
Generalised Verification for
Quantified Permissions

Master Thesis

Nadja Müller

Supervised by Alexander Summers,

Prof. Dr. Peter Müller

Department of Computer Science

ETH Zurich

September 29, 2016

Contents

1 Abstract 1

2 Introduction 1
2.1 Outline . 2

3 Background 2
3.1 Permissions . 3
3.2 Program State . 4
3.3 Types and Domains . 4
3.4 Fields . 5
3.5 Methods . 5
3.6 Functions . 5
3.7 Recursive Predicates . 5
3.8 Magic Wands . 6
3.9 Quantified Field Permissions 7

3.9.1 Verification Condition Generation and Quantified Field
Permissions . 8

3.9.2 Symbolic Execution Rules for Quantified Field Permis-
sions . 11

4 Generalising Quantified Field Permissions in Carbon 18

5 Quantified Predicate Permissions 21
5.1 Verification Condition Generation for Quantified Predicate Per-

missions . 22
5.2 Symbolic Execution . 26

5.2.1 Symbolic Heap Representation 27
5.2.2 Quantified Inhaling . 27
5.2.3 Quantified Exhaling 28
5.2.4 Inhaling and Exhaling Single Predicate Permission . . 30
5.2.5 Treatment of Symbolic Values 32
5.2.6 Unfold . 33
5.2.7 Fold . 34

5.3 Implementation . 35
5.3.1 Issues . 35

6 Quantified Magic Wands 37

I

7 Combinations of Quantifiers 38
7.1 Rewriting Rules . 40
7.2 Example . 41
7.3 Implementation . 42

8 Nested Quantifiers 42
8.1 Multiple Quantifier Variables 43
8.2 Rewriting Nested Quantified Permissions 46

9 Evaluation 47

10 Conclusion an Future Work 49

11 Appendix 51
11.1 Correction for wilcard support within Quantified permissions

in Carbon . 51
11.2 Examples . 51

II

1 Abstract

The verification infrastructure Viper supports quantified field permission of
the form forall x : T :: c(x)⇒ acc(e(x).f, p(x)). The quantifier may only de-
pend on one variable and express permissions to a set of fields. Viper includes
two verifiers. Carbon is based on verification condition generation, Silicon on
Smallfoot-style symbolic execution. In this report, we present approaches for
both types of verifiers to generalise the support for quantified permissions.
We present a solution to adapt the approaches for quantified field permis-
sions to support quantified predicate and magic wands permissions, as well
as nested quantifiers. We also present rewriting rules for combining pure
and permission-based quantifiers.We implemented both quantified predicate
permissions and combinations of quantifiers by conjunction and implication
in Carbon and Silicon.

2 Introduction

In order to verify heap-manipulating programs with shared mutable data
structures, separation logic [1] and implicit frames [2] associate an access
permission with each memory location to reason about its state. Dynamic
data structures may depend on a potentially unbounded set of memory loca-
tions. One way to define access rights to such a structure is to introduce re-
cursive predicates defining the permissions needed. There are however access
patterns which cannot be conveniently defined as a predicate, for example a
random access pattern in an array.

The paper Automatic Verification of Iterated Separating Conjunctions
using Symbolic Execution [3] presented a solution to define permissions to
a set of field locations regardless of the access pattern. It introduces new
representation for storing the permission and symbolic values for a set of
fields simultaneously, as well as symbolic rules to evaluate specific values,
remove and add permissions to quantified field chunks.

The approach was implemented in the verification infrastructure Viper
[4]. It includes several front-ends which translate the given programs to
Viper’s intermediate language. These programs can be verified with Silicon,
which is based on symbolic execution, and Carbon, a verification condition
generator. There are currently three features of Viper handling unbounded
heap structures. Using predicates, it can handle data structures which are

1

recursively defined, magic wands [5] can be used to keep track of partial
data structures and quantified field permissions [3] allow us to express data
structures ignorant of the way they are later accessed.

This project presents the generalisation of the current support of quanti-
fied permissions implemented in Viper. Currently, the approach mentioned
supports quantified permissions of the following structure:

forall x : T :: c(x)⇒ acc(e(x).f, p(x)), (1)

where f is a field of any type, c(x) is a Boolean expression,e(x) an injective
reference-typed expression and p(x) a permission expression.

As a generalisation, we introduce new approaches adapting this solution
to allow quantified permissions for predicates [6] and magic wands [5] in-
stead of fields, as well as nested quantifiers. Further we present rewriting
rules to get rid of the fixed structure of quantified field permissions, allow-
ing expressions not defining a condition c(x) and combinations of pure and
permission-based quantifiers.

2.1 Outline

The following section presents an overview of Viper, including the approach
integrated for quantified field permissions. Section 4 shows some changes
to the treatment of quantified field permissions, including the support of
user-given triggers in Carbon. The adapted approach for quantified predi-
cate permissions is introduced in Section 5, the approach for quantified magic
wand permissions in Section 6. The rewriting rules for combinations of quan-
tifiers are defined in Section 7. The adaption necessary to support nested
quantifiers is described in Section 8. Finally, we evaluate the performance of
the implementation of quantified predicates and combinations of predicates
in Section 9. Additionally, the appendix holds a few examples of programs
newly supported in Viper.

3 Background

In this chapter we give an overview of the theory needed to understand the
proposed generalisation of quantified permissions. The generalisation is in-
tended as an extension to the support for quantified fields already integrated
in Viper [4][7].

2

Viper is a verification infrastructure for permission-based reasoning and
enables the development of program verifiers based on permission logics. It
is designed to facilitate the implementation of verification techniques for pro-
grams, allowing developers to focus on the encoding of higher-level language
features into its intermediate verification language. It includes an intermedi-
ate verification language, two automatic back-end verifiers Carbon and Sil-
icon, as well as several front-ends translating other programming languages
to Viper for verification. For the generalisation we allow new quantified ex-
pressions in Viper. To support the verification of these, we adapted both
Carbon and Silicon.

Carbon is based on verification condition generation. It translates the
given Viper program to Boogie [8], which proves the generated code. In
Carbon, the state is modelled by maps representing the heap and permissions
held.

Silicon is based on the SMT solver Z3 [9] and Smallfoot-style Symbolic
Execution [10]. The symbolic state is stored in heap chunks, holding permis-
sion and values for specific locations, and path conditions, which represent
the properties obtained while evaluating or executing commands.

A Viper program consists of global declarations of fields, predicates, func-
tions, methods, and custom domains. To represent unbounded heap struc-
tures, Viper supports the following concepts: Predicates, Magic Wands and
Quantified Field Permissions.

3.1 Permissions

Permission logics were designed to define which locations of a heap are acces-
sible. Viper works with fractional permissions with values between 0 and 1.
Any permission greater than 0 grants read access to the corresponding field
location, whereas 1 denotes full permission, which additionally allows write
access to a location. In Viper, there are various constructs for representing
permission. The one most used is the accessibility predicate acc(e1.f, e2),
denoting permission to a field location f of the reference denoted by e1. The
permission amount is expressed by e2. If the permission amount is omitted,
the permission amount defaults to full permission. If an expression does not
include any permission expression, it is called pure.

3

3.2 Program State

The program state of Viper includes the current permissions held, as well
as the assignments to program variables. The state can be manipulated by
assertions, which may only depend on locations to which permission is held.
The process of verifying certain properties and updating the state during the
execution of expressions can be reduced to checking, inhaling and exhaling
assertions. Inhaling is equal to adding the designated permission amount if
the expression represents a permission (e.g. acc(e.f)), or assuming a prop-
erty if the assertion is pure. Exhaling translates to removing permission or
asserting the properties specified. If the permission to a location is lost, we
also lose information about its value. Carbon uses maps to describe the heap
and permissions held. In Silicon, the state representation includes a set of
heap chunks and path conditions.

3.3 Types and Domains

The built-in primitive types of Viper consist of integers (Int), Boolean expres-
sions (Bool), references (Ref) and permissions (Perm). Additionally, poly-
morphic sequences such as Seq[T] and sets Set[T] are included. Domains
further allow the definition of custom domain types, which may include ax-
ioms and functions to define their properties. An example of a domain can
be seen in Figure 1.

f i e ld va l : Int

domain IArray {
function l o c (a : IArray , i : Int) : Ref
function l en (a : IArray) : Int

axiom l en nonneg {
f o ra l l a : IArray : : l en (a) >= 0

}
}

Figure 1: Example of a domain. The domain IArray represents an integer
array and defines two function: loc returns the location of a specific value
given an array and index, len the length of the given array. In addition to
these functions, the axiom len nonneg defines that the length of an array
has to be positive. The value of a location corresponds to loc(a, i).val.

4

3.4 Fields

Fields are globally defined and have a designated type. On declaration, the
field exists for all references. In order to read a field value, a permission
amount greater than 0 is necessary. When writing to a field, full permission
is required.

3.5 Methods

Methods consist of a name, arguments (potentially including out-parameters),
pre- and postconditions, as well as a method body. The preconditions must
include sufficient permissions to allow all heap dereferences used in the method
body. During verification, the verifiers inhale the preconditions and try to
prove the postconditions after the execution of the body. If a method call
is executed, the called method’s precondition is exhaled. Subsequently, we
gain the information defined by the postcondition by inhaling.

3.6 Functions

Similarly to methods, functions consist of a name, preconditions, postcondi-
tions and optionally a body. Contrary to methods, the expressions within the
body are restricted and must be pure. Predicates may be used in assertions.

3.7 Recursive Predicates

Recursive Predicates [11] are typically used to specify linked data structures
such as lists and trees. A predicate definition consists of a name, list of
formal parameters and a body. Since predicates can be recursive, as in Fig-
ure 2, and such a predicate could potentially be unrolled endlessly, Viper
treats predicate instances as opaque. Permissions and the logical facts en-
tailed by a predicate’s body are not directly available to the verifier. We use
ghost operations to obtain the logical facts from a predicate instance and
vice versa. A predicate instance may be exchanged for its body via unfold,
whereas fold exchanges the properties of the body for an instance of the pred-
icate. Additionally, unfolding additionally allows the temporary unfolding of
a predicate while evaluating a specified expression. An example using these
ghost operations can be found in Figure 3.

5

f i e ld va l : Int
f i e ld next :Ref

predicate l i s t (r :Ref)
{

acc (r . va l) && acc (r . next) && (r . next != null ==> l i s t (r . next
))

}

Figure 2: example of a recursive predicate definition

3.8 Magic Wands

A magic wand A −∗ B is a binary connective, which guarantees that if the
given left-hand assertion A is satisfied in any state, then that assertion and
the magic wand instance can be exchanged for the right-hand assertion B.
The concept of magic wands was already mentioned in the first papers of
separation logic [1] and can be used to keep track of partial data structures
during a traversal.

A magic wand instance is created using its so-called footprint, which is a
subset of the current state that satisfies the wand’s semantics. The footprint
itself is not directly determined by its definition. The strategy of selecting a
footprint in Viper is to include all permission required by the wands right-
hand side, which we cannot prove to be provided by the wand’s left-hand
side [5].

As for the concept of predicates, automatically reasoning about magic
wands has been proven to be undecidable [12]. As a consequence, Viper
treats an instance of a magic wand as opaque. Exchanging the left-hand
side of a magic wand with its right-hand side can be done with the ghost
operation apply. It is desugared to the following statements [5]:

apply A−∗B 7−→
exhale A−∗B
exhale A
inhale B,

where 7−→ represents a translation or rewriting step.
A second ghost operation package A −∗ B calculates a suitable footprint

for the instance A−∗B. The operation fails, if no such footprint can be found.

6

f i e ld f : Int

predicate pred (r :Ref)
{

acc (r . f)
}

method m1(r :Ref)
requires acc (pred (r))
ensures acc (pred (r))
ensures unfolding pred (r) in r . f == 0
{

unfold pred (r)
r . f := 0
fold pred (r)

}

Figure 3: Simple predicate example. By unfolding the predicate in line 14,
we lose the access right to the predicate instance pred(r) and gain the access
rights to the field r.f. This allows us to write to the field. By folding the
predicate again, we regain the access rights to the predicate, which allows
us no exhale the predicate in line 10. Unfolding temporarily unfolds the
predicate pred(r), after which we obtain the permission to read the field r.f,
and also the value of that field. As a result, the assertion r.f == 0 evaluates
to true.

