18 and Fig. 3.14 on page 30.

pure methods defined on the enum (like self.area()), there is the corner
case of having fields that are callable, where an ambuigity between calling
the field, and using regular methods would appear because of the syntactic
sugar we have added. Luckily, Rust syntax strictly distinguishes between
method calls and field calls; Fig. 3.20 on the following page illustrates this.

3.3.3 Inhibition
Once type invariants are automatically assumed and asserted at function
boundaries, there must exist the possibility to inhibit this automatic assum-
ing and asserting selectively. Operations on data structures often need to
break an invariant temporarily. Such operations may be split across multi-
ple functions and methods for readability and maintainability. Naturally, at
the boundaries of these (internal) methods, the type invariant may not hold.

Some proposals [14] use a function-style broken(obj) construct as part of pre-
or postcondition to indicate that the invariant of obj may not hold, in the pre-

33

3. Design

1 struct Test {
2 f: fn() -> i32,
3 }
4

5 impl Test {
6 #[pure]
7 fn m(&self) -> i32 { /* ... */ }
8

9 fn test(&mut self) {
10 // correct
11 let a = (self.f)();
12 let b = self.m();
13 // invalid syntax
14 let c = self.f(); // error: no method 'f'
15 let d = (self.m)(); // error: no field 'm'
16 }
17 }

Figure 3.20: Snippet that illustrates Rust syntax for calling fields versus calling methods: Call-
ing a field (that, for example, stores a function pointer) requires parentheses around the field
expression (line 11); omitting the parentheses (line 14) is an error. Conversely, calling a method
does not use parentheses (line 12); using parentheses is an error (line 15).

or postcondition, respectively. Since Prusti uses the attributes #[requires]
and #[ensures] for specifying pre- and postconditions, this might be con-
fusing however: Fig. 3.21 illustrates the situation where broken(obj) syntax
within the pre- and postcondition could be so interpreted that these func-
tions require or ensure the invariant to be broken, which is not the intended
meaning.

1 #[requires= "broken(self)"]
2 fn fixes_the_invariant(&mut self) { /* ... */ }
3

4 #[ensures= "broken(self)"]
5 fn can_break_the_invariant(&mut self) { /* ... */ }

Figure 3.21: How using the broken(obj) construct would look like. This is not what we propose.
One issue is that this construction, in the context of Rust and Prusti, may be confusing, because
we do not strictly speaking require or ensure that the invariants on self do not hold; that would
be meaningless.

In addition, it is not clear how a broken(obj) construct would be handled
and encoded. The problem is that broken(obj) does not correspond to any
expression in that location; instead, it marks the absence of the automatically
conjoined valid(place) constructs that represent the invariants of the places

34

3.3. Invariants

mentioned.

For the above reasons, we instead propose a new attribute #[broken] that
lists place expressions (limited to parameter names and result for the return
value) for which the invariant is not assumed/asserted to hold. This combines
well with the already introduced valid(place) construct that can be used to
refer to an invariant. Fig. 3.22 illustrates the proposed syntax (compare with
Fig. 3.21 on the preceding page).

1 #[broken= "self"]
2 #[ensures= "valid(self)"]
3 fn fixes_the_invariant(&mut self) { /* ... */ }
4

5 #[broken= "self"]
6 #[requires= "valid(self)"]
7 fn breaks_the_invariant(&mut self) { /* ... */ }

Figure 3.22: The proposed broken attribute, together with the earlier introduced valid(place)
syntax to refer to invariants.

Specifying that invariants do not hold is mostly useful as an internal mech-
anism between priviledged functions and methods for implementing oper-
ations on types. One common case that was already mentioned is where
operations are split across multiple helper functions or helper methods. See
Fig. 3.23 on the following page for an example.

3.3.4 Assert On Expiry

Recall that invariants are expected to hold at function and method bound-
aries. It was shown how this is realized if the capability to access arguments
is immediately returned to the caller. We have a special situation in Rust,
where a reference that was passed to a function cannot be used immediately
on return (is blocked). We would like to discuss this situation in particular
with respect to invariants. (The necessary background was introcuded in
section 2.3.3, and is explained well in further detail in [8].)

Compare the Rust snippet shown in Fig. 3.24 on page 37, and the illus-
trative encoding of the function signatures in Fig. 3.25 on page 37. We
have struct Range with a simple invariant defined. As was shown before,
to enforce that invariants hold at call boundaries (unless suppressed with
#[broken]), we conjoin Viper function applications that correspond to the
respective types’ invariants.

The case for fn advance is straightforward, as was introduced earlier: To-
gether with the predicates we consider the invariants (as Viper function

35

3. Design

1 #[invariant= "self.beg <= self.end"]
2 struct Range {
3 beg: usize,
4 end: usize,
5 }
6

7 impl Range {
8 pub fn set_beg(&mut self, beg: usize) {
9 self.beg = beg;

10 // here, the invariant is broken, but fix_end() can be called
11 // with a broken invariant, and promises to fix it
12 self.fix_end();
13 // here we have valid(self)
14 }
15

16 #[broken= "self"]
17 #[ensures= "valid(self)"]
18 fn fix_end(&mut self) {
19 if self.end < self.beg {
20 self.end = self.beg
21 }
22 }
23 }

Figure 3.23: Snippet illustrating the use of the newly introduced broken attribute and the valid
construct.

applications) of the respective types to be part of pre- and postconditions
(Fig. 3.25 on the next page, lines 5–7).

We would like to extend the applicability of the same principle, namely that
invariants hold at call boundaries, and that this is verified modularly. The
case that is not handled yet is fn end_mut which simply returns a reference
to the field end of the struct Range instance passed. (This may seem like
an artificial example; it is a very common Rust idiom however, for many
reasons. Among others, accessing elements of data structures often follows
this pattern, albeit usually hidden behind syntactic sugar like index access
to vectors, for example.)

Recall that the Rust type system (the borrow checker) enforces that there can
never exist two active references that (directly or indirectly via field accesses)
allow manipulating the same memory location. In order to enforce this
rule, at the call site of fn end_mut, the reference that was passed to the
parameter arg is blocked (unusable, “borrowed from”), until the returned
reference expires (is no longer used).

36

3.3. Invariants

1 #[invariant= "self.beg <= self.end"]
2 struct Range {
3 beg: usize,
4 end: usize,
5 }
6

7 fn advance(arg: &mut Range) {
8 if arg.beg < arg.end {
9 arg.beg += 1

10 }
11 }
12

13 fn end_mut(arg: &mut Range) -> &mut usize {
14 &mut arg.end
15 }

Figure 3.24: Rust snippet that contrasts the case of fn advance, where the passed reference
is not blocked (usable by the caller immediately after the call), and fn end_mut, where the
passed reference is blocked until the returned reference expires. Note that fn end_mut should
not verify, as it leaks representation that allows clients to break the invariant of arg.

