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Abstract

Prusti is a Rust verifier based on the Viper verification infrastructure.
One of its main limitations is the limited support for shared borrows in
specification functions. In this thesis, we present access witnesses—an
extension of Viper’s permission model that enables us to enrich Prusti’s
Rust-to-Viper encoding, such that it is now possible to encode specifica-
tion functions that return shared borrows. While access witnesses were
motivated by Rust, they fundamentally improve the expressiveness of
Viper and, therefore, offer new encoding possibilities that can be lever-
aged in Viper frontends for other programming languages as well.

i





Acknowledgments

I am deeply grateful to my supervisor Vytautas Astrauskas. Without his
excellent guidance and support this thesis would not have been possi-
ble. Thank you for our interesting and fruitful discussions, your advice
and cheerful words when I was stuck once again, and your countless in-
sights and tips over the course of this project. I would also like to thank
ProfessorMüller and his group for the opportunity to work on this topic
and for their useful feedback during the design of access witnesses. A
special thanks goes to Dr. Malte Schwerhoff for his support during the
implementation of access witnesses. His feedback on the implementa-
tion proposal and especially his help during debugging were invaluable
for the success of this thesis. Another big thank you goes to my friends
Maximilian Falkenstein and Jan Veen for their help with proofreading.
Finally, I am eternally grateful to my parents and my brothers for their
endless support and encouragement.

iii





Contents

Abstract i

Acknowledgments iii

Contents v

1 Introduction 1

2 Viper 5
2.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Self-Framing Assertions . . . . . . . . . . . . . . . . . . 8
2.4 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Quantified Permissions . . . . . . . . . . . . . . . . . . . . . . . 10

3 Access Witnesses 13
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Well-Formedness Condition . . . . . . . . . . . . . . . . 16
3.3.3 Program State . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Implementation in a Symbolic Execution Based Verifier 21
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Path Conditions . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Heap Representation . . . . . . . . . . . . . . . . . . . . 22

v



CONTENTS

4.2 Access Witness Representation . . . . . . . . . . . . . . . . . . 23
4.3 Producing and Consuming Witnesses . . . . . . . . . . . . . . 24
4.4 Fold and Unfold . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4.1 Fold Statements . . . . . . . . . . . . . . . . . . . . . . . 27
4.4.2 Unfold Statements . . . . . . . . . . . . . . . . . . . . . 29

4.5 Joining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 Unfolding Expressions . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 Field Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.8 Function Verification . . . . . . . . . . . . . . . . . . . . . . . . 33
4.9 Function Axiomatization . . . . . . . . . . . . . . . . . . . . . . 33
4.10 Function Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Prusti 37
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Type Encoding for Pure Functions . . . . . . . . . . . . . . . . 38
5.3 Encoding Function Calls . . . . . . . . . . . . . . . . . . . . . . 39

6 Implementation and Evaluation 41
6.1 Challenges With Implementing Snapshot Summarization . . . 41
6.2 Expressiveness of Viper Programs . . . . . . . . . . . . . . . . 43

6.2.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.2 Witness-Based Encoding . . . . . . . . . . . . . . . . . . 44
6.2.3 Purification . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.4 Hybrid Approach . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Correctness and Performance Tests . . . . . . . . . . . . . . . . 48
6.3.1 Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3.2 Prusti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Future Work 61
7.1 Supporting Quantified Permissions . . . . . . . . . . . . . . . . 61
7.2 Incorporating Magic Wands . . . . . . . . . . . . . . . . . . . . 61
7.3 Foldable Predicates . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.4 Snapshot and Memory Equality . . . . . . . . . . . . . . . . . . 62
7.5 Supporting Access Witnesses in Carbon . . . . . . . . . . . . . 62
7.6 Addressing Summarization Incompletenesses . . . . . . . . . . 62
7.7 Field Lookups and Unfold Statements . . . . . . . . . . . . . . 63
7.8 Selective Witness Generation . . . . . . . . . . . . . . . . . . . 63
7.9 Calling Pure Functions That Return Shared Borrows fromNon-

Pure Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 Conclusion 65

A Why Access Witnesses Must Not Provide Write Access 67

B Symbolic Execution Rules of Utility Methods 69

vi



Contents

B.1 produce' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.2 produce-dependent . . . . . . . . . . . . . . . . . . . . . . . . . 70

C Viper Programs from Expressiveness Evaluation 71
C.1 Purified Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 71
C.2 Hybrid Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

D Additional Plots from Performance Evaluation 83

Bibliography 87

vii





Chapter 1

Introduction

Rust is an emerging systems programming language, aiming to provide a
memory safe and type-safe alternative to C and C++. Its language design
makes it an interesting target for automated verification: Rust’s ownership
type system statically enforces restrictions on aliasing which can be leveraged
by verification tools to automatically infer essential information about the pro-
gram that one otherwise would have to provide manually. This significantly
reduces the complexity of the verification process [1].

The information that is inferrable from Rust’s ownership type system allows
verification tools to determine which memory locations may be accessed by a
piece of code (for example a function call) and which memory locations can-
not be accessed. The problemof determining thesememory locations is called
the framing problem and is one of themain challenges ofmodular verification.

However, just relying on ownership information and static types is not enough
to determine whether a memory location can be accessed because it could be
temporarily borrowed. The Rust compiler forbids any access that conflicts
with an active borrow as illustrated in Figure 1.1. The technique described in
[1] therefore uses capabilities to keep track of the access rights to memory lo-
cations and to model the Rust compiler’s internal representation of this infor-
mation. Capabilities are computed for each program point and subsequently
used for framing.

