Towards better Function Axiomatization in a

Symbolic-execution-based Verifier
Bachelor thesis project description
ETH Ziirich

Mauro Bringolf
supervised by Dr. Malte Schwerhoff and Dr. Alexander J. Summers

April 12, 2019

1 Introduction

Software is inherently complex and difficult to get right, and software verification
aims to provide a level of trust beyond what well-established techniques such as
testing and code reviews can give. To this end, desired source code properties
such as absence of memory leaks or functional correctness are expressed as
formal specifications and then proven to be satisfied by the implementation.
These proofs are typically automated by expressing the correspondence between
source code and specification as an SMT problem for which sophisticated solvers
exist.

Many verifiers take a layered approach by not directly translating problems
down to the SMT level, but to an intermediate verification language such as
Boogie [1] or Why [2] instead. For imperative languages, one particular chal-
lenge is handling heap manipulation. The heap creates complex dependencies
between program statements and expressions which need to be taken into ac-
count when reasoning about them. One approach that has proven to be effec-
tive for the book-keeping of these heap dependencies are permissions. Roughly
speaking, each statement or expression requires certain permissions to access a
heap location. This enables modular reasoning, since statements without suffi-
cient permission to some heap location cannot depend on it or change its value.
In particular, a function’s specification includes all permissions its body requires
and thus a caller can reason about it without knowing its implementation.

The Viper infrastructure [3] provides an intermediate verification language which
includes permissions natively. By encoding into Viper, front-end verifiers can use
the notion of permissions to encode various verification techniques and program
semantics while the translation to SMT is handled by Viper. This translation

0~ O ULk Wi

— = = e
=W = O o

can be done by two independent back-ends: Silicon, based on symbolic exe-
cution, and Carbon, based on verification condition generation. Our work is
concerned with Silicon’s SMT encoding of Viper functions.

2 Reasoning about heap-dependent functions

In Viper, assertions express properties of the current program state, including
the permissions available for heap accesses. Pure assertions such as x.f > 0
constrain program values and accessibility predicates such as acc (x.f) repre-
sent permissions. This state is modified by the Viper operations inhale and
exhale. Informally, inhale A assumes all properties expressed in A and adds
all permissions denoted in A. Symmetrically, the operation exhale A checks
that all properties in A are satisfied and all permissions in A are currently held,
before removing the latter.

The function f in listing 1 depends only on the value of x. g as indicated by f’s
precondition. The method m requires f (x) == 0 and exclusive permissions to
x.g and y.qg. The semantics of accessibility predicates imply that in this case
x and y cannot be aliases. As a result of this, Viper is able to frame the value

f (x) across the assignment of y.g and successfully prove the assertion in line
10.

field g : Int
function f(x: Ref) : Int
requires acc(x.9)
{
}
method foo (x:Ref, y:Ref)
requires acc(x.g) && f(x) == 0 && acc(y.qg)
{
y.g :=1
assert f(x) == 0 // Verifies due to framing
}
Listing 1: The value of f (x) is framed across the assignment y.g := 1.

In Silicon, exhaling an assertion builds up a snapshot of the relevant heap lo-
cations and their symbolic values. This snapshot is used when inhaling pre-
conditions for a function application or predicate instance to capture its heap
dependencies and ultimately enables Silicon to frame expressions.

2.1 Function application

A function application is translated by Silicon into an uninterpreted function
application by symbolically evaluating the arguments and adding a snapshot as
additional argument. In order to give meaning to the uninterpreted function,
Silicon axiomatizes functions by mapping heap-dependent expressions in the
body to parts of the snapshot. This mapping can then be added to the assump-
tions once and implicitly gives meaning to all symbolic function applications.

3 Snapshots in Silicon

3.1 Current representation

Inspired by previous work [4], Silicon uses binary trees to represent heap snap-
shots. As illustrated in figure 1, the tree structure is determined by the separat-
ing conjunctions from which assertions are built and each leaf represent either a
heap value (from an accessibility predicate) or nothing (from a pure assertion).
The main benefit of binary trees is that they have a small axiomatization in
SMT-LIB and are easily created from assertions, since these are already of tree
structure.

Figure 1: Silicon’s binary tree representation of a snapshot for the assertion

ace(x.f) && x.f > 0 where zy stands for the symbolic value of x.£f in the
current heap and unit for an empty snapshot.

3.2 Problems

There is a price to pay for the simplicity of binary trees when it comes to
function axiomatization. As mentioned above, Silicon computes a mapping from
heap accesses in the function body to corresponding snapshot components. The
problem with using binary trees is that branching and the notorious problem of
aliasing need to be taken into account by this algorithm. Consider the following
assertion acc(x.f) && ace(y.f) && b ? z == x : z == y. If this is the
precondition of a function and a field access z.f appears in the body, then
its position in the snapshot depends on b. Thus Silicon needs to keep track of
branch conditions and aliases which is a laborious process and results in complex
function axiomatization algorithms.