1 function Range__valid(self: Ref)
2 requires Range(self)
3 { /* ... */ }
4

5 method advance(arg: Ref)
6 requires Range(arg) && Range__valid(arg)
7 ensures Range(arg) && Range__valid(arg)
8

9 method end_mut(arg: Ref) returns (res: Ref)
10 requires Range(arg) && Range__valid(arg)
11 ensures usize(res)
12 ensures (usize(res) && /* ??? */)
13 --* (Range(arg) && Range__valid(arg))

Figure 3.25: The encoding that corresponds to Fig. 3.24; showing the signatures of the two
functions (simplified).

(As a side note, the linking of the lifetimes of returned references to ref-
erences passed as arguments usually requires lifetime annotations; in simple
cases like here, these annotations can be elided, but the semantics are the
same.)

As was shown in the background chapter (section 2.3.3 on page 12), Prusti
expresses the blocking of the passed reference in the encoding as a magic
wand, see Fig. 3.25, lines 12–13. The magic wand roughly means the fol-

37

3. Design

lowing, from the caller’s perspective: Exhaling the magic wand left hand
side (giving up permissions and asserting the conditions), allows inhaling
the magic wand right hand side (regaining permissions and assuming the
conditions).

Prusti automatically does an apply of the magic wand in the calling con-
text (which roughly has the effect of exhaling the left hand side and inhal-
ing the right hand side), in the moment the returned reference expires. In
that moment, the calling context regains access to the full instance of the
struct Range that was passed as an argument.

Our principle that invariants hold at call boundaries, now extends to this
scenario naturally as follows: Upon regaining access to the struct Range
instance, the invariant of that instance must hold. We express this in the
encoding by conjoining the invariant (as a Viper function application) right
next to the Range predicate that expresses access to the instance (line 13 in
Fig. 3.25 on the preceding page) on the right hand side of the magic wand.

To sum up, lines 12–13 now read as follows to the caller: By giving up
access to res (the returned reference), we regain access to arg (the passed
reference), with the referenced struct Range instance in valid state (the in-
variant holding).

The verifier however now correctly refuses to verify fn end_mut itself: The
postcondition may not hold. The cause is that the function makes a bogus
guarantee in its postcondition; it cannot in fact guarantee that the invariant
of arg holds upon expiry of the returned reference. And the reason is clear:
We allow the client to mutate the state of that instance (via the returned
reference to a field) in ways that may cause breakage of the invariant. The
verifier catches this.

What is missing is appropriate restriction of how the returned reference can
be used – or rather, in what state it is allowed to expire. When the returned
reference expires, its target (ultimately, the field arg.end) must relate to the
field arg.beg as required by the invariant, for the invariant not to be broken.

In order to allow fn end_mut to express this restriction, we propose the con-
struct assert on expiry<ref >(obligation[, consequence]). The ref parameter
can be used to specify which reference expires. This defaults to result (the
returned reference, if the return type is a single reference). The angle brack-
ets can then be omitted. The obligation is an expression that evaluates to a
truth value; it is the condition, or the restriction we impose on the caller. This
condition is asserted to hold on expiry of ref (right before expiry of ref). (The
optional parameter consequence allows to relate the state before and after
expiry; its purpose is explained later in the section.)

The assert on expiry construct is valid only as part of the postcondition.
We encode the construct by conjoining the obligation to the left hand side of the

38

3.3. Invariants

magic wand; the place indicated with question marks on line 12 in Fig. 3.25
on page 37. With this construct, fn end_mut can safely leak representation
of its argument, and have the correctness verified modularly. The resulting
snippets can be seen in Fig. 3.26 and Fig. 3.27.

1 #[invariant= "self.beg <= self.end"]
2 struct Range { beg: usize, end: usize }
3

4 #[ensures= "assert_on_expiry(old(arg.beg) <= *result)"]
5 fn end_mut(arg: &mut Range) -> &mut usize {
6 &mut arg.end
7 }

Figure 3.26: Rust snippet where fn end_mut was enhanced with the newly introduced
assert on expiry construct. It puts an obligation on the caller the ensure that upon expiry
of the returned reference the given condition holds. (Note that with these specifications, we
actually require the caller to establish the condition, by writing to *result; the caller cannot
rely on the condition holding without writing to *result, because fn end_mut does not ensure
so by postcondition.)

1 method end_mut(arg: Ref) returns (res: Ref)
2 requires Range(arg) && Range__valid(arg)
3 ensures usize(res)
4 ensures (usize(res) && old(arg.beg.value) <= res.value
5 --* (Range(arg) && Range__valid(arg))

Figure 3.27: The encoding that corresponds to Fig. 3.26, where the obligation of the
assert on expiry construct was added to the left hand side of the magic wand in line 4. Note
that the encoding is simplified, in particular the field accesses and the omitted but necessary
unfolding.

The terms (assert on expiry, and obligation) were chosen because of the
effective semantics of the construct. Because Prusti applies the magic wand
when the returned reference expires, it then effectively asserts the obligation.
Hence the caller cannot chose to ignore this obligation; from the caller’s
perspective, the called function or method ensures that the obligation will be
asserted on expiry. Despite being part of the postcondition, it effectively is a
requirement on the caller.

It is worth noting that assert on expiry does not require the user (the au-
thor of the function or method) to expose the (full) invariant of the argu-
ments. Firstly, the obligation only needs to mention the part that is relevant;
Fig. 3.28 on the following page illustrates this. Secondly, it not necessary
to exactly replicate the relevant parts of the invariant. Clearly, it is only re-
quired that the obligation is restrictive enough; the author of the function or
method can impose stronger restrictions than the invariant would require.

39

3. Design

1 #[invariant= "self.m2 % 2 == 0"]
2 #[invariant= "self.m3 % 3 == 0"]
3 #[invariant= "self.m5 % 5 == 0"]
4 struct Example { m2: usize, m3: usize, m5: usize }
5

6 #[ensures= "*result == old(arg.m3)"]
7 #[ensures= "assert_on_expiry(*result % 3 == 0)"]
8 fn m3_mut(arg: &mut Example) -> &mut usize
9 &mut arg.m3

10 }

Figure 3.28: Another example for assert on expiry that illustrates the following aspect of this
construct: It allows leaking representation of a type with invariants safely, and it is not necessary
to expose the full invariant.

Lastly, the optional parameter consequence of assert on expiry enables us
to relate the state before and after expiry. The consequence will be treated as-
if it had been specified as the argument to the already existing after expiry
construct [8].

3.4 Typestates
So far we have discussed generics, traits and invariants. They are prerequi-
sites for adding support for typestates. In this section, we will first discuss
support for generics-based typestates, where states are represented with
type arguments, and then discuss support for specification-only typestates,
where reasoning with states happens on the verification layer only.

3.4.1 Generics-based

We use generics-based typestates to refer to the idiom that uses generics (type
parameters and type arguments) to encode the state of a type. One common
example would be struct Socket<S> where the purpose of type parameter
S is to signal the (underlying) state of the socket. For that parameter, the
type arguments Listening, Bound, Connected and so forth can be supplied.
These type arguments would usually be unit structs (structs with no fields),
whose purpose is merely to serve as state indicators.

