
Enabling Object Equality Reasoning for Python
Bachelor Thesis Description

Micha Greutmann
Supervised by Dr. Marco Eilers, Prof. Dr. Peter Müller

ETH Zürich

November 2024

1 Introduction

Python is currently one of the most popular programming languages and fun-
damental in many research areas such as data science due to its ease of use,
flexibility and vast number of libraries.

It is dynamically-typed, therefore, type safety is checked at runtime. By
using the static type checker mypy [1] and Python type hints defined in PEP
484 [2], the user is enabled to check type safety statically, comparable to the
experience with statically typed programming languages such as C.

2 Background

In this section, various background concepts are introduced that will be used to
achieve the goals of the thesis (see Section 3).

2.1 Nagini

Nagini [3] is an automated, modular verifier, which leverages the mypy type
information to statically verify a rich subset of Python programs. It functions
as a front-end to the Viper verification infrastructure [4], which uses a variation
of separation logic [5] called implicit dynamic frames [6] (see Section 2.4) and
SMT-solvers (see Figure 1) for verification.

The Python source code is encoded to the intermediate verification language
(IVL) Viper by Nagini. Since Viper is a simple, imperative language lacking many
features of the object-oriented Python language, Nagini must ensure to encode
the source code in a sound way. In the example in Figure 2, behavioral subtyping
checks [8] for the class X and its subclass SubX are encoded, i.e., overrides must
satisfy the specification of the supertype method. Nagini enforces this for all
overrides. Thus, in SubX.bar() the the precondition can only be weakened (or
maintained) and its postcondition can only be strengthened (or maintained).

1

Figure 1: The architecture of the Viper verification instrastructure. The figure
is taken from page 17 of [7].

class X:

def bar(self, i: int) -> int:

requires P

ensures Q

...

class SubX(X):

def bar(self, i: int) -> int:

requires P’

ensures Q’

...

method SubX_bar_override_check(self: Ref , i: Ref)

returns (res: Ref)

requires issubtype(typeof(self), SubX)

requires issubtype(typeof(i), int)

requires P

ensures Q

{

res := SubX_bar(self , i)

}

Figure 2: Encoding the behavioral subtyping check for the class X and its subclass
SubX to the IVL Viper. The example is taken from page 39 of [7].

2

requires len(nums > 0)

def minimum(nums: List[int]) -> int:

cur_min: int = nums[0]

for num in nums[1:]:

if num < cur_min:

cur_min = num

return cur_min

Figure 3: Implementation of the minimum function, which computes the minimal
integer cur_min in a given list of integers nums.

2.2 Pure Functions

Pure functions are deterministic and side-effect free, i.e., perform a certain task
without modifying any non-local state. Thus, such functions can be used in
specifications. In the example in Figure 3 the function minimum computes the
minimal integer of the list nums. Since minimum only reads the values of nums
and only modifies the local variable cur_min, it is pure.

2.3 Dunder Methods

Dunder (short for double underscore) methods are special functions which define
operators (e.g., ==, +, >), containment checks (e.g., x in some_list), assign-
ments (e.g., x.f = 5) etc. for a specific type of object. These methods can be
overridden to change the default functionality.

In the example in Figure 4 the type IntVec is defined; it represents an integer
vector x ∈ Zn for some n ∈ N. Ordinarily, the __eq__ method is defined as
reference equality, i.e., it is True if and only if both references point to the same
object of type IntVec. But __eq__ and __add__ have been overridden to change
== and + respectively.

The == operator now compares the vector elements component-wise instead of
using reference equality. Thus, the statement IntVec([1,2]) == IntVec([1,2])

returns True. The + operator now adds other component-wise to self instead
of being undefined. Thus, the statement IntVec([1,2,3]) + IntVec([6,5,4])

sets self (IntVec([1,2,3])) to have the same value as IntVec([7,7,7]).

2.4 Implicit Dynamic Frames

In implicit dynamic frames, the assertion P =̂ acc(x.f) * acc(y.f) defines the
permission to access the field f of the two objects x and y. Since the separating
conjunction (*) is used in P , x and y cannot reference the same object, i.e., point
to different heap locations, otherwise P is unsatisfiable.

3

class IntVec:

def __init__(self, nums: List[int]) -> None:

self.vec: List[int] = nums

requires same dimensions

def __eq__(self, other) -> bool:

for i in range(len(self.vec)):

if self.vec[i] != other.vec[i]:

return False

return True

requires same dimensions

def __add__(self, other) -> None:

for i in range(len(self.vec)):

self.vec[i] += other.vec[i]

Figure 4: A class definition of custom type IntVec, which overrides multiple
dunder methods.