Otherwise, the footprint is then exchanged for a new wand instance.

3.9 Quantified Field Permissions

The implementation of the quantified field permissions support depends on
the verifier used. We first summarise how quantified field permissions are sup-
ported in the verification generator Carbon, and then explain the approach
for symbolic execution, as presented in the paper Automatic Verification of
Iterated Separating Conjunctions using Symbolic Execution [3].

The currently supported shape of quantified field permission expression
is defined as:

forall x : T :: c(x)⇒ acc(e(x).f, p(x)) (2)

7

The Boolean expression c(x) denotes a condition, under which a set of
fields, defined by the reference-typed expression e(x) and the field f , gain
the permission amount expressed in the permission-typed expression p(x).
An example of a quantified field permission is displayed in Figure 4.

f i e ld f : Int

method m(r : Ref , xs :Seq [Ref])
requires r in xs
requires fora l l x : Ref : : x in xs ==> acc (x . f)
{

r . f := 4
}

Figure 4: Quantified field permission example. By inhaling the permission
to the field f for all references in the set xs, we gain the permission necessary
to set a new value for the field r.f .

3.9.1 Verification Condition Generation and Quantified Field Per-
missions

In Carbon, field permissions are represented in the map Mask. Inhaling a
field permission x.f updates the permission map for the specified location
denoted by Mask(x, f) and assumes that the reference pointing to the field
is non-null. In order to support quantified field permissions, it is therefore
sufficient to introduce new translations for inhaling and exhaling quantified
field permissions, which update the permission map Mask for the denoted
set of fields. Inhaling and Exhaling field permissions, as well as reading or
writing to a field is done as before.

Inhaling a Quantified Field Permission: In order to model the changes
to the permission map Mask as a bulk update, we create a new map qpMask
at the beginning of the translation, which replaces Mask after completing the
inhale operation. The permission amount of the new map needs to be defined
for both updated and unaffected locations. This is done by translating the
quantified field permission to several Boogie quantifiers.

Potentially, the assumption defining the values of the permission mask
could be defined as assume ∀x : T :: {?} c(x) ⇒ qpMask[e(x), f] =

8

Mask[e(x), f] + p(x), where the expression within the curly brackets rep-
resents the trigger, which allows this property for a specific value x′ of type
T to be available to the Boogie verifier. In Boogie, a trigger has to con-
tain the quantifier variable and cannot only consist of a variable itself. The
type of expressions allowed as a trigger is restricted as well. In order to
trigger the permission update for all Mask accesses qpMask[r, f], this ex-
pression should be the trigger of the given expression, but is not a valid since
qpMask[r, f] does not contain the quantifier variable x. In order to use this
trigger, we express the same property for all references r, which results in an
assumption of the following form: assume ∀r : Ref :: {qpMask[r, f]} · · · ⇒
qpMask[r, f] = Mask[r, f] + p(. . .).

In order to translate the quantified field permission, we introduce an
inverse function e−1, which maps a location r to the corresponding value of
the original quantifier variable x of type T . Using the inverse function we
can check, whether a location is altered by the quantifier by evaluating the
condition as c(e−1(r)). The gained permission is equal to p(e−1(r)). The
introduction of the inverse function requires, that the expression e(x) has to
be injective. When inhaling a quantified field permission, the injectivity of
e(x) is assumed along with the property, that all references affected by the
quantifier are non-null.

The exact translation can be seen in table 2.

inhale forall x : T :: c(x)⇒ acc(e(x).f, p(x)) 7−→
Let qpMask be a new Mask
havoc qpMask
c := eval(c)
e := eval(e)
p := eval(p)

/* assert e(x) is injective */
assert ∀y1 : T, y2 : T :: {} y1 6= y2 ∧ c(y1) ∧ c(y2)⇒ e(y1) = e(y2)

/* Inverse Assumptions */
Let e−1 be a fresh function of type T → Ref
assume ∀x : T :: {e(x)} c(x)⇒ e−1(e(x)) = x
assume ∀r : Ref :: {e−1(r)} c(e−1(r))⇒ e(e−1(r)) = r

/* all receiver is non-null */

9

assume ∀x : T :: {} c(x)⇒ e(x))! = null

/* define updated permission */
assume ∀r : Ref :: {Mask(r, f)} {qpMask(r, f)} {e−1(r)}

c(e(r))⇒ qpMask(r, f) =Mask(r.f) + p(e−1(r))

/* define independent permissions */
assume ∀r :Ref :: {Mask(r, f)} {qpMask(r, f)}{e−1(r)}

¬c(e−1(r))⇒ qpMask(r, f) = Mask(r, f)
assume ∀o :Object , fo :Field :: {Mask(o, f)} {qpMask(o, f)}

(fo! = f)⇒ qpMask(o, f) = Mask(o, f)
Mask := qpMask

Table 2: Translating quantified field inhale operation.
The triggers are for the given forall expressions are in-
cluded within curly brackets. For the expressions as-
suming non-null receivers and injectivity, there were no
triggers defined. In our adaption of this approach, we
included triggers for both assumptions. The updated
translation can be seen in in Figure 12.

Exhaling a Quantified Field Permission: Exhaling a quantified field
permission forall x : T :: c(x) ⇒ acc(e(x).f, p(x)), includes two checks.
First, we assert that the expression e(x) is injective. Then, we check that we
possess the permission needed for exhaling the permission for all locations.
If both checks pass, we introduce the inverse function and express the per-
missions of the map analogous for inhaling a quantified field permission. The
translation is displayed in table 3.

exhale forall x : T :: c(x)⇒ acc(e(x), p(x)) 7−→
Let qpMask be a new Mask
havoc qpMask
c := eval(c)
e := eval(e)
p := eval(p)

/* assert e(x) is injective */

10

assert ∀y1 : T, y2 : T :: {} y1 6= y2 ∧ c(y1) ∧ c(y2)⇒ e(y1) = e(y2)

/* sufficient permission */
assert ∀x : T :: {} c(x)⇒Mask(e(x), f) ≥ p(x)

/* Inverse Assumptions */
Let e−1 be a fresh function of type T → Ref
assume ∀x : T :: {e(x)} c(x)⇒ e−1(e(x)) = x
assume ∀r : Ref :: {e−1(r)} c(e−1(r))⇒ e(e−1(r)) = r

/* define updated permission */
assume ∀r : Ref :: {Mask(r, f)} {qpMask(r, f)} {e−1(r)}

c(e(r))⇒ qpMask(r, f) =Mask(r.f)− p(e−1(r))

/* define independent permissions */
assume ∀r :Ref :: {Mask(r, f)} {qpMask(r, f)}{e−1(r)}

¬c(e−1(r))⇒ qpMask(r, f) = Mask(r, f)
assume ∀o :Object , fo :Field :: {Mask(o, f)} {qpMask(o, f)}

(fo! = f)⇒ qpMask(o, f) = Mask(o, f)
Mask := qpMask

Table 3: Translating quantified field exhale operation.
The missing triggers indicated by empty braces are added
in the adapted translation, which is defined in Table 13.

3.9.2 Symbolic Execution Rules for Quantified Field Permissions

A solution to supporting quantified field permissions in symbolic execution
is presented in Automatic Verification of Iterated Separating Conjunctions
using Symbolic Execution [3]. The approach presented introduces a new
type of heap chunk, new rules for inhaling and exhaling single and quantified
field permissions, as well as for reading and writing to these field values.

Quantified Field Chunk: The permission amount and value of a unquan-
tified field is stored in the heap as a field chunk. A field chunk (r.f) 7→ [v, p]
is a defined for a symbolic reference r and a field f , which is mapped to the

11

location value v and the permission amount p. The value v has the same
type as the field f , whereas p is a permission.

To support quantified field chunks, a new type of chunk needed to be
defined, which can hold a potentially unbounded set of references and val-
ues. A straightforward implementation of the expression forall x : T ::
c(x)⇒ acc(e(x).f, p(x)) would result in an heap chunk of the form (x, f) 7→
[v(x), c(x)?p(x) : 0)], where x is of type T. The new chunk is defined for
all values of type T. The permission and value depend on x. The value v
is changed to a value map storing the known values of the set. In order to
evaluate the permission or value of a location r.f , we would be forced to
check for each chunk, whether there exists an x, where e(x) evaluates to the
reference r.

To avoid such existential queries, the representation is adapted to the
form (r.f) 7→ [v(r), p(r)], where r is of type Ref. To translate the initial
permission expression to that form, we again define an inverse function,
which maps a location reference to the value of the corresponding quanti-
fier variable of Type T. The resulting quantified field chunk has the form
r.f 7→ [v(r), c(e−1(r))?p(e−1(r)) : 0)].

To guarantee the existence of an inverse function, it is necessary that the
expression e(x) must be injective. This does not restrict the data structures
that can be handled by this approach as long as correctly specified.[3]

Quantified Inhaling: Inhaling a quantified field expression generates a
new quantified heap chunk. In order to do that, we first evaluate the con-
dition, receiver expression and permission expression. As a next step we
introduce the inverse function of the expression e(x), which is only partially
defined for the values where the given condition c(x) applies. The inverse
function is defined by adding two conditions to the path conditions. As a last
step, we generate the new quantified heap chunk using the previously defined
inverse function and add it to the heap. As for inhaling a field permission,
the value of the field location is initially unknown. The value map, storing
the values of the references included in the quantified field chunk, is initially
empty.

The symbolic execution rules are presented in Table 4.

inhale (h0, π0, forall x : T :: c(x)⇒ acc(e(x).f, p(x)) {
Let y be a fresh symbolic constant of type T
/* Symbolically evaluate source-level expressions */

12

var (π1, c(y)) := eval(h0, π0, c(y))
var (π2, e(y)) := eval(h0, π1 ∪ {c(y)}, e(y))
var (π3, p(y)) := eval(h0, π2, p(y))
var π4 := π3\{c(y)}

/* Introduce inverse function */
Let e−1 be a fresh function of type Ref⇒ T
var π5 := π4 ∪ {∀r :Ref ·c(e−1(r))⇒ e(e−1(r)) = r}
var π6 := π5 ∪ {∀x : T · c(x)⇒ e−1(e(x)) = x}

Let v be a fresh value map
var h1 := h0 ∪ {r.f 7→ [v(r), c(e−1(r))?p(e−1(r)) : 0]}
return (h1, π6)

}
Table 4: These symbolic execution rules for inhaling a
quantified field permission correspond to the rules de-
fined in Figure 2 of the paper Automatic Verification of
Iterated Separating Conjunctions using Symbolic Execu-
tion [3]. The function eval is used to evaluate an ex-
pression in the given symbolic state. An evaluation may
update the path variables, and yields the resulting sym-
bolic expression. The symbolic value of the evaluated
condition is added temporarily to the path condition for
the evaluation of e(y) and p(y).

Quantified Exhaling: Exhaling again starts by evaluating the condition,
receiver expression and permission expression. As seen for verification con-
dition generation, we check the injectivity of the receiver expression. After-
wards, we introduce the inverse function as before and proceed to remove
the permission from the heap.

exhale (h0, π0, forall x : T :: c(x)⇒ acc(e(x).f, p(x)) {
/* Evaluate Arguments (as above) */
[. . .]

/* Check injectivity of receiver expression */
Let y1, y2 be a fresh symbolic constants of Type T

13

check π4 |= c(y1) ∧ c(y2) ∧ e(y1) = e(y2)⇒ y1 = y2

/* Introduce inverse function (as above) */
[. . .]

/* Remove Permissions */
var h1 := remove (h0, π6, f, (λr · c(e−1(r)) ? p(e−1(r)) : 0))
return (h1, π6)

}
Table 5: These symbolic execution rules for exhaling a
quantified field permission correspond to the rules de-
fined in Figure 2 of the paper Automatic Verification of
Iterated Separating Conjunctions using Symbolic Execu-
tion [3]. The check instruction is translated to a query,
which is sent to the SMT solver for verification. The
function remove is defined in Table 6.

