
ETH Zürich

Bachelor Project Description

Static Type Inference for Python

Mostafa Hassan
mostafa.hassan@inf.ethz.ch

supervised by:
Dr. Caterina Urban

Marco Eilers

March 17, 2017

1 Introduction

In Python, being a dynamically-typed language, the variables are bound to
their type during execution time. This is appealing because programs have
more type flexibility, and programmers do not need to explicitly write variable
types, leading to shorter and quicker to write code. However, this comes at
the cost of losing many static guarantees of program correctness. Some bugs,
for example, that can be detected early enough in a statically-typed system,
may hide from the developer in a dynamically-typed one, leading to a harder
debugging experience.

Static type inference is the ability to automatically deduce the type of pro-
gram expressions statically from their context (without the need to run the
program), following a predefined static type system, which leads to stronger
guarantees of the program correctness, and makes the programs less error-prone.
See the following example:

def add random (x) :
r = randint (0 , 9)
return x + r

The function add random takes an integer parameter. Assume that another
function that returns a string is accidentally called instead of randint. Depend-
ing only on dynamic type binding, this mistake will hide before the execution,
leading the program to crash at run-time.

In this project, we are designing and implementing a static type inference for
Python 3, as part of Lyra and VerifySCION, two ongoing projects at the Chair
of Programming Methodology at ETH Zurich∗, which aim to develop a static
analyzer and a program verifier for Python programs. In particular, we build
on previous work [1][2], which provides a description of a static type inference
system for a subset of Python, similar to RPython†.

The thesis [1] describes a type system developed for a restricted version of
RPython, and presents a type inference implementation for this type system.
The approach depends on the built-in Python AST module for providing the
abstract syntax tree (AST) for Python programs, where each node in the AST
denotes a construct occurring in the program code. This AST is then traversed
in a depth-first manner to infer the types of its nodes. This implementation de-
scribes the inference for expressions (like numbers, lists, dictionaries, binary and
unary operations, etc.), assignment statements, conditional statements, function
and class definitions, function calls, and class instantiation. However, the ap-
proach has the following restrictions:

1. The type inference is context insensitive. The inferred parameter types
and the return type of a function are independent of the context the
function is being called in. See the following example:

class A:

∗http://www.pm.inf.ethz.ch/research
†https://en.wikipedia.org/wiki/PyPy#RPython

1

http://www.pm.inf.ethz.ch/research
https://en.wikipedia.org/wiki/PyPy#RPython

def f oo (s e l f) :
return 1

class B:
def f oo (s e l f) :

return ”some s t r i n g ”

def f (s ome c l a s s) :
return some c la s s () . f oo ()

The inference presented in [1] will infer the return type of the function f

to be either an integer or a string, independent of which class is passed as
its argument. So with a function call such as x = f(A), the type of x is
inferred to be either an integer or a string, where in fact it should be just
an integer.

2. The variables are not allowed to change type. For example, the following
is not allowed:

x = 1
x = ”some s t r i n g ”

x is first bound to an integer type, so it is not possible to rebind it to a
string.

3. There is no multiple inheritance.

4. Class definitions have to be written before any statement that uses them.

def f () :
x = A()
x . a ()

class A:
def a (s e l f) :

print (” He l lo World ! ”)

f ()

The above code will raise an error because the definition of the class A

comes after its instantiation in the function f.
It is also not mentioned in [1] how to handle the same situation with
function calls.

2

2 Core goals

1. Implement the work presented in [1] for Python 3.

The thesis [1] describes ideas for implementing a static type inference for
RPython. However, it omits a lot of implementation details. It also does
not describe how to handle the subtype relationships. The first goal is to
provide a complete implementation for the ideas described in [1], targeting
Python 3.

2. Extend the implementation to include iterators, tuples and gen-
erators. The paper [2] mentions these constructs, but no implementation
details are given in [1].

3. Lift the class and function order restriction (d). That is to allow
the classes and functions to be written in no specific order, and allow
statements to use subsequent class and function definitions.

4. Evaluate the implemented platform with multiple Python code
examples. We may use already existing PyPy‡ or SCION§ code.

3 Possible Extensions

1. Extend the inference to enable multiple inheritance.

Within a complex inheritance hierarchy, the diamond problem arises.
Python 3 uses the C3 linearization¶ algorithm to establish a method
resolution order, that is to obtain the order in which methods and at-
tributes are inherited in the presence of multiple inheritance. This method
resolution order has to be statically resolved during the type inference.

2. Extend the inference to allow variables to change type (i.e., lift
restriction (a)) by associating variable types to program points.

3. Extend the inference to also target Python 2.

There are many differences between Python 2.x and 3.x. For example, the
new-style classes‖ have been introduced in Python 2.7, and the old-style
classes have been removed in Python 3. There are also many other differ-
ences that affect the print function, integer division, exceptions handling,
etc. We consider expanding the scope the project to include Python 2 as
well.

4. Extend the inference to be context-sensitive. Refering back to the
example given in restriction (a), the type of function call f(A) should be
only an integer.

‡https://pypy.org/index.html
§https://www.scion-architecture.net/
¶https://www.python.org/download/releases/2.3/mro/
‖https://www.python.org/doc/newstyle/

3

https://pypy.org/index.html
https://www.scion-architecture.net/
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/doc/newstyle/

4 Core Goals Timeline

By Should be done
3/10/2017 Provide class and behaviour diagrams.
3/14/2017 Write initial class structure.
3/16/2017 Develop a strategy to tackle subtype relationships.
3/31/2017 Implement the inference for expressions, including but not limited

to: numbers, lists, tuples, binary operations, etc.
4/14/2017 Implement the inference for statements, including but not limited

to: return, for, while, if, etc.
4/21/2017 Implement support for function definitions and calls.
4/28/2017 Implement support for class definitions and instantiations.
5/05/2017 Wrap the whole project pipeline and test with code samples.

References

[1] Eva Maia. Inferência de tipos em Python. (Portuguese) [Inference of types
in Python]. University of Porto, 2010.

[2] Eva Maia, Nelma Moreira & Rogério Reis. A Static Type Inference for
Python. University of Porto.

4

	Introduction
	Core goals
	Possible Extensions
	Core Goals Timeline

