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September 13, 2019

Advisors: Prof. Peter Müller, Dr. Malte Schwerhoff

Department of Computer Science, ETH Zürich





Abstract

This thesis presents an investigation into performance problems exhib-
ited by Silicon, a backend verifier for the Viper verification infrastruc-
ture. We identify possible reasons for the slow performance of several
example files, and, for some, present possible improvements.

These improvements are implemented in Silicon and their performance
impact assessed. Not all of them turn out to be worth the additional
code complexity in the end. We also make the case for changing how
Silicon communicates with the SMT-Solver it relies on, by carrying out
a performance comparison with another verifier that supports both this
other mode of operation and the one Silicon currently uses.
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Chapter 1

Introduction

Automated Software Verification is a field that has made a lot progress in
recent times. Being able to prove programs correct is more important than
ever, and continuing research allows us to reason about ever more complex
programs. Viper is a language and a set of tools developed at ETH [10],
providing an architecture on which new verification tools and prototypes
can be developed simply and quickly. Silicon [11] is one of two backend
verifiers for the Viper project, and is based on symbolic execution.

The Viper intermediate language is the target of a variety of front-end tools,
and is also used to write programs directly. However, users of Viper may
sometimes be confronted with unusually long verification times. It is often
not clear why some inputs take longer than others, and how to ameliorate
the situation.

The goal of this thesis is to investigate performance problems exhibited by
Silicon, and improve the performance if possible.
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Chapter 2

Background

2.1 Viper

The Viper infrastructure is comprised of an intermediate verification lan-
guage, which is also called Viper, automatic verifiers for the intermediate
language, and a number of front-end tools. Figure 2.1 shows an overview of
the Viper infrastructure.

Figure 2.1: An Overview of the Viper Infrastructure
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2. Background

Viper currently has two backend verifiers. Carbon is based on verification
condition generation, whereas Silicon is based on symbolic execution. This
thesis is only concerned with Silicon.

2.1.1 The Viper Language

See [14] for a general introduction to Viper. We’ll quickly go over the fea-
tures that are most important for this thesis.

Permissions

Viper reasons about the heap using field permissions. If a statement, expres-
sion or assertion accesses a field, it needs to hold the appropriate permission
to that field. Access to a field can be asserted using the accessibility predi-
cate acc. Consider the following Viper program:

field f: Int

method m(x: Ref)

requires acc(x.f)

{

x.f := x.f + 1

}

We declare a field f and a method m. m takes a reference x as an argument,
and wants to modify the heap location x.f. To do this, it needs access to x.f,
which is given by the precondition. Omitting the precondition would make
this example not verify, as m would not have the necessary permissions to
modify x.f.

We can also specify quantified permissions. In the following example, we
require access to the field f of every reference in a set.

field f: Int

method m(xs: Set[Ref], x:Ref)

requires forall n: Ref :: n in xs ==> acc(n.f)

{

if(x in xs) {

x.f := x.f + 1

}

}

When we write a quantification, we can also specify what triggers should be
used, by putting it in curly braces like so:

forall n: Ref :: {n.f} n in xs ==> acc(n.f)
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2.2. Symbolic Execution

Functions

Viper allows us to specify functions. Functions in Viper are side-effect free,
meaning they cannot affect the program state. A function definition looks
like this:

function f(...): T

requires A

ensures E1

{ E2 }

It defines a function f with a possibly empty list of arguments, returning a
type T. The precondition, indicated by the requires keyword, is an asser-
tion, whereas the postcondition, indicated by ensures, must be an expres-
sion. Preconditions therefore allow resource assertion, such as requiring
access to a certain heap location, while postconditions do not. The body of
the function is optional. If it is omitted, we have an abstract function. Ab-
stract functions are useful when we only care about the function’s pre- and
postconditions, and not so much about how it actually works.

2.2 Symbolic Execution

Symbolic execution is a technique used to test, debug and verify programs.
Whereas under normal execution, the program would manipulate concrete
values, under symbolic execution the program manipulates symbolic values.
For instance, a statement such as x = y + 1, when executed concretely in a
state where x and y are, say, 5, would produce a new concrete state where x

is now 6. Under symbolic execution, we might instead assign the symbolic
values X and Y to x and y. Executing the statement symbolically in that state,
we would obtain a new state which now records that x has the symbolic
value Y + 1.

One consequence of executing with symbolic values is that we might en-
counter a branch in the program where it is not known whether the branch
will be taken or not. In that case we can execute both branches, one under
the assumption that the branching condition is true, and the other under
the assumption that the condition is false. For example, if we encountered a
branch that depended on a certain variable to be an even number, we would
execute one branch assuming it is indeed even, and the other assuming it
was instead odd.

During symbolic execution, the execution engine frequently needs to know
if certain propositions involving the symbolic values are true or not, for
instance if it needs to determine if an assertion holds or if a branch is known
to be taken or not. Many symbolic execution engines deal with this by
employing an handing these propositions off to an SMT-Solver, a program
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2. Background

(declare-var a Int)

(declare-var b Int)

(assert (= a (+ b b)))

(assert (not (= a 0)))

(check-sat)

Figure 2.2: A simple SMT-LIB script

intended to solve instances of a problem known as Satisfiability Modulo
Theories. In Silicon’s case, the SMT-solver used is Z3 [4].