For a type like struct Socket<S>, we want to be able to express the invari-
ants dependent on S. Consider Fig. 3.29 on the next page. In this example,
the use case might be as follows: If S is Closed, the associated file descriptor
field S shall be -1. In all other cases, it shall be >= 3, to indicate a valid
file descriptor. Of course, this is a simple example; more complex and use-
ful cases would involve other states and richer fields that encode addresses,
cache information and so forth.

40

3.4. Typestates

1 struct Closed;
2 struct Bound;
3 struct Listening;
4 // ... more states
5

6 struct Socket<S> {
7 // file descriptor
8 // if S == Closed: fd == -1
9 // if S != Closed: fd >= 3

10 fd: i32,
11 // more fields ...
12 }

Figure 3.29: Motivating example for generics-based typestates, where the invariants are different
depending on the argument to the type parameter S.

In order to allow users to express these kinds of invariants, we propose an
extension to the specification grammar. The extension is a new kind of im-
plication, written as --> (dash dash angle-bracket), whose right hand side is
any assertion, and whose left hand side is a newly introduced type condition.
Type conditions are simple grammars themselves. They can use conjunc-
tions, disjunctions, and most importantly relations (equality or inequality)
of elementary type expressions. Type expressions will be parsed with the Rust
parser, and should allow specifying types in the same way they can be ex-
pressed in the Rust program. Fig. 3.30 shows an overview of the proposed
grammar.

1 typestate implication = type condition, "-->", assertion;
2 type condition = tc disjunction;
3 tc disjunction = tc conjunction, { "||", tc conjunction };
4 tc conjunction = tc atom, { "&&", tc atom };
5 tc atom = tc relation | "(", tc disjunction, ")";
6 tc relation = type expression, ("==" | "!="), type expression;
7 type expression = ? type expression parsed via rust compiler ?;
8 assertion = ? generic assertion as supported in Prusti ?;

Figure 3.30: Proposed grammar (EBNF) for typestate implications that would become part of
the specification grammar (in the same priority as regular implications).

Elementary type expressions are parsed with the Rust parser as Rust types.
The encoding of type conditions into Viper expressions is straightforward;
all syntactical elements are encoded to the corresponding Viper constructs.
Only the encoding of type expressions needs to be defined.

Type expressions will be encoded as a function application of a Viper func-

41

3. Design

tion that represents the specified Rust type. This type tag function will have
the return type Int. The integer value represents the Rust type. Distinct Rust
types must be represented by distinct integer values.

Depending on the type represented, we choose the following construction
for the type tag functions: If the type is a type parameter, the corresponding
type tag function is bodyless. This expresses that a type parameter represents
some unknown type. If the type does not contain a type parameter, the body
of the type tag function shall be a unique integer that is distinct for distinct
Rust types. (Complex types where type arguments are themselves type
parameters are not supported.)

The Rust compiler provides a convenient datum for representing a type with
a unique integer: In the Rust compiler, types are interned; each distinct type
is represented with a unique type object in memory. Whether two types are
equal is therefore determined by whether their representations in the Rust
compiler have the same memory address; this memory address can serve as
the unique integer required for the encoding.

How the typestate-aware specification looks like is shown in Fig. 3.31; the
illustration of the corresponding encoding is shown in Fig. 3.32.

1 struct Closed; struct Bound; struct Listening; // ... more states
2

3 #[invariant= "S == Closed --> fd == -1"]
4 #[invariant= "S != Closed --> fd >= 3"]
5 struct Socket<S> {
6 fd: i32,
7 }
8

9 fn generic<S>(sock: &mut Socket<S>) { /* ... */ }
10 fn specific(sock: &mut Socket<Bound>) { /* ... */ }

Figure 3.31: Simple example with typestates. The invariants use the newly introduced typestate
implications, where the left hand side is a type condition. Effectively, this specifies different
invariants based on the type argument (Closed or something else) for the type parameter S. The
two functions serve to illustrate how the monomorphization in the encoding works; see Fig. 3.32
on the next page.

3.4.2 Specification-Only Typestates
This section sketches the design for specification-only typestates, where states
are not encoded with Rust types, but only used in specifications (the “veri-
fication layer”). Note that we only define the desired semantics, but not the
intended realization (the encoding) in detail.

The main motivation for supporting specification-only typestates is back-

42

3.4. Typestates

1 // type tag for type parameter S (abstract/bodyless!)
2 function typaram_S__tag(): Int
3

4 // type tag for struct Closed (with arbitrary unique integer)
5 function Closed__tag(): Int { 123 }
6

7 // type tag for struct Bound (with arbitrary unique integer)
8 function Bound__tag(): Int { 456 }
9

10 // generic socket invariant
11 function Socket__typaram__invariant(self: Ref)
12 requires Socket__typaram(self)
13 {
14 (typaram_S__tag() == Closed__tag() ==> self.fd == -1) &&
15 (typaram_S__tag() != Closed__tag() ==> self.fd >= 3)
16 }
17

18 // monomorphized socket invariant (S == Bound)
19 function Socket__Bound__invariant(self: Ref)
20 requires Socket__Bound(self)
21 {
22 (Bound__tag() == Closed__tag() ==> self.fd == -1) &&
23 (Bound__tag() != Closed__tag() ==> self.fd >= 3)
24 }
25

26 method generic(self: Ref)
27 requires Socket__typaram(self) && Socket__typaram__invariant(self)
28 ensures Socket__typaram(self) && Socket__typaram__invariant(self)
29 // ...
30

31 method specific(self: Ref)
32 requires Socket__Bound(self) && Socket__Bound__invariant(self)
33 ensures Socket__Bound(self) && Socket__Bound__invariant(self)
34 // ...

Figure 3.32: The illustrative encoding of Fig. 3.31 on the preceding page. Note that for
method generic, the state is unknown since it uses the non-monomorphized invariant where
the left hand sides of both implications might be true. For method specific however, the state
is known since the type parameter tag is replaced with the actual type argument tag in the body
of the monomorphized invariant.

wards compatibility and ease of use: It allows us to reason with states with-
out having to change Rust code. In addition, generics-based typestates may
have drawbacks in that they are verbose and less flexible, because there the
states are encoded with the Rust type system.

43

3. Design

We would like to be able to specify states for user-defined types (structs and
enums). We define that every type has a predefined default state, called
valid. We propose a new #[state] attribute for declaring further states; the
grammar is defined in Fig. 3.33. It is meant to resemble the Rust syntax used
to declare traits and their supertraits, for familiarity.

1 state attribute value = state declaration;
2 state declaration = state, [set of superstates];
3 set of superstates = ":", superstate, { "+" superstate };
4 state = identifier;
5 superstate = identifier;
6 identifier = ? Rust identifier ?;

Figure 3.33: Proposed grammar (EBNF) for the value of the newly introduced state attribute
that can be used to declare states for structs and enums.

