
A Better SMT Language:
Design & Tooling

Bachelor Thesis

Nico Darryl Hänggi

October 6, 2020

Advisor: Dr. Malte Schwerhoff
Supervisor: Prof. Dr. Peter Müller

Department of Computer Science, ETH Zürich

Abstract

In the last decade, SMT solvers have become an essential part of computer-
aided verification and analysis of software. To interact with an SMT
solver, many solvers adhere to the SMT-LIB specification, an interna-
tional standard for expressing logic terms and formulas, featuring a
fully parenthesized prefix notation. While this syntax is easy to parse, it
is not very human-friendly and debugging SMT encodings is rendered
extremely challenging.

In this thesis, we developed yuk-that-smt, a command-line interface
tool that helps developers to understand and debug SMT-LIB encod-
ings more easily. For this, we propose a novel SMT source language,
called B-SMT, that features both a more human-friendly and extendable
syntax at the same time. Our command-line-interface makes automatic
conversion between SMT-LIB and B-SMT possible, whilst providing a
user-friendly and performant experience. To illustrate the extension ca-
pabilities of our language, we propose three additional extensions that
help to reduce further the encoding gap between SMT-LIB and our novel
language.

As yuk-that-smt o↵ers an extendable plugin architecture, it can be
employed in a broad range of application areas and be adapted towards
supporting a wide range of state-of-the-art program verifiers.

i

Acknowledgements

I want to express my sincere gratitude to Dr. Malte Schwerho↵, not only
for guiding me through this work during the past six months and sharing
his expertise on the matter but also for o↵ering valuable feedback on my
ideas and bringing up many on his own. Moreover, I would like to
thank Dr. Peter Müller and the Programming Methodology Group for
providing me with this opportunity in the first place; contributing to a
state-of-the-art formal verifier was both demanding and fulfilling at the
same time.

iii

Contents

Contents v

1 Introduction 1

2 The SMT-LIB Language 5

2.1 SMT-LIB . 5
2.1.1 Syntax . 5
2.1.2 Sorts . 6
2.1.3 Terms . 7
2.1.4 Commands . 9

2.2 The Z3 Theorem Prover . 12
2.2.1 Di↵erences to SMT-LIB 12
2.2.2 The Language Grammar 12

3 The B-SMT Language 17

3.1 Restrictions in Language Design 17
3.1.1 SMT-LIB Symbol Definitions 17
3.1.2 Reserved Keywords . 18
3.1.3 Two-Way Transpilation 18

3.2 Design Goals . 18
3.3 An Overview of the B-SMT Language 19

3.3.1 Tokens . 20
3.3.2 S-expressions . 20
3.3.3 Identifiers and Sorts . 21
3.3.4 Attributes . 21
3.3.5 Declarations . 21
3.3.6 Terms . 22
3.3.7 Macros . 23
3.3.8 Statements . 24
3.3.9 Program . 26

v

Contents

4 Language Extensions 27

4.1 Assertions . 27
4.2 Infix & Mixfix Operators . 28
4.3 Piecewise Constants . 29

4.3.1 E-BSMT to B-SMT . 30
4.3.2 B-SMT to E-BSMT . 30
4.3.3 Transformation Issues 31

4.4 Piecewise Functions . 32
4.4.1 E-BSMT to B-SMT . 33
4.4.2 B-SMT to E-BSMT . 33

4.5 Mutable Variables . 34
4.5.1 Naming Scheme . 35
4.5.2 Old Expression . 35

4.6 Mutable Functions . 35
4.7 Defunctionalization . 36
4.8 Partial Functions & Domains 37

5 Technology Stack 39

5.1 Extendability . 39
5.2 Performance . 40

5.2.1 Parsing JSON . 40
5.2.2 Parsing S-Expressions 40

5.3 Conclusion . 41

6 Implementation 43

6.1 Architecture . 43
6.1.1 Client . 43
6.1.2 Backend . 45
6.1.3 SMT-LIB to B-SMT . 46
6.1.4 B-SMT to SMT-LIB . 46

6.2 Plugins . 47
6.3 Syntax Highlighting . 48

7 Evaluation 51

7.1 Test Suite . 51
7.2 Correctness . 52

7.2.1 Unit Tests . 52
7.2.2 Integration Tests . 52

7.3 Performance . 53
7.4 Limitations . 54

8 Conclusion & Future Work 57

8.1 Conclusion . 57
8.2 Future Work . 58

vi

Contents

Bibliography 61

vii

Chapter 1

Introduction

Ever since Floyd [15] and Hoare [22] set the basis for program verification
in the late 1960s, the importance of formally verifying software correctness
has been rising due to the sheer growth in application complexity. Since
then, many di↵erent program verifiers with diverse application areas have
emerged and been used widely in industry. For many of those tools, a
Verification Condition Generator (VCG) [8] sits at the core of the verification
process by producing formal verification conditions that are subsequently
validated using an automated theorem prover.

SMT solvers, one particular type of such theorem provers, have been playing
a leading role in automated reasoning in the last decade. While there exist
numerous di↵erent SMT solvers, nearly all share a standard input and output
language, SMT-LIB [5], to allow for checking the satisfiability of first-order
logic formulas. Developers of program verifiers often need to understand and
modify the generated SMT-LIB encodings to be able to reason about the cor-
rectness of the translated verification conditions in order to identify possible
bugs in the resulting SMT encoding. Unfortunately, the fully parenthesized
prefix notation of SMT-LIB coupled with the lack of a simple encoding for ba-
sic imperative language concepts leads to a significant encoding gap between
the original program code and the resulting SMT-LIB encodings. As a result,
it can be tedious and time-consuming to identify bugs and to reason about
the resulting encoding for tool implementers.

The main focus of this project is to reduce the encoding gap between what the
high-level program code describes and how said code is represented in SMT-
LIB. To accomplish this, we propose an alternative syntax for SMT encodings
that helps implementers of program verifiers to understand and reason about
the underlying SMT code more e�ciently. Moreover, we will allow users to
customize parts of the syntax mentioned above. Based on this, we implement
a CLI tool, named yuk-that-smt, that allows e�cient conversion from SMT-
LIB to the B-SMT language (and vice versa).

1

1. Introduction

Figure 1.1: Debugging workflow with our CLI tool

We will now illustrate how our contribution facilitates the debugging work-
flow on a simple example. In Figure 1.1, the novel debugging workflow
leveraging our CLI tool is shown. In the following, assume that we have to
reason about the SMT-LIB code presented in Listing 1.1. The encoding intro-
duces an algebraic List datatype with the two constructors nil and cons (see
Section 2.1.4).

1 (declare-datatypes (T) ((List nil (cons (hd T) (tl List
)))))

Listing 1.1: Algebraic datatype List in SMT-LIB

However, the parenthesized notation makes the encoding di�cult to under-
stand, and thus, we leverage the power of yuk-that-smt to produce a more
human-friendly encoding, presented in Listing 1.2. We can then modify the
encoding on the B-SMT level and convert it back to SMT-LIB, invoking an
SMT solver to check the verification result, as depicted in Figure 1.1.

1 data List[T] = nil :| cons(hd: T, tl: List[T])

Listing 1.2: Algebraic datatype List in B-SMT

This thesis is structured as follows: In Chapter 2, we begin with a thorough in-
troduction to the SMT-LIB specification, along with a brief overview of the Z3
Theorem Prover. In Chapter 3, we propose B-SMT, our novel SMT language.
With the prerequisites covered in the first two chapters, in Chapter 4, we will
discuss the extendability of B-SMT along with potential language extensions

2

in more detail. Chapter 5 motivates the language of choice for this thesis:
TypeScript. In Chapter 6, we finally present yuk-that-smt, our command-
line interface tool. The performance and correctness of yuk-that-smt are
evaluated in Chapter 7, and ultimately, in Chapter 8, we provide a list of
issues that could be addressed in future work.

3

Chapter 2

The SMT-LIB Language

SMT solvers form the basis of many program verification architectures. Usu-
ally, program verifiers translate their source programs into logical formulas
which are then discharged using an SMT solver. For instance, the Viper
verification infrastructure [37] developed at ETH Zürich introduces an inter-
mediate language called Viper that provides simple imperative constructs, as
well as statements for managing permission-based reasoning. Silicon [32],
one of Viper’s automated verifiers that leverages symbolic execution, then
translates these programs into logical verification conditions in the form of
SMT-LIB scripts. In the following chapter, we will introduce the SMT-LIB lan-
guage standard along with the Z3 Theorem Prover, one of the most popular
SMT solvers.

2.1 SMT-LIB

The SMT-LIB standard defines both a language to express logic terms and
formulas in, and, at the same time, provides a scripting language that acts as
a textual interface to communicate with SMT solvers in a read-eval-print loop
(REPL) fashion. There have been many iterations of the SMT-LIB standard
since its inception in 2003 [5]. Our work will mainly focus on Version 2.6 of
the said standard; the latest o�cial release at the time being. In the following,
we will briefly explore the SMT-LIB syntax along with the three main compo-
nents of the language: sorts, terms and commands. Furthermore, SMT-LIB
currently does not support higher-order functions and SMT-LIB functions
always need to be total. For a more thorough introduction to SMT-LIB, the
reader is referred to the o�cial standard [5].

2.1.1 Syntax

SMT-LIB features a syntax that is almost identical to the parenthesized nota-
tion introduced by Common Lisp. All commands, sorts, and terms are indeed

5

2. The SMT-LIB Language

valid S-expressions, also known as symbolic expressions. S-expressions rep-
resent a list of nested tree-like structures, with the operator or function name
coming first, followed by the respective operands or function arguments. Due
to this prefix notation, parsing is facilitated considerably at the expense of a
more human-friendly source syntax. However, because developers usually
do not work on the generated SMT-LIB encoding itself, this compromise is
tolerated in favour of tool performance.

1 (declare-const a Int)
2 (declare-const b Int)
3 (assert (< a b))
4 (assert (> a b))
5 (check-sat)

Listing 2.1: Checking satisfiability of given assertions

Before exploring the di↵erent aspects of the SMT-LIB language in more detail,
we present a simple example. In Listing 2.1, we show how to check the satis-
fiability of a simple encoding in SMT-LIB. The first two commands introduce
the uninterpreted constants a and b. The assertion on line 3 states that amust
be smaller than b. Likewise, the next command asserts the opposite; requir-
ing constant a to be greater than b. The check-sat command then enquires
the underlying SMT solver about the satisfiability of the specified encoding.
In this case, it is trivial to infer that the encoding is unsatisfiable, which is
confirmed by the solver.

2.1.2 Sorts

In SMT-LIB, all terms and formulas are strongly-typed; that is, each one is
associated with precisely one type. Consequently, SMT-LIB introduces the
notion of sorts, which are the equivalent to types in logical terminology. In
addition to simple non-parametric sorts, SMT-LIB also o↵ers parametric types
that share many similarities with the identically named feature in Haskell [23].

Numerous built-in sorts are available by default, including Int, Real and
Bool. Moreover, many of the SMT-LIB background theories define additional
sorts that can be used when the respective theory is enabled. For instance,
the ArraysEx [25] background theory introduces the binary parametric sort
(Array o1 o2), where o1 is an arbitrary sort denoting the index position
type. Similarly, o2 stands for the type of array elements. As a result, this
theory allows us to represent both flat and arbitrarily nested arrays. For
example, the sort (Array Int Bool) denotes an array of booleans, indexed
by integers. In contrast, the sort (Array Int (Array Int Int)) describes a
(nested) two-dimensional integer array.

Additionally, SMT-LIB allows the declaration of new sorts, which are always
uninterpreted; that is, no prior interpretation is attached to them.

6

2.1. SMT-LIB

2.1.3 Terms

Terms are arguably the most crucial aspect of the SMT-LIB language. They
allow us to add specific restrictions on our logical model. In SMT-LIB, terms
are well-sorted, and all formulas used in assertions are required to be of the
Boolean sort. Similar to expressions in other programming languages, terms
consist of a nested combination of operator and function applications, literals,
and constant variables. In Listing 2.1, we have already seen two basic function
application terms, namely (< a b) and (> a b).