2.3 Satisfiability Modulo Theories

The Satisfiability Modulo Theories problem, SMT for short, is the problem
of determining if a formula in first-order logic is satisfiable, with respect to
some theory. In pure first order logic, functions and constant symbols are
uninterpreted. A theory adds constrains to certain functions and predicates,
such as the theory of arithmetic, in which function + has a fixed interpreta-
tion in that it adds two numbers together. These theories allow the solver
to use specialized inference methods for each supported theory, which is
more efficient in practice compared to general-purpose theorem proving.
Many SMT-solvers support the use of SMT-LIB, a language for specifying
SMT problems [1]. The SMT-LIB language is based on S-expressions, which
are a simple representation of an abstract syntax tree first used in the Lisp
programming language. An S-expression is either an atom, such as a or
1, or a list of S-expressions enclosed by parentheses, such as (a b c). An
application of a function f to some argument a is written as the list (f a).
S-expressions were chosen because they are easy to parse, and not primarily
for human readability. This is justified by the fact that most SMT-LIB code
is not written by humans but generated by automated tools. In SMT-LIB,
terms are sorted, which means every term has a type. For instance, the
term (+11) has the type Integer. SMT-LIB does not distinguish terms and
formulas syntactically, formulas are just terms with boolean type.

A small SMT-LIB script is shown in figure 2.2. This script asks the solver to
check if the formula a = b + b ∧ a 6= 0 is satisfiable.

2.3.1 E-Matching

E-Matching is one approach to solving the satisfiability of quantified formu-
las such as ∀x.P(x) [9]. E-Matching is generally more useful in finding out
that a certain formula is unsatisfiable. Typically, during proof search the
solver will try and generate instances of the quantified terms, which will
hopefully be the instances needed to prove unsatisfiability. Consider for ex-
ample the following formula, where P is an uninterpreted predicate and f
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2.3. Satisfiability Modulo Theories

an uninterpreted function.

P( f (1)) ∧ ∀x.(P( f (x)) =⇒ x = 0)

If the solver decided to instantiate the quantifier with x = 1, it would learn
that P( f (1)) =⇒ 1 = 0, which, together with the already known fact
that P( f (1)) is true, leads to the contradiction that 1 = 0, and it could
successfully prove the formula unsatisfiable.

It is generally not easy to figure out which instances are going to be useful.
One approach is to use triggers. A trigger for a quantified formula is a term
containing the quantified variables. The quantified term is only instantiated
if a term that matches the trigger is already known. For the above formula,
we might choose P( f (x)) as a trigger. The fact P( f (1)) matches this trigger,
and would lead to the quantification being instantiated with x = 1, leading
to the desired contradiction.

Triggers need to be matched with all current knowledge about equalities
in mind, simply using syntactic equality is often not enough. Consider the
following modification to the above formula:

P(a) ∧ a = f (1) ∧ ∀x.(P( f (x)) =⇒ x = 0)

Looking for a term that syntactically matches the trigger P( f (x)) would not
lead to a match. We could choose f (x) as a trigger, but that might lead to a
lot of unhelpful instantiations if we had other terms involving f that are not
immediately related to the assertion that ∀x.(P( f (x)) =⇒ x = 0). Instead,
we match with respect to the equalities asserted in the current context. In
our example, substituting 1 for x would make P(a) equal to P( f (x)).

In some cases, it’s not possible to come up with a single trigger that con-
tains all the quantified variables. In that case, we can use multitriggers. A
multitrigger is a set of triggers, that together contain all quantified variables,
and have to match simultaneously. It is also possible to specify alternative
triggers, where a match for any of the triggers leads to a new instantiation.

The problem that remains is how to choose the right triggers. We have to
strike a balance between triggers that are too restrictive and triggers that are
too liberal. If we make our trigger too restrictive, we might miss relevant
instantiations. Consider the following formula:

¬(a = b) ∧ f (a) = f (b) ∧ ∀x.(g( f (x)) = x)

The quantification assert that g is the inverse of f . The formula is not sat-
isfiable. If f (a) and f (b) are equal, so are g( f (a)) and g( f (b)). From the
quantification, we can infer that g( f (a)) = a and g( f (b)) = b. We can con-
clude that a = b, which contradicts the asserted fact that ¬(a = b). If we
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2. Background

choose g( f (x)) as the trigger for the quantification, it won’t get instantiated
as none of the other terms match the trigger. Thus the solver never learns
that g( f (a)) = a nor that g( f (b)) = b and will not be able to prove the
formula unsatisfiable.

On the other hand, if we choose a trigger that’s too liberal, we can get a lot
of unnecessary instantiations. It might even happen that a term we learn
from the instantiation again matches the trigger, leading to a new instanti-
ation which again matches the trigger, and so on and so forth. Consider
∀x.(¬(g( f (x)) = g(x)). Say we choose g(x) as a trigger. Any other term
g(a) would match it, leading to the instantiation ¬(g( f (a)) = g(a)). From
this we get the new term g( f (a)), which again matches the trigger g(x).
Such a loop is known as a matching loop.

SMT-LIB supports user-defined triggers under the name patterns. If none is
given, the solver chooses the triggers on its own.
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Chapter 3

Example Collection & Benchmarking

Examples were collected mainly by reaching out to developers of frontend
tools that use the Viper infrastructure. Some of the slower cases from Sili-
con’s own testsuite were also included. All in all, about 80 examples were
collected.

For benchmarking, we used the Viper-Runner tool, with some modifications.
Viper-Runner sets up a Nailgun server, which maintains a JVM and allows
clients to run programs on that JVM. This removes the JVM startup overhead
from the measurements. Viper-Runner then runs Silicon on a number of pre-
defined files and records some statistics such as execution time and exit code.
The modifications to Viper-Runner mainly enabled more customizability of
how exactly a benchmarking session would proceed. The collected examples
have been stored in a bitbucket repository that was shared among students
working on Silicon [3].

3.1 Profiling

For profiling, Silicon was equipped with eBPF tracepoints. eBPF stands for
extended Berkeley Packet Filter, and is a tracing infrastructure for Linux [8].
eBPF evolved out of the original Berkeley Packet Filter, and was originally
used for capturing and filtering network packets, where filters were imple-
mented as programs to run on a virtual machine inside the kernel. eBPF
was introduced with a new virtual machine to make better use of modern
hardware when the design of the original BPF virtual machine started to
become outdated.

eBPF allows us to attach programs to tracepoints, and have these programs
run whenever the associated tracepoint is triggered. As an example, a pro-
gram attached to a memory allocation tracepoint could record a histogram
of allocation sizes to help understand the allocation behaviour of an appli-
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3. Example Collection & Benchmarking

cation. The kernel itself defines a variety of tracepoints, but user programs
can also define tracepoints. User level tracepoints are called User Statically-
Defined Tracing (USDT) probes. For Silicon, a number of USDT probes were
created and put in a shared library, where they can be triggered from within
Silicon.