0~ O Tk Wi

4 Solution approach

The primary design goal is to simplify the function axiomatization algorithm
and the resulting definitional axioms using a more powerful snapshot represen-
tation. In particular, such a representation should defer aliasing questions to
the underlying SMT solver. To this end, snapshots could behave like a mapping
from syntactic field accesses such as x. f to symbolic values of the correspond-
ing field and an appropriate axiomatization of such a mapping structure on the
SMT layer would then take care of aliasing questions.

Such a mapping structure describing a partial heap could solve some simple
cases of the aliasing problems mentioned above. However, the general situation
is more intricate and will have to be explored carefully. Some of the anticipated
difficulties are illustrated in listing 2. Let us first consider the recursive instance
List (x.next). A predicate instance will always contain a finite (but potentially
statically unbounded) number of recursive instances which naturally maps to
structural heap snapshots. The partial heap corresponding to the recursive
instance (as required when unfolding an instance for example) can be identified
by matching the structure of the assertion with the snapshot. In contrast, it is
not clear how snapshots represented as mapping structures could allow this step
in a similarly effective manner. Of course, associating the complete snapshot
of List (x) to List (x.next) would be sound but a coarse over-approximation
and miss the main idea of partial heaps in the first place: local reasoning. A
similar question arises for the recursive call at (x.next, i-1) in the function’s
body.

field val: Int
field next: Ref

predicate List (x: Ref) {
acc(x.val) &&
acc (x.next) &&
(x.next != null ==> List (x.next))

}

function at (x: Ref, i: Int): Int
requires List(x) && i >= 0
{
unfolding List (x) in
i == || x.next == null ? x.val : at(x.next, i-1)

}

Listing 2: The predicate List defines the standard notion of a linked list. The
function at returns the element at a certain position (for valid positions). Both
are naturally defined with recursion.

So far we have not considered quantified permissions. For reasons of brevity,
we mention only that they require a more powerful snapshot representation

which Silicon already implements. The solution approach we propose will most
likely reduce the differences between Silicon’s treatment of quantified and non-
quantified permissions and thus further reduce its complexity.

As a result, we expect a trade-off with respect to function axiomatization be-
tween the current structural snapshot representation which gives Silicon more
work to do, and a semantic representation which offloads some of the effort to
the underlying SMT solver. Additionally, the semantic representation might
have a more costly axiomatization in SMT-LIB. To decide whether or not the
new representation is favorable over the current one we will consider its impact
on overall performance, algorithmic complexity and completeness of Silicon and
Silicon’s treatment of quantified and non-quantified permissions.

5 Core goals

5.1 Non-quantified permissions

e Investigate how a less structural and more semantic snapshot representa-
tion could look. Consider if quantified permission snapshots can be used
as a starting point.

e Conceptually adapt Silicon’s function axiomatization algorithm using the
new representation and evaluate how this would affect its complexity

e Verify that the new representation allows inhale-exhale assertions in pred-
icate bodies (a current, known limitation of Silicon induced directly by
the structural snapshot representation)

5.2 Quantified permissions

e Benchmark the experimental case when non-quantified permission snap-
shots are disabled completely. This tests if Silicon’s (from a logical per-
spective redundant) distinction between quantified and non-quantified per-
missions pays off performance-wise.

e Investigate if potential function axiomatization improvements from a new
non-quantified permission snapshot representation can be obtained in a
similar way for quantified permissions.

e Investigate how the combination of quantified and non-quantified permis-
sions is affected

5.3 Implementation

e Based on conceptual results of previous sections, choose and implement
a new snapshot representation and adapt affected operations (predicate
folding and unfolding for example)

e Benchmark against current implementation

6 Extension goals

e Extend implementation to quantified permissions

e Adapt new snapshot design to magic wands, such that the currently ex-
isting unsoundness with snapshots for partial magic wands is avoided.

e Study and use ideas from Carbon’s treatment of functions

e Describe the effect on Silicon’s completeness (if any)

References

. Barnett et al, Boogie: modular reusable verifier for object-oriente
1] M. B 1, Boogie: A modul bl ' bject-oriented
programs, FMCO. Vol. 4111. LNCS. Springer, 2005.

[2] F. Bobot et al, Why3: Shepherd your herd of provers, Boogie, 2011.

[3] P. Miiller and M. Schwerhoff and A. J. Summers, Viper: A Verification In-
frastructure for Permission-Based Reasoning, Verification, Model Checking,
and Abstract Interpretation (VMCAI), 2016.

[4] J. Smans, B. Jacobs and F. Piessens, Heap-dependent expressions in separa-
tion logic, FMOODS/FORTE. Vol. 6117. LNCS. Springer, 2010.