Prusti—an implementation of the technique described in [1]—translates Rust
programs to Viper [2], an intermediate verification language. Viper’s logic is
based on implicit dynamic frames [3] and uses so-called permissions to solve
the framing problem. Similar to Rust, where a memory location can be ac-
cessed if a reference has the necessary capability, memory locations in Viper
can be accessed if one holds the required permission to do so. Unlike Rust,
Viper’s permission accounting is much more precise; operations that are per-
formed implicitly in Rust are explicit operations in Viper code. Moreover,
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1. INTRODUCTION

1 struct Pair {
2 fst: i32,
3 snd: i32,
4 }
5

6 fn foo() {
7 let mut p = Pair { fst: 0, snd: 1 };
8 let x = &mut p;
9 p.fst = 2;

10 x.snd = 1;
11 }

Figure 1.1: An example Rust program that illustrates why ownership information does not
suffice to determine whether a memory access is legal. Even tough p owns the created Pair,
the assignment on line 9 causes a compile error: Since x mutably borrows p, the read and write
permissions are temporarily transferred to x. As long as x is active, p cannot be used to access
the underlying Pair.

while a shared reference capability in Rust can be duplicated, Viper’s permis-
sions are non-duplicable; instead, they can be split and recombined. There-
fore, figuring out which Viper operations to emit is an extremely challenging
task in some cases, for instance when a borrow expires.

This mismatch between the precise permission accounting in Viper and the
more relaxed model used in Rust complicates the verification process. It is
also the cause of some of the limitations the approach from [1] currently suf-
fers from.

We developed an extension of Viper’s permissionmodel to make it more suit-
able for modeling Rust code. More specifically, we address the issue that so
called pure functions cannot return non-primitive types. A pure function is a
function that is both deterministic and side-effect free, and can therefore be
used in specifications. To allow their usage in specifications, Prusti translates
pure functions to Viper functions (see Section 2.5 for an explanation of Viper
functions). However, Viper’s permission model does not allow functions to
return permissions, while this is allowed in Rust. This fundamental difference
between the twomodels is what previously prevented Prusti from supporting
non-primitive return types in pure functions.

Our extension—accesswitnesses—overcomes this limitation and allowsPrusti
to support shared borrows as return values of pure functions. For Viper itself,
it improves the expressiveness of the overall language by allowing functions
to make assertions about the permissions of their result. As we will see, this
also allows chaining heap-dependent functions—something that was previ-
ously impossible in Viper.

More precisely, our contributions are:
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1. The design of a new feature for the Viper language.

2. The implementation of this feature in Silicon, a Viper verifier based on
symbolic execution.

3. The extension of Prusti to allow pure functions to return shared bor-
rows.

4. An evaluation discussing the impact of access witnesses on the expres-
siveness of Viper.

5. A performance analysis of the updated versions of both Silicon and
Prusti.

After providing the necessary background information about Viper in Chap-
ter 2, Chapter 3 will introduce the design of access witnesses. In Chapter 4
we will describe how to implement them in a verification framework based
on symbolic execution, followed by an explanation of the required changes in
Prusti’s encoding of pure Rust functions to Viper such that shared references
can be used as return values in Chapter 5. An overview about implementa-
tion issues in a real-world Viper verifier and the evaluation of both the design
and its implementation is presented in Chapter 6, before we provide more
details about potential future work in Chapter 7 and conclude this thesis in
Chapter 8.
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Chapter 2

Viper

Viper is an intermediate verification language, designed to support fully au-
tomated verification of concurrent, heap manipulating programs. It features
a global heap, as well as well as an assertion language based on implicit dy-
namic frames [3]. This chapter is based on the online tutorial on Viper [4]
and provides the necessary details about the Viper language required to un-
derstand the remainder of this thesis. Many details are omitted and can be
found in either the original paper on Viper [2] or the online tutorial.

2.1 Intuition
As previously mentioned, Viper programs have access to a heap. This heap
is object based, which means that each heap location is uniquely identified by
a tuple consisting of a reference and a field identifier. All references have
access to every field that is declared in a Viper program; there is no distinction
between different kinds of references that have access to different fields.

Access to heap locations is guarded by access permissions: to read from orwrite
to a heap location, one needs to hold the required permission to do so. Per-
missions allow Viper verifiers to exactly determine which memory locations
may be read or modified by each piece of code, thereby solving the fram-
ing problem for Viper programs. An access permission is a tuple of a heap
location and a permission amount. A permission amount is a fractional, non-
negative number. Permission handling is explicit; that is, permissions have to
be added and removed explicitly using the corresponding statements.

To read from a heap location, one needs to hold a permission for said location
with a permission amount that is strictly positive. Write access requires the
permission amount to be equal to 1, which is denoted by the constant write
in Viper programs. Having a total permission amount that is greater than 1
means that the Viper program is in an inconsistent state. As a consequence,
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2. VIPER

holding a non-zero permission amount to any heap location means it can-
not be modified concurrently (since otherwise the total permission amount
would be greater than 1). Dropping all permissions to a memory location
means that it may be arbitrarily modified and thus all knowledge about said
memory location is havocked if the permission amount drops to zero.

The program state of a Viper program consists of three components:

1. The value of each variable in the current scope. The current scope in-
cludes all local variables, as well as arguments and return parameters.

2. The heap, which stores the value of each field location that is currently
accessible.

3. The permission mask, which stores how much permission to which re-
source (heap location) is currently held.

2.2 Syntax

As we have seen, all fields are available to all references. References are vari-
ables of the built-in Ref type. The field declaration field f: T declares a
new field with identifier f and type T. Besides field declarations, Viper pro-
grams may also contain predicate declarations (predicates are explained in
Section 2.4), methods, and functions (which will be explained in Section 2.5).

To denote permissions in a Viper program, accessibility predicates are used.
They have the shape acc(r.f, p), where r.f denotes a heap location (here
the field f of reference r) and p denotes a permission amount. We have al-
ready seen that write can be used to denote a permission amount of 1. It
is also possible to specify fractional permission amounts, such as write / 2
or an unspecified, strictly positive permission amount denoted by wildcard.
To add a permission to the program state, inhale statements can be used.
Removing permissions can be done by the means of exhale statements.