Quantifiers

In addition to the simple terms mentioned above, SMT-LIB also supports
both the existential and universal quantifier known from first-order logic.
For this, the language introduces the forall and exists keywords. Let
us now consider Listing 2.2. Suppose we have an uninterpreted function
ident that needs to behave like the identity function, i.e. always return the
provided argument. To achieve this, we add an assertion that quantifies over
all variables x of type Int. The quantifier now ensures that for every integer
x, all calls to the identity function having x as an argument return x again.

1 (assert (forall ((x Int)) (= (ident x) x)))

Listing 2.2: Making assertions about all members of a set

Quantifying over multiple variables at the same time is also possible: one can
list them next to each other. Likewise, the syntax for the existential quantifier
exists is (except for the keyword) identical to what we have shown above.

Variable Binding

With theletbinding operator, we can introduce new local variables in parallel.
Generally, the let operator is of the form (let ((v1 t1) ... (vn tn)) t).
It introduces n new variables named v1 to vn and each of those corresponds
to exactly one term named t1 to tn. Now, let us explore how we can refactor
Listing 2.2 using the newly proposed variable binding operator. For this,
consider Listing 2.3, where we introduce a new variable res that corresponds
to the term (ident x). Hence, in the body of the binding operator, we can
then use res to refer to said function call. Semantically speaking, variable
bindings are equivalent to replacing all occurrences of the newly defined
variables with their corresponding assignment.

7

2. The SMT-LIB Language

1 (assert (forall ((x Int)) (let
2 ((res (ident x)))

3 (= res x))

4))

Listing 2.3: Refactored Listing 2.2 with let binding operator

Pattern Matching

With the addition of datatypes in SMT-LIB Version 2.6 (see Section Datatypes),
pattern matching on algebraic types was introduced together with it. Similar
to how pattern matching works in Haskell or other functional programming
languages, pattern matching in SMT-LIB allows you to match an instance of
a data structure against constructors of that specific type. This information
is then used as a basis for deciding what term should be returned. However,
in contrast to Haskell, the matching cases must be exhaustive, i.e. every
constructor of that datatype must be present in at least one of the patterns.

In Listing 2.4, we will investigate how to pattern match on a tree-like datatype.
Let us assume the symbol tree is an instance of a tree-like structure with two
constructors; leaf having no parameters and node having three: a value
attached to the node itself together with left and right subtrees. For the
declaration of such a data structure, please refer to Listing 2.6. The first
matching case ensures that whenever tree is a leaf, the value 0 is returned
as a result. Conversely, if leaf is a node, we return the integer that is currently
attached to the given node; val in our case. Note that when matching a non-
nullary constructor, its parameters are introduced in the form of variable
bindings. Here, matching the node constructor also introduces three new
variables, val, left and right.

1 (match tree (

2 (leaf 0)

3 ((node val left right) val)

4))

Listing 2.4: Pattern matching on tree-like data structure

Annotations

Every term in SMT-LIB can be annotated with several attributes to provide the
underlying SMT solver with additional meta-information. For instance, we
can name the first term in Listing 2.1 foo by wrapping it with the annotation
expression along with the respective attribute. The annotated term then is
(! (< a b) :named foo). More generally, annotations are of the form (! t
a1 ... an), where t is a term and a1 to an denote the n attributes attached.

8

2.1. SMT-LIB

Semantically speaking, annotating the term is equivalent to just the term t
itself.

In practice, SMT solvers primarily use annotations to handle formulas involv-
ing quantifiers. In this approach, users define an instantiation pattern which
is then consumed by the solver with the help of E-matching [35]. For a more
thorough description, please refer to the work of Bjørner and de Moura [36].

2.1.4 Commands

After having presented both sorts and terms, we will now focus on the notion
of commands. In SMT-LIB, a script always consists of a sequence of com-
mands that are used to interact with the underlying SMT solver sequentially:
we can declare new constants, functions and datatypes, introduce macros,
restrict our model by using assertions, and also check the satisfiability of our
C-like macros. In the following, we will briefly illustrate the most important
features.

Declarations

The (declare-sort s n) command introduces a new uninterpreted sort s
along with the respective arity n. For instance, (declare-sort Tree 1)
introduces a generic tree type along with a single parameter denoting the
value sort attached to a node. Thus, when dealing with a well-sorted integer
Tree, its type must be (Tree Int).

Similarly, (declare-fun f (o1 ... on) o) declares a function f with n ar-
guments of respective sort o1 to on; its return type is o. For example, (
declare-fun f ((Tree Int) Int) Int)might declare a function that takes
an integer tree and a position as its arguments and then returns the value at
the specified node.

In SMT-LIB, constants are just functions without parameters. Thus, the com-
mand (declare-const f o) is just an abbreviation for (declare-fun f ()
o).

With the addition of two new commands, SMT-LIB Version 2.6 now o�cially
supports algebraic datatypes. declare-datatype declares a single, poten-
tially recursive datatype. Equivalently, declare-datatypes allows the dec-
laration of multiple, potentially mutually recursive datatypes. Because its
behaviour is very similar to the simpler declare-datatype, we will omit it
from the discussion. With algebraic datatypes, we not only have a convenient
way of specifying data structures, but we can also denote enumeration types
with ease.

9

2. The SMT-LIB Language

1 (declare-datatype Day (Monday Tuesday Wednesday
Thursday Friday Saturday Sunday))

Listing 2.5: Days-of-the-week enumeration type in SMT-LIB

Listing 2.5 shows how to define a simple days-of-the-week enumeration sort
in SMT-LIB. The code listing specifies a new data structure called Day along
with the seven data constructors Monday, Tuesday, Wednesday, and so on. The
domain of enumeration sorts is always finite, i.e. the elements in the domain
are the respective constructors.

In Listing 2.6, we show how a generic recursive binary tree is defined in SMT-
LIB. In this case, the new parametric sort Tree has two data constructors leaf
and node. However, in comparison to the enumeration type presented above,
the node constructor now has three parameters itself; each argument having a
dedicated selector, e.g. value, left and right. In contrast to Haskell, where
pattern matching on data structures is implicit, SMT-LIB requires datatype
selectors to be explicit. On the remaining lines, we declare a new integer tree
myTree and then assert that its associated value must be 42 utilizing the value
selector.

1 (declare-datatype Tree (par (T) ((leaf) (node (value T)
(left (Tree T)) (right (Tree T))))))

2 (declare-const myTree (Tree Int))
3 (assert (= (value myTree) 42))

Listing 2.6: Recursive binary tree data structure

Assertions and Checking for Satisfiability

In the previous listings, we have already seen a few examples on how to add
new assertions and then check the satisfiability of the specified model.

The (assert t) command adds a new assertion to our model, i.e. the formula
t is required to hold in the current model. Please note that the term t must
be well-sorted and of type Bool.

The (check-sat) command takes no arguments and directs the solver to
check whether the conjunction of all assertions is satisfiable or not. It does
this by trying to find a model that satisfies all asserted formulas. A return
value of sat indicates that the solver found a model, unsat implies that the
solver is sure that no model can exist and in all other cases, the solver will
return unknown.

Sometimes, one does not only want to know whether a model exists but also
retrieve the specific interpretation that the SMT solver found for that model.
For this, we make use of the (get-model) command, which returns precisely
one interpretation for all user-specified symbols in the current model.

10

2.1. SMT-LIB

Definitions

In addition to declarations, SMT-LIB also supports shorthand commands that
make defining functions and interpreted sorts more accessible.

The (define-sort s (p1 ... pn) o) command introduces a new sort s
with associated arity n. Semantically speaking, the type (s o1 ... on) is
equivalent to the type obtained by substituting every occurrence of p1 to pn
with o1 to on in o. Let us consider Listing 2.7, where we define a new generic
array sort whose index type is always an integer. If we now, for instance,
introduce a new symbol of the sort (MyArray Bool), its concrete type will be
(Array Int Bool), which ensures that subsequent type checks will succeed.

1 (define-sort MyArray (T) (Array Int T))

Listing 2.7: Generic array definition in SMT-LIB

SMT-LIB also o↵ers two additional commands for defining functions directly.
The first one, define-fun, can be used to declare and define functions that are
not (mutually) recursive. Semantically, define-fun is equivalent to a function
declaration followed by an assertion quantifying over all function parameters.
For example, the function definition (define-fun plus ((a Int) (b Int)
) Int (+ a b)) is semantically equivalent to the two commands shown
in Listing 2.8. Similarly, define-funs-rec can be used to define multiple,
mutually recursive functions in parallel.

1 (declare-fun plus (Int Int) Int)
2 (assert (forall ((a Int) (b Int)) (= (plus a b) (+ a b)

)))

Listing 2.8: Equivalent function definition in SMT-LIB

Scope

SMT-LIB proposes a stack-based execution model, meaning that all assertions
and declarations only exist on the stack. Multiple assertions and declarations
on the stack are combined into a stack level, which forms an atomic unit.
Thus, it is not possible to remove individual elements from the stack without
removing the entire level.

When a new assertion or declaration is introduced, it automatically belongs
to the current level. The (push n) command pushes n empty levels onto
the stack. If n is not specified, only a single new level is created. Likewise,
(pop n) removes the nmost recent levels from the stack. Removing a single
level invalidates all assertions and symbol declarations that were introduced

11

2. The SMT-LIB Language

on that specific level. By default, the stack starts with an initial level. All as-
sertions and declarations are added to this level as long as no push command
has occurred yet.

Executing the (reset-assertions) command removes all levels, including
its assertions, from the stack.

Miscellaneous Commands

In addition to the ones introduced above, SMT-LIB features a range of other
commands that can be used to interact with the underlying SMT solvers.
With these commands, one can (re-)start and terminate the solver, enable
specific logics, adjust the solver options and inspect the current model more
closely. However, we will not explain these commands further as they o↵er
no additional benefit for the understanding of this thesis.

2.2 The Z3 Theorem Prover

There exist numerous SMT solvers that support the SMT-LIB standard de-
scribed previously, including CVC4 [6], MathSAT [9], OpenSMT [10], Yices
[13] and Z3 [36]. Among one of the most popular SMT solvers is the Z3
Theorem Prover developed by Microsoft. Z3 is widely used in research and
industry and forms the basis of many program verifiers, including Boogie [4],
F* [39] and the Viper verification infrastructure mentioned earlier.

While Z3 o�cially adopts the SMT-LIB Version 2.0 standard, its implementa-
tion is a superset of SMT-LIB Version 2.6, i.e. Z3’s accepted language syntax
is less restrictive than the o�cial specification for the most part. Our work
is only concerned with supporting the SMT-LIB specification that Z3 accepts;
other SMT-LIB dialects will be ignored. In the following section, we will show
a brief overview of the most important di↵erences between the two.

2.2.1 Differences to SMT-LIB

There are only a few di↵erences between SMT-LIB and the language Z3 ac-
cepts. For instance, Z3 introduces the define-const command, which is a
shorthand for a constant declaration along with an assertion. Furthermore,
the declare-datatype command is extended such that it accepts both the
SMT-LIB2.0 and SMT-LIB2.6 standard, which di↵er slightly.

2.2.2 The Language Grammar

In Figure 2.1, we present the grammar of the SMT-LIB dialect that is sup-
ported by Z3. Because there is no o�cial documentation on the SMT-LIB
dialect supported by Z3 and its grammar is not described publicly, we had

12

2.2. The Z3 Theorem Prover

to formalize the grammar shown in Figure 2.1 by examining the lexer and
parser of the Z3 project [36]. At the time of formalizing, version 4.8.8 was the
latest stable release.

The grammar shown in 2.1 uses | to separate alternatives. The su�x ?
indicates that the preceding component is optional, while the su�xes? and +
specify a zero-or-more and one-or-more repetition of the previous component,
respectively.