The eBPF programs for this project were written using bpftrace [5], a high
level language for writing EBPF programs. We modified bpftrace to provide
its output in the form of an S-expression representing an associative list, for
easier use by subsequent scripts.

We chose eBPF for a number of reasons. First, bpftrace has some nice fea-
tures for data collecting, such as builtin support for recording the average,
total and maximum of a value, and builtin histograms. Second, using EBPF,
we can use the same tools for collecting data from Silicon’s side as well as
from a number of other sources. For instance, the JVM itself defines a num-
ber of USDT probes, such as garbage collection or object creation probes.

However, in hindsight the other sources of tracepoints such as the kernel
or the JVM turned out to be of minor interest, and using bpftrace slightly
complicated the benchmarking. eBPF programs are also limited in what
they can do, which is necessitated by the fact that the run in the kernel itself.
To load an eBPF program in the kernel, it has to pass a number of checks by
the in-kernel verifier, such as a termination check and out-of-bounds checks.
This, together with the limited stack space available, means we often have
to work around problems with limited resources and program complexity.
It may have been simpler to just implement the data collection in Silicon
directly.
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Chapter 4

Examining Slow Examples

4.1 Nested Disjunctions

4.1.1 The Example Program

The first example we look at is a constructed one, that is it was built specif-
ically to expose a performance issue. The program consists of a predicate
with a disjunction, and a method that repeatedly uses the predicate. The
program can be parametrited by the number N of non-constant operands to
the disjunction. Furthermore, the disjunction can be parametrized by how
the expression is paranthesised. We call one nesting order the ”slow order”,
with the other one being the ”fast order”. Figure 4.1 is a listing of the pro-
gram, with N = 5 disjunct terms in the fast order. Figure 4.2 shows the slow
version of the predicate for N = 5.

By default, Silicon does short-circuit evaluation for logical And (&&), Or (||)
and Implication (==>). Short-circuiting means that operands to logical con-
nectives are evaluated in order, but only as long as the value of the whole
expression is not determined. For example, when evaluating an expression
like E1 || E2, where E1 and E2 may be arbitrary expressions, E1 is evalu-
ated first, and E2 is only evaluated if E1 evaluates to false. If E1 evaluates
to true, the value of E2 doesn’t matter, since (E1 || E2) = (true || E2)

= true. Thus E2 doesn’t need to be evaluated at all. In order to model
this in symbolic execution, we evaluate E1 as normal, obtaining a symbolic
value e1, and then branch on the value of e1, where one path evaluates E2

under the additional constraint that e1 is false, and the other path continues
without evaluating E2, under the constraint that e1 is true on that path.

4.1.2 Performance

Verification times for both orders are given in Figure 4.3, which should also
make clear why the orders were dubbed ”fast” and ”slow”. Using the slow
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4. Examining Slow Examples

field val: Int

predicate Slow(this: Ref) {

acc(this.val) && ((this.val >= 0 && this.val <= 4) ==>

(this.val == 1 || (this.val == 2 ||

(this.val == 3 || (this.val == 4 ||

this.val == 0)))))

}

method havoc() returns (res:Int)

method test(this: Ref)

requires Slow(this)

ensures Slow(this)

{

unfold Slow(this)

var tmp: Int

tmp := havoc()

this.val := tmp

fold Slow(this)

// repeat

}

Figure 4.1: The program for N = 5, using the fast order

predicate Slow(this: Ref) {

acc(this.val) && ((this.val >= 0 && this.val <= 4) ==>

(((((this.val == 0 || this.val == 1)

|| this.val == 2) || this.val == 3)

|| this.val == 4))

}

Figure 4.2: Only the predicate for N = 5, using the slow order
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4.1. Nested Disjunctions

Verification Time Rendering Time

N Fast Order Slow Order Fast Order Slow Order
4 2.3s 2.8s 0.13s 0.41s
5 2.5s 3.5s 0.16s 0.98s
6 2.8s 6.0s 0.18s 2.8s
7 3.0s 13.2s 0.21s 8.5s
8 3.1s 33.2s 0.24s 24.3s
9 3.2s 99s 0.24s 72.1s
10 3.7s 290s 0.26s 221s

Figure 4.3: Verification times and rendering times for different versions of the program for both
slow and fast order

order makes the verification time increase exponentially. Under the head-
ing ”Rendering Time”, the table also shows the time spent translating terms
from their representation inside Silicon to corresponding SMTLib expres-
sions.

4.1.3 How Silicon Handles Short-Circuiting

The problem with this program is the way Silicon handles short-circuiting
evaluation of || and && operations.

Silicon evaluates an expression E1 && E2 by first evaluating E1, resulting in
a term e1. It then creates a new local variable v. With that, it evaluates
v ==> E2 in a state where the value of v is e1. Evaluating an implication
short-circuits if the first operand is false, so the short-circuiting behaviour
of && is achieved. The local variable was introduced to avoid evaluating
E1 twice. Silicon evaluates the implication to the term (=> e1 e2), and
constructs the term (and e1 (=> e1 e2)) for E1 && E2.

Evaluation of E1 || E2 works similarly. First E1 is evaluated, a fresh vari-
able v with value e1 is introduced, then !v && E2 is evaluated. This allows
us to utilize the short-circuiting behaviour of && to implement the short-
circuiting of ||. Ultimately, Silicon generates the term

(or e1 (and (not e1) (=> (not e1) e2)))

for the expression E1 || E2.