However, inhale and exhale statements do not just add and remove permis-
sions from the program state. It is possible to inhale and exhale arbitrary
assertions. An assertion is a boolean expression which may contain accessibil-
ity predicates. Inhaling an assertion a adds all permissions that occur in a to
the program state. Additionally, it is assumed that a currently holds (evalu-
ates to true). Exhaling a checks whether a holds and removes all permissions
that occur in a from the program state. In contrast to exhale, assert merely
checks whether the given assertion currently holds, but does not remove any
permissions from the program state. The basic use of permissions is demon-
strated in Figure 2.1.
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2.3. Verification

1 inhale acc(r.f, write)
2 r.f := 1 // Assignment needs write permission
3 exhale acc(r.f, write / 2)
4 assert r.f == 1 // Reading is still allowed
5 exhale acc(r.f, write / 2)
6 inhale acc(r.f, write)
7 assert r.f == 1 // Fails

Figure 2.1: Basic permission usage in Viper programs. The assert statement on line 7 fails,
because we drop all of the remaining permission amount to r.f on line 5. The previous assert
statement succeeds, since we only dropped a fraction of the permission.

2.3 Verification
Each method in a Viper program is equipped with a specification, which is
composed of a precondition and a postcondition. Verifying a Viper program
means proving that each method implementation adheres to the method’s
specification; that is, if the method is executed starting in an arbitrary pro-
gram state that satisfies the method’s precondition, the method’s postcondi-
tion holds after the execution of the body. Essentially, verifying a method

method m()
requires pre
ensures post

{
<body>

}

is equivalent to the verification of the following code block starting in an
empty program state.

inhale pre
<body>
exhale post

As one may have noticed, Viper’s program state does not include a call stack.
This is because the verification of Viper programs ismethod-modular, meaning
that each method is verified independently. Method calls are not executed
during verification; instead each method call is simulated by exhaling the
method’s precondition and then inhaling its postcondition on the caller side.
Exhaling the precondition means that we check whether the precondition of
the calledmethod holds. Inhaling the postconditionmeans that the simulated
execution of the method call now guarantees that the method’s postcondition
holds.

This allows Viper programs to contain abstract methods. Such methods only
have a specification, but no implementation. As a consequence, they are not

7



2. VIPER

1 field value: Int
2 field next: Ref
3

4 predicate list(r: Ref) {
5 acc(r.value, write) && acc(r.next, write)
6 && (r.next != null ==> acc(list(r.next), write))
7 }

Figure 2.2: A Viper predicate for a linked list with integer values.

verified, but still can be used in other methods, since method calls are only
simulated.

Method pre- and postconditions may contain accessibility predicates. Such
accessibility predicates model a permission transfer. For accessibility predi-
cates in the precondition, said permissions are passed to the called method.
Accessibility predicates in the postcondition specify that the method returns
some permissions to its caller.

2.3.1 Self-Framing Assertions
Precondition and postcondition assertions are required to be self-framing. An
assertion is self-framing if it contains all permissions that are required to eval-
uate it; that is, if an assertion wants to read a field r.f, it must also contain
an accessibility predicate for r.f. Thus the assertion r.f == 1 is not self-
framing, while acc(r.f, write) && r.f == 1 is. Since assertions are eval-
uated from left to right, the accessibility predicate must occur on the left hand
side the heap access.

2.4 Predicates
So far, we have only seen field permissions. Given the primitives presented
up to here, it would not be possible to represent (statically) unbounded heap
structures, such as lists. To overcome this issue, Viper supports predicates. A
predicate binds a name to an assertion (the predicate body), and allows it to
have parameters. Furthermore, predicates may be recursive. It is this prop-
erty that enables themodeling of unbounded heap structures. Like assertions
in specifications, the body of a predicate must be self-framing. An example
of a predicate declaration is shown in Figure 2.2.

P(e1, ..., en) is called an instance of predicate P. In addition to field per-
missions, predicate instances are another resource type that is supported by
Viper. Like field permissions, they can be inhaled and exhaled. Viper treats
predicates iso-recursively, which means that a predicate instance is not treated
as if it was equal to its body. Instead, one has to explicitly convert between
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2.5. Functions

1 field first: Int
2 field second: Int
3

4 predicate pair(r: Ref) {
5 acc(r.first, write) && acc(r.second, write)
6 }
7

8 method example() {
9 var r: Ref

10 inhale pair(r)
11 r.first := 1 // Fails
12 unfold pair(r)
13 r.first := 2
14 assert acc(pair(r), write) // Fails
15 fold pair(r)
16 assert acc(pair(r), write)
17 }

Figure 2.3: A Viper program illustrating the effects of folding and unfolding predicate instances.
The assignment on line 11 fails, since the permission to r.first is not directly available. After
unfolding the predicate, the assignment succeeds (line 13). However, now we don’t have access
to the the predicate instance anymore, as it was unfolded (line 14). After folding it again, the
same assertion succeeds.

the two using fold and unfold statements. The former converts the predicate
body to a predicate instance, the latter does the opposite. Figure 2.3 illustrates
this process.

If one only wants to temporarily unfold a predicate instance, for example to
read from a field whose accessibility predicate is in the body of a predicate,
one can also use unfolding expressions, which temporarily unfold a predi-
cate instance and then allow the evaluation of a single expression in this state
before undoing the unfold operation.

2.5 Functions
Aside from methods, Viper also supports functions. A function models a de-
terministic, side-effect freemethod. Like a predicate binds a name to an asser-
tion, a function binds a name to an expression. Functions may have param-
eters, contain recursive function calls, and are equipped with a precondition
and a postcondition. While function preconditions may contain accessibility
predicates (such functions are called heap-dependent functions), function post-
conditions must not contain any accessibility predicates. The reason is, that
functions cannot change the program state, and therefore also cannot change
any permissions.