Removing the permission will raise an error, if not enough permission
is held. Otherwise the function will return the updated heap. Since we
create a new quantified field chunk for every inhale, the permission required
may be held in multiple chunks simultaneously. When removing a certain
permission amount, we first filter all quantified chunks with the required
field f . We proceed to remove permissions greedily until we removed the
required permission amount. Subtracting the permission for a specific chunk
is expressed by defining introducing a function qcurrent. After updating the
permission for all quantified field chunks of field f , we check that sufficient
permission was taken and return the updated heap. The symbolic execution
rules for the function remove are displayed in Table 6.

remove (h0, π0, f, q) {
Let hf ⊆ h0 be all chunks in given state for field f
/* Processed chunks */
var h′f := ∅
/* Permission still to take */
var qneeded := q
foreach r.f 7→ [vi(r), qi(r)] ∈ hf do:

/* Determine the permissions to take from this chunk */
var qcurrent := (λr ·min(qi(r), qneeded(r)))

14

/* Decrease the permissions still needed */
qneeded := (λr · qneeded(r)− qcurrent(r))

/* Add an updated chunk to the processed chunks */
h′f := h′f ∪ {r.f 7→ [vi(r), (qi(r)− qcurrent(r))]}

/* Check that sufficient permissions were removed */
check π0 |= ∀r · qneeded(r) = 0
return (h1\hf) ∪ h′f

}
Table 6: These symbolic execution rules for removing
permission of a quantified field expression correspond to
the rules defined in Figure 3 of the paper Automatic Ver-
ification of Iterated Separating Conjunctions using Sym-
bolic Execution [3]. The argument f represents a field, q
contains the permission amount needed per reference.

Inhale Field Permission: In order to use the remove function defined,
we need to adapt the approach for inhaling and exhaling unquantified field
permissions. In Silicon, inhaling a single field permission is only adapted if
the field is ever used in a quantified field permission. In that case, inhaling
a field permission produces a quantified field permission as well. To express
the field permission acc(e.f, p) as its equivalent quantified chunk, we define
its permission as p if the reference is equal to the location specified by the
expression e. The updated inhaling rules are presented in Table 7.

inhale (h0, π0, acc(e.f, p) {
/* Symbolically evaluate source-level expressions */
var (π1, e) := eval(h0, π0, e))
var (π2, p) := eval(h0, π1, p)

Let v be a fresh value map
var h1 := h0 ∪ {r.f 7→ [v(r), }(r = e) ? p : 0]
return (h1, π2)

}

15

Table 7: The symbolic execution rules for inhaling a field
permission, where the field is quantified at some point
during the program, is adapted in order to represent all
permission to a quantified field as quantified chunks.

Exhale Field Permission: Exhaling a single field permission acc(e.f, p)
is handled similarly. If a field is quantified, we reuse the function remove,
defining the required permission as p if the location is equal to e.f and 0
otherwise. The updated exhaling rules are presented in Table 8.

exhale (h0, π0, acc(e.f, p) {
/* Evaluate Arguments (as above) */
[. . .]

/* Remove Permissions */
var h1 := remove(h0, π2, f, (λr · (r = e) ? p : 0))
return (h1, π6)

}
Table 8: Analogous for inhaling a field permission, the
symbolic execution rules for exhaling a field permission
are adapted, if the field is quantified at some point during
the program.

Evaluation The value information of a quantified field chunk is stored in its
value map v. It represents a under-specified total function and is defined per
reference. A symbolic heap may consist of multiple chunks for the same field.
To provide a simple translation for field-lookups, the function summarise
was introduced. Given a field f , it generates a value map, containing the
values for all references defined, as well as the permission expressions held
per location. Summarise only works with the defined heap chunks and does
not consider path conditions. The symbolic execution rules are defined in
Table 9.

summarise (h0, f) {
Let hf ⊆ h0 be all quantified chunks in the given heap for field f

16

Let v be a fresh value map
/* Value summary path conditions */
var def := ∅
/* Permission summary */
var perm := λr · 0
foreach (r.f 7→ [vi(r), qi(r)]) ∈ hf do:

def := def ∪ {∀r · 0 < qi(r)⇒ v(r) = vi(r)}
perm := λr · (perm(r) + qi(r))

return (v, def , perm)
}

Table 9: These symbolic execution rules for summaris-
ing quantified field permissions correspond to Figure 5 of
the paper Automatic Verification of Iterated Separating
Conjunctions using Symbolic Execution [3]. It introduces
a fresh value map and walks through all quantified field
chunks of field f , summarising the values for the defined
locations and the permission for all references.

If we evaluate the value of a single field location e.f , we first evaluate the
location and summarise all heap chunks of field f . After checking we hold
sufficient permission, we read the value from the generated value function.
The symbolic execution rules are presented in Table 10.

eval (h0, π0, e.f) {
var (π1, e) := eval (h0, π0, e)
var (v, def , perm) := summarise (h0, f)
check π1 |= 0 < perm(e)
return π1∪ def , v(e)

}
Table 10: These symbolic execution rules evaluating the
value of a field permissions correspond to Figure 6 of
the paper Automatic Verification of Iterated Separating
Conjunctions using Symbolic Execution [3]. It calls the
function summarise and uses the looks up the value of
the given location in the returned value map.

17

Field Write A field write e1.f := e2 is desugared into exhaling and then
inhaling the access permission of the field e1.f , followed by inhaling the
equality of e1.f and e2. Exhaling the permission of the field checks whether
we possess sufficient permission to write to the field. The rules are presented
in Table 11.

execute (h0, π0, e1.f := e2) {
exhale acc(e1.f)
inhale acc(e1.f)
inhale e1.f == e2

}
Table 11: These symbolic execution rules for desugaring
a field write for a quantified field.

4 Generalising Quantified Field Permissions

in Carbon

The approach presented in Section 3.9.1 did not include any triggers for some
expressions. In such a case, triggers are generated by the underlying tools.
To make the behaviour of quantified expressions more reliable and to possibly
reduce unnecessary invocations, we introduced triggers for these expressions.

The non-null assumption should be triggered for all locations. It would
therefore be a possibility to reformulate the assumption as a quantifier over
all references. It is however sufficient to use the same trigger as the first
inverse assumption, namely e(x), since this expression will be triggered via
the second inverse function when accessing a field location. An injectivity
assertion, on the other hand, doesn’t need to be be triggered. For that
purpose, we introduce a new function triggerFun, which takes the quantifier
variable as an argument.

As another extension, we added the support for user-given triggers on
quantified permissions, which were previously not supported. Most gener-
ated expressions should trigger independently of that trigger. For example,
it is unnecessary to add a user-given trigger to the expression defining the
permissions of the map Mask, since the user cannot define a more general
trigger than Mask(o, f) and qpMask(o, f). Other triggers are necessary to
ensure the desired behaviour of quantified permissions. The most obvious

18

example would be the trigger for the second inverse assumption, which has
to be triggered for each invocation of the inverse function. Instead of replac-
ing the previously generated triggers, we add a user-given trigger to certain
expressions. A user-given trigger without alterations can only be added to
expressions with the same quantifier variable type as the original quantifier.
Since all other quantified assumptions are already triggered by the inverse
function, there is no advantage in adding a modified trigger in these cases.
We add the user-given function to the first inverse assumption as well as the
non-null assumption and check for sufficient permission.

If no user-given trigger is defined, we reuse the trigger-generation function
provided for pure quantifiers in order to provide additional triggers. This
can be helpful in cases where e(x) does not constitute a valid trigger. Since
Carbon does not support nested quantifiers, the generation of triggers was
adapted to not define additional variables. The adapted triggers are displayed
in Table 12 and 13.

inhale forall x : T :: c(x)⇒ acc(e(x).f, p(x)) 7−→
Let qpMask be a new Mask
havoc qpMask
c := eval(c)
e := eval(e)
p := eval(p)

/* assert e(x) is injective */
assert ∀y1 : T, y2 : T :: {triggerFun(y1), triggerFun(y2)} y1 6= y2∧

c(y1) ∧ c(y2)⇒ e(y1) = e(y2)

/* Inverse Assumptions */
Let e−1 be a fresh function of type T → Ref
assume ∀x : T :: {e(x)}{trs} c(x)⇒ e−1(e(x)) = x
assume ∀r : Ref :: {e−1(r)} c(e−1(r))⇒ e(e−1(r)) = r

/* all receiver is non-null */
assume ∀x : T :: {e(x)}{trs}c(x)⇒ e(x))! = null

/* define updated permission */
assume ∀r : Ref :: {Mask(r, f)} {qpMask(r, f)} {e−1(r)}

c(e(r))⇒ qpMask(r, f) =Mask(r.f) + p(e−1(r))

19

/* define independent permissions */
assume ∀r :Ref :: {Mask(r, f)} {qpMask(r, f)}{e−1(r)}

¬c(e−1(r))⇒ qpMask(r, f) = Mask(r, f)
assume ∀o :Object , fo :Field :: {Mask(o, f)} {qpMask(o, f)}

(fo! = f)⇒ qpMask(o, f) = Mask(o, f)
Mask := qpMask

Table 12: The expressions generated during a quanti-
fied inhale are adapted for the first inverse function as-
sumption and the non-null assumption. Both expressions
are triggered on the expression denoting the receiver and
the user-given or automatically generated triggers. The
translation is adapted from Table 2.

exhale forall x : T :: c(x)⇒ acc(e(x), p(x)) 7−→
Let qpMask be a new Mask
havoc qpMask
c := eval(c)
e := eval(e)
p := eval(p)

/* assert e(x) is injective */
assert ∀y1 : T, y2 : T :: {triggerFun(y1), triggerFun(y2)} y1 6= y2∧

c(y1) ∧ c(y2)⇒ e(y1) = e(y2)

/* sufficient permission */
assert ∀x : T :: {e(x)}{trs} c(x)⇒Mask(e(x), f) ≥ p(x)

/* Inverse Assumptions */
Let e−1 be a fresh function of type T → Ref
assume ∀x : T :: {e(x)}{trs} c(x)⇒ e−1(e(x)) = x
assume ∀r : Ref :: {e−1(r)} c(e−1(r))⇒ e(e−1(r)) = r

/* define updated permission */
assume ∀r : Ref :: {Mask(r, f)} {qpMask(r, f)} {e−1(r)}

c(e(r))⇒ qpMask(r, f) =Mask(r.f)− p(e−1(r))

20

/* define independent permissions */
assume ∀r :Ref :: {Mask(r, f)} {qpMask(r, f)}{e−1(r)}

¬c(e−1(r))⇒ qpMask(r, f) = Mask(r, f)
assume ∀o :Object , fo :Field :: {Mask(o, f)} {qpMask(o, f)}

(fo! = f)⇒ qpMask(o, f) = Mask(o, f)
Mask := qpMask

Table 13: Translating quantified field exhale operation.
trs is a place-holder for the user-defined triggers or if no
trigger was given, a set of auto-generated triggers. The
triggers were adapted for both assertions and the first
inverse assumptions. The translation is an adaption of
Table 3.

5 Quantified Predicate Permissions

In order to generalise the form of quantified permissions, we lift the restric-
tion on the type of the location. In this section we discuss how the presented
solution for quantified field permission has to be adapted in order to support
quantified predicate permissions. As the general form of a quantified predi-
cate permission we consider the following adaption of the form presented for
quantified field permissions:

forall x : T :: c(x)⇒ acc(pred(e1(x), , en(x)), p(x)), (3)

where c(x) is a Boolean expression, pred a predicate name, ei(x) denotes
the expression conforming to the type of the ith arguments of the predicate
pred. The permission is denoted by the permission-based expression p(x).
Introducing this new form allows us to express permissions to more complex
structures such as a set of lists.