This expansion can lead to large terms if e1 itself is large. If we start eval-
uating disjunctions where the first operand is itself a disjunction, as found
in figure 4.2, the size of the term grows exponentially with the number of
operands.
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4. Examining Slow Examples

Verification Time Rendering Time

N Fast Order Slow Order Fast Order Slow Order
4 2.1s 2.6s 0.14s 0.16s
5 2.3s 2.1s 0.13s 0.13s
6 2.1s 2.1s 0.14s 0.12s
7 2.1s 2.3s 0.13s 0.14s
8 2.3s 2.6s 0.16s 0.16s
9 2.6s 2.6s 0.18s 0.17s
10 2.7s 2.7s 0.19s 0.19s

Figure 4.4: Verification and rendering times for the new approach

4.1.4 A Different Approach

Our approach works as follows: To evaluate an expression such as E1 || E2,
we first decompose it into it’s subexpression, obtaining a list [E1, E2]. If
any of E1 or E2 is itself an ||-expression, it is also decomposed. This is
repeated until the list doesn’t contain any ||-expressions. Thus we end
up with a list of n expressions Ei, where 0 ≤ i < n. These expressions
are evaluated in order, starting at E0. E0 is evaluated to form a term e0.
Execution branches on e0. If e0 is false, we continue evaluating the list, and
if it is true, we stop evaluating. The final term is formed as the disjunction
of the individual ei.

The evaluation of && works analogously.

The timings for this approach are shown in figure 4.4. The decomposition of
nested operations into a flat list completely removes the differences between
the slow and fast orders. As a side effect, a testcase in Silicon’s testsuite,
which Silicon previously failed to verify, now verifies successfully.

This change had little effect on any other files, since very deeply nested
conjunctions or disjunctions don’t really occur in regular programs.

4.2 Partial Snapshot Maps

4.2.1 Background

Encoding of Heap-Dependent Functions

Functions in Viper generally may depend not only on their inputs, but also
on the values of locations in the heap. Such heap-dependent functions are
encoded to the solver by adding an additional argument to the function,
called a snapshot, which represents the symbolic values of heap locations
that the function depends on.
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4.2. Partial Snapshot Maps

Snapshots are encoded for the solver as follows: First we define the sort
Snap for use as the sort of snapshots. We then define unit, which is the
empty snapshot, as well as the functions pair, first and second. pair

combines two snapshots to form a new one, and first and second are used
to deconstruct a pair into its components. We also add a number of functions
named boxS and unboxS, parametrised by a sort S. These are used to embed
values of sort S into Snap, using boxS, and to get them back out again using
unboxS.

Let’s examine how heap-dependent functions are encoded using the follow-
ing example:

field f: Int

field g: Bool

function fun(x: Ref): Int

requires acc(x.f)

requires acc(x.g)

The solver receives the following declaration:

(declare-fun fun (Snap Ref) Int)

Say fun is applied to an argument x of sort Ref, and the symbolic values of
the heap locations x.f and x.g are i and b, respectively. Silicon encodes the
application like this:

(fun (pair (boxInt i) (boxBool b)) x)

Notice that the structure of the snapshot follows from the precondition of
the function. Had we put the two requires clauses in reverse order, the
components of the snapshot pair would likewise be reversed.

Quantified Permissions

Consider the following abstract function:

field next: Ref

function fun(refs:Set[Ref]): Set[Int]

requires forall n:Ref :: n in refs ==> acc(n.next)

Here, the function no longer depends on just a single heap location, but
may access an unbounded number of them. Such an access predicate under
a quantifier is referred to as a quantified permission. Having the function
depend on an unbounded number of heap locations means we can’t apply
it to a fixed number of snapshots like we did above in the case of non-
quantified permissions. One way to solve this problem works as follows:

Instead of wrapping a single symbolic value into a snapshot, when we have
a precondition like the one above, we instead wrap a function fnext : Ref→
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4. Examining Slow Examples

Ref, which, given an argument x: Ref, returns the symbolic value of x.next.
This would allow us to depend on an unbounded number of heap locations.

However, functions at the SMT level are always total, so we might actually
pass more heap locations than we really need. Furthermore, this would
require passing a function to another function, which is not supported at
the SMT level.

To make it work, we need to encode functions as regular values. To enable
us to encode functions fid : Ref→ S, we first introduce a new parametrized
sort at the SMT level, called PSMS, the sort of partial snapshot maps. We then
add two functions, domainid and lookupid. domainid takes as its argument a
PSMS p representing a partial heap, and returns a set of all references x for
which p contains a symbolic value for x.id. The function lookupid, given
a reference x and a partial snapshot map p, looks up the symbolic value of
x.id in the partial heap represented by p.

If we now want to encode a concrete function fid, we can introduce a new
variable sm of sort PSMS that represents fid. We can then constrain the do-
main of fid by placing constraints on domainid(sm). Similarly, we can tell the
solver about the of value fid when applied to a reference r, by asserting facts
about lookupid(sm, r).

With this, we would encode an application like fun(xs), where xs is a set of
references like this:

(fun (boxPSMRef sm) xs)

Here sm represents the function that represents every heap location that fun
depends on.

Silicon also defines when two partial snapshot maps are equal, by emitting
an axiom for every field that a function might require quantified permissions
to. In the case of a field next of sort Ref, the axiom would look as follows,
where we replaced the body of the quantification with a comment describing
its meaning, for the sake of readability.

(assert (forall ((vs PSMRef) (ws PSMRef)) (!