9
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1 function length(r: Ref): Int
2 requires acc(list(r), write)
3 ensures result > 0
4 {
5 unfolding acc(list(r), write) in
6 r.next == null ? 1 : 1 + length(r.next)
7 }
8

9 function n_th(r: Ref, n: Int): Int
10 requires acc(list(r), write) &&
11 0 <= n && n < length(r)
12 {
13 unfolding acc(list(r), write) in
14 n == 0 ? r.item : n_th(r.next, n - 1)
15 }

Figure 2.4: Two heap-dependent Viper functions expressing properties of the list structure
defined in Figure 2.2. The first function computes the length of a given list, while the second
function returns the list element at a given position.

The semantics of a function call are also different to a method call: Instead of
treating function calls solely by their specification, function calls are unrolled;
that is, a function call is replaced by its implementation. Before unrolling, the
function precondition is asserted, hence we only check whether the precondi-
tion holds but do not remove any permissions from the program state. After
unrolling, the function postcondition is inhaled, but since it must not contain
any accessibility predicates, no permissions are added to the program state.

Functions are essential to reason about unboundedheap structures. Figure 2.4
shows some examples of heap-dependent functions that express properties of
the list structure defined in Figure 2.2.

2.6 Quantified Permissions
Viper also supports universal (and existential) quantification. Quantified ex-
pressions are essential to express and check certain properties of Viper pro-
grams. For example, one maywant to check whether all list elements are pos-
itive, which can be expressed using the following assertion (the definitions of
the used functions can be found in Figure 2.4):

assert forall i: Int :: { n_th(r, i) } 0 <= i && i < length(r)
==> n_th(r, i) > 0

{ n_th(r, i) } is called a trigger. Triggers are used to controlwhen the body
of a quantifier is instantiated. In the given example, this happens whenever

10



2.6. Quantified Permissions

n_th is called with r as its first argument. More information about triggers
can be found in [5].

Viper’s universal quantifier also offer an additional way to model statically
unbounded heap structures called quantified permissions. Quantified permis-
sions are essentially just accessibility predicates that occur in the body of a
universal quantifier. They are typically used when the modeled heap struc-
ture does not have a simple recursive structure. A quantified permission that
describes write access to field f of each element in a set s looks like this:

forall x: Ref :: { x.f } x in s ==> acc(x.f, write)

11





Chapter 3

Access Witnesses

Now that we have gained the necessary background knowledge about Viper,
we are ready to introduce our extension to Viper’s permission model, called
access witnesses. This chapter will explain the motivation, design consider-
ations, intuition, and finally the detailed syntax and semantics of this new
concept.

3.1 Motivation

As we have seen, to access a heap location in Viper, one needs to hold the
corresponding permission. We also learned that Viper treats predicates iso-
recursively and thus distinguishes between a predicate instance and its body.
Thismeans, that a permissionmight be available in the current program state,
but not directly, because it is hidden inside the body of a predicate instance.
To obtain this permission, one has to explicitly unfold that predicate instance.

It is Viper’s iso-recursive predicate treatment thatmakes it impossible to chain
heap-dependent functions beyond trivial cases. Figure 3.1 illustrates this is-
sue with an example. Besides limiting Viper itself, not being able to chain
heap-dependent functions is the main obstacle preventing the implementa-
tion of pure methods that return shared references in Prusti, the primary goal
of this thesis.

The reason why chaining heap-dependent functions is impossible, is that the
outer function application usually requires the permissions to be in a differ-
ent shape than the nested function application. Since function applications
cannot modify the program state, they also cannot modify the shape of per-
missions. In few cases, the shape of the permissions can be modified using
unfolding expressions; however, this is only possible if one can statically de-
termine how the permissions have to be unfolded. For recursive and abstract

13



3. ACCESS WITNESSES

1 field x: Int
2 field y: Int
3 predicate point(r: Ref) { acc(r.x, write) && acc(r.y, write) }
4

5 field container_value: Ref
6 predicate container(r: Ref) {
7 acc(r.container_value, write) &&
8 acc(point(r.container_value), write)
9 }

10

11

12 function get_internal_value(r: Ref): Ref
13 requires acc(container(r), write)
14 {
15 unfolding acc(container(r), write) in r.container_value
16 }
17

18 function get_x(r: Ref): Int
19 requires acc(point(r), write)
20 {
21 unfolding acc(point(r), write) in r.x
22 }
23

24 method example() {
25 var p: Ref
26 inhale acc(p.x, write) && acc(p.y, write)
27 p.x := 0
28 p.y := 1
29 fold acc(point(p), write)
30

31 var c: Ref
32 inhale acc(c.container_value, write)
33 c.container_value := p
34 fold acc(container(c), write)
35

36 assert get_x(get_internal_value(c)) == 0
37 }

Figure 3.1: A Viper program demonstrating why chaining heap-dependent functions is not
possible. The predicates point and container are used to model heap allocated two-dimensional
points and a container which wraps a single point. The functions get_internal_value and
get_x model getter functions for the respective fields of containers and points. Due to the way
Viper handles permissions, the assert statement on line 36 fails: The current program state
only contains permission to the predicate instance container(c). To apply function get_x, we
would need to have permission to point(c.container_value).

14



3.2. Intuition

functions this is not possible. Our solution to address this limitation is to in-
troduce a new means to talk about permissions: access witnesses.

3.2 Intuition
There aremany situationswherewe actually know thatwe hold some permis-
sion, but it is currently not accessible because it is in an unsuitable shape. Ac-
cess witnesses allow Viper programs to reason about such permissions: They
specify that some permission acc(l, wildcard) is currently held, but not
directly accessible. The current design limits access witnesses to express that
acc(l, wildcard) is obtainable through a sequence of unfold operations.

Holding an access witness for p allows one to read from the memory location
guarded by p. Write accesses are not allowed, since wildcard permissions do
not allowwrite access either. Note that it is unsound to allowwrite accesses to
memory locations for which one does not directly own permission. The rea-
son is that there could be unknown constraints associated with the memory
location which are not directly visible in the current program state. Further-
more, write access to such memory locations could also be abused to create
cycles in recursively defined datastructures, breaking some of the fundamen-
tal assumptions behind Viper’s permission model. Compare Appendix A for
more details.