13

2. The SMT-LIB Language

hspec_constanti ::= hnumerali | hdecimali | hhexadecimali | hbinaryi | hstringi
hs_expri ::= hspec_constanti | hall_symbolsi | hkeywordi

| ‘(’ hs_expri? ‘)’

hidentiferi ::= hsymboli | ‘(_’ hsymboli hnumerali+ ‘)’

hsorti ::= hidentiferi | ‘(’ hidentifieri hsorti+ ‘)’

hattribute_valuei ::= hspec_constanti | hsymboli | ‘(’ hs_expri? ‘)’

hattributei ::= hkeywordi hattribute_valuei?
hcasted_identiferi ::= hidentifieri | ‘(as’ hidentifieri hsorti ‘)’

hvar_bindingi ::= ‘(’ hsymboli htermi ‘)’

hpatterni ::= hsymboli | ‘(’ hsymboli hsymboli+ ‘)’

hmatch_casei ::= ‘(’ hpatterni htermi ‘)’

htermi ::= hspec_constanti
| hcasted_identiferi
| ‘(’ hcasted_identiferi htermi+ ‘)’
| ‘(let (’ hvar_bindingi+ ‘)’ htermi ‘)’
| ‘(forall (’ hsorted_vari+ ‘)’ htermi ‘)’
| ‘(exists (’ hsorted_vari+ ‘)’ htermi ‘)’
| ‘(lambda (’ hsorted_vari+ ‘)’ htermi ‘)’
| ‘(match’ htermi ‘(’ hmatch_casei+ ‘))’
| ‘(!’ htermi hattributei? ‘)’

hconstructor_deci ::= hsymboli | ‘(’ hsymboli hsorted_vari? ‘)’

hdatatype_deci ::= ‘(’ hconstructor_deci+ ‘)’
| ‘(par (’ hsymboli+ ‘) (’ hconstructor_deci+ ‘))’

hdatatypes_deci ::= ‘(’ hsymboli hconstructor_deci+ ‘)’

hsmt_26_or_oldi ::= hsmt_26i | hsmt_oldi
hsmt_oldi ::= ‘(’ hsymboli? ‘) (’ hdatatypes_deci? ‘)’

hsmt_26i ::= ‘(’ hidx_identifieri+ ‘) (’ hdatatype_deci+ ‘)’

hidx_identifieri ::= ‘(’ hsymboli hnumerali ‘)’

hfunction_deci ::= ‘(’ hsymboli ‘(’ hsorted_vari? ‘)’ hsorti ‘)’

hfunction_declari ::= hsymboli ‘(’ hsorted_vari? ‘)’ hsorti htermi

14

2.2. The Z3 Theorem Prover

hcommandi ::= ‘assert’ htermi
| ‘check-sat’ htermi?
| ‘check-sat-assuming (’ htermi? ‘)’
| ‘declare-const’ hsymboli hsorti
| ‘declare-datatype’ hsymboli hdatatype_deci
| ‘declare-datatypes’ hsmt_26_or_oldi
| ‘declare-fun’ hsymboli ‘(’ hsorti? ‘)’ hsorti
| ‘declare-sort’ hsymboli hnumerali?
| ‘define-fun’ hfunction_declari
| ‘define-fun-rec’ hfunction_declari
| ‘define-funs-rec (’ hfunction_deci+ ‘) (’ htermi+ ‘)’
| ‘define-sort’ hsymboli ‘(’ hsymboli? ‘)’ hsorti
| ‘define-const’ hsymboli hsorti htermi
| ‘echo’ hstringi
| ‘exit’
| ‘get-assertions’
| ‘get-assignment’
| ‘get-info’ hkeywordi
| ‘get-model’
| ‘get-option’ hkeywordi
| ‘get-proof’
| ‘get-unsat-assumptions’
| ‘get-unsat-core’
| ‘get-value (’ htermi+ ‘)’
| ‘pop’ hnumerali?
| ‘push’ hnumerali?
| ‘reset’
| ‘reset-assertions’
| ‘set-info’ hattributei
| ‘set-logic’ hsymboli
| ‘set-option’ hattributei

hcmdi ::= ‘(’ hcommandi ‘)’

hscripti ::= hcmdi?
Figure 2.1: The SMT-LIB dialect supported by Z3

15

Chapter 3

The B-SMT Language

In this chapter we propose a novel SMT language, which we call B-SMT, with
a more human-friendly syntax, drawing inspiration from existing languages
such as Haskell, OCaml [27], Rust, Boogie, and Viper. In the next chapter, we
will show how to extend the language, both syntactically and semantically, to
make it more expressive. From now on, we will denote Z3’s SMT-LIB dialect
as SMT-LIB for better readability.

3.1 Restrictions in Language Design

Since our new language must support e�cient conversion both from and to
SMT-LIB, certain restrictions in language design are imposed on us. In the
following, we will briefly explore them.

3.1.1 SMT-LIB Symbol Definitions

In contrast to many traditional programming languages, SMT-LIB’s symbol
definition is mostly unrestricted. Valid symbols can include many special
characters, including any of the following characters , ~ + = < > . ? / -
|. Such an extensive symbol definition is problematic since many of these

characters have assigned a special meaning to them in other languages. For
instance, consider the following function declaration fun isValid(param1,
param2); a syntax that most modern programming languages adhere to in
some form. However, in SMT-LIB, param1,param2 will be a valid symbol
token, and thus this declaration will be identified as a function with only a
single argument.

To circumvent this issue, and allow for more freedom in the design of B-SMT,
we have decided to restrict the symbol definition not to contain any commas.
By doing so, we can achieve a more modern and better human-readable
source syntax.

17

3. The B-SMT Language

3.1.2 Reserved Keywords

As we have seen in the previous chapter, everything in SMT-LIB is an S-
expression. As a consequence, in contrast to modern programming languages,
SMT-LIB does not define any reserved keywords. For example, the command
(declare-const forall Int), while seemingly obscure, is perfectly valid in
SMT-LIB because Z3 can infer its meaning based on the context. However,
when trying to use this newly introduced constant within a term, Z3 throws
an error.

Such a mechanism, where the context decides whether a symbol is valid or
not, is overly confusing for developers. In order to prevent the introduction of
an erratic symbol handling for our new B-SMT language, we decided to make
all symbols leading to inconsistent behaviour reserved keywords, i.e. they
will not be allowed to appear as symbols in B-SMT. Besides, we introduce two
additional reserved symbols, namely with and ->. This decision grants us
extra leeway during the language design process. In Listing 3.1, all reserved
symbols are shown.

as

let

forall

exists

lambda

match

!

_

par

with

->

Listing 3.1: Reserved keywords in B-SMT

3.1.3 Two-Way Transpilation

Moreover, di↵erent from most other projects involving code transpilation,
we need to be able to transform back and forth between SMT-LIB and B-SMT.
As a result B-SMT closely resembles SMT-LIB as introduced in the previous
chapter.

3.2 Design Goals

The design of B-SMT is based on the assumption that the intermediate lan-
guage is imperative. For the development of the B-SMT language, we focus
on achieving two primary goals. First of all, our new source syntax should be
easier to read by tool developers that have to reason about resulting SMT-LIB

18

3.3. An Overview of the B-SMT Language

encodings produced by their verifiers. We accomplish this by reducing the
encoding gap between B-SMT and the intermediate verification language; in
other words, we try to mimic syntax and semantics of higher-level program-
ming languages.

The second major goal is concerned with performance. The language should
be reasonably easy to lex and parse and thus allow us to process SMT en-
codings with tens of thousands of lines quickly. For this reason, it should be
possible to parse the language grammar in linear time without applying any
backtracking techniques.

3.3 An Overview of the B-SMT Language

In this section, we will briefly present the most critical aspects of the B-SMT
language. Please note that all grammar rules presented in this section follow
the same notation as introduced in the previous chapter. In addition to the
aforementioned notation, ,? and ,+ indicate a zero-or-more and one-or-more
repetition of the previous component, respectively. The|? and|+ annotations
are defined in the same manner.

The B-SMT language features an LL(3) grammar. Therefore, the language
itself is context-free and can be parsed by a recursive descent parser without
the need for any backtracking. Parsing an LL(3) grammar requires a looka-
head of at most three tokens, which implies that we can parse B-SMT within
linear time.

Our new SMT encoding abandons the Lisp-style S-expressions and instead
replaces them with a mixture of infix notation for operators, function appli-
cation by encompassing its arguments in parentheses and ultimately on the
global scope, statements. Unless stated otherwise, the semantics of B-SMT
are equivalent to the respective SMT-LIB language concepts explained in the
previous chapter.

Furthermore, while the B-SMT language is strongly typed, we will not carry
out any type checks during the parsing phase. Thus, if the source program
(e.g. SMT-LIB or B-SMT) is not well-sorted, it will still be transpiled into the
respective language, carrying over all erroneous typings.

19

3. The B-SMT Language

3.3.1 Tokens

In Figure 3.1, the token definitions for our novel B-SMT language are shown.
Apart from the restrictions introduced in Section 3.1, the token definitions for
B-SMT are equivalent to those of SMT-LIB.

hsymbol_chari ::= ‘a’ | ‘b’ | ‘c’ | ... | ‘x’ | ‘y’ | ‘z’ |
| ‘A’ | ‘B’ | ‘C’ | ... | ‘X’ | ‘Y’ | ‘Z’ |
| ‘~’ | ‘!’ | ‘@’ | ‘$’ | ‘%’ | ‘^’ | ‘&’ | ‘*’ | ‘_’
| ‘+’ | ‘=’ | ‘<’ | ‘>’ | ‘.’ | ‘?’ | ‘/’ | ‘-’

hdigiti ::= ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
hzero_digiti ::= hdigiti | ‘0’
hnumerali ::= ‘0’ | hdigitihzero_digiti?
hdecimali ::= hnumerali‘.’(hzero_digiti+)?
hbinaryi ::= ‘#b’ (‘0’ | ‘1’)+
hhex_charsi ::= ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’
hhexadecimali ::= ‘#x’ (hzero_digiti | hhex_charsi)+
hstringi ::= ‘"’hany_non_linebreak_chari?‘"’
hquoted_symboli ::= ‘|’hany_non_linebreak_chari?‘|’
hsimple_symboli ::= hsymbol_chari(hzero_digiti | hsymbol_chari)?
hsymboli ::= hsimple_symboli | hquoted_symboli
hkeywordi ::= ‘:’(hzero_digiti | hsymbol_chari)+

Figure 3.1: B-SMT token definitions language grammar

3.3.2 S-expressions

hspec_constanti ::= hnumerali | hdecimali | hhexadecimali | hbinaryi | hstringi
hs_expri ::= hspec_constanti | hsymboli | hkeywordi | ‘(’ hs_expri? ‘)’

Figure 3.2: B-SMT s-expressions language grammar

20

3.3. An Overview of the B-SMT Language

3.3.3 Identifiers and Sorts

hindexed_ideni ::= ‘{’ hnumerali,+ ‘}’
hidentifieri ::= hsymbolihindexed_ideni?
hsort_genericsi ::= ‘[’ hsorti,+ ‘]’
hsorti ::= hidentifierihsort_genericsi?
hsorted_vari ::= hsymboli‘:’ hsorti

Figure 3.3: B-SMT identifiers and sorts language grammar

3.3.4 Attributes

hattribute_valuei ::= hspec_constanti | hsymboli | ‘(’ hs_expri? ‘)’
hattributei ::= hkeywordi hattribute_valuei?

Figure 3.4: B-SMT attributes language grammar

3.3.5 Declarations

Sort Constructors

The sort constructor is semantically equivalent to the declare-sort com-
mand from SMT-LIB. It declares a new uninterpreted sort with a default arity
of 0, if unspecified. Transforming between B-SMT and SMT-LIB is trivial in
this case and hence omitted. In Figure 3.6, the sort constructor grammar is
shown.

harity_attri ::= ‘{:arity’ hnumerali ‘}’
hsort_decli ::= ‘sort’ hsymboli harity_attri?

Figure 3.5: B-SMT datatype constructors language grammar

21

3. The B-SMT Language

Datatypes

SMT-LIB o↵ers various commands to introduce new datatypes. In B-SMT, we
combine them into a single statement, o↵ering a more concise representation
while at the same time conserving the semantics.

hgenericsi ::= ‘[’ hsymboli,+ ‘]’
hselectorsi ::= ‘(’ hsorted_vari,+ ‘)’
hconstr_decli ::= hsymbolihselectorsi?
hdatatype_decli ::= ‘data’ hsymbolihgenericsi? ‘:=’ hconstr_decli:|+

Figure 3.6: B-SMT datatype constructors language grammar

Constants

hconst_decli ::= const hsorted_vari
Figure 3.7: B-SMT constant declarations language grammar

Functions

SMT-LIB o↵ers various commands to introduce both recursive and non-
recursive functions. In B-SMT, we perform an analysis on the AST to retrieve
the original commands.

hfunc_decli ::= ‘fun’ hsymboli ‘(’ hsorti,? ‘):’ hsorti
Figure 3.8: B-SMT function declarations language grammar

3.3.6 Terms

The semantics of the variable binding operator let di↵ers slightly between
SMT-LIB and B-SMT. The variable bindings introduced in B-SMT are allowed
to be mutually recursive, i.e. the newly defined variables can reference each
other. To achieve the same outcome in SMT-LIB, one has to introduce multiple
nested variable bindings instead.