; (domainnext(vs) = domainnext(ws)∧
; ∀x ∈ domainnext(vs) :
; lookupnext(vs, x) = lookupnext(ws, x))
; =⇒ ws = vs

:pattern ((boxPSMRef vs)

(boxPSMRef ws))

)))

It says that, if two PSMs have the same domain, and return the same values
of every argument in that domain, then they are equal.
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4.2. Partial Snapshot Maps

4.2.2 The Necessity of the Equality Axiom

It was found that some Viper files don’t require the equality axiom for PSMs,
even though they make use of heap-dependent functions that use quantified
permissions. Removing the axiom makes most of them verify more quickly,
in some cases up to four times faster. We modified Z3 to record how many
times each quantifier is instantiated during E-matching. This showed that in-
cluding the equality axiom increased the number of instantiations of almost
every other quantifier. This suggests that reducing the number of instanti-
ations of the equality axiom might have a positive performance impact for
these files. We present two different approaches that aim to limit such in-
stantiations, the first one based on enforcing an ordering on PSMs and the
second one based on selectively emitting the axioms if needed.

4.2.3 An Ordering on PSMs

Motivation

One possible reason for the high number of instantiations of the equality
axiom is its symmetry. If we can find two PSMs p and q to instantiate vs with
p and ws with q, we can just as well instantiate vs with q and ws with p. If
we define an ordering �S for every sort PSMS, we could augment the trigger
for the equality axiom with the term (�S vs ws). If we make sure �S is
antisymmetric, we could not instantiate the axiom twice for the same pair
of PSMs.

Implementation

This approach was implemented as follows. The axioms are emitted with
the triggers augmented as described above. Over the course of symbolic
execution, we maintain a list of every variable of sort PSMS we have emitted
so far. Every time a new variable p of sort PSMS is introduced, we assert that,
for every p′ we emitted so far, p′ �S p holds. p is the added to the list of
previously emitted PSMS.

Evaluation

A plot of the performance with �S and without is shown in figure 4.5. As
we can see, it doesn’t really make a difference. We offer the following as
a possible explanation: When the equality axiom is instantiated with two
PSMs p and q, the new terms this instantiation introduces to the E-matching
engine give rise to a number of instantiations of other quantifiers. If the
equality axiom is then instantiated with q and p, relatively few new terms
are considered for E-matching, because of the axiom’s symmetry. Looking
at one of the files where the runtime didn’t change does show a reduction
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Figure 4.5: Runtime comparison on the 100 slowest files. Runtimes that exceeded the timeout
of five minutes are not shown

in the number of instantiations of the equality axiom, but that didn’t have
any impact on the runtime.

Conclusion

All in all, this approach did not seem to have that great of an impact. It did
reduce the number of instantiations, but this alone was not sufficient to lead
to a performance improvement. It may be that the current implementation
is inefficient. The fact that declarations in SMT-LIB persist across (pop)

commands while assertions do not necessitates frequently reemitting a lot
of assertions about �S. It might be more efficient to do it like this: Every
time we declare a new PSMS p, we only assert that p′ �S p, where p′ is the
PSMS that immediately precedes p. This would cut down on the number of
assertions that need to be reemitted after a (pop). In addition we would
assert that �S is transitive. Asserting transitivity in an efficient manner is
not entirely trivial, but possible.
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4.2.4 Dynamically Tightening Triggers

Motivation

Recall how an application of a heap-dependent function is encoded at the
SMT level. Where sm is a partial snapshot map and xs a set of references,
the application fun(xs) looks like this:

(fun (boxPSMRef sm) xs)

With this in mind we can try to come up with tighter triggers for the equality
axioms by including the function application in the trigger. This means that
we now have to emit seperate versions of the axioms for every function, but
each is more specific. For the function fun, we would emit the following
axiom:

(assert (forall ((vs PSMRef) (ws PSMRef) (xs1 SetRef) (xs2 SetRef)) (!

; the body stays the same

:pattern ((fun (boxPSMRef vs) xs1)

(fun (boxPSMRef ws) xs2))

)))

However, tightening the triggers like this makes some tests fail to verify. One
such failing example is this:

field f: Int

function foo(xs: Set[Ref], i: Int): Bool

requires forall x: Ref :: {x in xs} x in xs ==> acc(x.f)

method test(xs: Set[Ref]) {

inhale forall x: Ref :: acc(x.f)

assume forall i: Int :: foo(xs, i)

assert forall i: Int :: foo(xs, i)

}

The assertion on the last line obviously holds, but Silicon can’t prove it if
we use the tigher triggers. We studied the SMT-logs produced during veri-
fication, and couldn’t find a reason why the solver can’t establish that this
holds.

With this in mind, we see that some files don’t require the equality axioms
at all, and verify more quickly without them, some others need them but
can tolerate tighter triggers, and some require the liberal default triggers.
We can’t statically tell which category a particular file falls into. We propose
a mechanism that dynamically retries failed assertions with increasingly lib-
eral triggers, with the hope that we might often get away without the axioms,
and can still have them when we need them.
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Mechanism

Figure 4.6 provides an overview of the retry mechanism. Normally, the
axioms are not emitted at all. If the solver fails to prove a particular assertion,
we immediately emit the axioms with tight triggers and try again. If that’s
still not enough, we emit the most liberal version of the Axiom. If this
still doesn’t work, we accept that the solver can’t show what we wanted to
know. If that happens, Silicon might trigger a state consolidation and try the
assertion again. In that event, we immediately emit the most liberal axioms.

Generating Tighter Triggers

Coming up with the tight triggers is not always as easy as in the case of fun
above. If the funcion precondition contains accesses to multiple fields or con-
ditional expressions, the Snap that is passed on application becomes more
complicated. Fortunately, the structure of the Snap can be determined from
the functions preconditions. If the precondition contains conditional expres-
sions, the function may be passed differently structured Snaps depending
on the condition. Consider the following function:

field f: Int

function fun02(xs: Seq[Ref]): Int

requires |xs| > 10

requires forall k: Int :: 0 <= k && k < 3 ==> acc(xs[k].f)

requires forall k: Int :: 6 <= k && k < 9 ==> acc(xs[k].f)

An application fun02(xs) looks like this at the SMT-Level:

(fun02 (pair

unit

(pair

(boxPSMInt sm1)

(boxPSMInt sm2))) xs)

If we want to emit the axiom with tight triggers for this function, we need to
emit it twice, once each of the partial snapshot maps in the Snap tree. If we
emit the axiom for one of the partial snapshot maps, we need to additionally
quantify over the other. For fun02, one of the axioms would look like this:

(assert (forall

((vs PSMRef) (ws PSMRef) (xs1 SeqRef) (xs2 SeqRef) (s1 Snap) (s2 Snap)) (!