Since the permission p an access witnesses represents is not directly avail-
able, each access witness has a set of dependencies. The dependencies specify
from which resources p can be obtained (which predicate instance has to be
unfolded to obtain p). Dependencies can be provided by accessibility predi-
cates with non-zero permission or access witnesses. However, all dependen-
cies have to be eventually backed by permissions that are available directly
in the program state. Access witnesses expire as soon as one of their depen-
dencies cannot be provided by the program state anymore, since we can no
longer guarantee that p is being held.

We allow access witnesses to occur in all assertions, and additionally also in
function postconditions. This makes it possible for functions to specify which
permissions are associatedwith their return values. By using accesswitnesses
in function specifications, we can achieve our initial goal of chaining heap-
dependent function applications. We will demonstrate this in Figure 3.2 after
explaining both the syntax and semantics of access witnesses.

3.3 Design
3.3.1 Syntax
There are several ways to denote access witnesses in Viper programs.
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• dep(r, p(a)) denotes that r is obtainable from p(a).

• dep(r, p1(a1), p2(a2), ...) is a generalization of the former case
and denotes that r can be obtained from one of the given dependencies
pi(ai), but it is not statically known which one.

• dep(r) states that it is possible to obtain r, butwe do not knowonwhich
accessibility predicates it is dependent on. As a consequence it is treated
as if it was dependent on all permissions that are available in the current
program state. This kind of access witnesses is required for function
preconditions.

Note that pi(ai) not necessarily denotes a predicate instance, but can also
refer to a field permission, where we denote a.f as f(a). All three forms of
access witnesses can be used in pre- and postconditions, unfolding expres-
sions, as well as inhale and exhale statements.

3.3.2 Well-Formedness Condition

Similar to heap accesses, which are only valid if the program state contains
the necessary permissions, an access witness is only valid if the program state
contains its dependencies. As previously mentioned, dependencies can be
provided by either accessibility predicates or other access witnesses. For as-
sertions that are required to be self-framing, all dependencies of access wit-
nesses have to be provided by either accessibility predicates or access wit-
nesses occurring within the same assertion. If an access witness is inhaled,
exhaled, or asserted, it suffices if its dependencies are provided by the pro-
gram state.

3.3.3 Program State

To support access witnesses, we extend Viper’s program state. In addition to
the heap, the permission mask, and the values of all variables, the program
state also consists of all access witnesses. Each access witness is stored as a
tuple (resource, dependencies). If an accessibility predicate is completely ex-
haled or the corresponding memory memory is modified (for example by a
field assignment), all access witnesses that are directly or indirectly depen-
dent on said accessibility predicate are removed from the program state.

Note that the introduction of access witnesses means, that it is no longer true
that evaluating an expression does not affect the program state. By evalu-
ating function applications and unfolding expressions, new access witnesses
may be added to the current program state. However, no other parts of the
program state may change during expression evaluation.
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3.3.4 Semantics
Now that we described the syntax and the new program state, we explain the
semantics of access witnesses.

Expiration

After every operation that removes permissions from the program state, we
checkwhether there are accesswitnesseswith dependencies that can no longer
be provided by the updated program state. Such access witnesses are re-
moved from the new program state.

Inhale

Inhaling an access witness first checks whether the dependencies are cur-
rently available and then adds it to the program state. If no dependencies
are provided (dep(r)), all currently available permissions are recorded as
dependencies of the created witness.

Exhale

Exhaling an access witness dep(r, p1(a1), p2(a2), ...) checks whether
there is an access witness for r for which the given set of dependencies is suf-
ficient to determine when it expires. For example, this can be checked by re-
moving all vertices representing pi(ai) from the dependency graph and then
checking whether it is possible to reach a permission from the access witness
for r. In case this is impossible, the given set of dependencies is sufficient and
the exhale statement succeeds.

If no dependencies are provided we simply check whether such an access
witness exists. Since access witnesses are not resources, they are not removed
from the program statewhen they are exhaled, whichmeans that it is possible
to exhale them repeatedly.

Heap Lookup

Reading from a heap location no longer necessarily requires that there is some
positive permission amount to said heap location. In case one does not have
enough permission to read a heap location, we additionally check whether
there is an access witness for said memory location. If this is the case, the
heap location can be accessed.

Fold

Access witnesses cannot be folded. However, their introduction requires a
slight modification of the semantics for normal fold statements: folding a
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predicate instance creates access witnesses for every permission occurring in
the its body. The created witnesses are dependent on the folded predicate
instance.

Unfold

While access witnesses cannot be folded, it is possible to unfold an access wit-
ness for a predicate instance. Doing so creates access witnesses for all permis-
sions that occur in the body of the unfolded predicate instance. The created
access witnesses are dependent on the unfolded predicate instance. The wit-
ness for the unfolded predicate instance remains in the program state.

Furthermore, the semantics of unfolding a normal permission have to bemod-
ified. Permanently unfolding a predicate instance p(a) causes a modification
of all access witnesses that are dependent on it. Since the predicate instance is
consumed, the dependent access witnesses might get removed from the pro-
gram state (as the dependency is missing). However, unfolding does not re-
ally consume the dependency, it only exchanges it for something equivalent.
Thus the access witnesses can be preserved. We update the dependencies of
all access witnesses that are dependent on p(a) as follows: Let bdy denote the
set of accessibility predicates that occur in the body of p(a). We remove p(a)
as a dependency for all access witnesses, and replace it by bdy. If the resource
represented by an access witness occurs in bdy, the access witness is deleted.
This modification allows us to preserve access witnesses across repeated fold
and unfold operations.