To explain the adaption needed for the implementation, we discuss the
answers to the following questions [3]:

1. How to model the program state, including permissions and values?

2. How to check for a permission in a state?

3. How to add and remove permissions to and from a state?

21

4. How to evaluate (heap-dependent) expressions in a state?

5. When to preserve (frame) an expression’s value across heap changes?

For Verification Condition Generation, these questions are answered in
the following Section 5.1. For Symbolic Execution, the first problem is han-
dled in Section 5.2.1, the second and third in Section 5.2.2 to 5.2.4. The
fourth and fifth questions are answered in Section 5.2.5 to 5.2.7.

5.1 Verification Condition Generation for Quantified
Predicate Permissions

In Carbon, the permission held for a predicate instance is stored in the map
Mask. The permissions held to a predicate location of the predicate pred
with n arguments is stored at Mask [null, pred’ (arg1, . . . , argn)], where pred’
represents a function returning a location, in Carbon a so-called field loca-
tion, of the mask for the predicate pred with given arguments. Similar to the
approach for quantified predicate permissions, we introduce a translation for
inhaling and exhaling quantified predicate permissions. There are no adap-
tions needed for the definition of the program state, nor do we need to change
anything concerning the evaluation of permissions. The implementation of
the operations unfold, fold and unfolding does not have to be changed.

As for both translations of inhaling and exhaling quantified field permis-
sions, we introduce a new map, which later replaces the current map. For
this map, we define the permissions relative to the previous map. For the lo-
cations included within a quantifier, the permission is increased or decreased
by the designated amount. For the independent locations the permission
remains unchanged. These include all field and magic wand locations, pred-
icate instances of different predicate names, as well as predicate instances
not satisfying the quantifier condition. The values of these locations are pre-
served, since neither inhaling nor exhaling quantified permissions change the
values of the given locations.

To translate a quantified predicate permission, we generalise the solution
presented for quantified fields. As for quantified field permissions, we evaluate
the arguments, assert injectivity, introduce an inverse function and define
the updated permissions for the newly created map. We need, however, to
redefine the definition of the inverse function and the injectivity criterion.

A predicate location is defined by a predicate name and a set of argu-
ments. As before we wish to define the updated locations by quantifying over

22

all predicates with predicate name pred and arbitrary arguments. Whereas
for quantified field permission, we quantify over a generic receiver to define
the general location of a field, a predicate depends on a set of arguments.
The number of arguments and their type may differ for each predicate.

In order to translate the given permission to that location, we need to
adapt the definition of the inverse function presented in Section 3.9. As be-
fore, the inverse function is used to map a general location to the variable
used in the original quantified permission expression. A new inverse function
is defined for each expression. Since the predicate name is however indepen-
dent of the quantifier variable, it is not necessary to include it as an argument
of the inverse function. The adapted definition of the inverse function only
depends on the arguments themselves.

As before, given the arguments of the predicate, the new inverse function
returns a value of type T corresponding to the original value of the quantifier.
The adapted inverse function is defined as:

function e−1(a1 : A1, . . . , an : An) : T
∀ x : T :: c(x)⇒ e−1(e1(x), . . . , en(x)) == x
∀ a1 : A1, . . . , an : An :: c(e−1(a1, . . . , an))⇒ ei(e

−1(a1, . . . , an)) = ai,
where ai represents the value ith argument of the predicate and Ai its type.
The inverse function is, as before, is defined as a total function, but models a
partial function since we only provide additional information if the condition
is satisfied.

Similar to quantified field permissions, we have to restrict the allowed
expressions for e1(x), . . . , en(x) in order to guarantee the existence of the
inverse function. The location expressed by the quantifier has to be injec-
tive. This is guaranteed if at least one argument expression differs for any
two values of the quantifier variable. This property can be expressed by the
following equation:

∀x1 : T, x2 : T :: c(x1)∧c(x2)∧(e1(x1) = e1(x2))∧· · ·∧(en(x1) = en(x2))⇒
x1 = x2

The adapted translations of inhaling and exhaling quantified predicate
permissions are depicted in Table 14 and Table 15.

inhale (h0, π0, forall x : T :: c(x)⇒ acc(pred(e1(x), . . . , en(x)), p(x)) {
havoc qpMask
c := eval(c)

23

e1 := eval(e1)
[. . .]
en := eval(en)
p := eval(p)

/* Injectivity assertion */
assert ∀y1 : T, y2 : T {triggerFun(y1), triggerFun(y2)} : y1 6= y2∧
c(y1) ∧ c(y2)⇒ ((e1(y1) 6= e1(y2)) ∨ · · · ∨ (en(y1) 6= en(y2))

/* Inverse assumptions */
Let e−1 be a fresh function of type A1, . . . , An → T
assume ∀x : T :: {pred(e1(x), . . . , e2(x)}{trs)} c(x)
⇒ e−1(e1(x), . . . , en(x)) = x}

assume ∀a1 : A1, . . . , an : An :: {e−1(a1, . . . , an)} c(e−1(a1, . . . , an))⇒
e1(e

−1(a1, . . . , an)) = a1 & . . . & en(e−1(a1, . . . , an)) = an}

/* define updated permission */
assume ∀a1 : A1, . . . , an : AN :: {qpMask[null, pred(a1, . . . , an)]}
{Mask[null, pred(a1, . . . , an)]}{e−1(a1, . . . , an)} c(e−1(a1, . . . , an))
⇒ qpMask[null, pred(a1, . . . , an)] =
Mask[null, pred(a1, . . . , an)] + p(e−1(a1, . . . , an))

/* define independent permissions */
assume ∀a1 : A1, . . . , an : AN ::
{qpMask[null, pred(a1, . . . , an)]}({Mask[null, pred(a1, . . . , an)]}
{e−1(a1, . . . , an)} ¬c(e−1(a1, . . . , an))⇒
qpMask[null, pred(a1, . . . , an)]==Mask[null, pred(a1, . . . , an)]

assume ∀o : Ref, f : Field :: {qpMask[o, f]}{Mask[o, f]}
(obj 6= null ∧ ¬isPredicateF ield(f) ∧
predicateId(f)! = predicateId(pred))⇒
perm(o.f, an)) = old (perm(o.f))

Mask := qpMask
}

24

Table 14: Translation of inhaling a quantified predicate
permission. The corresponding translation for quantified
field permissions is displayed in Table 2. The translation
differs in the definition of the general location, the inverse
function and the injectivity assumption. Additionally,
there is no need for a non-null assumptions for predicates.
The independent locations include all instances not sat-
isfying the condition c(x), as well as all mask entries not
pointing to a predicate instance of pred. To distinguish
predicates by the predicate name, we introduce the func-
tion predicateId, which is unique for each predicate name
and generated when translating a predicate declaration.

exhale (h0, π0, forall x : T :: c(x)⇒ acc(pred(e1(x), . . . , en(x)), p(x)) {
havoc qpMask
c := eval(c)
e1 := eval(e1)
[. . .]
en := eval(en)
p := eval(p)

/* Injectivity assertion */
assert ∀y1 : T, y2 : T {triggerFun(y1), triggerFun(y2)} : y1 6= y2∧
c(y1) ∧ c(y2)⇒ ((e1(y1) 6= e1(y2)) ∨ · · · ∨ (en(y1) 6= en(y2))

/* sufficient permission assertion*/
assume ∀x : T :: {pred(e1(x), . . . , e2(x)}{trs)} c(x)⇒

Mask[null, pred(e1(x), . . . , en(x))] ≥ p(x)

/* Inverse assumptions */
Let e−1 be a fresh function of type A1, . . . , An → T
assume ∀x : T :: {pred(e1(x), . . . , e2(x)}{trs)} c(x)
⇒ e−1(e1(x), . . . , en(x)) = x}

assume ∀a1 : A1, . . . , an : An :: {e−1(a1, . . . , an)} c(e−1(a1, . . . , an))⇒
e1(e

−1(a1, . . . , an)) = a1 & . . . & en(e−1(a1, . . . , an)) = an}

25

/* define updated permission */
assume ∀a1 : A1, . . . , an : AN :: {qpMask[null, pred(a1, . . . , an)]}
{Mask[null, pred(a1, . . . , an)]}{e−1(a1, . . . , an)} c(e−1(a1, . . . , an))
⇒ qpMask[null, pred(a1, . . . , an)] =
Mask[null, pred(a1, . . . , an)] − p(e−1(a1, . . . , an))

/* define independent permissions */
assume ∀a1 : A1, . . . , an : AN ::
{qpMask[null, pred(a1, . . . , an)]}({Mask[null, pred(a1, . . . , an)]}
{e−1(a1, . . . , an)} ¬c(e−1(a1, . . . , an))⇒
qpMask[null, pred(a1, . . . , an)]==Mask[null, pred(a1, . . . , an)]

assume ∀o : Ref, f : Field :: {qpMask[o, f]}{Mask[o, f]}
(obj 6= null ∧ ¬isPredicateF ield(f) ∧
predicateId(f)! = predicateId(pred))⇒
perm(o.f, an)) = old (perm(o.f))

Mask := qpMask
}

Table 15: Translation of exhaling a quantified predicate
permission. The corresponding translation for quantified
field permissions is displayed in Table 3. The transla-
tion differs in the definition of the injectivity check, the
general location and the inverse function.

There is no need to adapt the translation of fold, fold and fold. Permis-
sions to a predicate permission can evaluated by looking up the permission
amount in the map Mask as before.

5.2 Symbolic Execution

In this Section, we adapt the solution for quantified field permissions de-
scribed in Section 3.9.2 to support quantified predicate permissions for sym-
bolic execution. Again the main difference between the adapted approach
and its original are that we adapt the definition of the inverse function and
injectivity constraint. Additionally, we introduce a new type of heap chunk
in order to store permissions and snapshot values of a potentially unbounded
number of predicate instances.

26

5.2.1 Symbolic Heap Representation

In order to reason about quantified predicate permissions, it is necessary
to define a symbolic heap representation for a potentially unbounded set of
predicate instance of the same predicate simultaneously. In the previous de-
sign, a quantified field chunk is defined by the field name, where permission
and value are defined using a general location reference r, which serves as a
placeholder for the respective field location receivers. For quantified predi-
cate chunks we use the predicate name instead of the field as identification
and express the permission and value definition by defining a set of general
arguments, which again serve as a placeholder for the actual arguments of
each predicate instance. The general form of such a heap chunk conforms to:

pred(arg1, ..., argn) 7→ [v(arg1, ..., argn), p(arg1, ..., argn))], (4)

where v represents a value map, where a value represents the snapshot of
the corresponding predicate instance. Given the new definition of quanti-
fied predicate heap chunks, we define the inhale and exhale operations for
quantified predicate permissions.

5.2.2 Quantified Inhaling

The adapted symbolic execution rules for a inhaling a quantified permission
can be seen in Table 16. It differs from that in Table 4 in the definition of
the inverse function, as well as the values of the value map.

As before, inhaling a quantified predicate permission updates a given
state and returns an updated heap and path condition. Similarly the quan-
tified field expression, the condition, argument expressions and permission
expression are evaluated as a first step.

The inverse function is introduced analogously to that for quantified field
permission and further defined by adding two constraints to the path con-
dition, defining its properties. The cardinality of the inverse function may
vary for different predicates, but is identical for the same predicate.

As a last step we introduce a value map, which is later used to keep track
of the snapshot of predicate instantiations. These values are used during an
unfold or unfolding.

inhale (h0, π0, forall x : T :: c(x)⇒ acc (pred (e1(x), , en(x)), p(x)) {
/* Symbolically evaluate source-level expressions */

27

Let y be a fresh symbolic constant of type T
var (π1, c(y)) := eval(h0, π0, cy))
var (π21 , e1(y)) := eval(h0, π1 ∪ { c(y)}, e1y))
[. . .]
var (π2n , en(y)) := eval(h0, π2n−1 , eny))
var (π3, p(y)) := eval(h0, π2n , py)))
var π4 := π3\{c(y)}

/* Introduce inverse function */
Let e−1 be a fresh function of type A1, . . . , An → T
var π5 := π4 ∪ {∀a1 : A1, . . . , an : An · c(e−1(a1, . . . , an))⇒

e1(e
−1(a1, . . . , an)) = a1 & . . . & en(e−1(a1, . . . , an)) = an}

var π6 := π5 ∪ {∀x : T · c(x)⇒ e−1(e1(x), . . . , en(x)) = x}

/* Introduce value map */
Let v be a fresh value map
var h1 := h0 ∪ {pred(a1, . . . , an) 7→

[v(a1, . . . , an), c(e−1(a1, . . . , an))?p(e−1(a1, . . . , an)) : 0]}
return (h1, π6)

}
Table 16: Symbolic execution rules for inhaling a quanti-
fied predicate permission. They adapt the rules for inhal-
ing quantified field permissions given in Table 4. The dec-
laration of the inverse function is updated as described
before. The inverse function takes a set of predicate ar-
guments and returns the value of the variable originally
expressed in the quantifier. The type of the value map
corresponds to the snapshot type of the predicate.