2.5 Predicate Families

Predicate families [9] are used to reason about objects. In typical Python pro-
grams, subclasses consist of the same fields and methods as their superclasses with
a few additional fields and/or methods as in the example in Figure 5. A method
square is defined for both classes and squares all available fields of the object
instance for which it needs write access to self.x and self.x and self.y, i.e.,
needs the permissions acc(self.x) and acc(self.x) * acc(self.y) respec-
tively. Thus, since acc(self.x) ̸|= acc(self.x) * acc(self.y), SubX is not
a behavioral subtype according to the above definition (see Section 2.1) and
Nagini reports an error.

4

class X:

def __init__(self):

self.x: int = 0

def square(self) -> None:

Requires(Acc(self.x))

Ensures(Acc(self.x))

self.x *= self.x

class SubX(X):

def __init__(self) -> None:

self.x: int = 0

self.y: int = 2

def square(self) -> None:

Requires(Acc(self.x) and Acc(self.y))

Ensures(Acc(self.x) and Acc(self.y))

self.x *= self.x

self.y *= self.y

Figure 5: Custom class X and its subclass SubX implement a square method
and use implicit dynamic frames (see Section 2.4) to verify their access.

To address this common case, Nagini supports the concepts of predicate
families, i.e., predicates that can be redefined in subclasses. We extend the
two classes with with a predicate family started() to model the access to all
available fields (see Figure 6). The permissions are replaced with the defined
predicate in the square methods to satisfy behavioral subtyping. Now the
preconditions of both methods are identical and Nagini accepts the program.

5

class X:

def __init__(self):

self.x: int = 0

def square(self) -> None:

Requires(self.started())

Ensures(self.started())

Unfold(self.started())

self.x *= self.x

Fold(self.started())

@Predicate

def started(self) -> bool:

return Acc(self.x)

class SubX(X):

def __init__(self) -> None:

self.x: int = 0

self.y: int = 2

def square(self) -> None:

Requires(self.started())

Ensures(self.started())

Unfold(self.started())

self.x *= self.x

self.y *= self.y

Fold(self.started())

@Predicate

def started(self) -> bool:

return Acc(self.y)

Figure 6: The same two classes from Figure 5, but with the added predicate
family started(). The permission Acc(self.x) is automatically included in
SubX.started(), since constraints in Nagini can only be extended (and not
completely redefined).

We can use it in a function squareX, which calls obj.square (see Figure 7).
If obj has type X, the function squares the field obj.x. If obj has type SubX,
squareX squares the fields x and y.

6

def squareX(obj: X) -> None:

Requires(obj.started())

Ensures(obj.started())

obj.square()

Figure 7: squareX method, which takes an obj of type X or any subtype, e.g.,
SubX.

3 Goals

Nagini currently allows overriding of impure functions and implements behavioral
subtype checking for them. For pure functions, however, this is not yet possible.
Furthermore, Nagini currently does not have a principled way to support object
equality statements in its contracts. The same thing holds for containment
checks for collections, since they depend on object equality.

3.1 Core Goals

1. Allow overriding pure functions in Nagini and to encode them into Viper
to enable their modular verification.

(a) Allow pure function overrides in subclasses.

(b) Support modular pure function calls such that the caller learns only
the specification, not the implementation.

(c) Implement behavioral subtyping checks for pure functions.

(d) Define and implement an encoding of overridden pure functions into
Viper.

2. Enable verification in Nagini for Python programs that contain expressions
like obj1 == obj2 in pre- and/or postconditions. The integration should
be done for built-in and custom classes, for which the equality operator ==
can be overridden (see Section 2.3).

(a) Define a contract for object.__eq__ using predicate families (see
Section 2.5) that represent state for possibly mutable objects. Since
primitives, such as ints, are stateless objects, the overhead of folding
and unfolding ought to be minimized.

(b) Adapt the object.__eq__ definitions of built-in data types to work
with the new system. Additionally, check the contract to be consistent
with object.__hash__ and the reflexive and transitive properties.

3. Integrate the contract of object.__eq__ with built-in data structures, e.g.,
lists.

7

(a) Containment checks (e.g., x in some_list) implicitly use the equal-
ity operator to compare each element y in the list some_list with
the object x.
Adapt the __contains__ definitions of built-in container types to use
object.__eq__ in the natural way using an existential quantifier.