Unfolding

Using access witnesses for predicates in unfolding expressions actually does
exactly the same as if the accesswitnesswas unfolded by an unfold statement:
It creates access witnesses for all resources that occur in the predicate body
and then the evaluates the given expression. Being able to use access wit-
nesses in unfolding expressions is an important cornerstone of supporting
function chaining.

3.4 Future Work
The current design does not support quantified permissions. There are two
different ways quantified permissions and quantifiers interact with access
witnesses: Access witnesses may be dependent on a quantified permission,
or theymay occur within the body of a quantifier. The former case happens if
we unfold a predicate instance whose body contains a quantified permission.
We will see how the current implementation handles this case in Section 4.6.
Access witnesses that occur within the body of a quantifier (quantified access
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1 field x: Int
2 field y: Int
3 predicate point(r: Ref) { acc(r.x, write) && acc(r.y, write) }
4

5 field container_value: Ref
6 predicate container(r: Ref) {
7 acc(r.container_value, write) &&
8 acc(point(r.container_value), write)
9 }

10

11

12 function get_internal_value(r: Ref): Ref
13 requires dep(container(r))
14 ensures dep(point(result), container(r))
15 {
16 unfolding dep(container(r)) in r.container_value
17 }
18

19 function get_x(r: Ref): Int
20 requires dep(point(r))
21 {
22 unfolding point(r) in r.x
23 }
24

25 method example() {
26 var p: Ref
27 inhale acc(p.x, write) && acc(p.y, write)
28 p.x := 0
29 p.y := 1
30 fold acc(point(p), write)
31

32 var c: Ref
33 inhale acc(c.container_value, write)
34 c.container_value := p
35 fold acc(container(c), write)
36

37 assert get_x(get_internal_value(c)) == 0
38 }

Figure 3.2: A modification of the Viper program shown in Figure 3.1, leveraging access witnesses
to achieve the original goal of chaining heap-dependent functions. The access witness returned
by function get_internal_value satisfies the precondition of function get_x, leading to a
successful verification of the given program.
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witnesses) naturally occur in lifted functions, for example functions that apply
a single function to an entire list or array.

Besides designing the syntax for both quantified access witnesses and wit-
nesses that are dependent on other quantified permissions, extending access
witnesses with support for quantified permissions also requires addressing
other open questions. For example, one has to decide how quantified access
witnesses should expire. There are at least two approaches here: One could
try to model fine grained expiration, which precisely tracks which parts of a
quantified witness are dependent on which resources and only expires quan-
tified witnesses partially. This requires designing a sophisticated mechanism
that allows them to track which parts are dependent on which resources. Al-
ternatively, one could chose a more coarse grained approach in which the
entire quantified witness expires once a dependency of an item is missing.
Furthermore, one has to design a syntax for both quantified witnesses and
witnesses that are dependent on a quantified permission.
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Chapter 4

Implementation in a Symbolic
Execution Based Verifier

In this chapter, we describe how to implement access witnesses in a Viper
verifier. We focus on Viper’s symbolic execution based verifier, which was
originally described in [6], and provide new and updated symbolic execution
rules that extend it with support for access witnesses.

4.1 Background
We assume some familiarity with the original description in [6]. Neverthe-
less, the necessary context and background will be explained as we present
the updated symbolic execution rules. This background section (Section 4.1)
is paraphrased from the original description.

Viper’s program state is modeled as a symbolic program state which will be
denoted as σ. σ consists of

• a symbolic store γ. γ maps variables to symbolic values.

• a path condition stack π. Path conditions record constraints about the
symbolic state (for example assumptions in a Viper program).

• a symbolic heap h. It is organized in chunks and is used to store both
values and permission amounts for fields and predicate instances.

4.1.1 Path Conditions

Path conditions are stored as a stack of path condition scopes. Each scope is a
triple consisting of a unique identifier called scope identifier, a branch condi-
tion, and a set of path conditions. The scope identifiers can be used to deter-
mine what branch conditions and path conditions were discovered between
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two points during symbolic execution. Branch conditions record why a cer-
tain branchwas taken and typically stem from if conditions. Path conditions,
on the other hand, record all other constraints that were learned.

There aremultiple utility functions that allow querying andmanipulating the
path condition stack:

• pc-add(π, v) adds assumption v to the current top scope of path con-
dition stack π and returns the updated path condition stack.

• pc-push(π, id, c) pushes a new scope with identifier id and branch con-
dition c to the path condition stack π and returns the updated path con-
dition stack.

• pc-after(π, id) returns all scopes that have been pushed to π after the
scopewith identifier id has been pushed (including the scopewith iden-
tifier id).

• pc-segs(π) returns a summary of all branch conditions and path con-
ditions in π.

4.1.2 Heap Representation
As already mentioned, the symbolic heap h is organized in chunks. A heap
chunk has the shape id(v; w), where id uniquely identifies a resource (a field
or a predicate), v are the input arguments, and w are the output arguments.
Overlined variables are used to denote lists. If id denotes a field, the corre-
sponding chunk is called a field chunk, if id denotes a predicate, it is called a
predicate chunk. For field chunks, the input argument list v is a singleton list
consisting of the receiver (the symbolic value of the reference r in the heap
access r.id). For predicate chunks, v is the symbolic argument list of the
predicate instance.

The output argument list w is always composed of two elements, a snapshot
and a permission value. The permission value stores the permission amount
to the represented memory location, while the snapshot stores its value. Oc-
casionally, we will denote field chunks as id(r; s, p) and predicate chunks as
id(args; s, p), where r denotes the receiver, args denotes the predicate argu-
ments, s denotes the snapshot, and p denotes the permission amount.