22

3.3. An Overview of the B-SMT Language

hcasted_identifieri ::= hidentifieri | ‘(’ hidentifieri ‘as’ hsorti ‘)’
hvar_bindingi ::= hsymboli ‘:=’ htermi
hquant_bindingi ::= hsorted_vari,+ ‘::’ htermi
hpattern_parami ::= ‘(’ hsymboli,+ ‘)’
hpatterni ::= hsymbolihpattern_parami?
hmatch_casei ::= ‘:|’ hpatterni ‘->’ htermi
hannotationi ::= ‘{’ hattributei,+ ‘}’
hterm_opti ::= hspec_constanti

| hcasted_identifieri ‘(’ htermi,+ ‘)’
| hcasted_identifieri
| ‘let’ hvar_bindingi,+ ‘with’ htermi
| ‘forall’ hquant_bindingi
| ‘exists’ hquant_bindingi
| ‘lambda’ hsorted_vari,+ ‘->’ htermi
| ‘match’ htermi ‘with’ hmatch_casei+

htermi ::= hannotationi?hterm_opti
Figure 3.9: B-SMT terms language grammar

3.3.7 Macros

Sort Synonyms

hsort_macroi ::= ‘let’ hsymbolihgenericsi? ‘:=’ hsorti
Figure 3.10: B-SMT sort synonyms language grammar

Constants

hconst_macroi ::= ‘let’ hsorted_vari ‘:=’ htermi
Figure 3.11: B-SMT constants language grammar

Functions

hfunc_macroi ::= ‘let’ hsymboli ‘(’ hsorted_vari,? ‘):’ hsorti ‘:=’ htermi
Figure 3.12: B-SMT functions language grammar

23

3. The B-SMT Language

3.3.8 Statements

Assumptions

hassume_cmdi ::= ‘assume’ htermi
Figure 3.13: B-SMT assumptions language grammar

Inspections

hinspectionsi ::= ‘get-assertions’
| ‘get-assignment’
| ‘get-model’
| ‘get-proof’
| ‘get-unsat-assumptions’
| ‘get-unsat-core’
| ‘get-info {’ hkeywordi ‘}’
| ‘get-option {’ hkeywordi ‘}’
| ‘get-value’ htermi,+

Figure 3.14: B-SMT inspections language grammar

Satisfiability Checks

hsati ::= ‘check-sat’
hsat_assumingi ::= ‘check-sat-assuming’ htermi,+

Figure 3.15: B-SMT satisfiability checks language grammar

Modifying Assertion Stack

hpush_cmdi ::= ‘push’ hnumerali?
hpop_cmdi ::= ‘pop’ hnumerali?
hreset_assertions_cmdi ::= ‘reset-assertions’

Figure 3.16: B-SMT modifying assertion stack language grammar

24

3.3. An Overview of the B-SMT Language

(Re)starting and Terminating

hreset_cmdi ::= ‘reset’
hexit_cmdi ::= ‘exit’

Figure 3.17: B-SMT restarting & terminating language grammar

Script information

hset_option_cmdi ::= ‘set-option {’ hattributei ‘}’
hset_logic_cmdi ::= ‘set-logic’ hsymboli
hset_info_cmdi ::= ‘set-info {’ hattributei ‘}’
hecho_cmdi ::= ‘echo’ hstringi

Figure 3.18: B-SMT script information language grammar

25

3. The B-SMT Language

3.3.9 Program

hcommandi ::= hsort_decli
| hsort_macroi
| hdatatype_decli
| hconst_decli
| hconst_macroi
| hfunc_decli
| hfunc_macroi
| hassume_cmdi
| hinspectionsi
| hsati
| hsat_assumingi
| hset_info_cmdi
| hecho_cmdi
| hset_logic_cmdi
| hset_option_cmdi
| hexit_cmdi
| hreset_cmdi
| hreset_assertions_cmdi
| hpop_cmdi
| hpush_cmdi

hstatementi ::= hcommandi ‘;’?
hprogrami ::= hstatementi?

Figure 3.19: B-SMT program language grammar

26

Chapter 4

Language Extensions

After having seen the core features of our new B-SMT language, we will
now explore prospective language customizations that allow us to introduce
both custom syntax and behaviour within B-SMT. Allowing users to define
their custom language extensions is particularly useful for tool developers
to support verifier-specific concepts with a human-friendly syntax in B-SMT.
Defining a custom syntax will not only improve the readability of the resulting
code but might also significantly decrease the encoding size.

Every program verifier encodes its verification conditions slightly di↵erently.
Hence, making assumptions on the specific form an SMT-LIB encoding ad-
heres to might lead to erroneous behaviour if the premises are not satisfied.
As a result, language extensions in B-SMT are not part of the core language
specification and thus, are not required to behave correctly in all use cases. To
mitigate this issue, users are allowed to enable or disable specific extensions.

In this section, we present a list of potential language extensions that were
identified by analyzing real-world SMT encodings. In this chapter, we will
refer to the core B-SMT language, excluding all extensions, with B-SMT. The
extended B-SMT language will be denoted as E-BSMT in this section.

Over the course of this thesis, we have looked at various extendable pro-
gramming languages, including Racket [38] and Grace [7]. However, their
extension model could not accommodate the complex transformations that
have to be performed on the B-SMT abstract syntax tree. Hence, we have
decided to use a more general approach, by directly defining the transforma-
tions on the AST with a scripting language.

4.1 Assertions

In B-SMT, we adapt a di↵erent terminology for assumptions and assertions
that matches the meaning of the same concepts in many intermediate ver-

27

4. Language Extensions

ification languages, including Viper and Boogie. In these languages, the
assumption statement adds the specified Boolean formula to the set of model
constraints. In contrast, the assertion statement is coupled with a proof obli-
gation, i.e. the solver has to prove that the given property always holds. This
proof is usually achieved by assuming the negation of the given property
along with a subsequent SMT solver check for satisfiability. The assertion
holds whenever the underlying solver returns unsat. Thus, an SMT-LIB
assertion is denoted as an assumption on the B-SMT level.

However, the core B-SMT language does not o↵er a corresponding assertion
statement, which is the subject of our first language extension. For this, we
introduce a new assert command. In general, its syntax is of the form
assert t, where t is a Boolean formula. On the B-SMT level, this statement
translates to the command sequence shown in Listing 4.1.

1 assume not(t)
2 check-sat

Listing 4.1: Transpiling E-BSMT assertion into B-SMT

Transpiling from B-SMT to E-BSMT is a bit more challenging and involves
pattern matching on the B-SMT source code. Every B-SMT assumption that
wraps a term t within the negation operator not and is followed by zero or
more comments and ultimately a corresponding check-sat command will be
transpiled into assert t on the E-BSMT level. All comments that occurred
between the two statements will be attached after assert t. For example,
let us consider Listing 4.1, where a B-SMT snippet is shown on the left-hand
side. After applying the transformation explained above, we end up with the
resulting E-BSMT code presented on the right-hand side.

1 assume not (= (y1 , g (# x01)))
2 ’ t h i s i s an example comment
3 ’ t h i s i s another comment
4 check�sat

1 a s s e r t =(y1 , g (# x01))
2 ’ t h i s i s an example comment
3 ’ t h i s i s another comment

Figure 4.1: Example transformation for the assertion extension

4.2 Infix & Mixfix Operators

In the B-SMT standard, there is no notion of an operator similar to what
we know from traditional programming languages. Instead, operators are
provided in the form of a conventional function in B-SMT. However, for
specific operators such as +, =, ==>, the function application syntax is unusual
and not very convenient. To circumvent this issue, we define an infix and

28

4.3. Piecewise Constants

mixfix operator language extension that proposes a more convenient syntax
for all operators defined in the various SMT-LIB Theories [24]. Now, let us
consider Listing 4.2, which shows several terms in the core B-SMT language.
By leveraging the infix and mixfix notation for our operators as defined above,
the encoding shown in Listing 4.3 is generated; o↵ering a much more concise
and modern way of expressing the respective terms.

1 <=(s1, s2)

2 ite(<(c, 0), false, ite(=(c, 0), true, check(2)))

3 ite(>=(x, y), x, y)

4 ite(y, ping(+(x, 1), pong(x, x)), x)

5 =(a, z)

6 (<=(0, a)) and (<(a ,1032))

Listing 4.2: Standard B-SMT terms

1 s1 <= s2

2 c < 0 ? false : (c = 0 ? true : check(2))

3 x >= y ? x : y

4 y ? ping(x + 1, pong(x, x)) : x

5 a = z

6 0 <= a && a < 1032

Listing 4.3: Resulting E-BSMT terms

By introducing a modern operator notation into E-BSMT, we usually discard
redundant parentheses, making the syntax more human-friendly. By specify-
ing precedence for every operator, we can then use this knowledge to infer
an unambiguous parse tree; making many parentheses obsolete.

4.3 Piecewise Constants

In this section, we will extend B-SMT with a language construct that allows
users to define piecewise constants conveniently. For this, let us consider
Listing 4.4, which shows our proposed E-BSMT syntax for defining a constant
piecewise. In Listing 4.5, we suggest how a constant definition looks on the
B-SMT level. Note that all B-SMT code shown in the remaining sections of
this chapter assumes an infix notation for operators as introduced in Section
4.2.

1 const x: Int
2 x :=

3 :| cond = 12 -> 35

4 :| cond = 55 -> 11

5 :| otherwise -> unknown

Listing 4.4: E-BSMT: piecewise constant definition

29

4. Language Extensions

1 const x: Int
2 assume cond = 12 ==> x = 35
3 assume cond = 55 ==> x = 11

Listing 4.5: B-SMT: piecewise constant definition

In comparison to Listing 4.5, the notation introduced in Listing 4.4 is much
more intuitive. Note that in our new syntax, we utilize an additional piece-
wise definition case, which introduces two new keywords otherwise and
unknown. With these, we state that for all cases not covered, we do not hold
any information about the constant. This new syntax makes it explicit to the
user that all functions and variables in SMT-LIB (and B-SMT respectively) are
total.

The transformation step that goes from E-BSMT to B-SMT is relatively sim-
ple. However, the transformation into the opposite direction is much more
involved and exposes a few issues to consider. We will now examine both
transformation steps and the respective problems in more detail.

4.3.1 E-BSMT to B-SMT

In the following, for reasons of simplicity, we will only show the transfor-
mation with a single piecewise definition case. It is trivial to generalize the
approach outlined below to multiple cases by applying the transformation
step on each definition case, leading to multiple assumption statements in-
stead of one. In its general form, the piecewise constant definition has the
structure as shown in Listing 4.6. The notation <N: t> matches an element
of type t and assigns the unique identifier N to it. In Listing 4.7, the resulting
B-SMT code is shown.

<NAME: Symbol> :=
: | <CONDITION: Term> �> <ASSIGNMENT: Term>
: | otherwise �> unknown

Listing 4.6: E-BSMT: constant piecewise definition matching

assume <CONDITION> ==> <NAME> = <ASSIGNMENT>

Listing 4.7: B-SMT: constant piecewise definition transformation

4.3.2 B-SMT to E-BSMT

As before, we will only explain the transformation step for a single piecewise
definition case. However, in contrast to the simple transformation described
above, transforming from B-SMT to E-BSMT is more complicated, as B-SMT

30

4.3. Piecewise Constants

o↵ers di↵erent ways to express a piecewise constant definition. In Listing 4.8,
we show a non-exhaustive list of all B-SMT statements that are identified as a
piecewise definition. The first matching shown in Figure 4.8 does not produce
an explicit ELSE term; resulting in an implicit assignment to the unknown
keyword. In Listing 4.9, the corresponding E-BSMT code is illustrated.

assume <CONDITION: Term> ==>
<NAME: Symbol> = <THEN: Term>

assume <CONDITION: Term>
? <NAME: Symbol> = <THEN: Term> : <NAME> = <ELSE : Term>

Listing 4.8: B-SMT: constant piecewise definition matchings

<NAME> :=
: | <CONDITION> �> <THEN>
: | otherwise �> <ELSE>

Listing 4.9: E-BSMT: constant piecewise definition transformation

4.3.3 Transformation Issues

During the transformation step from B-SMT to E-BSMT, we are faced with
further challenges, which are briefly explored in the following.