The following rules shall apply: New states cannot be named “valid”, this is
the default state that already exists for all structs and enums. States cannot
be declared twice. Every state has the implicit superstate valid, in addition
to the declared superstates, if any. The directed graph of states that is formed
via the list of superstates must be cycle-free (a DAG).

We propose to extend the grammar of the #[invariant] attribute as shown
in Fig. 3.34. If the invariant attribute names a set of states, the condi-
tion/expression in the invariant will then hold not in all states, but only
in the set of states specified, and their substates. The default set of states is the
single predefined state valid. The consequence is that invariants that do not
name states hold in all states, since every state is (implicitly) a substate of
valid.

1 new invariant attribute grammar = [set of states], expression;
2 set of states = "[", state, { "+", state }, "]";
3 state = identifier; (* must name a declared state, or "valid" *)
4 expression = ? the condition that shall hold in these states ?;
5 identifier = ? Rust identifier ?;

Figure 3.34: Proposed grammar (EBNF) for the value of the earlier introduced invariant at-
tribute that can be used to specify invariants for structs and enums. It essentially allows specifying
invariant conditions that only hold in a specific set of states.

States can be used with function-like syntax in specifications (pre- and post-
conditions). States are nominal, that is, whether a state holds is not inter-
changeable with the conditions defined for that state. The state can be
thought to be represented by a hidden (ghost) field of type bool. This re-
quires the following extra rule: Priviledged functions (that have access to
private fields of a user-defined type) can assume states. If they use the ex-

44

3.4. Typestates

pression somestate(someplace) in their postcondition, is will be assumed but not
checked that the ghost field someplace.somestate is effectively set to true.
Unpriviledged functions cannot do this; they must derive states by using
priviledged functions. Note that even priviledged functions are required to
establish the invariants that are meant to hold in the state that they want to
assume.

The look and feel of specification-only typestates is shown in Fig. 3.35. It
uses the hereby introduced attribute #[preserves] that is effectively the
combination of #[requires] and #[ensures] , that is, it specifies conditions
that are preserved over the function call (hold before and after).

1 #[state= "closed"]
2 #[state= "open"]
3 #[state= "bound: open"] // substate of open
4 #[state= "listening: open"] // substate of open
5 #[state= "connected: open"] // substate of open
6

7 // holds in state "closed"
8 #[invariant= "[closed] self.fd == -1"]
9

10 // holds in states "open", "bound", "listening" and "connected"
11 #[invariant= "[open] self.fd >= 3"]
12

13 struct Socket { fd: i32 }
14

15 #[requires= "bound(self)"]
16 #[ensures= "listening(self)"]
17 fn listen(&mut self, /* ... */) { /* ... */ }
18

19 #[requires= "listening(self)"]
20 #[ensures= "listening(self) && connected(result)"]
21 fn accept(&mut self, /* ... */) -> Socket { /* ... */ }
22

23 // with "preserves"
24 #[preserves= "listening(self)"]
25 #[ensures= "connected(result)"]
26 fn accept(&mut self, /* ... */) -> Socket { /* ... */ }
27

28 // recovering state at runtime
29 #[ensures= "result ==> connected(self)"]
30 fn is_connected(&self) -> bool { /* ... */ }

Figure 3.35: Rust snippet that illustrates the looks and semantics of specification-only types-
tates.

45

Chapter 4

Evaluation

In this chapter, we discuss what has been successfully implemented and
demonstrate some of the features in selected test cases. We also present
performance measurements on these test cases.

4.1 Implementation

This section discusses the additions made to Prusti, in the form of proof-
of-work implementation. Some of these are demonstrated in section 4.3 on
page 50 via self-contained test cases.

Basic support was added in all of the main topics, namely generics, traits,
invariants and typestates. The full design is not covered however, and in one
case, we deviate from the design.

We have added support for type parameters, encoded as abstract predicates,
as designed. We deviate from the design in that we do not encode a single
predicate that would be used for any type parameter, but we distinguish
type parameters by name. That is, for distinctly named type parameters,
distinct predicates are encoded. This is wasteful, but the reason is practical,
as explained in the following paragraphs; the design should have worked.

The existing implementation was not prepared to handle generics easily;
the core issue was that Viper predicate names are hard-coded into internal
data structures that represent the specifications (pre- and postconditions)
of functions and methods. These hard-coded predicate names are used to
generate some necessary constructs in the Viper encoding (in particular, the
fold/unfold statements).

The hard-coded predicate names then caused conflicts in situations where
more-generic functions (having more type parameters) use less-generic func-
tions (having fewer type parameters) with specifications. The predicates of

47

4. Evaluation

local variables on the one hand, and the predicates in the specifications of
the called functions and methods on the other hand then disagreed, causing
the encoding to be erroneous.

In order to solve these disagreements we need to encode type parameter
predicates with the name of the type parameter. This permits the disagree-
ments between client-side predicates and supplier-side predicates to be re-
solved by learning how they disagree, and then applying the learned trans-
formation to the remaining predicates as necessary, such that more-generic
functions using less-generic ones can be processed correctly.

This approach is suboptimal; the learning algorithm constructs case-specific
regular expressions at runtime to transform Viper predicate names as nec-
essary. This is fragile, and it is likely the reason why more complicated
generics test cases (see below) seem to have some performance issues.

Further, we have implemented traits and trait bounds, as designed. Refine-
ment of specifications (from base trait method to trait method implemen-
tation) was not implemented. Of course, the proper substitutability checks
are still performed, namely that implementers obey the specifications of the
functions and methods defined in the trait.

We have implemented the assert on expiry construct as designed, allow-
ing users to effectively specify the left-hand-side of the magic wand in the
postcondition. This construct requires the implementation to report a new
kind of error, namely when clients fail to establish the obligation specified
with the construct. Invariants have been implemented for structs, and are
assumed and checked to hold as designed. Only the basic mechanism was
implemented, not the additional features (like broken and valid).

Lastly, we have enabled the reasoning with generics-based typestates by allow-
ing users to use type conditions in invariants, pre- and postconditions. Not
the full proposed grammar of type conditions is supported however, only
the elementary equality comparison between two type expressions.

4.2 Performance Measurements

This section presents the performance (timing) measurements that have been
performed on the example test cases shown in section 4.3 on page 50, and
briefly discusses the results.

4.2.1 Methodology

The timing measurements have been performed in the following setup:

• Host system: Intel(R) Core(TM) i7-5600U @ 2.60GHz × 2, regular HDD

48

4.2. Performance Measurements

• Guest system: Virtualized Ubuntu 18.04.1 LTS with 2GB RAM

• Java version: OpenJDK 10.0.2 2018-07-17

• RustC version: nightly-2018-06-27-x86 64-unknown-linux-gnu

• Prusti configuration: unoptimized development build with default op-
tions (no extra checks enabled such as overflow checking)

For one measurement, the chosen test was run 16 times; the first measure-
ment was ignored; the statistics were calculated on the remaining 15 mea-
surements. Since the benchmarking of each single test case was made in
succession and the first run ignored, disk access is negligible (the data was
available in the disk cache). Each measurement started Prusti and Java anew;
the timings hence include startup and shutdown overhead, and it can be ex-
pected that the JVM was cold (the JIT did not optimize).