5.2.3 Quantified Exhaling

The adaptations necessary for exhaling quantified predicate permissions again
include an update for evaluating the argument expressions, as well as the in-
troduction of the inverse function as defined for inhaling. Additionally, the
injectivity check needs to be adapted as defined in the previous section. The
new rules are defined in Table 17.

After evaluating the expressions denoted by the quantified predicate per-

28

mission, we check the injectivity before introducing the inverse functions as
defined in the inhaling. The check passes if for any two variables satisfy-
ing the initial condition, at least one argument expression is evaluated to a
different symbolic value.

The definition of removing permission from a quantified predicate is
adapted as well. It filters quantified chunks to include only the chunks with
the given predicate name. We again iterate through these chunks, taking
permission greedily and check whether enough permission was taken as a
final step. The definition of qneeded and qcurrent is adapted to take a set of
predicate arguments. The updated definition for the function remove can be
seen in Table 18.

exhale (h0, π0, forall x : T :: c(x)⇒ acc(pred(e1(x), , en(x)), p(x)) {
Let y be a fresh symbolic constant of type T

/* Check injectivity of receiver expression */
Let y1, y2 be a fresh symbolic constants of Type T
check π4 |= c(y1) ∧ c(y2) ∧ (e1(y1) = e1(y2)) ∧ · · · ∧ (en(y1) = en(y2))⇒

y1 = y2

/* Introduce inverse function (as above)*/
[. . .]

/* Remove Permissions */
var h1 := remove(h0, π6, f, λa1, . . . , an · c(e−1(a1, . . . , an))?

p(e−1(a1, . . . , an)) : 0))
return (h1, π6)

}
Table 17: Symbolic execution rules for exhaling a quan-
tified predicate permission. The corresponding rules for
quantified field permission is displayed in Table 5. The
changes include the updated definition of the injectivity
check, inverse function and general predicate location.

remove (h0, π0, pred, g) {
Let hpred ⊆ h0 be all chunks in given state for predicate pred
/* Processed chunks */

29

var h′pred := ∅
/* Permission still to taken */
var qneeded := q
foreach pred(a1, . . . , an) 7→ [vi(a1, . . . , an), qi(a1, . . . , an)] ∈ hpred do:

/* Determine the permissions to take from this chunk */
var qcurrent := (λa1, . . . , an ·min(qi(a1, . . . , an), qneeded(a1, . . . , an)))

/* Decrease the permissions still needed */
qneeded := (λa1, . . . , an · qneeded(a1, . . . , an)− qcurrent(a1, . . . , an)

/* Add an updated chunk to the processed chunks */
h′pred := h′pred ∪ {r.f 7→ [vi((a1, . . . , an), (qi(a1, . . . , an)−
qcurrent(a1, . . . , an)]}

/* Check that sufficient permissions were removed */
checkπ0 |= ∀r · qneeded(a1, . . . , an) = 0
return (h1\hpred) ∪ h′pred

}
Table 18: Symbolic execution rules for removing a quan-
tified predicate permission. The corresponding rules for
quantified field permission is displayed in Table 6. The
changes include the updated filtering of chunks by the
predicate name, as well the cardinality of the input pa-
rameter of qcurrent and qneeded, which are used to define
the amount of permission subtracted per chunk.

5.2.4 Inhaling and Exhaling Single Predicate Permission

In order to use the remove function defined, we again need to adapt the ap-
proach for inhaling and exhaling single predicate permissions. When inhal-
ing, we define a quantified predicate chunk, where the permission is defined
only if all arguments are identically to the input arguments. When exhal-
ing a predicate permission, we define the needed permission the same way.
Analogously to the implementation of quantified fields, Silicon only adapts
the inhaling and exhaling of single predicates if the predicate is quantified at
some point in the given program.

30

inhale (h0, π0, acc(pred(a1, . . . , an), p) {
/* Symbolically evaluate source-level expressions */
var (π1, e1(y)) := eval(h0, π0 ∪ { c(y)}, e1))
[. . .]
var (πn, en(y)) := eval(h0, πn−1, en))
var (πn+1, p) := eval(h0, πn, p)

Let v be a fresh value map
var h1 := h0 ∪ {pred(a1, . . . , an) 7→

[v(a1, . . . , an), ((a1 == e1) && . . . && (an == en))? p : 0]}
return (h1, πn+1)

}
Table 19: The symbolic execution rules for inhaling a
predicate permission, where the predicate is quantified
at some point during the program, is adapted in order
to represent all permission to the quantified predicate in
quantified chunks. These rules correspond to the rules
displayed for quantified field permission in Table 7. The
definition of the quantified predicate chunk generated is
adapted to consider all arguments of the predicate.

exhale (h0, π0, acc(e.f, p) {
/* Evaluate Arguments (as above) */
[. . .]

/* Remove Permissions */
var h1 := remove(h0, πn+1, f,

(λa1, . . . , an · ((a1 == e1) && . . . && (an == en)) ? p : 0))
return (h1, πn+1)

}

31

Table 20: Analogously to inhaling a predicate permission,
the symbolic execution rules for exhaling a predicate per-
mission are adapted if the predicate is quantified at some
point during the program. These rules correspond to the
rules displayed for quantified field permission in Table 8.
The definition of the permission required is adapted to
consider all arguments of the predicate.

5.2.5 Treatment of Symbolic Values

Predicates may modify symbolic values using the ghost operations unfold
and fold. When working with quantified predicates, the unfold and fold
operations need to be adapted. Unfolding a predicate is desugared as before.
As was the case for exhaling and inhaling single predicates, the functions fold
and unfold only need to be adapted for predicates which are quantified at
some point during the program.

In order to summarise the values and permission of a single predicate, we
adapt the summarise function presented for quantified field permission. The
function walks through all quantified chunks of the given predicate, keeping
track of the values and permissions held for all locations. The symbolic
execution rules are displayed in Table 21.

summarise (h0, pred) {
Let hf ⊆ h0 be all quantified chunks in the given heap for predicate pred
Let v be a fresh value map
/* Value summary path conditions */
var def := ∅
/* Permission summary */
var perm := λr · 0
foreach pred(a1, . . . , an) 7→ [vi(a1, . . . , an), qi(a1, . . . , an)] ∈ hpred do:
def := def ∪ {∀a1, . . . , an · 0 < qi(a1, . . . , an) ⇒ v(a1, . . . , an) =

vi(a1, . . . , an)}
perm := λa1, . . . , an · · · (perm(a1, . . . , an) + qi(a1, . . . , an))

return (v, def, perm)
}

32

Table 21: Symbolic execution rules for summaris-
ing quantified predicate permissions. The function is
adapted from the summarise function for quantified field
permission depicted in Table 9

5.2.6 Unfold

When unfolding a quantified predicate, we first evaluate the arguments of the
predicate and summarise the quantified predicate chunks in order to evaluate
the predicate’s snapshot. As a next step, we relinquish the permission for
the predicate instance by exhaling write permission to the predicate instance,
followed by inhaling the snapshot, which is a representation of the body of
the predicate. The symbolic execution rules for the unfold operation are
displayed in Table 22.

unfold (h0, π0, pred(e1, . . . , en)) {
/* evaluate arguments */
var (π1, e1) := eval(h0, π0, e1))
[. . .]
var (πn, en) := eval(h0, π0, en))

/* read the predicate’s snap value */
var (v, def, perm) := summarise (h0, pred)
var snapshot := v(e1, . . . , en)

var (h1, πn+1) := exhale(h0, πn ∪ def, pred(e1, . . . , en))
var (h2, πn+2) := inhale(h1, πn+1, snapshot)
return (h2, πn+2)

}
Table 22: Symbolic execution rules for the unfold op-
eration. The function summarise refers to the function
declared in Table 21. Inhaling the snapshot of the predi-
cate is equal to inhaling the predicate body for the values
denoted by the snapshot.

33

5.2.7 Fold

As mentioned in the background, folding a predicate exchanges the permis-
sion of the body with the permission to the predicate which is being folded.
It creates a new quantified predicate chunk. The predicate chunk contains
the values of the permissions held by the predicate body previous to folding
it, which is called a snapshot of the predicate.

When folding a quantified predicate, we first generate a snapshot based
on the current heap. Exhaling the snapshot is equivalent to exhaling the
body of the predicate, where the values the body relies on are revealed in
the snapshot. Exhaling the snapshot is checking that enough permission is
held to fold the predicate. After exhaling the predicate body, we generate a
new quantified predicate chunk. The value map included in this heap chunk
is defined for the given predicate. A lookup with the specified arguments
denoted by v(e1, . . . , en) will return the generated snapshot.

The symbolic execution rules for the operation fold can be seen in Figure
23.

fold (h0, π0, pred(e1, . . . , en)) {
/* evaluate arguments */
var (π21 , e1) := eval(h0, π0, e1))
[. . .]
var (π2n , en) := eval(h0, π0, en))

/* generating the predicate’s snap value */
var snapshot := generateSnap(h0, pred, (e1, . . . , en))

var (h1, πn+1) := exhale(h0, πn, snapshot)
Let v be a fresh value map
v(e1, . . . , en) = snapshot
var h2 := h1 ∪ {pred(a1, . . . , an) 7→

[v(a1, . . . , an), ((a1 == e1) && . . . && (an == en))? 1 : 0]}
return (h2, πn+2)

}

34

Table 23: Symbolic execution rules for folding a quan-
tified predicate. This adaption is only needed for pred-
icates, which are quantified at some point in the given
program. It exhales the predicate body and generates a
new quantified chunk which holds the snapshot generated
before exhaling the body.

5.3 Implementation

We implemented both approaches presented. The approach for verification
condition generation is implemented in Carbon and does not differ from the
approach except that no injectivity assertion is executed when inhaling a
quantified permission. In Carbon, injectivity is assumed. Potentially this
assumption could be removed. The performance is however generally better
if the injectivity assumptions is included.

The approach for symbolic execution is implemented in Silicon. There are
a few subtle differences between the approach and the implementation. As for
quantified field permission, Silicon analyses the program given, creating a list
of quantified predicates. Additionally, it also precomputes a set of predicate
arguments used to express the general predicate locations in quantified heap
chunks and assertions generated, as well as a general snapshot. Exhaling a
single predicate instance provides the snapshot of that predicate. Removing a
certain permission amount is implemented - as for quantified field permissions
- as a combination of the presented functions remove and summarise. This is
straightforward, since both iterate through the quantified predicate chunks
filtered by the predicate name. The snapshot of represented as a snapshot
term. The size of the snapshot depends on the predicate’s body definition.

5.3.1 Issues

While testing the implementation, we found the following issues currently
occurring which are relevant for quantified predicate permissions.