Scope

Due to the stack-based execution model of SMT-LIB (and B-SMT respectively),
we need to be cautious about which piecewise definition cases are allowed
to be grouped together and where the resulting definition should be located.
For this, consider the modified B-SMT example from Listing 4.5 shown in
Listing 4.10. In this case, the push and pop statements alter the assertion
stack, and as a result, the statements (1) and (2) cannot be grouped together
into a piecewise definition, as shown in Listing 4.4. Doing so would result
in a non-equivalent transformation, as either (1) or (2) will be held on the
assertion stack when it should not. We can circumvent this issue by only
grouping together assumptions that are defined in the same scope, i.e. on the
same assertion stack level.

1 const x: Int
2 push
3 assume cond = 12 ==> x = 35 ’(1)

4 pop
5 assume cond = 55 ==> x = 11 ’(2)

Listing 4.10: Grouping piecewise definition cases with scope

31

4. Language Extensions

In addition to push and pop, there are other statements that also trigger a
similar behaviour, including check-sat, check-sat-assuming, reset and
reset-assertions. The issues introduced by these statements, and how to
resolve them, are very similar to the one we have presented above. Thus, we
will not cover them in more detail in this thesis.

Exhaustive Matchings

In Section 4.3.2, we have seen a non-exhaustive list of all B-SMT statements
that are identified as a piecewise definition. However, it is not clear how many
other matchings possibly exist. For instance, consider the first matching from
Listing 4.8. By swapping the two operands of =, we end up with a permutation
of the original matching i.e. our current transformation step would not be
able to correctly identify this matching case.

Although this might lead to the situation that certain piecewise constant defi-
nitions are being missed, it is typically not a problem, as language extensions
are not part of the core language specification and thus, are not required to
behave correctly in all use cases. Furthermore, by allowing implementers to
specify their custom matchings with a configuration file, erroneous behaviour
is reduced to a minimum.

4.4 Piecewise Functions

In the next step, we will explore how to adapt and extend the above definition
for piecewise immutable functions. Because function definitions are usually
expressed with the help of quantifiers, they are often annotated with triggers
and unique identifiers to help the underlying SMT solver. In this section,
annotations are ignored in favour of a more readable source.

Now, let us consider Listing 4.11, which shows our proposed E-BSMT syntax
for defining a piecewise function. In Listing 4.12, we present how such a
piecewise function definition looks on the B-SMT level.

1 fun map(Int): Int
2
3 map(r) :=

4 :| r % 2 -> 42

5 :| r = 13 -> aFun(r)

6 :| otherwise -> unknown

Listing 4.11: E-BSMT: piecewise function definition

32

4.4. Piecewise Functions

1 fun map(Int): Int
2
3 assume forall r: Int :: r % 2 ===> map(r) = 42
4 assume forall r: Int :: r = 13 ===> map(r) = aFun(r)

Listing 4.12: B-SMT: piecewise function definition

Similarly, as before, we will now show the two transformation steps. All the
issues and the respective solutions that were covered in the previous section
still apply. In the following, for reasons of simplicity, we will only show the
transformation step for functions with a single argument; lifting our findings
to support multiple arguments is trivial.

4.4.1 E-BSMT to B-SMT

This transformation step is analogous to the one presented in Section 4.3.1.
In its general form, the piecewise function definition has the structure shown
in Listing 4.13. To arrive at a valid matching, the symbols NAME1 and NAME2
must be equal. If this is not the case, the matching is ignored. In Listing 4.14,
the resulting B-SMT code is illustrated.

fun <NAME1: Symbol>(<SORT : Sort >) : <RETURN_SORT: Sort>

<NAME2: Symbol>(<ARG: Symbol>) :=
: | <CONDITION: Term> �> <ASSIGNMENT: Term>
: | otherwise �> unknown

Listing 4.13: E-BSMT: piecewise function definition matching

assume f o r a l l <ARG> : <SORT> : :
<CONDITION> ==> <NAME1>(<ARG>) = <ASSIGNMENT>

Listing 4.14: B-SMT: piecewise function definition transformation

4.4.2 B-SMT to E-BSMT

In order to support the transformation from B-SMT to E-BSMT, we can lift the
cases presented in Listing 4.8 to support piecewise function definitions. For
reasons of simplicity, we will only adapt the first matching case; the second
one can be lifted accordingly.

In Listing 4.15, we show the adapted matching for immutable functions. In
this case, the symbols ARG1 and ARG2 have to be identical. Otherwise, the
matching will be ignored as it does not represent a valid piecewise function
definition. The resulting E-BSMT code is illustrated in Listing 4.16.

33

4. Language Extensions

assume f o r a l l <ARG1: Symbol> : <SORT : Sort> : :
<CONDITION: Term> ==>
<NAME: Symbol>(<ARG2: Symbol>) = <ASSIGNMENT: Term>

Listing 4.15: B-SMT: piecewise function definition matching

<NAME>(<ARG1>) :=
: | <CONDITION> �> <ASSIGNMENT>
: | otherwise �> unknown

Listing 4.16: E-BSMT: piecewise function definition transformation

4.5 Mutable Variables

After having presented immutable piecewise functions and constants, we
now extend on this concept by proposing the idea of mutability. To achieve
this, we introduce a new reserved keyword mut in E-BSMT along with the
term old(x), which allows referring to x from the previous state. The syntax
of the old expression is inspired by Viper.

Now, let us consider Listing 4.17, which shows our proposed E-BSMT syntax
for defining a mutable variable. As shown, we can declare a mutable variable
with the mut modifier. Although the notion of a mutable constant is flawed,
we will stick to the naming convention to prevent the introduction of another
reserved keyword. In Listing 4.18, we suggest how such a definition might
look on the B-SMT level.

1 mut const x: Int
2
3 x :=

4 :| cond = 12 -> 35

5 :| cond = 55 -> 11

6
7 x :=

8 :| otherCond = 15 -> 44

9 :| otherwise -> old(x)

Listing 4.17: E-BSMT: mutable variable definition

1 const x@1: Int
2 assume cond = 12 ==> x@1 = 35
3 assume cond = 55 ==> x@1 = 11
4
5 const x@2: Int
6 assume otherCond = 15 ? x@2 = 44 : x@2 = x@1

Listing 4.18: B-SMT: mutable variable definition

34

4.6. Mutable Functions

All transformations that have been introduced in the previous section still
hold and do not require any change. However, two additional issues arise
with mutability, which we will briefly explore below.

4.5.1 Naming Scheme

Because SMT-LIB (and B-SMT respectively) does not support variables, we
have to convert a sequence of constant definitions into variable updates when
transforming from B-SMT to E-BSMT. However, without additional informa-
tion about the update naming scheme, we cannot perform the required trans-
formations. Unfortunately, there does not exist a standard way of denoting
variable updates, and hence, di↵erent automated verifiers follow contrasting
strategies. For instance, consider the naming scheme used in Listing 4.18. In
this case, the su�x @ is used to version the variable update.

In order to solve this problem, we can allow tool implementers to define
the update naming scheme as a pattern matching script as part of the tool
configuration. By doing so, we can leverage tool-specific knowledge and thus
support a wide range of automated verifiers with this language extension.

4.5.2 Old Expression

When transforming from E-BSMT to B-SMT, we have to deal with the newly
introduced old term. Referring to old(x) is only allowed within the update
of the variable x. By design, it is not permitted to refer to the previous state
of a variable other than the one we are currently updating.

To properly support the old expression, we need a way to resolve it to the
previous constant update. We can achieve this by traversing the AST and
collecting all updates to the variable. These updates can then be transformed
into a sequence of constant definitions by leveraging the specified naming
scheme. Statements that modify the SMT-LIB stack, e.g. push or pop force us
to do more bookkeeping during the AST traversal, but the complexity of the
problem itself does not increase.

4.6 Mutable Functions

After having covered mutable variables in more detail, we will now extend
our language to support mutable functions. Going from a piecewise function
definition to mutable functions is analogous to going from a piecewise con-
stant definition to mutable variables. Thus, all previously discussed issues
and solutions also apply in this context. Hence, lifting the aforementioned
transformations is trivial. In Listing 4.19, we show our proposed E-BSMT
syntax for defining mutable functions. In Listing 4.20, we suggest how such

35

4. Language Extensions

a definition might look on the B-SMT level, assuming that the piecewise
function notation is being used.

1 mut fun map(Int): Int
2
3 map(r) :=

4 :| r % 2 -> 42

5 :| r = 13 -> aFun(r)

6
7 map(r) :=

8 :| r = 19 -> 20

9 :| otherwise -> old(map(r))

Listing 4.19: E-BSMT: mutable function definition

1 fun map@1(Int): Int
2 map@1(r) :=

3 :| r % 2 -> 42

4 :| r = 13 -> aFun(r)

5
6 fun map@2(Int): Int
7 map@2(r) :=

8 :| r = 19 -> 20

9 :| otherwise -> map@1(r)

Listing 4.20: B-SMT: mutable function definition

4.7 Defunctionalization

Unfortunately, in contrast to most modern programming languages, the cur-
rent SMT-LIB standard (and thus, B-SMT) is only first-order, which makes
it much more involved to express properties of higher-order languages in
SMT-LIB. Because of that, many program verifiers, including Silicon, make
use of defunctionalization, which is a transformation technique that elimi-
nates higher-order functions. When defunctionalization is applied, a special
apply function is introduced, which takes the respective identifier as its first
argument along with the original function parameter as the second argument.
This process is quite complex, as we have to introduce both a new type along
with the respective apply function for all function signatures occurring in the
program.

In order to achieve a simpler encoding, we introduce the defunc keyword in
E-BSMT, which allows us to retrieve the original, defunctionalized represen-
tation when transforming back to B-SMT. Now, let us consider Listing 4.21,
which shows our proposed E-BSMT syntax for defining a defunctionalized
function. In Listing 4.22, we present how the respective defunctionalized
function looks like on the B-SMT level.

36

4.8. Partial Functions & Domains

1 defunc fun map(Int): Int
2
3 map(r) :=

4 :| r % 2 -> 1

5 :| otherwise -> 10

Listing 4.21: E-BSMT: defunctionalized function definition

1 fun Int<Int>.lookup(Int<Int>, Int): Int
2
3 const map: Int<Int>
4 assume forall r: Int ::
5 r % 2

6 ? Int<Int>.lookup(map, r) = 1

7 : Int<Int>.lookup(map, r) = 10

Listing 4.22: B-SMT: defunctionalized function definition

4.8 Partial Functions & Domains

As mentioned earlier, all functions are total in both SMT-LIB and B-SMT,
which means that there is no built-in solution to define a partial function in B-
SMT. In the following section, we will provide a rough outline on how partial
functions and their domains could be added to our language in the form of an
extension. This topic provides a promising starting point on potential future
work based on this thesis.

For this, consider Listing 4.23, which presents a manual method to allow
reasoning about partial functions in B-SMT. First, a "partial" function f is
introduced, returning -1when the argument is smaller than zero and 1when
the argument is greater than zero. When the argument is zero, the result is
undefined. Now, in order to reason about the domain of the function f, we
have to introduce a new function dom_f corresponding to its domain. This
function returns truewhenever its argument is part of the domain of f. After
this preamble, we can finally make an assertion about the partial function f,
e.g. by asserting that zero is not part of the function’s range of values.