4.2.2 Results and Discussion

Table 4.1 shows the statistics of the timing measurements performed on the
example test cases presented in the following sections.

Overall, the running times are within the range of running times of preexist-
ing test cases [8] (where we do not compare the complexity of the test cases
however). Therefore we can say that the implementation does not have a
systemic performance problem.

One observation that must be made however is that more complex cases of
generics, as shown in test case “Generics 2”, cause the running times to in-
crease significantly. We think this is the result of the algorithm implemented
for generics that solves mismatches between predicates in the internal data
structures. This algorithm firstly performs many constructions and appli-
cations of regular expressions, and secondly, because type parameters are
distinguished by name, it causes many redundant and quite lengthy Viper
predicates to be generated, likely contributing to the observable drop in per-
formance.

Table 4.1: Timing Measurements (all numbers in seconds)

Example Test Case mean std.dev. maximum

Generics 1 17.6 0.7 19.0
Generics 2 124.0 9.8 131.7
Traits 20.6 1.3 23.0
Invariants 29.4 1.2 30.9
Assert On Expiry 56.7 1.6 58.5
Typestates 52.2 1.7 55.6

49

4. Evaluation

4.3 Example Test Cases
This sections presents simple tests for each of the main topics covered (gener-
ics, traits, invariants, typestates). The purpose of this display is to show
samples of the elementary features that were implemented in Prusti as part of
this thesis.

These tests are part of the test suite; they are self-contained and run suc-
cessfully, which means that the reported verification errors are exactly those
indicated with the special comment: //˜ ERROR <message> .

4.3.1 Generics
This section shows two simple test cases for generics. Note that these test
cases are restricted to generics only (no trait bounds), and are hence not very
realistic or practical.

Test Case “Generics 1”

Remarks on test case “Generics 1” (code follows below):

• Lines 3–7 define a trusted pure function that is meant to represent a
known fact about the generic type. It has to be declared #[trusted]
to force the encoding to be an abstract (bodyless) function, so that the
dummy definition of true is ignored and valid(u) can be reasoned
about as an abstract property of u.

• Lines 9–12 define a dummy reader that does not mutate the instance
u. It must be declared #[pure] because Prusti does not distinguish
readonly references from mutable references on non-pure functions
yet.

• Lines 14-15 define a dummy writer that can mutate the instance u.

• Lines 17–24 define the test that checks whether we can reason with the
abstract property valid(u) correctly. The precondition (line 17) assumes
the property to hold, which is asserted in line 19. Passing u to a non-
mutating function (line 20) does not invalidate the property, which is
asserted in line 21. Passing u to a mutating function (line 22) however
does correctly invalidate the property, as indicated in the error that the
assert in line 23 might not hold.

1 extern crate prusti_contracts;
2

3 #[pure]
4 #[trusted] // pretend to be abstract (bodyless)
5 fn valid<U>(u: &U) -> bool {
6 true

50

4.3. Example Test Cases

7 }
8

9 #[pure]
10 fn read<U>(u: &U) -> bool {
11 true
12 }
13

14 fn write<U>(u: &mut U) {
15 }
16

17 #[requires= "valid(u)"]
18 fn test<U>(u: &mut U) {
19 assert!(valid(u));
20 read(u);
21 assert!(valid(u));
22 write(u);
23 assert!(valid(u)); //˜ ERROR assert!(..) statement might not hold
24 }
25

26 fn main() {}

Test Case “Generics 2”

Remarks on test case “Generics 2” (code follows below):

• This is a stress test; it uses many differently named type parameters,
and uses nested type arguments, where the argument is itself a generic
type.

• The logic of the test case is straightforward; its purpose is to estab-
lish whether handling type parameters works. It tests in particular
whether using more-generic functions (incr1, incr2) from less-generic
functions (test1, test2, test3) works as expected.

• This is the longest-running test in the test suite. The low performance
is likely due to the algorithm that matches more-generic predicates to
less-generic predicates, and the many redundant predicates generated
in the encoding.

1 extern crate prusti_contracts;
2

3 struct Number<A, B, C> {
4 a: A,
5 b: B,
6 c: C,
7 }

51

4. Evaluation

8

9 #[ensures= "arg.b == old(arg.b) - 1000"]
10 fn decr1<D, E>(arg: &mut Number<D, i32, E>) {
11 arg.b -= 1000;
12 }
13

14 #[ensures= "arg.b.b == old(arg.b.b) - 1000"]
15 fn decr2<F, G, H, I>(arg: &mut Number<F, Number<G, i32, H>, I>) {
16 arg.b.b -= 1000;
17 }
18

19 #[requires= "arg.a.b == 3000"]
20 #[requires= "arg.b.b == 5000"]
21 #[requires= "arg.c.b == 7000"]
22 fn test1<X>(arg: &mut Number<Number<i8, i32, u8>,
23 Number<i16, i32, i64>,
24 Number<X, i32, usize>>) {
25 decr1(&mut arg.a);
26 decr1(&mut arg.c);
27 assert!(arg.a.b == 2000);
28 assert!(arg.b.b == 5000);
29 assert!(arg.c.b == 6000);
30 decr2(arg);
31 //assert!(arg.a.b == 2000);
32 assert!(arg.b.b == 4000);
33 //assert!(arg.c.b == 6000);
34 }
35

36 #[requires= "arg.a.b == 3000"]
37 #[requires= "arg.b.b == 5000"]
38 #[requires= "arg.c.b == 7000"]
39 fn test2<X, Y>(arg: &mut Number<Number<Y, i32, u8>,
40 Number<i16, i32, Y>,
41 Number<X, i32, usize>>) {
42 decr1(&mut arg.a);
43 decr1(&mut arg.c);
44 assert!(arg.a.b == 2000);
45 assert!(arg.b.b == 5000);
46 assert!(arg.c.b == 6000);
47 decr2(arg);
48 assert!(arg.a.b == 2000); //˜ ERROR assert!(..) statement might not hold
49 assert!(arg.b.b == 4000);
50 //assert!(arg.c.b == 6000);
51 }

52

4.3. Example Test Cases

52

53 #[requires= "arg.a.b == 3000"]
54 #[requires= "arg.b.b == 5000"]
55 #[requires= "arg.c.b == 7000"]
56 fn test3<X, Y, Z>(arg: &mut Number<Number<X, i32, Z>,
57 Number<i16, i32, Z>,
58 Number<Y, i32, Y>>) {
59 decr1(&mut arg.a);
60 decr1(&mut arg.c);
61 assert!(arg.a.b == 2000);
62 assert!(arg.b.b == 5000);
63 assert!(arg.c.b == 6000);
64 decr2(arg);
65 //assert!(arg.a.b == 2000);
66 assert!(arg.b.b == 4000);
67 assert!(arg.c.b == 6000); //˜ ERROR assert!(..) statement might not hold
68 }
69

70 fn main() {}

4.3.2 Traits

This sections contains one simple test case for traits. This requires generics
as prerequisite and shows trait bounds at work.