; the body stays the same

:pattern

((fun02 (pair unit (pair (boxPSMInt vs) s1)) xs1)

(fun02 (pair unit (pair (boxPSMInt ws) s2)) xs2))

)))
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(check-sat)

success

unsat

Emit
Axiom

with tight
triggers,

(check-sat)

unknown

success

unsat

Emit
Axiom
with

liberal
triggers,

(check-sat)

unknown

success

unsat

failure
unknown

Figure 4.6: Overview of the Retry Mechanism

Evaluation

Figure 4.7 shows a comparison of runtimes for runs with retrying and runs
without, where just the default axioms were emitted. The two downward
spikes, where retrying paid off significantly, are two constructed examples
that are slowed down by the presence of the axioms. When verifying these
two examples, no retries were necessary at all. We also tried the approach on
a few longer examples from a project about flow verification [6], the timings
are given in figure 4.8. In this case the retrying strategy seems to pay off.
However, Carbon verifies each of these files in under a minute.

Conclusion

The approach seems to work under some circumstances. However, it doesn’t
seem to be beneficial in general. Also, when it does work, it only goes
so far. As we can see with the flow verification examples, there must be
more at play. It also introduces coupling between different parts of the
code. If the structure of Snap trees changes, the method that computes the
tighter triggers would need to be adapted as well. The coupling of the
structure of function predicates and Snap trees in general is not desirable.
The whole approach to heap-dependent function axiomatization is currently
being worked on, and it is not clear yet if this approach will still be relevant
once that is completed.

4.3 Weak Memory Verification

In this section we’ll have a look at the performance problems exhibited by a
couple of examples from a project about weak memory verification [12].

We have a total of 14 files, of which 10 exhibit major performance problems.
A cursory investigation reveals that, for all 10 files, Z3 gets stuck on a (push)

command.
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4. Examining Slow Examples

Figure 4.7: Runtime comparison of the 100 slowest files. Runtimes that exceeded the timeout
of five minutes are not shown

Flow Verification
File Before After
pip.vpr >25m 14m
composite.vpr 19s 13s
list.vpr 12m 5m
dll.vpr 42m 9m

Figure 4.8: Runtime comparison on flow verification files

At first this seems counterintuitive. After all, pushing a new scope on the
assertion stack shouldn’t really cost anything. However, it makes sense to
put in some work to learn all we can from the current stack before pushing
a new scope. That way, when we pop the scope later, we can throw away
everything we learned between the push-pop pair. If we didn’t make the
effort to get everything out of the current stack before pushing, we might
later learn new facts that don’t depend on the topmost scope. We wouldn’t
want to throw those away when we pop the scope, because they are still valid
without the topmost scope. We could try and keep track of what scopes
everything depends on, but it is simpler to just do some work before pushing
a new scope. While this is an implementation detail of Z3, and the problem
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would probably just manifest at the next (check-sat) if Z3 handled pushing
differently, we still feel it is useful to be aware that satisfiability checks aren’t
the only thing where Z3 might take a long time.

4.3.1 What’s Happening

If we look at what Z3 is doing, for example by attaching a debugger and
interrupting it periodically, we see that it spends a lot of time in the E-
matching engine. This, coupled with the rapidly increasing memory con-
sumption, suggest that we may have a matching loop on our hands.

We are going to use the Axiom-Profiler to diagnose these loops. The Ax-
iom Profiler is a ”tool that enables users to analyse instantiation problems
effectively, by filtering and visualising rich logging information from SMT
runs.”[2] It can also detect potential matching loops and offer explanations
as to why they loop. To diagnose a matching loop, we first obtain an SMT
log file from a run of Silicon. We then remove everything that’s in a scope
that will be popped off the stack by the point where the problem occurs. We
also remove all satisfiability checks in the file. These two measures are in-
tended to isolate whatever it is that causes problems for Z3. It also reduces
the size of the resulting Z3 trace. Then we rename every quantifier that still
remains in the file, such that each quantifier has a unique identifier. This is
done so we can easily find the offending quantifiers in the SMT-LIB code if
the Axiom Profiler implicates them in a matching loop. Then we run Z3 on
the modified SMT-LIB script using the command line arguments trace=true
and proof=true, as per the instructions from the Axiom Profiler repository
[13].

Z3 will enter the matching loop, and should be killed quickly, otherwise the
resulting trace might be too large for the Axiom Profiler to handle efficiently.
The Axiom Profiler can then be started on the trace file. In the Axiom Profiler
a bit of manual searching is required to find a quantifier instantiation chain
that’s involved in a matching loop and get the Axiom Profiler to run its
matching loop detection on it.

4.3.2 The Matching Loops

We found matching loops in every one of the 10 problematic files. The loops
can be classified into three classes, depending on the quantifiers involved.
Figure 4.9 shows a representative member of each of the three classes, visu-
alized using the Axiom Profiler’s quantifier blame visualization. A complete
listing of the looping quantifiers for each file can be found in the appendix
in figure .1.

These quantifiers are generated by Silicon. The quantifiers named prog.lx-aux
take their triggers from the Viper program to verify, while the other two get

23
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Figure 4.9: Representatives for each of the three matching loop classes

their triggers from Silicon. We weren’t able to come up with any triggers
for the Viper programs that avoid these matching loops. Looking at the line
numbers embedded in the prog.lx-aux quantifiers, we can see that the self
loops seem to have something to do with the FENCEAcq macro. The loops
between the prog.lx-aux and qp.fvfValDefx quantifiers can similarly be
traced to the fetchUpdate macro.