1 fun f(Int): Int
2
3 assume forall x: Int :: x < 0 ==> f(x) = -1
4 assume forall x: Int :: 0 < x ==> f(x) = 1
5
6 fun dom_f(Int): Bool
7 assume forall x: Int :: (x < 0 || 0 < x) <==> dom_f(x)
8
9 assert forall x: Int :: dom_f(x) ==> f(x) != 0

Listing 4.23: B-SMT: partial function and domain definition

37

4. Language Extensions

Now, consider Listing 4.24, which shows our proposed E-BSMT syntax for
defining and reasoning about partial functions. To achieve a more human-
friendly syntax, we introduce a new keyword along with a method, part
and dom(f, x), respectively. The part keyword marks a function as partial,
allowing us to generate the preamble when transforming from E-BSMT back
to B-SMT. In addition, the dom(f, x)method takes a partial function f as an
argument along with a second parameter x, returning true if x is part of the
domain of f.

1 part fun f(Int): Int
2
3 f(x) :=

4 :| x < 0 -> -1

5 :| 0 < x -> 1

6
7 assert forall x: Int :: dom(f, x) ==> f(x) != 0

Listing 4.24: E-BSMT: partial function and domain definition

38

Chapter 5

Technology Stack

After having seen our novel B-SMT language and its potential extensions, we
will now choose a suitable technology stack that allows us to implement a
convenient toolkit for both B-SMT and SMT-LIB. Furthermore, we will briefly
motivate our language of choice for this thesis: TypeScript [34].

All evaluations shown in this chapter were performed on a late 2016 MacBook
Pro with a 2.9 GHz Quad-Core Intel i7, running on macOS Catalina.

5.1 Extendability

The extendability of B-SMT is one of the core pillars of the novel SMT language.
Allowing users to extend the syntax and semantics of B-SMT easily is of critical
importance. For this, users should be able to implement their language
extensions quickly and without a steep learning curve. For such a task, a
dynamic and interpreted programming language is especially suitable; with
JavaScript being one the most prominent examples. In addition to JavaScript,
the Rust [40] programming language is another promising candidate. Its focus
on performance coupled with the fact that the language can be compiled into
WebAssembly [44] makes Rust a compelling contender for the development
of our tool.

Moreover, the architecture of our command-line interface should be designed
in a way such that extending the tool with a future Visual Studio Code
(VSCode) [12] plugin is facilitated. Because VSCode itself is built using
Electron [18] and Node.js [19], it supports both JavaScript and TypeScript
extensions natively. Even though WebAssembly extensions for VSCode are
not supported out of the box yet [16], a workaround that involves compiling
Rust into WebAssembly and then generating a Node.js package makes it
possible to use Rust within a VSCode extension.

39

5. Technology Stack

5.2 Performance

A large part of the computation performed by our CLI tool will involve
the creation, traversal, and modification of abstract syntax trees. Thus, our
language of choice must perform well for these types of computations. Based
on the findings from Section 5.1, we have narrowed down our choice to
two programming languages, Rust and JavaScript. By benchmarking the
performance of di↵erent parsing libraries for both languages, we can estimate
how fast our implementation for SMT-LIB might perform.

5.2.1 Parsing JSON

For our first experiment, we profile the performance of di↵erent parsing
libraries in Rust and JavaScript. We will perform these evaluations based on
a JSON [29] parser implementation for two reasons. First of all, JSON is a
well-known standard, and hence, there exist various JSON parsers for both
Rust and JavaScript, which allows for easier comparison. Second, the JSON
standard is very similar to S-expressions in terms of parsing complexity, so
we should get an approximate estimation of how well the respective SMT-LIB
parser should perform.

In this evaluation, the overhead for initializing the parser and loading the
source file into memory is not counted towards the execution time in the
benchmark. Hence, in this case, only the raw parsing performance is profiled,
and all other computational costs are ignored. The results of the evaluation
are shown in Figure 5.1.

Library Language Throughput Relative Speed

nom [20] Rust 201.3 MB/s 100%
pest [26] Rust 82.1 MB/s 40.7%

chevrotain [43] JavaScript 81.3 MB/s 40.4%
PEG.js [41] JavaScript 19.3MB/s 9.6%

parsimmon [28] JavaScript 18.3MB/s 9.1%

Figure 5.1: Performance evaluation of JSON parsers

5.2.2 Parsing S-Expressions

Finally, based on the performance evaluation in Figure 5.1, we have decided
to investigate both nom and chevrotain more closely as potential parsing li-
brary candidates. For this experiment, we have implemented an S-expression
parser for both libraries. To evaluate their performance, we have imple-
mented a language generator that builds arbitrary S-expressions based on
the grammar specification. Equipped with a set of well-defined examples

40

5.3. Conclusion

containing 500 to 100,000 lines of code, we then measure the parsing through-
put of our two implementations. As in the previous evaluation, only the
raw parsing performance is measured, and all other computational costs are
ignored. In Figure 5.2, we show the results of the evaluation for the di↵erent
sample files. As expected, Rust performs two to three times faster than the
equivalent JavaScript implementation.

Library
Small

500 LOC
Medium

1K LOC
Large

10K LOC
Huge

100K LOC

nom [RS] 910.00 ops/s 280.89 ops/s 26.31 ops/s 2.35 ops/s
chevrotain [JS] 537.20 ops/s 145.86 ops/s 12.03 ops/s 0.88 ops/s

Figure 5.2: Performance evaluation of S-expression parsers

5.3 Conclusion

In this section, we have investigated the parsing performance of di↵erent
libraries to choose a suitable candidate for our implementation. Based on
the findings made in this chapter, we have decided that our tool will be
realized in TypeScript, which builds on JavaScript and o↵ers both static and
dynamic typing at the same time. Even though Rust performs better in our
performance evaluation, the chevrotain implementation is still reasonably
fast, parsing 100,000 lines of code in roughly one second. Besides, VSCode’s
native support of TypeScript extensions facilitates the development of a future
plugin and does not require an involved implementation workaround as it is
the case with Rust.

41

Chapter 6

Implementation

This chapter briefly covers the design and implementation of yuk-that-smt,
our command-line interface. In Figure 6.1, its overall architecture is shown.
The application can be divided into two key components; the client and its
corresponding backend. The yuk-that-smt client is responsible for handling
all user interactions, i.e. requesting a new code transpilation, listing all en-
abled plugins or installing a new one. On the other hand, the backend service
is responsible for lexing, parsing, and transpiling of the specified input for
both B-SMT and SMT-LIB.

Figure 6.1: Broad architecture of yuk-that-smt

6.1 Architecture

6.1.1 Client

Users interact with yuk-that-smt directly over the command-line interface,
which o↵ers a variety of di↵erent commands that can be executed. In the
following, we will explore them in more detail.

43

6. Implementation

Transpilation

Our tool o↵ers two separate ways to transpile from B-SMT to SMT-LIB or
vice versa; deciding which command to use in what situation depends on the
specific use case.

The first command can be used to transpile a single SMT-LIB source file into a
B-SMT source file, or vice versa. To achieve this, the transpile command is
used. In its general form, transpile takes one required argument, the path
to the input file, along with two optional parameters that allow changing the
input format and specifying where the output is written. By default, the input
format is determined by the file extension, and the result will be reported to
the standard output. In Listing 6.1, a few example commands are shown.

1 $ yuk�that�smt t r a n s p i l e . / q u ic k so r t . smt2 �o . / q u ic ks or t . bsmt
2 $ yuk�that�smt t r a n s p i l e . / bubble . t x t �o . / q ui ck so r t . smt � f bsmt
3 $ yuk�that�smt t r a n s p i l e . / s e l e c t i o n . t x t �o . / s e l e c t i o n . bsmt ��

input�format smt2

Listing 6.1: yuk�that�smt one-time transpilation

The second command is more beneficial when used in a recurrent debug-
ging approach, as yuk-that-smt listens to all file changes within a specified
directory and then automatically re-transpiles modified files. The introduc-
tion of a watch-mode significantly improves user-experience, as the manual
tool invocation step is removed. Our tool can be launched in watch-mode
by executing $ yuk-that-smt watch SMT2_DIR BSMT_DIR, where SMT2_DIR
stands for the directory containing the SMT-LIB files and BSMT_DIR for the
directory containing the B-SMT files respectively. By default, it watches for
changes in the SMT-LIB directory and writes them into the B-SMT directory.
By specifying the boolean flag d, yuk-that-smt watches for changes in the
B-SMT directory instead. In Listing 6.2, we present a few example commands.

1 $ yuk�that�smt watch . / smt2�s r c / . / bsmt� r e s u l t /
2 $ yuk�that�smt watch . / smt2� r e s u l t / . / bsmt�s r c / �d
3 $ yuk�that�smt watch . / smt2� r e s u l t / . / bsmt�s r c / ��d i r e c t i o n

Listing 6.2: yuk�that�smt watch mode

Plugins

As we have seen in Chapter 4, the extendability of B-SMT is one of its main
features. Thus, we allow users to define custom syntax and behaviour for
B-SMT and make it available in yuk-that-smt. To accomplish this, users
can implement an extension in the form of a yuk-that-smt plugin, which
provides the respective functionality.

44

6.1. Architecture

Our CLI tool o↵ers a convenient interface for managing plugins: We can install
a new extension, uninstall an existing one, enable or disable installed plugins.
The plugin-list command, as shown in Figure 6.2, displays all currently
installed plugins. For every extension, additional information, including the
unique name of the plugin, the currently installed version along with a short
description, is given. Besides, our tool provides so-called internal plugins,
which come pre-packaged with yuk-that-smt; without the user needing to
install them manually. However, in contrast to external plugins, internal
extensions cannot be uninstalled; users can only choose to disable them.
Also, installing an external plugin with the same name as an already existing
internal plugin will overwrite the internal extension, making it possible to
customize all aspects of the B-SMT language.

The commands plugin-uninstall and plugin-disable behave as expected:
They take a single argument, specifying the name of the a↵ected plugin and
then perform the respective action on it; either uninstalling or disabling the
extension. Similarly, the plugin-enable takes a single argument, specify-
ing the plugin to be enabled, along with an optional priority parameter that
determines the plugin application order during the transpilation phase. 0 in-
dicates the highest plugin priority, while larger numbers indicate a decreasing
priority. We will discuss the importance of this priority in Section 6.1.3.

Besides, yuk-that-smt also o↵ers the possibility to install a custom, external
plugin with theplugin-install command. In its general form, plugin-install
takes two required parameters, a unique name for the extension and a direc-
tory path to where the plugin implementation is located.

Figure 6.2: plugin-list command, showing an overview of installed plugins

6.1.2 Backend

The backend service of yuk-that-smt consists of two principal components,
as shown in Figure 6.1. First of all, the B-SMT and SMT-LIB toolkit combine the
functionalities of all backend modules into a consistent and straightforward
interface; only exposing the respective transpilation functions to the outside.
Second, the backend service follows a threaded pool architecture, dispatching
an incoming transpilation task to a pool of dedicated workers. For this, our
backend service launches a certain number of threads, depending on how
many CPU cores are available. These threads are implemented in the form of a

45

6. Implementation

worker, i.e. they execute one task at a time, and when idle, wait for a new job to
arrive. This implementation allows us to leverage the multi-core architecture
of modern CPUs, executing many transpilation tasks concurrently.

In the following, we will briefly introduce the two transpilation stages, i.e.
transpiling from SMT-LIB to B-SMT and vice versa.

6.1.3 SMT-LIB to B-SMT

When a worker thread receives a new transpilation job to convert SMT-LIB
into B-SMT, the thread executes the individual stages depicted in Figure 6.3.
First of all, the lexer is invoked, passing the resulting SMT-LIB tokens onto
the parser, which then produces an SMT-LIB abstract syntax tree. Secondly,
the actual transpilation step is performed, converting the SMT-LIB AST into
a B-SMT abstract syntax tree. In the next step, the transformations defined
by all currently enabled plugins are performed on the B-SMT AST, resulting
in an E-BSMT abstract syntax tree. The order in which the plugin transforma-
tions are applied is determined by the plugin priority parameter, as explained
previously. Plugins with high priority are executed first. The previous step
produces an E-BSMT AST, which will then be passed to the pretty printer.
In this step, plugins can also customize the pretty-printing, with the high-
est priority plugin taking precedence when multiple printing definitions are
provided for the same AST node.