Test Case “Traits”

Remarks on test case “Traits” (code follows below):

• Lines 3–9 define a simple trait that has two bodyless (“required”) meth-
ods with specifications. The first (fn get) is annotated with a postcon-
dition, the second (fn set) is annotated with a precondition.

• Lines 14–16 and 25–27 show that the implementations of fn get are
checked to conform to the postcondition defined in line 4.

• Lines 17–19 and 28–30 show that the implementations of fn set have
access to the precondition as defined in line 7.

• Lines 33-41 define two test functions that show that the caller has ac-
cess to the postcondition of fn get that is found via the trait bound
T: Percentage.

• Lines 43-49 define two test functions that show that the caller is checked
to establish the precondition of fn set that is found via the trait bound
T: Percentage.

53

4. Evaluation

1 extern crate prusti_contracts;
2

3 trait Percentage {
4 #[ensures= "result <= 100"]
5 fn get(&self) -> u8;
6

7 #[requires= "arg <= 100"]
8 fn set(&mut self, arg: u8);
9 }

10

11 struct Fail {}
12

13 impl Percentage for Fail {
14 fn get(&self) -> u8 { //˜ ERROR postcondition might not hold
15 101
16 }
17 fn set(&mut self, arg: u8) {
18 assert!(arg <= 99); //˜ ERROR assert!(..) statement might not hold
19 }
20 }
21

22 struct Pass {}
23

24 impl Percentage for Pass {
25 fn get(&self) -> u8 {
26 100
27 }
28 fn set(&mut self, arg: u8) {
29 assert!(arg <= 100);
30 }
31 }
32

33 fn test_get_fail<T: Percentage>(t: &T) {
34 let p = t.get();
35 assert!(p <= 99); //˜ ERROR assert!(..) statement might not hold
36 }
37

38 fn test_get_pass<T: Percentage>(t: &T) {
39 let p = t.get();
40 assert!(p <= 100);
41 }
42

43 fn test_set_fail<T: Percentage>(t: &mut T) {
44 t.set(101); //˜ ERROR precondition might not hold

54

4.3. Example Test Cases

45 }
46

47 fn test_set_pass<T: Percentage>(t: &mut T) {
48 t.set(100);
49 }
50

51 fn main() {}

4.3.3 Invariants

Test Case “Invariants”

Remarks on test case “Invariants” (code follows below):

• Lines 3–6 define a simple struct with an invariant.

• Lines 9–21 define two methods that together demonstrate that it is
checked whether the constructed struct Percentage instance that is
returned by value upholds the invariant.

• Lines 23–41 define three methods that together demonstrate that the
invariant of self holds at call boundaries, namely that (1) the invariant
is available for reasoning within the body of the method and (2) the
body is checked to reestablish the invariant in the end.

• Lines 44–54 define two tests that demonstrate that the invariant of perc
holds after the construction of an instance via Percentage::new.

• Lines 56–66 define two tests that demonstrate that struct Percentage
instances can be constructed locally such that the invariant does not
hold, but in that case calls to functions (fn incr) that expect the invari-
ant to hold do not verify.

• Lines 68–80 define two tests that demonstrate that the defined invari-
ant is correctly assumed to hold after the call to fn incr.

1 extern crate prusti_contracts;
2

3 #[invariant= "self.value <= 100"]
4 struct Percentage {
5 value: u8,
6 }
7

8 impl Percentage {
9 #[requires= "value <= 100"]

10 fn new(value: u8) -> Self {
11 Percentage {
12 value: value,

55

4. Evaluation

13 }
14 }
15

16 #[requires= "value <= 101"] // mistake
17 fn new_fail(value: u8) -> Self { //˜ ERROR postcondition might not hold
18 Percentage {
19 value: value,
20 }
21 }
22

23 fn incr(&mut self) {
24 assert!(self.value <= 100);
25 if self.value < 100 {
26 self.value += 1;
27 }
28 }
29

30 fn incr_fail1(&mut self) {
31 assert!(self.value <= 99); //˜ ERROR assert!(..) statement might ...
32 if self.value < 100 {
33 self.value += 1;
34 }
35 }
36

37 fn incr_fail2(&mut self) { //˜ ERROR postcondition might not hold
38 if self.value <= 100 { // mistake
39 self.value += 1;
40 }
41 }
42 }
43

44 #[requires= "x <= 100"]
45 fn test1(x: u8) {
46 let perc = Percentage::new(x);
47 assert!(perc.value <= 100);
48 }
49

50 #[requires= "x <= 100"]
51 fn test1_fail(x: u8) {
52 let perc = Percentage::new(x);
53 assert!(perc.value <= 99); //˜ ERROR assert!(..) statement might not hold
54 }
55

56 #[requires= "x <= 100"]

56

4.3. Example Test Cases

57 fn test2(x: u8) {
58 let mut perc = Percentage { value: x };
59 perc.incr();
60 }
61

62 #[requires= "x <= 101"] // mistake
63 fn test2_fail(x: u8) {
64 let mut perc = Percentage { value: x }; // bogus construction
65 perc.incr(); //˜ ERROR precondition might not hold
66 }
67

68 #[requires= "x <= 100"]
69 fn test3(x: u8) {
70 let mut perc = Percentage { value: x };
71 perc.incr();
72 assert!(perc.value <= 100);
73 }
74

75 #[requires= "x <= 100"]
76 fn test3_fail(x: u8) {
77 let mut perc = Percentage { value: x };
78 perc.incr();
79 assert!(perc.value <= 99); //˜ ERROR assert!(..) statement might not hold
80 }
81

82 fn main() {}

4.3.4 Assert On Expiry

Test Case “Assert On Expiry”

Remarks on test case “Assert On Expiry” (code follows below):

• Lines 3–8 define struct Example with a number of fields that are
meant to have independent invariants; each must be divisible by some
number.

• Lines 11–17 define the pure function that expresses the “invariant”.
We use an explicit function so that it is clear where we assume and
assert the invariant in the following functions.

• Lines 19–27 define an accessor function for the field m3. The specifica-
tions use the construct assert on expiry to ensure that the invariant
of self cannot be violated by a caller, even though it receives access
to a field that is restricted by the invariant. Line 22 expresses the obli-
gation that is imposed on the caller: It must ensure that the target of

57

4. Evaluation

the returned reference is divisible by three on expiry of the returned
reference.