4. Evaluate the integrations from (2) and (3).

(a) Test the completeness, performance, and usability of the integrations
of object.__eq__ and object.__contains__ in real-world code ex-
amples.

3.2 Extension Goals

1. Adapt the definition of __contains__ for built-in container types from (3)
to avoid the existential quantifier if this definition is incomplete or leads
to bad performance in real-world Python programs.

2. Define and implement contracts for other pure dunder methods.

References

[1] Jukka Lehtosalo et al. Mypy - Optional Static Typing for Python. 2017. url:
http://mypy-lang.org (visited on 2024-05-11).

[2] Jukka Lehtosalo Guido van Rossum and Lukasz Langa. PEP 484: Type
Hints. 2014. url: https://www.python.org/dev/peps/pep-%200484/
(visited on 2024-05-11).

[3] Marco Eilers and Peter Müller. “Nagini: A Static Verifier for Python”. In:
Computer Aided Verification - 30th International Conference, CAV 2018
Held as Part of the Federated Logic Conference, FloC 2018 Oxford, UK,
July 14–17, 2018, Proceedings, Part I. Ed. by Hana Chockler and Georg
Weissenbacher. Cham: Springer International Publishing, 2018, pp. 596–603.
isbn: 978-3-319-96145-3. doi: 10.1007/978-3-319-96145-3_33. url:
http://doi.org/10.1007/978-3-319-96145-3_33.

[4] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. “Viper: A
Verification Infrastructure for Permission-Based Reasoning”. In: Verification,
Model Checking, and Abstract Interpretation. Ed. by Barbara Jobstmann and
K. Rustan M. Leino. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016,
pp. 41–62. isbn: 978-3-662-49122-5. doi: 10.1007/978-3-662-49122-5_2.
url: http://doi.org/10.1007/978-3-662-49122-5_2.

8

http://mypy-lang.org
https://www.python.org/dev/peps/pep-%200484/
https://doi.org/10.1007/978-3-319-96145-3_33
http://doi.org/10.1007/978-3-319-96145-3_33
https://doi.org/10.1007/978-3-662-49122-5_2
http://doi.org/10.1007/978-3-662-49122-5_2

[5] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. “Local Reasoning
about Programs that Alter Data Structures”. In: Computer Science Logic,
15th International Workshop, CSL 2001. 10th Annual Conference of the
EACSL, Paris, France, September 10-13, 2001, Proceedings. Ed. by Laurent
Fribourg. Vol. 2142. Lecture Notes in Computer Science. Springer, 2001,
pp. 1–19. doi: 10.1007/3-540-44802-0_1. url: https://doi.org/10.
1007/3-540-44802-0%5C_1.

[6] Jan Smans, Bart Jacobs, and Frank Piessens. “Implicit dynamic frames”.
In: ACM Trans. Program. Lang. Syst. 34.1 (2012), 2:1–2:58. doi: 10.1145/
2160910.2160911. url: https://doi.org/10.1145/2160910.2160911.

[7] Marco Eilers. “Modular Specification and Verification of Security Properties
for Mainstream Languages”. en. Doctoral Thesis. Zurich: ETH Zurich, 2022.
doi: 10.3929/ethz-b-000580641. url: http://doi.org/20.500.11850/
580641.

[8] Barbara Liskov and Jeannette M. Wing. “A Behavioral Notion of Subtyping”.
In: ACM Trans. Program. Lang. Syst. 16.6 (1994), pp. 1811–1841. doi: 10.
1145/197320.197383. url: https://doi.org/10.1145/197320.197383.

[9] Matthew J. Parkinson and Gavin M. Bierman. “Separation logic and ab-
straction”. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2005, Long Beach,
California, USA, January 12-14, 2005. Ed. by Jens Palsberg and Mart́ın
Abadi. ACM, 2005, pp. 247–258. doi: 10.1145/1040305.1040326. url:
https://doi.org/10.1145/1040305.1040326.

9

https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/3-540-44802-0%5C_1
https://doi.org/10.1007/3-540-44802-0%5C_1
https://doi.org/10.1145/2160910.2160911
https://doi.org/10.1145/2160910.2160911
https://doi.org/10.1145/2160910.2160911
https://doi.org/10.3929/ethz-b-000580641
http://doi.org/20.500.11850/580641
http://doi.org/20.500.11850/580641
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/1040305.1040326
https://doi.org/10.1145/1040305.1040326

	Introduction
	Background
	Nagini
	Pure Functions
	Dunder Methods
	Implicit Dynamic Frames
	Predicate Families

	Goals
	Core Goals
	Extension Goals