The first issue occurs when unfolding predicates in a quantified asser-
tion. The information held by the predicate is not accessible in the following
example:

f i e ld f : Int

35

predicate p2 (r :Ref)
{

acc (r . f) && r . f == 5
}

method m3(x1 : Ref , x2 :Ref)
requires acc (p2 (x1))
requires acc (p2 (x2))
{

// : : UnexpectedOutput (a s s e r t . f a i l e d : a s s e r t i o n . f a l s e , /Carbon
/ i s s u e /158/)

assert fora l l r :Ref : : r in Set (x1 , x2) ==> unfolding p2 (r)
in r . f == 5

}

When unfolding a single quantified predicate, this error does not occur.
In addition, we found a triggering problem currently occurring for both

quantified field and predicate permissions in both verifiers. The program
inhales a set of quantified predicate permission including arithmetic opera-
tions, but cannot assert to possess the permission when exhaling a single or
multiple permissions without the same arithmetic expression:

f i e ld va l : Int

domain IArray {
function l o c (a : IArray , i : Int) : Ref
function l o c l im i t e d (a : IArray , i : Int) : Ref
function l en (a : IArray) : Int
function f i r s t (r : Ref) : IArray
function second (r : Ref) : Int

axiom l im i t ed {
f o ra l l a : IArray , i : Int : : { l o c (a , i) }

l o c (a , i) == l o c l im i t e d (a , i)
}

axiom a l l d i f f {
f o ra l l a : IArray , i : Int : : { l o c (a , i) }

f i r s t (l o c (a , i)) == a && second (l o c (a , i)) == i
}

axiom l ength nonneg {
f o ra l l a : IArray : : l en (a) >= 0

}
}

36

predicate p(a : IArray , i : Int)
{

acc (l o c (a , i) . va l)
}

method m1(a : IArray , n : Int , i 1 : Int , i 2 : Int)
requires n > 3
requires fora l l i : Int : : i in [0 . . n) ==> acc (p(a , i +1))
// : : UnexpectedOutput (po s t cond i t i on . v i o l a t e d : i n s u f f i c i e n t .

permis s ion)
ensures acc (p(a , 1))

{}

method m2(a : IArray , n : Int , i 1 : Int , i 2 : Int)
requires n > 3
requires fora l l i : Int : : i in [0 . . n) ==> acc (l o c (a , i +1) . va l)
// : : UnexpectedOutput (po s t cond i t i on . v i o l a t e d : i n s u f f i c i e n t .

permis s ion)
ensures fora l l i : Int : : i in [1 . . n+1) ==> acc (l o c (a , i) . va l)

{}

We suspect that in this particular case, the triggers defined for the inverse
functions do not allow to evaluate whether or not a specific value satisfies
the condition.

6 Quantified Magic Wands

A magic wand instance is represented by a set of arguments which depend
on the syntactic structure and the parameters of the magic wand. As for
predicates, the number of arguments and their type may vary for each magic
wand instance, but is the same for a specific magic wand. Therefore the def-
inition for the inverse function and the injectivity test are defined analogous
to quantified predicate permissions.

In verification condition generation, a magic wand instance is repre-
sented in the form wand(a1, . . . , an), where wand is a function returning
the wand location for the given arguments and ai represents the ith argu-
ment of the magic wand representation. Contrary to predicates, wand is
used for all magic wands regardless of difference in structure. For exam-
ple, the permission of the magic wand x in xs −∗ acc(x.f) is represented
as Mask[null, wand(Seq#Contains(xs, x), x, FullPerm)], where the argu-
ments stand for x in xs, x.f , and the implicit full permission of x.f . The
translation of inhaling and exhaling a quantified magic wand is therefore

37

done analogously to the translation in Figure 14 and 15, where the predicate
name is replaced with the function wand and the argument expressions cor-
respond to the quantified magic wand argument. As for the ghost operations
of predicates, there is no need to adapt the translations of apply and package.

Also, the symbolic execution rules of quantified predicates can be reused
for quantified magic wand permissions. Same as for quantified predicates, we
need to introduce a new type of heap chunk for magic wands, define functions
for inhaling and exhaling quantified and unquantified magic wands. If the
functions apply and package are not desugared into inhaling and exhaling
expressions, which is the case in Silicon, we need to adapt the implementa-
tions of both ghost operations to evaluate the permissions and values using
the defined quantified magic wand chunks. Contrary to quantified field and
predicate permissions, we cannot filter the quantified magic wand chunks by
predicate or field names. We have to analyse the type of the arguments to
decide which magic wands should be included when summarising values or
removing permissions. The adaption of the implementations of Section 5.2
should however be straightforward.

7 Combinations of Quantifiers

Viper currently does not allow merging pure and permission-based quanti-
fiers, nor does it allow combinations of multiple quantified permissions. This
can be circumvented by repeating parts of the definitions in multiple forall
expressions. To decrease the code size for specifying the properties desired
and support user-friendliness, we present a solution to lift this restriction.

We extend the support of quantifiers to include the following expressions:

forall x : T :: {trs} Exp where :
Exp := b
| acc(e.f, p)
| acc(P (e1, . . . , en), p)
| A−∗B
| Exp1 && Exp2
| b⇒ Exp,

where trs is an optional set of triggers and b a pure expression. The last two
expressions allow us to combine quantified expressions of various types. For
example, the following expression is allowed:

38

forall x : T :: x in xs⇒ (i > 0⇒ (acc(x.f) && x.f = i)) &&
(i ≤ 0⇒ acc(P (x)))

Other combinations of quantified expressions, such as acc(x.f)⇒ (x.f =
i) or acc(x.f) ∨ acc(x.g), are not included, since they are not permitted for
the unquantified expressions. Combinations of pure quantifiers are already
supported in Viper, as are quantified fields. The approaches for quantified
predicates and magic wands are treated using the ones defined previously.

Besides allowing combinations of quantifiers, we also lift the restriction of
having to define a condition in a permission-based quantifier. If no condition
is defined, the forall expression is rewritten to the following form:

forall x : T :: true⇒ Exp

For some cases such an assertion may be, however, undesirable. If x is
of type Ref, Viper includes the null reference in the set of all references,
which may lead to an inconsistent state when inhaling the access rights to
all references due to the non-null assumption.

We decided not to rewrite the before given rules for supporting quantified
permissions. In order to support the combinations defined above, we decided
to reuse the given implementations by rewriting the given expressions to a
form already supported. The rewriting rules are explained in the following
sections. In order to illustrate some of the challenges supporting these new
expressions, we discuss the following example:

inhale forall x : Ref :: (x in xs⇒ (acc(x.f) && x.f = i)) &&
(x in ys⇒ acc(P (x)))

If a reference x is within the set of references xs, we inhale the access
to the field location defined by that reference and gain the information that
its value is equal to i. If a reference is within the set ys, we gain the access
right to the predicate P (x). Please note, that we cannot assume the value
of a field without holding partial permissions. The sub-expressions of the
combinations may depend on each other, which enforces that acc(x.f) needs
to be inhaled before accessing the field x.f .

When combining two quantifiers, the expressions may depend on the fact
that the first expression is evaluated before the second expression as for the
example shown above. As a consequence, the conditions have to be evaluated

39

sequentially.
Our solution for supporting the mentioned quantifiers rely on desugaring

the expressions to a logically equivalent form.

7.1 Rewriting Rules

Both the conjunction and implication used to combine quantified expressions
can be supported by rewriting the quantified expression to a form already
supported before. The rewriting takes place after adding a condition if it
was omitted as described above.

If the expression on the right-hand side of the implication is pure or
a permission already supported, no rewriting is necessary. We desugar the
expression by duplicating the variable declaration and condition. The trigger
is duplicated for both generated forall expressions.

forall x : T :: {trs} c(x)⇒ e1(x) && e2(x))
7−→ (forall x : T :: {trs} c(x) ⇒ e1(x)) && (forall x : T :: {trs} c(x) ⇒
e2(x))

Considering the case in which both quantifiers are permission-based, it
is necessary to define the inverse function and injectivity for both sub-
expressions separately. The rewriting rule results in a minor overhead, since
the evaluation of the condition c(x) is done twice, for both quantifiers. This
could however be cached.

An implication A⇒ (B ⇒ C) is logically equal to (A&&B)⇒ C. Using
this property, we desugare a combination by implication using its logical
equal by adding the boolean expression to the condition.

forall x : T :: {trs} c1(x)⇒ (c2(x)⇒ e(x))
7−→ forall x : T :: (c1(x) && c2(x))⇒ acc(e(x).f, p(x))

The rewriting function is described in Table 30. We treat the pure quan-
tifiers and quantified permissions for fields, predicates and magic wands as
our base cases and rewrite the combinations of expressions to one or more
forall expressions until reaching a base case.

rewrite forall x : T :: {trs} c(x)⇒ Exp {
res := Exp match {

case b :

40

forall x : T :: {trs} c(x)⇒ Exp
case Exp1 && Exp2 :

rewrite(forall x : T :: {trs} c(x)⇒ Exp1) &&
forall x : T :: {trs} c(x)⇒ Exp2)

case b⇒ Exp :
rewrite(forall x : T :: {trs} (c(x) && b)⇒ Exp)

default :
forall x : T :: {trs} c(x)⇒ Exp

}
return res

}
Table 30: Rewriting rules for combinations of quantifiers
after adding a condition if necessary.

7.2 Example

Let’s consider the example mentioned at the beginning of the section. A
rewriting step is denoted by the symbol 7→. As a first step we add the
condition to conform to the structure handled in quantified permissions:

forall x : Ref :: (x in xs ⇒ (acc(x.f) && x.f = i)) && (x in ys ⇒
acc(P (x))) 7→
forall x : Ref :: true⇒ (x in xs⇒ (acc(x.f) && x.f = i)) && (x in ys⇒
acc(P (x)))

We then proceed to rewrite the new expression according to the algorithm
of Table 30:

forall x : Ref :: true⇒ (x in xs⇒ (acc(x.f) && x.f = i)) && (x in ys⇒
acc(P (x)))
7−→ (forall x : Ref :: true⇒ (x in xs⇒ (acc(x.f) && x.f = i))) &&

(forall x : Ref :: true⇒ (x in ys⇒ acc(P (x))))
7−→ (forall x : Ref :: (true && x in xs)⇒ (acc(x.f) && x.f = i)) &&

(forall x : Ref :: true && x in ys⇒ acc(P (x)))
7−→ (forall x : Ref :: (true && x in xs)⇒ acc(x.f)) &&

(forall x : Ref :: (true && x in xs)⇒ x.f = i) &&
(forall x : Ref :: true && x in ys⇒ acc(P (x)))

41

At the end of the rewriting, we translate the three forall expressions
sequentially.

7.3 Implementation

The implementation for supporting the combinations presented uses the
rewriting rules mentioned above. As a first implementation, the rewriting
was done separately for Carbon and Silicon. This would have permitted
adapting the rules for one of the verifiers only at a later point if desired.
We decided however to move the rewriting to the parsing of the program.
The information of the original forall expressions are preserved. There are
no consequences for the error messages defined. Both Carbon and Silicon
accept the same program with the already rewritten expressions.

8 Nested Quantifiers

In this section we present another adaption removing the restriction that a
quantified permission may depend on one variable only. After applying the
rewriting rules given in Section 7, there are two forms of nested quantifiers
we decided to support.

In the first structure, all variables are defined upfront, allowing condition
and expression to depend on all of them:

forall x1 : T1, . . . , xn : Tn :: {trs} c(x1, . . . , xn)⇒
e(x1, . . . , xn)

The expression e(x1, . . . , xn) stands for any unquantified permission in-
cluded in the previous sections. Pure quantifiers of this form are already
supported in Viper. For the support of this new quantified expression we
present a new generalisation of the previously shown algorithms.

The second structure represents a truly nested quantifier, where a second
forall expression occurs on the right-hand side of the implication. The fol-
lowing formula represents this form:

forall x1 : T1, . . . xn : Tn :: {trs1} c1(x1, . . . , xn)⇒
(forall xn+1 : Tn+1 :: {trs2} c2(x1, . . . , xn+1)⇒ e(x1, . . . , xn+1))

42

Here, the expression e(x1, . . . , xn+1) can be any permission expression
introduced before, or another quantified expression. In order to support
these expressions, we present a new rewriting rule in Section 8.2.

Both formulas allow us to define more complex quantifiers, for example
access rights to a matrix. The set of allowed quantifiers is extended to:

forall x1 : T1, . . . , xn : Tn :: {trs} Exp where:
Exp := b
| acc(e.f, p)
| acc(P (e1, . . . , en), p)
| A−∗B
| Exp1 && Exp2
| b⇒ Exp
| forall x1 : T1, . . . , xn : Tn :: {trs2} Exp

To support these nested quantifiers, we need to adapt the presented solu-
tion for quantified field, predicate and magic wands. How these approaches
have to be adapted, is described in Section 8.1. Additionally, we introduce a
new rewriting rule for truly nested quantifiers in Section 8.2.