• Lines 29–38 show the same function again, however with the obligation
in line 32 missing (replaced by true). The verifier correctly refuses
to verify: Without the obligation, the callers of this function might
invalidate the invariant.

• Lines 41–54 define two functions that show that the obligation imposed
by m3 mut is checked correctly. In fn test_fail, the incorrect usage
of the returned reference would have violated the invariant.

1 extern crate prusti_contracts;
2

3 struct Example {
4 m2: u32, // multiple of 2
5 m3: u32, // multiple of 3
6 m5: u32, // multiple of 5
7 m7: u32, // multiple of 7
8 }
9

10 impl Example {
11 #[pure]
12 fn valid(&self) -> bool {
13 self.m2 % 2 == 0 &&
14 self.m3 % 3 == 0 &&
15 self.m5 % 5 == 0 &&
16 self.m7 % 7 == 0
17 }
18

19 #[requires= "self.valid()"]
20 #[ensures= "*result == old(self.m3)"]
21 #[ensures= "assert_on_expiry(
22 *result % 3 == 0,
23 self.valid()
24)"]
25 fn m3_mut(&mut self) -> &mut u32 {
26 &mut self.m3
27 }
28

29 #[requires= "self.valid()"]
30 #[ensures= "*result == old(self.m3)"]
31 #[ensures= "assert_on_expiry(
32 true,
33 self.valid()

58

4.3. Example Test Cases

34)"]
35 //˜ ERROR pledge in the postcondition might not hold
36 fn m3_mut_fail(&mut self) -> &mut u32 {
37 &mut self.m3
38 }
39 }
40

41 #[requires= "arg.valid()"]
42 #[ensures= "arg.valid()"]
43 fn test(arg: &mut Example) {
44 let m3 = arg.m3_mut();
45 *m3 += 3;
46 }
47

48 #[requires= "arg.valid()"]
49 #[ensures= "arg.valid()"]
50 fn test_fail(arg: &mut Example) {
51 //˜ ERROR pledge condition might not hold on borrow expiry
52 let m3 = arg.m3_mut();
53 *m3 += 5; // mistake
54 }
55

56 fn main() {}

4.3.5 Typestates

Test Case “Typestates”

Remarks on test case “Typestates” (code follows below):

• The test case demonstrates typestates on type struct Int with two
states, even and odd. It is not necessarily a practical example; it serves
to demonstrate the semantics and workings of the typestate implemen-
tation.

• Line 3 imports the name PhantomData from the standard library. It is
used in the definition of struct Int to absorb the type parameter that
signals the state. This is required because the type parameter must be
used, it would be a compilation error to not do so. It is otherwise not
relevant for the test.

• Lines 5–15 define a stateful type struct Int. The states are expressed
with struct Even and struct Odd, which are used in the invariants
with type conditions to restrict the field i to be even or odd, respec-
tively, according to the state. The trait serves to demonstrate how
trait bounds can be used to make the purpose of the type parameter

59

4. Evaluation

clear. The trait and the trait bounds are not necessary however; the
test would work without them.

• Line 17 onwards define methods on the generic type struct Int, that
is, on ints that may be in either state. The use of a differently named
type parameter shows that the names of type parameters are only lo-
cally meaningful; and that the type conditions utilize the locally de-
fined name.

• Lines 18–34 demonstrate that under some circumstances, regular spec-
ifications (here, preconditions) must use type conditions to be able to
treat the type generically. Depending on whether the client constructs
an int in state even or odd, the requirement on the argument will be
different. The fail case demonstrates that the preconditions are indeed
necessary.

• Lines 36–64 define various tests that demonstrate that the state-specific
invariants are indeed checked.

• Lines 67–81 define tests that demonstrate that in contexts of concrete
usage of the type, where the typestate is known, reasoning with the
state-specific invariant is possible, whereas in contexts of generic us-
age, where the state is unknown, it is not.

• Lines 83–101 define testes that demonstrate that preconditions with
type conditions of fn new work as expected; that depending on which
state is requested, the required condition (even or odd) is correctly
checked.

1 extern crate prusti_contracts;
2

3 use std::marker::PhantomData;
4

5 trait IntState {}
6

7 struct Even; impl IntState for Even {}
8 struct Odd; impl IntState for Odd {}
9

10 #[invariant= "S == Even --> self.i % 2 == 0"]
11 #[invariant= "S == Odd --> self.i % 2 != 0"]
12 struct Int<S: IntState> {
13 i: i32,
14 s: PhantomData<S>,
15 }
16

17 impl<Z: IntState> Int<Z> {
18 #[requires= "Z == Even --> i % 2 == 0"]

60

4.3. Example Test Cases

19 #[requires= "Z == Odd --> i % 2 != 0"]
20 fn new(i: i32) -> Int<Z> {
21 Int {
22 i,
23 s: PhantomData,
24 }
25 }
26

27 //#[requires="Z == Even --> i % 2 == 0"]
28 //#[requires="Z == Odd --> i % 2 != 0"]
29 fn new_fail(i: i32) -> Int<Z> { //˜ ERROR postcondition might not hold
30 Int {
31 i,
32 s: PhantomData,
33 }
34 }
35

36 fn test_incr2(&mut self) {
37 self.i += 2;
38 }
39

40 fn test_incr3(&mut self) { //˜ ERROR postcondition might not hold
41 self.i += 3;
42 }
43

44 fn test_plus2(self) -> Self {
45 Int {
46 i: self.i + 2,
47 s: PhantomData,
48 }
49 }
50

51 fn test_plus3(self) -> Self { //˜ ERROR postcondition might not hold
52 Int {
53 i: self.i + 3,
54 s: PhantomData,
55 }
56 }
57

58 fn test_double(self) -> Int<Even> {
59 Int::new(self.i * 2)
60 }
61

62 fn test_triple(self) -> Int<Even> {

61

4. Evaluation

63 Int::new(self.i * 3) //˜ ERROR precondition might not hold
64 }
65 }
66

67 fn test1(int: &mut Int<Even>) {
68 assert!(int.i % 2 == 0);
69 }
70

71 fn test1_fail<S: IntState>(int: &mut Int<S>) {
72 assert!(int.i % 2 == 0); //˜ ERROR assert!(..) statement might not hold
73 }
74

75 fn test2(int: &mut Int<Odd>) {
76 assert!(int.i % 2 != 0);
77 }
78

79 fn test2_fail<S: IntState>(int: &mut Int<S>) {
80 assert!(int.i % 2 != 0); //˜ ERROR assert!(..) statement might not hold
81 }
82

83 #[requires= "i % 2 == 0"] // even
84 fn test3(i: i32) -> Int<Even> {
85 Int::new(i)
86 }
87

88 #[requires= "i % 2 == 0"] // even
89 fn test3_fail(i: i32) -> Int<Odd> { // wrong return type state
90 Int::new(i) //˜ ERROR precondition might not hold
91 }
92

93 #[requires= "i % 2 != 0"] // odd
94 fn test4(i: i32) -> Int<Odd> {
95 Int::new(i)
96 }
97

98 #[requires= "i % 2 != 0"] // odd
99 fn test4_fail(i: i32) -> Int<Even> {

100 Int::new(i) //˜ ERROR precondition might not hold
101 }
102

103 fn main() {}

62

Chapter 5

Conclusion

We have set out to address the topics of Rust generics and traits, to support
invariants and to finally enable reasoning with typestates, in the context of
Prusti [7], the Viper [13] frontend for the Rust programming language.