Besides the chunks we already presented, there is a second kind of heap
chunks called quantified chunks. They are a generalization of the chunks we
previously presented and are used to represent quantifiedpermissions. Quan-
tified chunks therefore typically represent multiple heap locations. To be able
to do so, their output arguments consist of a snapshot map and a permission
function, the input arguments v are obsolete. Instead, the permission function
p maps the field receiver (in case of a quantified field chunk) or the predicate
arguments (for quantified predicate chunks) to a permission value p(args).
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The snapshot map sm maps the same arguments to a snapshot sm(args) if
p(args) is non-zero. Since every non-quantified permission

acc(r.f, p)

can be replaced by a quantified permission

forall x: Ref :: x == r ==> acc(x.f, p)

we assume that all heap chunks are quantified chunks. This simplifies the
symbolic execution rules presented in this chapter.

4.2 Access Witness Representation
To represent access witnesses in the state of the symbolic verifier, we add a
new type of heap chunks: witness chunks. They have the same basic structure
as other chunks. To be able to distinguish between witness chunks and nor-
mal chunks, the identifier id of witness chunks is uniquely marked ( ˆid). Thus
they have the basic shape ˆid(v; w). The output arguments w ofwitness chunks
are identical to the ones of non-quantified chunks, consisting of a snapshot
and a permission value. The input arguments v start with the same entries
that a corresponding non-quantified chunk would contain: the predicate ar-
guments or the field receiver. These entries are followed by a list of dependen-
cies (parents). Eachdependency is a tuple (id, args)whichuniquely identifies
another resource (args corresponds to the input arguments for the resource,
while id is its identifier). Thus fieldwitnesses have the shape ˆid(r, parents; s, p)
and predicate witnesses have the shape ˆid(args, parents; s, p).

Even though access witnesses do not have a permission amount on the Viper
level, our representation still stores a permission amount in the chunks for
witnesses to provide a uniform interface for all chunks. This significantly
reduces the number of symbolic execution rules that have to be updated. The
actual permission amount is irrelevant, as we only care whether a witness
exists in the current program state or not. This can be checked by testing
whether the symbolic permission amount p is positive.

To access the specific parts of a generic chunk c we will use the following
utility functions:

• id(c) returns the chunk identifier. Note that it ignores thewitness chunk
marker for its result.

• is_witness(c) returns whether the chunk is a witness chunk.

• arguments(c) is only defined for witness chunks and returns a single-
ton list containing the receiver for field witness chunks, and the list of
predicate arguments for predicate chunks.
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• parents(c) is only defined for witness chunks and returns the list of de-
pendencies.

• perm(c)(args) returns the permission value stored by c for arguments
args. For quantified chunks, this corresponds to a lookup in the permis-
sion value function of c. For witness chunks, the result corresponds to
the expression ite(args = arguments(c), p, 0), where p is the permission
value of chunk c. ite denotes the symbolic conditional expression.

• snap(c)(args) returns the snapshot stored by c for arguments args. It is
only defined if perm(c)(args) > 0 and evaluates to the stored snapshot
value for witness chunks and to the snapshot map lookup sm(args) for
quantified chunks.

The symbolic execution rules make sure the following invariant holds for all
witness chunks after the execution of each statement: Whenever the permis-
sion value of a witness chunk is non-zero, the symbolic heap also holds non-
zero permission to every dependency of this witness chunk. This is neces-
sary to make sure no witness allows access to a memory location to which we
do not have permission. Figure 4.1 shows the symbolic execution rule that
removes all witnesses for which this invariant no longer holds. The utility
function check(π, cond) tests whether a given symbolic boolean expression
cond holds, given the path conditions π.

4.3 Producing and Consuming Witnesses
In Silicon, chunks are created and removed by two symbolic execution rules
called produce and consume, respectively. Now that we know how access wit-
nesses are modeled, we are ready to describe how to extend and update these
rules to accommodate access witnesses. First note that many of the symbolic
execution rules use a continuation passing style with Q denoting the contin-
uation.

The rule for producing accesswitnesses is stated in Figure 4.2 and very similar
to the rule for producing non-quantified accessibility predicates that is pre-
sented in [6]. To establish the aforementioned invariant for witness chunks,
we check whether the permission amount for each dependency is positive
prior to creating the witness chunk.

The used eval rule is an appropriately lifted version of the original one and
symbolically evaluates a list of lists. assert(π, p) checks whether the given
predicate p holds under the path conditions in π and aborts the symbolic
execution in case the check fails. Note that the new heap h3 is derived from
σ1.h and not from σ2.h, since the evaluation of the predicate arguments may
produce additional witnesses as an unwanted side effect.
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1 remove-expired-witnesses(σ) =
2 witnesses := {c | ∈ σ.h ∧ is_witness(c)}
3 alive := σ.h − witnesses
4 updated := true
5 while updated
6 updated := false
7 foreach c ∈ witnesses
8 pc := perm(c)(arguments(c))
9 if check(σ.π, pc = 0) then

10 witnesses := witnesses \ {c}
11 else
12 condition := true
13 foreach (id, args) ∈ parents(c)
14 r := {x | x ∈ alive ∧ id(x) = id}
15 P := ∑x∈r perm(x)(args)
16 condition := condition ∧ (0 < pc ⇒ 0 < P)
17 if check(σ.π, condition) then
18 updated := true
19 witnesses := witnesses \ {c}
20 alive := alive ∪ {c}
21 σ{h := alive}

Figure 4.1: Symbolic execution rule to remove all witnesses that expired. It reestablishes the
invariant for witness chunks.

1 produce(σ1, dep(p(a), q(b)), s, Q) =

2 eval(σ1, a :: b, λ σ2, a′ :: b′ ·
3 Let v be e′ 6= null if p denotes a field, and true otherwise
4 parents := ∅
5 foreach id(args′) ∈ q(b′)
6 chunks := {c | c ∈ σ1.h ∧ id(c) = id}
7 perm := ∑c∈chunks perm(c)(args′)
8 assert(σ2.π, perm > 0)
9 parents := parents ∪ {(id(c), args′) | c ∈ chunks}

10 c := p(a′, parents, s, 1)
11 h3 := σ1.h ∪ {c}
12 Q(σ2{h := h3}))

Figure 4.2: The new symbolic execution rule to produce witnesses.
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1 consume'(σ1, h, dep(p(a), q(b)), Q) =

2 eval(σ1, a :: b, λ σ2, a′ :: b′ ·
3 chunks := dependent-on(σ2, {c | c ∈ h ∧ id(c) = p}, q(b′))
4 snap, snapde f , perm := summarise-chunks(chunks, a′)
5 assert(σ2.π, 0 < perm)
6 π3 := pc-add(σ2.π, snapde f )
7 Q(σ1{π := π3}, h, snap))

Figure 4.3: The new symbolic execution rule to consume witnesses.