8.1 Multiple Quantifier Variables

For both verification condition generation and symbolic execution, the repre-
sentation of the general location used to express the updated permission does
not change. There is no need to change the definition of the symbolic heap
chunks. The translation of the original quantifier to the representation used
in the heap, however, does. Again, we need a way to retrieve the original
variables using inverse functions. In order to do that, we introduce n inverse
functions, each inverse function mapping from a general location to the value
of one variable.

In order to translate the given permission to that form, we need to adapt
the definition of inverse function. The new inverse function returns a value of
type Ti corresponding to the original value of the ith quantifier variable given
the arguments defining the general location. The adapted inverse functions
for quantified field and predicate permissions can be seen in Figure 34.

/* Nested Field Quantifier */
function invi(r : Ref) : Ti

43

forall x1 : T1, . . . , xn : Tn :: c(x1, . . . , xn)⇒ invi(e(x1, . . . , xn)) == xi
forall r : Ref :: c(inv1(r), . . . , invm(r)⇒ e(inv1(r), . . . , invm(r)) = r

/* Nested Predicate Quantifier */
function invi(a1 : A1, . . . , an : An) : Ti
forall x1 : T1, . . . , xn : Tn :: c(x1, . . . , xn)⇒

invi(e1(x1, . . . , xn), , en(x1, . . . , xn)) == xi
forall a1 : A1, . . . , an : An :: c(inv1(a1, . . . , an), . . . , invm(a1, . . . , an))⇒

ei(inv1(a1, . . . , an), . . . , invm(a1, . . . , an)) = ai
Table 34: Inverse Function definitions for nested quan-
tifiers for quantified field and predicate permissions, for
all inverse functions i, where 1 ≤ i ≤ m, m being the
number of quantifier variables.

Using these inverse functions also requires a restrict of the allowed ex-
pressions for nested quantifiers. These new injectivity constraints are shown
in figure 35.

/* Nested Field Quantifier */
forall x1 : T1, . . . , xn : Tn, y1 : T1, . . . , yn : Tn :: (x1! = y1|| . . . ||xn! =
yn) && c(x1, . . . , xn) && c(y1, . . . , yn)⇒ e(x1, . . . , xn)! = e(y1, . . . , yn)

/* Nested Predicate Quantifier */
forall x1 : T1, . . . , xn : Tn, y1 : T1, . . . , yn : Tn :: (x1! =

y1|| . . . ||xn! = yn) && c(x1, . . . , xn) && c(y1, . . . , yn) ⇒ (e1(x1, . . . , xn)! =
e1(y1, . . . , yn)|| . . . ||en(x1, . . . , xn)! = en(y1, . . . , yn)

Table 35: New injectivity definition for nested quanti-
fiers.

As an additional change, any occurrence of the inverse function in the
original approach is replaced by the new inverse functions as defined above.
We display the altered approach for inhaling a nested quantified field per-
mission for verification condition generation in Table 36 and for symbolic
execution in Table 37. The remaining translations and symbolic execution
rules have to be adapted analogously, but are omitted here.

44

inhale forall x1 : T1, . . . , xn : Tn :: c(x)⇒
acc(e(x1, . . . , xn).f, p(x1, . . . , xn)) 7−→

Let qpMask be a new Mask
havoc qpMask
c := eval(c)
e := eval(e)
p := eval(p)

/* assert e(x) is injective */
assert ∀x1 : T1, . . . , xn : Tn, y1 : T1, . . . , yn : Tn ::
{triggerFun(x1, . . . , xn), triggerFun(y1, . . . , yn)}
(x1! = y1|| . . . ||xn! = yn) && c(x1, . . . , xn) && c(y1, . . . , yn)⇒
e(x1, . . . , xn) ! = e(y1, . . . , yn)

/* Inverse Assumptions */
Let invi be a fresh function of type Ref ⇒ Ti for each i, 1 ≤ i ≤ n
assume ∀x1 : T1, . . . , xn : Tn :: {e(x1, . . . , xn)}{trs} c(x1, . . . , xn)⇒

(inv1(e(x1, . . . , xn)) = x1) && . . . && (invn(e(x1, . . . , xn)) = xn)
assume ∀r : Ref :: {inv1(r)}, . . . , {invn(r)} c(inv1(r), . . . , invn(r))⇒
e(inv1(r), . . . , invn(r)) = r

/* all receivers are non-null */
assume ∀x1 : T1, . . . , xn : Tn :: {e(x1, . . . , xn)} c(x1, . . . , xn)⇒
e(x1, . . . , xn)) 6= null

/* define updated permission */
assume ∀r : Ref :: {Mask(r, f)} {qpMask(r, f)} {inv1(r), . . . , invn(r)}

c(e(r))⇒ qpMask(r, f) = Mask(r.f)− p(inv1(r), . . . , invn(r))

/* define independent permissions */
assume ∀r : Ref :: {Mask(r, f)} {qpMask(r, f)}{inv1(r), . . . , invn(r)}

¬c(e−1(r))⇒ qpMask(r, f) = Mask (r, f)
assume ∀o : Object, fo : Field :: {Mask(o, f)} {qpMask(o, f)}

(fo! = f)⇒ qpMask(o, f) = Mask (o, f)
Mask := qpMask

45

Table 36: Translating nested quantified field inhale op-
eration.

inhale (h0, π0, forall x1 : T1, . . . , xn : Tn : T :: c(x1, . . . , xn)⇒
acc(e(x1, . . . , xn).f, p(x1, . . . , xn)) 7−→

Let y1, . . . , yn be fresh symbolic constants of types T1, . . . , Tn
/* Symbolically evaluate source-level expressions */
var (π1, c(y1, . . . , yn)) := eval(h0, π0, c(y1, . . . , yn)))
var (π2, e(y1, . . . , yn)) := eval(h0, π1 ∪ {c(y1, . . . , yn)}, e(y1, . . . , yn))
var (π3, p(y1, . . . , yn)) := eval(h0, π2, p(y1, . . . , yn))
var π4 := π3\{c(y1, . . . , yn)}

/* Introduce inverse function */
Let invi be a fresh functions of type Ref → Ti for each i, 1 ≤ i ≤ n
var π5 := π4 ∪ {∀r : Ref · c(inv1(r), . . . , invn(r))⇒

e(inv1(r), . . . , invn(r)) = r}
var π6 := π5 ∪ {∀x1 : T1, . . . , xn : Tn · c(x1, . . . , xn)⇒

(inv1(e(x1, . . . , xn)) = x1) && . . . && (invn(e(x1, . . . , xn)) = xn)}

Let v be a fresh value map
var h1 := h0 ∪ {r.f 7→ [v(r), c(inv1(r), . . . , invn(r)) ?

p(inv1(r), . . . , invn(r)) : 0]}
return (h1, π6)

Table 37: Symbolic execution rules for inhaling a nested
quantified field permission.

8.2 Rewriting Nested Quantified Permissions

If a quantified expression includes a second nested quantifier, we rewrite
that expression to the newly established base cases by moving the additional
variables to the front. This does alter the semantic meaning of the expression,
but allows us to reuse the approach mentioned above. The newly generated
expression should trigger for the same expressions designated by the triggers
defined in the original quantifiers. A trigger also has to contain all of the

46

defined quantifier variables. In order to guarantee that behaviour, we define
the trigger of the rewritten expression as the Cartesian product of the original
triggers.

The rewriting rules are displayed in Table 38.

forall x1 : T1, . . . xn : Tn :: {trs1} c1(x1, . . . , xn)⇒
(forall y1 : Tn+1, . . . , ym : Tn+m :: {trs2}
c2(x1, . . . , xn, y1, . . . , ym)⇒ e(x1, . . . , xn, y1, . . . , ym))

7−→ forall x1 : T1, . . . xn : Tn, y1 : Tn+1, . . . , ym : Tn+m :: {trs1 × trs2}
(c1(x1, . . . , xn) && c2(x1, . . . , xn, y1, . . . , ym))⇒
e(x1, . . . , xn, y1, . . . , ym))
Table 38: Additional rewriting rules in order to support
forall expressions within quantifiers. The quantifier vari-
ables of the inner quantifier are combined with the outer
quantifier variables. The set of triggers is calculated by
the Cartesian product of both declared trigger sets. Ad-
ditionally, the conditions are combined as for the impli-
cation combination.

9 Evaluation

In order to evaluate the performance of the support for quantified predicates
and combinations in Viper, we ran several sets of Viper programs in Carbon
and Silicon.

The first set of tests checks the functionality of all operations defined
for quantified predicates. This includes inhaling and exhaling quantified and
unquantified predicate permissions for predicates which are at some point
quantified over. Additionally, it tests the functionality of the ghost operations
fold, unfold as well as unfolding. All operations are executed for different
numbers of arguments and snapshot elements.

The second test set consists of 11 basic test cases, which for example
include injectivity checks and partial permissions. The third set includes
6 test cases based on combinations of quantifiers. We extracted two more
elaborate test cases which are included in the appendix. The program list.sil
holds an implementation of a set of lists. The example two blocks array
specifies a predicate defining access rights to two consecutive array locations.

47

In total, 26 tests were included.
The experiments were measured on a machine with an Intel Core i7-

4700HQ 2.4GHz, 16GB RAM, running Windows 10 x64 with SSD. The
measurements are shown in Table 39. The measured time corresponds to
the average of 20 runs, where the startup time of JVM is included. The
standard-deviation for the test cases was negligible.

Program Size
(LOC)

Carbon
RT(s)

Silicon
RT (s)

(C−S)/t
(s)

quantified inhaling 44 3.65 2.51 1.14
quantified exhaling 67 5.87 2.82 3.05
single inhaling 48 3.97 2.84 1.13
single exhaling 80 11.79 3.00 8.79
unfold 106 10.80 2.80 8.00
fold 108 9.26 2.88 6.38
unfolding 48 3.99 2.91 1.08
basic 710 79.98 31.63 3.94
combinations 387 45.89 19.24 4.44
list.sil 61 4.63 3.66 0.97
two blocks array.sil 91 4.36 3.77 0.60

Table 39: This table corresponds to the time measure-
ments taken for the given test set of quantified predicates.
The first entry shortly describes the test cases described.
The size is described by the lines of code of the test case.
The run-time measurements are expressed as the average
of 20 runs. The last column represents the difference in
run-time per test case.

Looking at the overall test results, we observe that the absolute run-time
including the JVM start-up are greater for Carbon than for Silicon. This
could potentially be due to the start-up time of JVM, which is included in
the measurements. Assuming that the start-up time is constant for the same
project and the run-time would be the same for all test cases, the difference
between the run-time of Carbon and Silicon would be constant. This is
however not the case. Whereas Carbon seems to be relatively faster for longer
test cases, the difference in run-time is not very big for the examples given.
Additionally we observe that the difference between maximum and minimum

48

of the average of run-times presented varies significantly in Carbon, whereas
the run-time of Silicon seems to be more stable for different test cases.

10 Conclusion an Future Work

This project generalised the support for quantified field permissions, adapting
the solutions implemented in Silicon and Carbon to support quantified pred-
icate and magic wand permissions. Additionally, we described the modifica-
tions to these approaches necessary to allow nested quantified permissions.
To improve user-friendliness, we additionally provided four rewriting rules.
These rules allow omitting a condition on declaration, the combination of
pure and permission-based quantifiers as well as multiple nested forall state-
ments. We implemented quantified predicate permissions and the first three
rewriting rules introduced for combinations of quantifiers in both verifiers of
Viper.

As future work, the implementation could be extended to include quan-
tified magic wands and nested quantifiers. Additionally, the introduction
of a foreach statement, which applies a certain operation for multiple ele-
ments, would allow an improved usability for quantified permissions, e.g. by
allowing unfolding a set of predicates.