We have designed semantics and encoding for typestates, and as necessary
prerequisites we have also addressed generics, traits, and invariants. We have
extended Prusti with basic support for the prerequisities and for generics-
based typestates, an important Rust programming idiom.

We have presented selected tests from the test suite that demonstrate the
correct functioning of the implemented features, and we have shown timing
measurements for each presented test case. We can conclude that even for
the longest-running test, the performance is acceptable.

5.1 Future Work

This section presents possible future work.

5.1.1 Trait Invariants

Rust traits do not have fields, but can be stateful from the perspective of the
clients, as state can be communicated via methods. There may be a case
for allowing invariants to be defined on traits. Necessarily, these invariants
would need to be expressed via abstract pure functions, directly or indirectly.
Method implementations would then be checked to uphold the invariant,
by using the implementer’s definitions of the abstract pure functions in the
trait. An example is shown in Fig. 5.1 on the next page.

63

5. Conclusion

1 #[invariant= "self.len() <= self.capacity()"]
2 trait LimitedVector<T> {
3

4 #[abstract_pure]
5 fn len(&self) -> usize;
6

7 #[abstract_pure]
8 fn capacity(&self) -> usize;
9

10 #[pure]
11 fn available(&self) -> usize {
12 // needs the invariant to pass the overflow check
13 self.capacity() - self.len()
14 }
15

16 #[requires= "self.available() > 0"]
17 fn push(&mut self, item: T);
18 }

Figure 5.1: Rust snippet that shows how a trait with an invariant could look like.

5.1.2 Specifications for Intrinsic Properties of Traits
We have added support for trait method pre- and postconditions. In Rust,
traits are however also commonly used to mark types with intrinsic proper-
ties [4] or to impose specific requirements that cannot be captured by method
pre- and postconditions. As an example, the Rust standard library provides
the trait PartialEq [6]:

1 pub trait PartialEq<Rhs = Self>
2 {
3 fn eq(&self, other: &Rhs) -> bool;
4 fn ne(&self, other: &Rhs) -> bool { ... }
5 }

The library reference however also defines requirements expressed as invari-
ants on this trait that implementations must obey, specified as follows [6]:

Formally, the equality must be (for all a, b and c):

• symmetric: a == b implies b == a; and

• transitive: a == b and b == c implies a == c.

Moreover, the standard library provides a so-called marker trait Eq [5], de-
rived from PartialEq, that does not define further methods at all, but im-
poses additional requirements only [5]:

64

5.1. Future Work

[...] in addition to a == b and a != b being strict inverses, the equal-
ity must be (for all a, b and c):

• reflexive: a == a;

• symmetric: a == b implies b == a; and

• transitive: a == b and b == c implies a == c.

Note well that the invariants imposed by the PartialEq and Eq traits are
hyperproperties.

The aim would be to group use cases into classes and find solutions to some
of these classes. Examples of such classes of properties are:

• PartialEq and Eq, whose invariants are hyperproperties

• Sync and Send, which are related to concurrency and safety

• Copy, which is related to optimization and receives special treatment
by the compiler.

65

Bibliography

[1] A modern TLS library in Rust. https://github.com/ctz/rustls. Ac-
cessed on 2018-08-31.

[2] Rust progamming language. https://www.rust-lang.org/.

[3] The Rust reference: Identifier patterns. https://doc.rust-lang.org/
reference/patterns.html#identifier-patterns.

[4] The Rust standard library: Module std::marker. https://doc.
rust-lang.org/std/marker/index.html. Accessed on 2018-08-31.

[5] The Rust standard library: Trait std::cmp::Eq. https://doc.
rust-lang.org/std/cmp/trait.Eq.html. Accessed on 2018-08-31.

[6] The Rust standard library: Trait std::cmp::PartialEq. https://doc.
rust-lang.org/std/cmp/trait.PartialEq.html. Accessed on 2018-
08-31.

[7] A Viper front-end for Rust. http://www.pm.inf.ethz.ch/research/
prusti.html.

[8] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. Leveraging Rust
types for modular specification and verification. Technical report, ETH
Zurich, 2018.

[9] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Sys-
tems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008.
Springer-Verlag.

67

https://github.com/ctz/rustls
https://www.rust-lang.org/
https://doc.rust-lang.org/reference/patterns.html#identifier-patterns
https://doc.rust-lang.org/reference/patterns.html#identifier-patterns
https://doc.rust-lang.org/std/marker/index.html
https://doc.rust-lang.org/std/marker/index.html
https://doc.rust-lang.org/std/cmp/trait.Eq.html
https://doc.rust-lang.org/std/cmp/trait.Eq.html
https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
http://www.pm.inf.ethz.ch/research/prusti.html
http://www.pm.inf.ethz.ch/research/prusti.html

Bibliography

[10] Robert DeLine and Manuel Fähndrich. Typestates for objects. In Mar-
tin Odersky, editor, ECOOP 2004 – Object-Oriented Programming, pages
465–490, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[11] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of sub-
typing. ACM Trans. Program. Lang. Syst., 16(6):1811–1841, November
1994.

[12] Bertrand Meyer. Applying ”design by contract”. Computer, 25(10):40–
51, October 1992.

[13] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract Inter-
pretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-Verlag,
2016.

[14] A. J. Summers, S. Drossopoulou, and P. Müller. The need for flexible
object invariants. In International Workshop on Aliasing, Confinement and
Ownership in object-oriented programming (IWACO), 2009.

[15] David Teller. Typestates in Rust. https://yoric.github.io/post/
rust-typestate/.

68

https://yoric.github.io/post/rust-typestate/
https://yoric.github.io/post/rust-typestate/

	Contents
	Introduction
	Background
	Rust
	Generics
	Traits

	Viper
	Prusti
	Type Encoding
	Pure Functions
	References and Lifetimes

	Design
	Generics
	Type Parameters
	Pure Functions

	Traits
	Refinement
	Substitutability
	Pure Functions
	Abstract Pure

	Invariants
	Basic Support
	Enum Variants
	Inhibition
	Assert On Expiry

	Typestates
	Generics-based
	Specification-Only Typestates

	Evaluation
	Implementation
	Performance Measurements
	Methodology
	Results and Discussion

	Example Test Cases
	Generics
	Traits
	Invariants
	Assert On Expiry
	Typestates

	Conclusion
	Future Work
	Trait Invariants
	Specifications for Intrinsic Properties of Traits

	Bibliography