4.3.3 Trying to avoid the Matching Loops

One thing we can notice is that the problematic prog.lx-aux are always
triggered by a single function application (temp<Ref> r), where r is the
quantified variable. We managed to avoid getting stuck in the scope pushes
by splitting up quantifiers and tightening some of the (temp<Ref> r) trig-
gers. For the quantifier splitting, we transformed any quantifier of the form

(forall (qs) (! (and e0 ... en)))

into

(and (forall (qs) (! e0)) ... (forall (qs) (! e1)))

Additionally, we flattened any nested applications of and, and applied the
transformation from the inside out, so we could completely split nested
quantifiers. This splitting enables selectively tightening the triggers for
some of the quantifiers. Then we take any quantifier that is triggered by
(temp<Ref> r) and check if its body contains an lookup of a predicate in a
predicate snapshot map. What this means is not really important here, we
just looked for a larger term involving (temp<Ref> r) to use as a tighter
trigger. We put this transformation in a script that can sit between Silicon
and Z3 and perform the transformation on the fly. Since this is just a small
experiment that’s very specific to the cases at hand, there’s no need to do it
in Silicon.

We find that applying this transformatin gets all 10 cases past the problem-
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atic scope pushes, and one of them even manages to verify successfully,
although it does take about 15 minutes to do so. The other files appear to
get stuck at some later satisfiability check. It could not be determined if this
was due to matching loops as well, since the Axiom Profiler could no longer
handle the traces produced by Z3, but it seems likely based on inspection un-
der a debugger. This is not surprising as the transformation is very specific
to the matching loops that were found initially.

4.3.4 Conclusion

We showed that the performance problems of a group of examples was
caused by matching loops. We hope our describing the process we used
to find them can be helpful for others that find themselves confronted with
matching loops. Additionally, we showed that these particular loops can be
avoided, but more work is required in this area. Since some of the triggers
involved in the loops came from the Viper programs, it may be beneficial to
try and recognize if a user-provided trigger might interfere with Silicon’s in-
ternal triggers. There has been work on detecting and preventing matching
loops in the Dafny program verifier [7]. The ideas from this paper might be
applicable to Silicon as well.
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Chapter 5

Solver Interface

One potential source of inefficiency is the way the symbolic execution engine
interacts with the SMT solver. This interaction can happen in one of two
ways.

On one hand, the symbolic exection engine can generate formulas and com-
mands in the SMTLib language that the SMT solver can interpret. This text
is sent to the standard input of the solver, and its standard output is read
to receive the result. This method is referred to as the StdIO approach. Po-
tential downsides of this approach include the overhead of first serializing
structured data to text on the symbolic exection side, and then parsing that
text on the solver side.

The other approach is to communicate with the solver via an application
programming interface (API). In this approach, the solver provides bindings
to a variety of its functions. The symbolic execution engine may then control
the solver by calling these functions. Furthermore, the symbolic execution
can internally use the solver’s datastructures for formulas, thus avoiding
any transliteration of data.

Changing Silicon to fully utilize Z3s Java bindings would require a lot of
changes to Silicon if we want to get rid of any needless translations from
Silicons internal datastructures to Z3s internal datastructures. Thus we will
just try and find out if the changes will be worth it without implementing
them. To do this, we make use of another symbolic execution based verifier,
VeriFast. VeriFast already offers us the choice whether to use StdIO or an
API to interact with the solver. We can run VeriFast on its own testsuite and
compare the runtime of text- vs API-based interaction.

A few caveats apply here. First, Z3 doesn’t seem to be the preferred solver to
use with VeriFast, as most of the test cases use the Redux solver by default.
Given that VeriFast supports different solver APIs, it is safe to assume that
it still includes a translation step from its internal format to one that is
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compatible with Z3s API. Furthermore, most of VeriFasts test cases are very
short, which means that the difference in performance between StdIO and
API may be lost in random performance fluctuations. Meanwhile, other test
cases take a long time to verify when using Z3, and some exhibit runtime
differences that are way beyond what could be explained by the differences
caused by StdIO and API.

5.1 Measurement

Measurement was carried out in the following steps

• VeriFast includes a program to run the testsuite, called mysh. mysh was
modified so as to print the time taken by failed testcases, and continue
with the testsuite even if some tests fail. This was necessary because
some of the tests that pass using the Redux solver fail when using Z3.

• The testsuite itself was modified to exclude all testcases that take an
unreasonably long time to execute when using Z3.

• The testsuite recursively executes smaller testsuites. A script to flatten
this recursion into one larger testsuite was written. The script also
modifies all testcases to use either the Z3 API or Z3 over StdIO.

• With that we can run the modified mysh on the modified testsuite and
capture its output for further processing.

5.2 Results

The results for all tested files are shown in figure 5.1. The runtime for StdIO
(tIO) is shown in blue and the runtime for the API (tAPI is shown in green,
both against the axis on the right. The ratio tIO

tAPI
is shown in red against the

left axis. While the ratio suggests that the API was faster, most of the test
cases were very short.

In figure 5.2 we plot the top 30 testcases in terms of how long they took
when using StdIO. As the testcases take longer, the speedup seems to set-
tle around 2x. One interesting outlier is predctors.c, where the API takes a
lot longer. A reason for that might be that the verification proceeded differ-
ently depending on whether StdIO or the API was used. This is supported
by the fact that, when the SMTLib code produced for StdIO was recorded
and compared to an SMTLib log file produced with the API, the code was
different.