References

[1] J. C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In 17th Annual IEEE Symposium on Logic in Computer Science
(LICS 2002), pages 55–74. IEEE Computer Society, 2002.

[2] J. Smans, B. Jacobs, and F. Piessens. Implicit Dynamic Frames: Com-
bining Dynamic Frames and Separation Logic. In S. Drossopoulou,
editor, ECOOP 2009 – Object-Oriented Programming, volume 5653 of
LNCS, pages 148–172. Springer, 2009.

[3] P. Müller, M. Schwerhoff, and A. J. Summers. Automatic Verification of
Iterated Separating Conjunctions using Symbolic Execution. Technical
report, ETH Zurich, 2016.

[4] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A Verification
Infrastructure for Permission-Based Reasoning. In B. Jobstmann and

49

K. R. M. Leino, editors, Verification, Model Checking, and Abstract
Interpretation, volume 9583 of LNCS, pages 41–62. Springer, 2016.

[5] M. Schwerhoff and A. J. Summers. Lightweight Support for Magic
Wands in an Automatic Verifier. In J. T. Boyland, editor, ECOOP,
volume 37 of LIPIcs, pages 614–638. Schloss Dagstuhl, 2015.

[6] S. Heule, I. T. Kassios, P. Müller, and A. J. Summers. Verification
Condition Generation for Permission Logics with Abstract Predicates
and Abstraction Functions. In G. Castagna, editor, ECOOP 2013 –
Object-Oriented Programming, volume 7920 of LNCS, pages 451–476.
Springer, 2013.

[7] U. Juhasz, I. T. Kassios, P. Müller, M. Novacek, M. Schwerhoff, and A.
J. Summers. Viper: A Verification Infrastructure for Permission-Based
Reasoning. Technical report, ETH Zurich, 2014.

[8] K. R. M. Leino. This is Boogie 2. Manuscript KRML 178. Avail-
able at http://research.microsoft.com/en-us/um/people/leino/

papers/krml178.pdf/, 2008.

[9] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In C. R.
Ramakrishnan and J. Rehof, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 4963 of LNCS, pages 337–340.
Springer, 2008.

[10] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular
Automatic Assertion Checking with Separation Logic. In S. de Boer,
M. M. Bonsangue, S. Graf, and W. de Roever, editors, Formal Meth-
ods for Components and Objects, volume 4111 of LNCS, pages 115–137.
Springer, 2006.

[11] M. Parkinson and G. Bierman. Separation logic and abstraction. In
POPL 2005, pages 247–258. ACM, 2005.

[12] R. Brochenin, S. Demri, and E. Lozes. On the Almighty Wand. In
M. Kaminski and S. Martini, editors, Computer Science Logic, volume
5213 of LNCS, pages 323–338. Springer, 2008.

50

http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf/
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf/

11 Appendix

11.1 Correction for wilcard support within Quantified
permissions in Carbon

Even though not mentioned in the report so far, when inhaling or exhaling
quantified permissions, additional expressions are generated if the permission
expression contains a wildcard permission. When inhaling, the wildcard is
assumed to be some arbitrary value. When exhaling, we constrain the value
of the wildcard to be smaller than the permission held for all locations.

The original implementation of quantified field permission was not check-
ing whether we possess any permission to the set of fields indicated by the
quantifier. This resulted in defining the wildcard to zero in some cases. As
a consequence, it was possible to exhale permissions using wildcards in all
cases. As a correction, we added a check, asserting that for all locations
satisfying the condition, we possess a strictly positive permission.

11.2 Examples

The following example of a Viper program uses both quantified predicates
and combination of predicates. The predicate list represents a list of length
i, where each node has an integer value. The method m1 takes a set of lists
and sets the values to the given parameter for all nodes, doing so by walking
through the set and modifying one element before switching the list. The
example corresponds to the test case list.sil.

f i e ld va l : Int
f i e ld next :Ref

predicate l i s t (r : Ref , i : Int)
{

i > 0 ==> acc (r . va l) && acc (r . next) && acc (l i s t (r . next , i −1)
)

}

function a l l S e t (r : Ref , i : Int , v : Int) : Bool
requires acc (l i s t (r , i))
// ensure s acc (l i s t (r , i))

{
(i <= 0) ? true :

unfolding acc (l i s t (r , i)) in (

51

(r . va l == v) && a l l S e t (r . next , i −1, v)
)

}

method m1(l i s t s : Set [Ref] , l ength : Int , v : Int)
requires l ength > 0
requires fora l l r : Ref : : r in l i s t s ==> acc (l i s t (r , l ength))
ensures fora l l r : Ref : : r in l i s t s ==> acc (l i s t (r , l ength)) &&

a l l S e t (r , length , v)
{

var s : Set [Ref] := l i s t s
var sNext : Set [Ref] := Set [Ref] ()
while (| s | > 0)
invariant fora l l r : Ref : : r in s ==> acc (l i s t (r , l ength))
invariant fora l l r : Ref : : r in l i s t s && ! (r in s) ==> acc (r

. next)
invariant fora l l r : Ref : : r in sNext ==> acc (l i s t (r , length
−1))

invariant fora l l r : Ref : : r in l i s t s && ! (r in s) ==> acc (r
. va l) && r . va l == v

invariant fora l l r : Ref : : r in l i s t s && ! (r in s) ==> r .
next in sNext

invariant fora l l r1 : Ref , r2 : Ref : : r1 in l i s t s && ! (r1 in
s) && r2 in l i s t s && ! (r2 in s) && r1 != r2 ==> r1 . next
!= r2 . next

{
var l :Ref
assume l in s
unfold l i s t (l , l ength)
assume fora l l r : Ref : : r in l i s t s && ! (r in s) ==> r .

next != l . next

s := s setminus Set (l)
sNext := sNext union Set (l . next)
l . va l := v

}
i f (l ength −1 > 0) {

m1(sNext , length −1, v)
}
s := l i s t s
while (| s | > 0)

invariant fora l l r : Ref : : r in l i s t s && ! (r in s) ==>
acc (l i s t (r , l ength)) //&& unfo ld ing l i s t (r , l ength)
in (r . va l == v)

invariant fora l l r : Ref : : r in l i s t s && ! (r in s) ==>
a l l S e t (r , length , v)

invariant fora l l r : Ref : : r in s ==> acc (r . va l) && r .
va l == v && acc (r . next)

52

invariant fora l l r1 : Ref , r2 : Ref : : r1 in s && r2 in s
&& r1 != r2 ==> r1 . next != r2 . next

invariant fora l l r : Ref : : r in s ==> acc (l i s t (r . next ,
length −1))

invariant fora l l r : Ref : : r in s ==> a l l S e t (r . next ,
length −1, v)

{
var l 2 :Ref
assume l 2 in s
fold l i s t (l2 , l ength)
s := s setminus Set (l 2)

}
}

The second example, which is also included in the test run as two block array.sil,
describes an array. The access rights to the fields of that array are defined
by a predicate. The predicate access takes an array and an index. If the
index is even, it grants access to the array location of that index as well as
the next one. The method totalSum calculates the sum of all elements from
the given even index i to the end of the array. The setVal method sets the
value of all entries of the given array from index i until the end, two at a
time. The function setVal2 sets a new value to all entries from index i until
the next write would be over the bounds of the array.

predicate ac c e s s (a : IArray , i : Int) {
(i % 2 == 0) ==> acc (l o c (a , i) . va l) && acc (l o c (a , i +1) . va l)

}

method readTwo (a : IArray , i : Int) returns (sum : Int)
requires acc (a c c e s s (a , i)) && (i%2 == 0)
{

unfold ac c e s s (a , i)
sum := l o c (a , i) . va l + l o c (a , i +1) . va l

}

method totalSum (a : IArray , i : Int) returns (sum : Int)
requires i >= 0 && i + 1 < l en (a)
requires i % 2 == 0
requires fora l l j : Int : : (j >= 0 && j < l en (a) && (j%2 ==0)) ==>

acc (a c c e s s (a , j))
ensures i >= 0 && i <= len (a)
ensures fora l l j : Int : : j >= 0 && j < l en (a) && (j%2 ==0) ==>

acc (a c c e s s (a , j))

53

{
i f (i + 3 < l en (a)) {

sum:= totalSum (a , i +2)
unfold ac c e s s (a , i)
sum := sum + lo c (a , i) . va l + l o c (a , i +1) . va l
fold ac c e s s (a , i)

} else {
unfold ac c e s s (a , i)
sum := l o c (a , i) . va l + l o c (a , i +1) . va l
fold ac c e s s (a , i)

}

}

method setVal (a : IArray , i : Int , newVal : Int)
requires i >= 0 && i < l en (a)
requires i % 2 == 0
requires l en (a)%2 == 0
requires fora l l j : Int : : j >= 0 && j < l en (a) && (j%2 ==0) ==>

acc (a c c e s s (a , j))
ensures i >= 0 && i < l en (a)
ensures l en (a)%2 == old (l en (a)%2)
ensures fora l l j : Int : : j >= 0 && j < l en (a) && (j%2 ==0) ==>

acc (a c c e s s (a , j))
{

unfold ac c e s s (a , i)
l o c (a , i) . va l := newVal

l o c (a , i +1) . va l := newVal
fold ac c e s s (a , i)
assert (unfolding acc (a c c e s s (a , i)) in (l o c (a , i) . va l ==

newVal)) && (unfolding acc (a c c e s s (a , i)) in (l o c (a , i +1) .
va l == newVal))

i f (i + 2 < l en (a)) {
setVal (a , i +2, newVal)

}
}

method setVal2 (a : IArray , i : Int , newVal : Int)
requires i >= 0 && i < l en (a)
requires fora l l j : Int : : j >= 0 && j < l en (a) ==> acc (l o c (a , j) .

va l)
ensures i >= 0 && i < l en (a)
ensures fora l l j : Int : : j >= 0 && j < l en (a) ==> acc (l o c (a , j) .

va l)

54

ensures fora l l j : Int : : j >= 0 && j < l en (a) && j < i ==> old (
l o c (a , j) . va l) == lo c (a , j) . va l

{
l o c (a , i) . va l := newVal

i f (i + 2 < l en (a)) {
setVal2 (a , i +1, newVal)

}

}

/∗ Encoding o f a r rays ∗/

f i e ld va l : Int

domain IArray {
function l o c (a : IArray , i : Int) : Ref
function l en (a : IArray) : Int
function f i r s t (r : Ref) : IArray
function second (r : Ref) : Int

axiom a l l d i f f {
f o ra l l a : IArray , i : Int : : { l o c (a , i) }

f i r s t (l o c (a , i)) == a && second (l o c (a , i)) == i
}

axiom l en nonneg {
f o ra l l a : IArray : : l en (a) >= 0

}
}

55

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Generalised Verification for Quantified Permissions

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):
Müller Nadja Stephanie

With my signature I confirm that
- I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
- I have documented all methods, data and processes truthfully.
- I have not manipulated any data.
- I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date
Wohlen, 29 September 2016

Signature(s)

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

	Abstract
	Introduction
	Outline

	Background
	Permissions
	Program State
	Types and Domains
	Fields
	Methods
	Functions
	Recursive Predicates
	Magic Wands
	Quantified Field Permissions
	Verification Condition Generation and Quantified Field Permissions
	Symbolic Execution Rules for Quantified Field Permissions

	Generalising Quantified Field Permissions in Carbon
	Quantified Predicate Permissions
	Verification Condition Generation for Quantified Predicate Permissions
	Symbolic Execution
	Symbolic Heap Representation
	Quantified Inhaling
	Quantified Exhaling
	Inhaling and Exhaling Single Predicate Permission
	Treatment of Symbolic Values
	Unfold
	Fold

	Implementation
	Issues

	Quantified Magic Wands
	Combinations of Quantifiers
	Rewriting Rules
	Example
	Implementation

	Nested Quantifiers
	Multiple Quantifier Variables
	Rewriting Nested Quantified Permissions

	Evaluation
	Conclusion an Future Work
	Appendix
	Correction for wilcard support within Quantified permissions in Carbon
	Examples