Figure 6.3: Individual stages when transpiling SMT-LIB to B-SMT

6.1.4 B-SMT to SMT-LIB

Similarly to before, when a worker thread receives a new transpilation job
to convert B-SMT into SMT-LIB, the thread executes the individual stages
presented in Figure 6.4. First of all the extendable lexer is invoked, passing the
resulting E-BSMT tokens to the parser. The extendable parser then produces
an E-BSMT abstract syntax tree, which is then transformed by the enabled
plugins in the same manner as before. This step creates a B-SMT AST, on
which the actual transpilation step is performed subsequently. The resulting
SMT-LIB AST is then passed to the pretty printer, which will return our
transpiled source program.

46

6.2. Plugins

Figure 6.4: Individual stages when transpiling B-SMT to SMT-LIB

6.2 Plugins

We will now briefly explain the structure of an individual yuk-that-smt
extension. First of all, all plugins need to be located in a separate directory,
which must contain a configuration file named .yuk-that-smt.json. In
Listing 6.3, we show an example plugin configuration. Every plugin must
provide a version identifier, an author, and a description along with the
primary entry point to the actual plugin implementation (in the form of a
JavaScript file).

1 {

2 "version": "0.0.1",

3 "author": "Nico Darryl Haenggi",

4 "description": "Adds support for assertions.",

5 "main": "./index.js"

6 }

Listing 6.3: yuk-that-smt plugin configuration

The plugin implementation itself exports a JavaScript object that contains all
the required functionality to customize the B-SMT Lexer and Parser, perform
the AST transformations and provide pretty printing on the AST nodes. In
Listing 6.4, we present the format of the exported interface. Please note that
yuk-that-smt passes the parameters shown in Listing 6.4 to the respective
plugin methods, i.e. users can utilise these parameters to implement their
extensions more easily.

1 {

2 lexer(newToken, symbolToken , reservedToken)

3 parser(parser, tokens, nodes, helpers)

4 fromBSMT(ast, nodes, traversor)

5 toBSMT(ast, nodes, traversor)

6 beautify(printer)

7 }

Listing 6.4: Exported plugin implementation

47

6. Implementation

For instance, in the lexermethod, users will be able to customize and extend
the B-SMT lexer by creating new token definitions. A new token definition
can be generated by applying one of the three helper functions newToken,
symbolToken or reservedToken, which introduces a new token, an SMT sym-
bol token or a reserved keyword respectively. Similar to the lexer method,
users will be able to customise and extend the B-SMT parser with the corre-
sponding parsermethod.

Moreover, the fromBSMT and toBSMT define the AST transformations per-
formed when translating from B-SMT to E-BSMT, and from E-BSMT to B-
SMT, respectively. The abstract syntax tree is provided in the form of the ast
argument. To traverse the AST, implementers can specify an AST visitor, that
provides many helper functions to modify the abstract syntax tree. For this,
yuk-that-smt provides an API, which is inspired by Babel [3]. Finally, the
beautifymethod allows users to specify pretty-printing methods for specific
AST nodes. A helper class instance is provided in the form of the printer
argument, facilitating the beautifying process further.

6.3 Syntax Highlighting

A common strategy to improve the readability of programs is syntax highlight-
ing. Nowadays, most text editors provide some form of syntax highlighting
for almost all major programming languages. VSCode is no exception to this,
supporting a broad range of di↵erent languages by default and hundreds
more in the form of extensions.

Traditionally, syntax highlighting support is added by specifying a possi-
bly overapproximated programming language grammar that associates cate-
gories to document elements, e.g. language keywords, function and variable
definitions and many more. Then, a scope selector is assigned to every cat-
egory. Ultimately, these scope selectors are used by code editor themes to
style the resulting output. Scope selectors are very similar to Cascading Style
Sheets (CSS) [45] selectors, i.e. they work hierarchically, and a specific styling
is assigned to them. In an attempt to ensure proper syntax highlighting
across di↵erent editor themes, a naming convention for scope selectors is in-
troduced. For instance, a standard selector to denote a double-slash comment
is comment.line.double-slash.

In recent years, one particular way of specifying syntax highlighting, known
as a TextMate [33] grammar, has been adopted by many text editors and
IDEs, including Atom [2], IntelliJ [42], Eclipse [17], Sublime Text [31], and
VSCode. A TextMate grammar consists of a set of rules in the form of regular
expressions. The program source code is then sequentially matched against
the rules contained in the TextMate grammar; with the first successful match
taking priority over the others. After processing the complete document,

48

6.3. Syntax Highlighting

we end up with a collection of matched document elements, which are then
assigned to their respective scope selectors.

For better overall user experience, we provide syntax highlighting grammars
for both SMT-LIB and B-SMT in the form of a TextMate grammar, thus en-
abling us to experience syntax highlighting for a wide range of di↵erent
text editors. Along with the TextMate grammars themselves, we provide a
pre-packaged VSCode language extension that already contains the required
language bindings.

49

Chapter 7

Evaluation

The evaluation of our CLI-tool yuk-that-smt is split into three main sections.
First, the command line interface is evaluated based on correctness on a well-
defined test suite. Second, we evaluate the performance of our CLI when
processing real-life SMT-LIB encodings. Finally, to conclude the evaluation,
we will investigate the intrinsic limitations of our implementation approach.

7.1 Test Suite

Our test suite consists of two major components. The first one is a set of
well-defined SMT-LIB and B-SMT encodings, covering all existing production
rules in the form of unit tests. For the second component, we collected a series
of real-life SMT-LIB encodings generated by Silicon during the verification
phase of the Viper programs.

For both the core B-SMT language and also the SMT-LIB language, a total
of 164 unit tests ensure the correctness of the lexing, parsing and pretty-
printing phase. Likewise, additional unit tests guarantee the correctness of
the language extensions explained in Chapter 4 for B-SMT.

Our integration tests unify the test suites of multiple projects based on the
Viper verification infrastructure; specifically from Nagini [14], Prusti [1], Voila
[46] and finally, the test suites of Silicon and Silver [30] themselves. All
these Viper encodings are then verified with the help of Silicon, using a
single parallel verifier, a timeout of 200 seconds along with an increased Java
stack size of 64MB. For every Viper program, Silicon outputs two SMT-LIB
encodings that will be used in our correctness and performance evaluation.
All individual test suites combined, we end up with 3,914 SMT-LIB test files,
making up a total of 34.9 million lines of code.

51

7. Evaluation

7.2 Correctness

7.2.1 Unit Tests

For our unit tests, we follow a naive testing approach: We start with an
SMT-LIB input file (or respectively, a B-SMT input file), lex and parse the
contents, transform into our SMT-LIB AST (respectively B-SMT AST) and
then ultimately pretty-print the result into SMT-LIB again (respectively B-
SMT). With this testing mechanism, no transpilation steps are required, and
hence we can directly compare input and output with each other. The test case
succeeds if input and output are syntactically equivalent and fails otherwise.
Since these unit tests are extremely small and simple, it is feasible to directly
compare the two encodings syntactically. However, for more complex SMT-
LIB files, this approach does not work. In the next section, we introduce a
process to mitigate this issue.

7.2.2 Integration Tests

The main goal of our integration tests is to ensure the correctness of the parsing
and transpilation steps for real-world SMT-LIB encodings. In Figure 7.1, the
two evaluation strategies are depicted. Analogous to the naive approach,
we start with an SMT-LIB encoding, lex and parse the contents and then
transform them into an SMT-LIB abstract syntax tree (AST). In the more
straightforward case (see Figure 7.1a)), we then pretty-print the result into
SMT-LIB again, just as we did in the naive approach. In this case, except for
syntactical di↵erences due to pretty-printing, input and output should be the
same. In the second case (see Figure 7.1b)), we first transform the SMT-LIB
AST into a B-SMT AST before transpiling it back into an SMT-LIB AST. Next,
we also pretty-print the result into SMT-LIB again.

Figure 7.1: Correctness evaluation strategies

Transforming the SMT-LIB encodings back and forth leads to semantically
equivalent SMT encodings, but their syntax might di↵er slightly. Because
of that, we need to find a di↵erent way to compare the input and output
SMT-LIB encodings. We circumvent this issue by invoking the Z3 solver on

52

7.3. Performance

both encodings and comparing the resulting output.

Our integration test results are shown in Figure 7.2. As expected, most tests
finish successfully and no deviating behaviour is discovered. However, for
some SMT encodings, the satisfiability checks within Z3 change from sat
or unsat to unknown (or vice versa). This imprecision surfaces because com-
mands occasionally get reordered during our transformation steps. While
this does not semantically change the encoding, it still a↵ects the solver, since
Z3 assigns unique identifiers to expressions based on their position, and these
identifiers are then sometimes used to break ties in certain heuristics used by
Z3. Such imprecision cannot be avoided, but is typically not a problem, as
the automated verifier itself usually shows imprecise behaviour.

Successful Imprecise Unsound
Strategy 1.a 3,905 9 0
Strategy 1.b 3,884 30 0

Total 7,789 39 0

Figure 7.2: Integration testing results

7.3 Performance

We will now evaluate the performance of our tool on the real-life SMT-LIB
encodings generated by Silicon. First, we transpile from our original SMT-LIB
file into B-SMT, measuring the performance in the individual transpilation
phases, as shown in Figure 6.3. Then, after having generated the B-SMT
source code, we will transpile the given encoding back into SMT-LIB again,
also measuring the performance in the individual transpilation phases, as
shown in Figure 6.4. In this performance evaluation, we will ignore the AST
transformations performed by plugins.

Group Approx. File Size Approx. LOC
1 10 KB 300
2 250 KB 8,000
3 500 KB 16,000
4 1 MB 30,000
5 10 MB 250,000
6 50 MB 1,000,000

Figure 7.3: SMT-LIB file sizes corresponding to groups

To get a more meaningful performance report, we have grouped the SMT-LIB
encodings into six categories, corresponding to the approximate file size of

53

7. Evaluation

the respective SMT-LIB encodings. In Figure 7.3, we show which file size
corresponds to which group, and the average lines of code for a file within
this group.

In Figure 7.4 and Figure 7.5, we now show the performance evaluation for the
di↵erent categories and transpilation phases for both B-SMT and SMT-LIB.
As can be seen from the two tables, our tool yuk-that-smt is able to handle
both SMT-LIB and B-SMT encodings with approximately 30,000 lines of code
within half a second, which is fast enough for our use case. Moreover, we can
see that with increasing file sizes, the total time needed to process the source
code increases linearly.

Phase 300 8K 16K 30K 250K 1M
Lexing 9.7ms 41.2ms 101.7ms 110.5ms 0.875ms 1.478s
Parsing 12.3ms 80.6ms 135.1ms 153.6ms 1.113s 2.462s

Transpiling 12.0ms 63.3ms 164.3ms 267.9ms 2.830s 8.338s
Pretty-Printing 7.4ms 34.5ms 78.6ms 92.0ms 0.744s 2.830s

Total 41.4ms 219.6ms 479.7ms 624.0ms 5.562s 15.108s

Figure 7.4: Performance evaluation of SMT-LIB transpilation

Phase 300 8K 16K 30K 250K 1M
Lexing 8.5ms 45.5ms 58.9ms 85.0ms 0.683s 1.234s
Parsing 11.9ms 160.7ms 224.7ms 193.3ms 2.316s 4.686s

Transpiling 19.2ms 105.7ms 261.1ms 144.4ms 2.302s 5.668s
Pretty-Printing 2.0ms 11.1ms 23.3ms 18.4ms 0.433s 0.993s

Total 41.6ms 323.0ms 568.0ms 441.1ms 5.734s 12.581s

Figure 7.5: Performance evaluation of B-SMT transpilation

7.4 Limitations

During the development and implementation of this thesis, several limita-
tions have been discovered. In this section, we will briefly examine the most
significant ones.

54

7.4. Limitations

• Chevrotain, the library used in this project to facilitate the lexing and
parsing step, does not support stream-parsing. In other words, the
parser expects the entire source program as an input string and only
returns after a complete parse of the content. This limitation leads to
an increased latency until we can start the parsing phase. Moreover,
we cannot process exceptionally big files due to V8’s [21] hard-coded
maximum allowed string length; which lies at 500MB at the time of
writing this thesis.