All in all, the data suggests that using an API to interact with the solver
could certainly be worth the effort of implementing it.
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5.2. Results

Figure 5.1: Comparison of VeriFast runtimes using StdIO or API
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Figure 5.2: Comparison of VeriFast runtimes using StdIO or API, slower cases only
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Chapter 6

Resource Bounds

6.1 Background

During symbolic execution, it’s often the case that knowing if a particu-
lar proposition about the current state holds would be beneficial for perfor-
mance reasons, but not crucial to the verification outcome. We might for
instance want to check if a branch condition is known to be always true,
which would allow us to skip exploring the path associated with the con-
dition being false. However, if the SMT-solver takes too long to establish
that the condition is always true, we might spend more time waiting for an
answer than it would have taken us to just explore the path in question. In
such circumstances, Silicon uses timeouts to bound the solver’s execution
time. Z3 also offers the option to set a resource limit instead of a timeout.
Z3 assigns resource costs to various basic operations, and will stop if the
accumulated cost exceeds the limit we set. The amount of resources used
between different runs of Z3 on the same SMT-LIB input is always the same,
even on different machines.

6.2 Problems with Timeouts

Verification Instabilities

Using timeouts may cause certain queries to return different results in re-
peated runs, if the time it takes to solve the query is about equal to the time-
out. This won’t affect the verification outcome, but can affect the runtime, if
say a path is sometimes explored because the solver ran into a timeout, and
sometimes skipped because the solver was just fast enough.
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Comparing Different Machines

Timeouts make it trickier to compare the performance of Silicon accross
different computers. Checks that always work on one machine may never
succeed on another, slower computer. For instance, on an Intel i5-4210M, at
2.6 GHz, Z3’s resource counter increases by between 20000 and 30000 units
in 10 milliseconds, whereas it only increases by between 15000 and 19000 in
the same time on an Intel Core2 Duo at 2.53 GHz.

6.3 Implementing Resource Limits

Replacing timeouts with resource limits throughout the codebase should not
take too much work. The main difficulty will be coming up with the right
magic numbers to replace the existing default timeouts. It seems question-
able to base the resource limits too much on the existing timeouts, given
how the amount of resources used in a given time is rather variable across
different machines.
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Chapter 7

Miscellaneous

7.1 Z3’s Parallel Mode

As of version 4.8.0, Z3 features a parallel mode for select theories [15].We
tried enabling it during the initial verification of functions and predicates,
which always uses only one Z3 instance, as well as enabling it as soon as
all but one verification task had finished. However, no difference in per-
formance was found, and looking at Z3’s CPU utilization revealed it never
used more than one core when in parallel mode. This is most likely due to
the theories that Silicon requires not being supported by the parallel mode.

7.2 Bug Fixes

Over the course of this work, a few bugs were found both in Silicon and
other projects.

7.2.1 Silicon

A bug was fixed where some operations on sets and multisets on the viper
level were typed incorrectly, which led to Silicon rejecting valid programs
if they used these operations. As an example, the result type of the subset
predicate A ⊂ B was declared to be another Set when it should have been a
Boolean.

7.2.2 VeriFast

When attempting to compare the performance of using an API or StdIO
for solver interaction (see Chapter 5), it was found that VeriFast’s SMTLib
output did not conform to the SMTLib 2.0 Standard. VeriFast would ren-
der Fractions as 1/2 instead of (/ 1 2), or emit identifiers that were re-
served by Z3, such as store, or not valid according to the standard, such
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as 64bitcount. This was fixed in order to proceed with the measurements,
and the changes have since been accepted into VeriFast.

7.2.3 AxiomProfiler

Some bugs in the AxiomProfiler were found and fixed locally. They have
been brought to the attention of the maintainers.
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Chapter 8

Future Work

This thesis presents a lot of opportunity for follow-up work. We make a
strong case for using Z3’s API instead of using StdIO to communicate. We
imagine that implementing this in the most optimal way would be a rather
large change to Silicon. It could also be done in a more encapsulated manner
by translating Silicon’s internal representation to the representation used by
the API.

Further investigation of the collected examples could be done. This thesis
mainly focused on some and paid comparatively little attention to others.
We want to specifically mention the files provided by Marco Eilers (In the
folder me/ in [3]), as profiling them indicated that they spent comparatively
less time in Z3 than the other examples.

Something else that could be addressed is the issue of matching loops. It
would be nice if Viper could support the user in coming up with appropriate
triggers for their quantifiers.
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Filename Looping Quantifiers
FencesDblMsgPassAcqRewrite.sil prog.l125-aux with itself

prog.l78-aux with itself
FencesDblMsgPass.sil prog.l120-aux with itself

prog.ll71-aux with itself
FencesDblMsgPassSplit.sil prog.l121-aux-309 with itself

prog.l74-aux-309 with itself
FollyRWSpinlock err mod.sil No matching loop
FollyRWSpinlock err.sil prog.l81-aux qp.fvfValDef51

$Snap.$Ref qp.fvfValDef57
prog.l128-aux-390 qp.fvfValDef288
$Snap.$Ref qp.fvfValDef221

FollyRWSpinlockStronger mod.sil No matching loop
FollyRWSpinlockStronger.sil $Snap.$Ref qp.fvfValDef78

prog.l68-aux qp.fvfValDef56
$Snap.$Ref qp.fvfValDef286
prog.l122-aux qp.fvfValDef222

RelAcqDblMsgPassSplit.sil No matching loop
RelAcqMsgPass.sil No matching loop
RelAcqRustARCStronger.sil prog.l73-aux qp.fvfValDef85
RSLLockNoSpin-not-in-appendix.sil qp.fvfValDef115 $Snap.$Ref

prog.l30-aux qp.fvfValDef23
RSLSpinlock.sil $Snap.$Ref qp.fvfValDef87
RustARCOriginal err.sil prog.l75-aux qp.fvfValDef85

prog.l57-aux qp.fvfValDef44
RustARCStronger.sil prog.l74-aux qp.fvfValDef85

prog.l57-aux qp.fvfValDef44

Figure .1: The Matching Loops in the Weak Memory Verification Files
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