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1 Introduction

Separation logic [5] is an extension of Hoare logic [3] widely used to reason
about heap-manipulating programs. It is also the basis of many verification
tools such as Viper [4]. The most important connective in separation logic is
the separating conjunction, ∗. Intuitively, the separation-logic assertion A∗B
expresses that A and B hold in two disjoint portions of the program heap.
Another important connective is the magic wand −∗, which is similar to the
implication but for separation logic. If A ∗ (A −∗ B) holds in a state, then so
does B. The magic wand is very useful, for example to express invariants
while traversing data structures such as lists or trees. This is the case, because
A −∗ B intuitively refers to the data structure B "minus" the data structure
A. For that reason magic wands are already supported in Viper, and this
approach is based on a package algorithm [6] that automates the computation
of a footprint. Unfortunately the proposal is unsound [1]. But there is a
proposal for a frame-work to characterise possible sound package algorithms
[1]. There is already an implementation based on that framework for Carbon,
a verification condition generation based backend for Viper. This thesis is
concerned with implementing a sound package algorithm for Silicon [7], which
is the backend for Viper and is based on symbolic execution.

2 Background

2.1 Package/Apply

To use magic wands in Viper there are two statements package and apply.
If we package a wand then Viper tries to find a footprint for the wand and
then remove the footprint from the current state and add the wand to the
current state. The footprint of a wand is a state which, combined with any
compatible state in which A holds, yields a state in which B holds. The
footprint has to be removed from the state because otherwise there could be

1



changes to the footprint that change the state in a way such that the magic
wand no longer holds. If we apply the wand then we remove the wand and
resources that satisfy the left-hand side of the wand from the state and add
resources that satisfy the right-hand side of the wand to the state.

2.2 Current Package Algorithm in Silicon

To show the key idea of the current package algorithm [6] we look at the
execution for the general wand A −∗ B. First, the algorithm constructs an
arbitrary state σA in which A is satisfied by inhaling A in an empty state.
Then the algorithm tries to construct a state σB in which B holds, by trying
to take the permissions it needs from σA and, if σA doesn’t contain them,
from the current state.

2.3 Unsoundness of the Current Algorithm

It has been shown that the current algorithm is unsound [1]. One problem is
that the current algorithm sometimes performs a case split on the content
of σA. The algorithm then computes a footprint for all cases individually.
However, sometimes none of these footprints are strong enough to satisfy B
together with any state σA in which A holds. We illustrate the issue below,
with an example that uses fractional permissions. Fractional permission [2] is
an extension of separation logic in which permission to a heap location is not
binary but a fraction between 0 and 1. A full (1) permission is then required
to write, and positive permission is required to read a heap location.

Listing 1: Example of a Viper program that shows how to prove false using
package and apply statements. This program is verified by both Carbon and
Silicon.

1 field f: Bool
2

3 method main(x: Ref, a: Ref, b: Ref)
4 requires acc(x.f) && acc(a.f) && acc(b.f)
5 ensures false
6 {
7 package acc(x.f) && (x.f ? acc(a.f, 2/4) : acc(b.f, 2/4)) --*

acc(a.f, 3/4) && acc(b.f, 3/4)
8 assert (perm(a.f) == 3/4 && perm(b.f) == 1/4) || (perm(a.f) ==

1/4 && perm(b.f) == 3/4)
9 x.f := perm(a.f) != 1/1

10 apply acc(x.f) && (x.f ? acc(a.f, 2/4) : acc(b.f, 2/4)) --*
acc(a.f, 3/4) && acc(b.f, 3/4)
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11 }

Here we package the wand acc(x.f)*(x.f ? acc(a.f,1/2) : acc(b.f,1/2)
) --* acc(a.f,1/2) * acc(b.f,1/2). The algorithm then computes the
footprint for two cases, one where x.f is true and one where x.f is false.
For the true case the footprint is acc(b.f,1/2), because the left-hand side
of the wand already provides acc(a.f,1/2), only acc(b.f,1/2) is needed
from the current state, and for the false case it is acc(a.f,1/2) but, none
of them are valid footprints. A valid footprint would be the union of both,
namely acc(a.f,1/2)*acc(b.f,1/2). After the package, we are in a state
where we have the wand and either full permission to a.f and half to b.f, or
the other way around, as shown by the assertion on line 8. Then we set x.f
in such a way that we don’t have to give up part of the full permission to
satisfy the right-hand side of the wand. We can then use the wand to get half
permission to a field for which we already have full permission, which leads
to an inconsistent state, hence we can prove the postcondition false on line
5. Since we started from a valid state, this example shows that the current
algorithm is unsound.

2.4 Sound Package Algorithm

There is already a recipe for a sound package algorithm [1]. Let us again look
at the general wand A −∗ B. The key idea is that we start with the set of all
states σA that satisfy A, instead of looking at each state individually. We then
extract from the current state as much as we need and add it to all σA’s in the
set such that they all now satisfy B. This approach is already implemented
in the Carbon back-end for Viper. However, it is not straightforward to
implement this approach in Silicon, since there is not an obvious way to
represent the set of states σA which statisfy A as it is potentially infinitely
large.

3 Goals

The goal of this thesis is to develop a sound automated package algorithm
for Silicon.

3.1 Core Goals

• Develop a categorisation of wands. Since the current algorithm is sound
for many practical wands, a syntactic and a semantic criterion for wands
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which can be soundly packaged by the current algorithm would help a
lot.

• Explore how to overcome the hurdle of representing the set of possible
infinite states.

• Develop and implement a sound package algorithm for Silicon based on
the findings of the previous points.

• Evaluate the implemented algorithm with respect to completeness
and performance. In particular, compare it to the current unsound
algorithm.

3.2 Extension Goals

• Implement alternative packaging strategies as part of the algorithm.

• Add support for advanced features of the package algorithm such as
nested wands, quantified permissions and proof scripts.
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