• Currently, our command-line interface restricts comments to occur only
between SMT-LIB commands or B-SMT statements, respectively. Con-
sequently, we will not be able to annotate lengthy terms with comments
for better readability. However, many real-world SMT-LIB encodings
contain comments within certain commands, which would render our
CLI tool unusable for those programs. Because of that, yuk-that-smt
aggregates all comments that occur within a SMT-LIB command and
inserts them into the top-level hierarchy before the command itself.

• Similarly, our implementation discards whitespace after lexing, leading
to a more accessible parser implementation and grammar. However,
this implies that all custom formatting done by the user will be lost
when transforming back and forth between B-SMT and SMT-LIB.

55

Chapter 8

Conclusion & Future Work

8.1 Conclusion

The main focus of this project was to facilitate the debugging process for
developers of automated verifiers by providing a more convenient approach
to understanding and reasoning about the underlying SMT-LIB code more
e�ciently. With the introduction of B-SMT, an extendable plugin architecture,
and our CLI tool yuk-that-smt, we have made an essential contribution to
streamline the debugging process and make SMT encodings more accessible.

The extendable plugin architecture has allowed us to explore various feasible
language extensions, revealing a broad range of possible applications for our
tool.

To choose the technology for our command-line interface, we have performed
an extensive evaluation, considering di↵erent programming languages and
parsing libraries. The implementation of our command-line interface has
proven to perform well, processing source files exceeding tens of thousands of
lines of code within under a second; for both SMT-LIB and B-SMT. Additional
features were added to yuk-that-smt, resulting in improved user experience.
These features include a watch-mode, where our tool will automatically re-
transpile on file modifications, and a TextMate syntax highlighting grammar
along with a prepackaged VSCode extension.

57

8. Conclusion & FutureWork

8.2 Future Work

During the development of our CLI tool yuk-that-smt, most of the planned
features could be considered. However, throughout this thesis, we discovered
several potentially useful additions that could be made to our current project
but were out of scope at the time. Due to the architecture and modular design
of our tool, there are endless possibilities for doing future work based on this
thesis. In the following, we will briefly discuss the most promising paths to
explore:

• In the previous chapter, we have examined the most notable limitations
of our work. From a user perspective, mitigating these limitations
would significantly improve both the user experience and workflow
productivity.

– For instance, the parsing library used in this project does not sup-
port stream-parsing, leading to an increase in memory usage and
response latency. One can think of several solutions to circumvent
this problem: (1) The chevrotain library could be replaced by
providing a hand-written recursive-descent parser that supports
streaming. (2) The input file could be split into a group of smaller
chunks and then passed to the parser separately. With this ap-
proach, one could even parallelize the parsing step by leveraging
the worker threads o↵ered in yuk-that-smt.

– Our current implementation does not allow any commands within
a B-SMT statement in favour of a purer AST representation. How-
ever, this decision is inconvenient for developers that want to an-
notate their formulas and terms with meaningful comments. To
circumvent this limitation, during the parsing phase, one could at-
tach the comment to the nearest corresponding AST node. While
this will not always accurately maintain the comment position
within the source code, it is precise enough for most use cases.

– Similarly, our current implementation discards all whitespace after
lexing, which implies that all custom formatting done by the users
will be lost after transpilation. This problem can be mitigated by
adding whitespace information to the lexer tokens and leveraging
that additional knowledge during the subsequent parsing phase.

• Currently, we only provide a command-line interface for interacting
with our tool. While the CLI tool is su�cient for basic usage, providing a
Visual Studio Code extension to further streamline the development pro-
cess would be highly beneficial for increased user experience. By doing
so, one could directly integrate useful analysis features (e.g. data-flow
analysis) along with possible visualizations. In addition, the introduc-
tion of a Language Server [11] will provide the possibility to implement

58

8.2. Future Work

incremental parsing methods, i.e. avoiding a complete reparse every
time the document is changed and hence improving the performance
of the tool.

• At the moment, yuk-that-smt supports type checking for neither B-
SMT nor SMT-LIB. As a result, users won’t notice typing errors unless
invoking Z3 on the resulting SMT-LIB file. O↵ering type checking
support results in a more robust tool experience. With the modular
approach of our software, type checking support could be added in
two ways: (1) By providing a yuk-that-smt plugin that traverses the
abstract syntax tree of the parsed source code and collects the required
typing information for the subsequent type check. (2) By extending the
implementation of yuk-that-smt directly.

• Currently, the transformation stage might occasionally reorder specific
commands. As we have seen in Section 7.2.2, this leads to a potential
imprecision between the source code and the transformed encoding. To
circumvent this imprecision, we need to find a way to preserve the order
of the commands within a program. A possible solution approach is to
store additional positional information about the parsed program in the
respective AST, which can then be leveraged during the transformation
state to conserve the existing command order.

59

Bibliography

[1] V. Astrauskas et al. “Leveraging Rust Types for Modular Specification
and Verification”. In: Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA). Vol. 3. OOPSLA. ACM, 2019, 147:1–147:30.
doi: 10.1145/3360573.

[2] Atom. Atom: A desktop application built with HTML, JavaScript, CSS, and
Node.js integration. url: https://atom.io/ (visited on 10/06/2020).

[3] Babel. Babel.js: A JavaScript compiler. url: https://babeljs.io/ (visited
on 10/06/2020).

[4] Mike Barnett et al. “Boogie: A modular reusable verifier for object-
oriented programs”. In: International Symposium on Formal Methods for
Components and Objects. Springer. 2005, pp. 364–387.

[5] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. “The SMT-LIB stan-
dard: Version 2.0”. In: Proceedings of the 8th international workshop on
satisfiability modulo theories (Edinburgh, England). Vol. 13. 2010, p. 14.

[6] Clark Barrett et al. “CVC4”. In: Computer Aided Verification. Ed. by
Ganesh Gopalakrishnan and Shaz Qadeer. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 171–177. isbn: 978-3-642-22110-1.

[7] Andrew P Black et al. “Seeking Grace: a new object-oriented language
for novices”. In: Proceeding of the 44th ACM technical symposium on Com-
puter science education. 2013, pp. 129–134.

[8] Robert S Boyer and J Strother Moore. A Verification Condition Generator
for FORTRAN. Tech. rep. SRI INTERNATIONAL MENLO PARK CA
COMPUTER SCIENCE LAB, 1980.

[9] Roberto Bruttomesso et al. “The mathsat 4 smt solver”. In: International
Conference on Computer Aided Verification. Springer. 2008, pp. 299–303.

[10] Roberto Bruttomesso et al. “The opensmt solver”. In: International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer. 2010, pp. 150–153.

61

Bibliography

[11] Microsoft Corporation. Language Server Extension Guide. url: https:
//code.visualstudio.com/api/language-extensions/language-

server-extension-guide (visited on 10/06/2020).

[12] Microsoft Corporation. Visual Studio Code.url:https://code.visualstudio.
com/ (visited on 10/06/2020).

[13] Bruno Dutertre. “Yices 2.2”. In: International Conference on Computer
Aided Verification. Springer. 2014, pp. 737–744.

[14] Marco Eilers and Peter Müller. “Nagini: a static verifier for Python”. In:
International Conference on Computer Aided Verification. Springer. 2018,
pp. 596–603.

[15] Robert W Floyd. “Assigning meanings to programs”. In: Program Verifi-
cation. Springer, 1993, pp. 65–81.

[16] Evgeny Fomin. Allow to reference WebAssembly modules in extension. url:
https://github.com/microsoft/vscode/issues/65559 (visited on
10/06/2020).

[17] Eclipse Foundation. Eclipse: Enabling Open Innovation Collaboration. url:
https://www.eclipse.org/ (visited on 10/06/2020).

[18] OpenJS Foundation. Electron: Build cross-platform desktop apps with JavaScript,
HTML, and CSS. url: https : / / www . electronjs . org/ (visited on
10/06/2020).

[19] OpenJS Foundation. Node.js. url: https://nodejs.org/en/ (visited on
10/06/2020).

[20] Geal. nom, eating data byte by byte. url: https://github.com/Geal/nom
(visited on 10/06/2020).

[21] Google. V8 JavaScript engine.url:https://v8.dev/ (visited on 10/06/2020).

[22] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”.
In: Commun. ACM 12.10 (Oct. 1969), pp. 576–580. issn: 0001-0782. doi:
10.1145/363235.363259. url: https://doi.org/10.1145/363235.
363259.

[23] Huskell. Haskell: An advanced, purely functional programming language.
url: https://www.haskell.org/ (visited on 10/06/2020).

[24] SMT-LIB Initiative. SMT-LIB Theories. url: http://smtlib.cs.uiowa.
edu/theories.shtml (visited on 10/06/2020).

[25] The SMT-LIB Initiative. ArraysEx SMT-LIB Theory.url: http://smtlib.
cs.uiowa.edu/theories-ArraysEx.shtml (visited on 10/06/2020).

[26] The pest initiative. pest. The Elegant Parser. url: https://github.com/
pest-parser/pest (visited on 10/06/2020).

[27] INRIA. OCaml. url: https://ocaml.org/ (visited on 10/06/2020).

62

Bibliography

[28] jneen laughinghan jneen. Parsimmon. url: https : / / github . com /
jneen/parsimmon (visited on 10/06/2020).

[29] JSON. JSON (JavaScript Object Notation). url: https://www.json.org/
json-en.html (visited on 10/06/2020).

[30] Uri Juhasz et al. Viper: A verification infrastructure for permission-based
reasoning. Tech. rep. ETH Zurich, 2014.

[31] Sublime HQ Pty Ltd. Sublime Text: A sophisticated text editor for code,
markup and prose. url: https://www.sublimetext.com/ (visited on
10/06/2020).

[32] Schwerho↵Malte. “Advancing Automated, Permission-Based Program
Verification Using Symbolic Execution”. Ph.D. Thesis. ETH Zürich,
2016.

[33] MarcoMates. TextMate for macOS. url: https : / / macromates . com/
(visited on 10/06/2020).

[34] Microsoft. TypeScript: Typed JavaScript at Any Scale. url: https://www.
typescriptlang.org/ (visited on 10/06/2020).

[35] Leonardo de Moura and Nikolaj Bjørner. “E�cient E-Matching for SMT
Solvers”. In: Automated Deduction – CADE-21. Ed. by Frank Pfenning.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 183–198. isbn:
978-3-540-73595-3.

[36] Leonardo de Moura and Nikolaj Bjørner. “Z3: an e�cient SMT solver”.
In: vol. 4963. Apr. 2008, pp. 337–340.

[37] Peter Müller, Malte Schwerho↵, and Alexander J Summers. “Viper: A
verification infrastructure for permission-based reasoning”. In: Interna-
tional Conference on Verification, Model Checking, and Abstract Interpreta-
tion. Springer. 2016, pp. 41–62.

[38] Racket. Racket, the Programming Language. url: https://racket-lang.
org/ (visited on 10/06/2020).

[39] Microsoft Research. F*: A Higher-Order E↵ectful Language Designed for
Program Verification. url: https://www.fstar-lang.org/ (visited on
10/06/2020).

[40] Rust. Rust: A language empowering everyone to build reliable and e�cient
software. url: https://www.rust-lang.org/ (visited on 10/06/2020).

[41] Futago-za Ryuu. Peg.js: Parser Generator for JavaScript. url: https://
pegjs.org/ (visited on 10/06/2020).

[42] JetBrains s.r.o. IntelliJ IDEA: Capable and erconomic IDE for JVM. url:
https://www.jetbrains.com/idea/ (visited on 10/06/2020).

[43] SAP. Chevrotain: Parser Building Toolkit for JavaScript. url: https://sap.
github.io/chevrotain/docs/ (visited on 10/06/2020).

63

Bibliography

[44] W3C. WebAssembly. url: https : / / webassembly . org/ (visited on
10/06/2020).

[45] CSS WG. All CSS Specifications. url: https://www.w3.org/Style/CSS/
specs.en.html (visited on 10/06/2020).

[46] Felix Wolf. “Verifying Fine-Grained Concurrent Data Structures”. PhD
thesis. Master thesis, ETH Zurich, 2018.

64

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

A.Better SMT Language .

- Design I Tooling

Hoinggi Nico Darryl

- -Nunningen , 06 . 10.2020 N . Hye