Note that producing an access witness with no dependencies leads to the cre-
ation of a witness chunk with an empty dependency list, meaning that it will
never expire. As a consequence, we prohibit access witnesses without de-
pendencies from occurring in inhale statements, method preconditions and
method postconditions. This prevents us from ever producing access wit-
nesses without dependencies in a state in which doing so would be unsound
with our implementation.

Since access witnesses have a different mechanism that removes them from
the heap, the consume operation for witnesses does not delete any chunks.
However, the consume rule not only removes chunks, but it also returns a
snapshot of the deleted chunks (more precisely, it passes it to the continua-
tion). So instead of removing the chunks and returning a snapshot, the con-
sume rule for witnesses merely returns the snapshot. Its implementation is
listed in Figure 4.3.

dependent-on filters a given set of heap chunks. It keeps all non-witness
chunks and all witness chunks that are directly or indirectly dependent on
the given list of dependencies. To determine whether a single chunk is de-
pendent on a list of dependencies, we check whether they form a vertex cut
in the graph of the dependency relation. The actual implementation can be
found in Figure 4.4.

The remaining chunks are then summarized. This summarization step is nec-
essary to prevent severe incompletenesses: For performance reasons, branches
that are created during expression evaluation aremerged into a single branch.
A detailed explanation can be found in Section 3.4.3 of the original descrip-
tion [6]. During themergingprocess, itmay bepossible that different branches
contain different access witness chunks. By using summarization we are able
to preserve those chunks in the merged branch. More details about how ac-
cess witnesses affect the merging of different branches will be provided in
Section 4.5.

The summarization is an adaptation of the approach presented in [7] (Sec-
tion 6.2). The main difference is that it not only considers witness chunks,
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1 dependent-on(σ, chunks, p(a)) =
2 if p(a)) = [] then
3 return chunks
4

5 result := {c | c ∈ chunks ∧ ¬ is_witness(c)}
6 visited := ∅
7 foreach chunk ∈ {c | c ∈ chunks ∧ is_witness(c)}
8 todo := {(chunk, arguments(chunk))}
9 skip := f alse

10 while todo 6= ∅∧ ¬skip
11 Select (c, args) ∈ todo
12 todo := todo \ {(c, args)}
13 if (c, args) 6∈ visited then
14 if check(σ.π, ∃i · pi = id(c) ∧ ai = args) then
15 visited := visited ∪ {(c, args)}
16 else if is_witness(c) then
17 foreach (id, v) ∈ parents(c)
18 todo := todo ∪ {(c′, v) | c′ ∈ σ.h ∧ id(c′) = id}
19 else
20 skip := true
21 if ¬skip then
22 result := result ∪ {chunk}
23 result

Figure 4.4: The symbolic execution rule to filter a given set of heap chunks for the ones that
are either dependent on the provided list of dependencies, or chunks that are not witnesses.

but it also summarizes them with non-quantified and quantified chunks as
well. The symbolic execution rule is presented in Figure 4.5.

Since consuming permissions may lead to the expiration of witnesses, the
symbolic execution rule for permission consumptionmust be updated aswell.
Thus, we extend the original rule with a call to removed-expired-witnesses
before calling the continuation. Since this is the only change, we omit the
implementation of the updated rule.

4.4 Fold and Unfold
4.4.1 Fold Statements
By design, folding a predicate instance creates new witnesses for all permis-
sions that occur in the body of the folded predicate. This requires redesigning
the symbolic execution rule for fold statements. Furthermore, the old rule
would also lead to the expiration of witnesses since it consumes the predi-
cate body. This may result in the deletion of witnesses that are dependent
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1 summarise-chunks(chunks, args) =
2 snap := fresh
3 snapde f := ∅
4 p := 0
5 foreach chunk ∈ chunks
6 snapde f := snapde f ∪
7 {0 < perm(chunk)(args) ⇒ snap = snap(chunk)(args)}
8 p := p + perm(chunk)(args)
9 (snap, snapde f , perm)

Figure 4.5: The symbolic execution rule to summarize both witness chunks and normal chunks
to obtain a combined snapshot, its definition, and the overall permission amount.

1 exec(σ1, fold acc(pred(e), p), Q) =
2 eval(σ1, p :: e, λ σ2, p′ :: e′ ·
3 assert(σ2.π, 0 ≤ p′)
4 bdy := scale(predbody[x 7→ e′], p′)
5 consume-preserving(σ2, bdy, λ σ3, s ·
6 produce-dependent(σ3, bdy, pred(e′), s, λ σ4 ·
7 produce(σ4, acc(pred(e′), p′), s, λ σ5 ·
8 Q(remove-expired-witnesses(σ5)))))

Figure 4.6: Updated rule for executing fold statements. predbody denotes the body of predicate
pred, and x its formal arguments.

on the consumed permissions. To overcome this issue, we introduce a new
symbolic execution rule named consume-preserving. Its implementation is
equal to the rule stated in Figure 3.9 of the original description [6] renamed
to consume-preserving. The difference between this new rule and the up-
dated consume rule is that consume-preserving does not remove witnesses
after consuming the predicate body. This is required to enable the preserva-
tion of witnesses during the fold operations. The scale operation multiplies
all permission amounts in an assertion by a given symbolic permission value.

We use produce-dependent to create witnesses for all permissions occurring
in the predicate body. produce-dependent is a utility method that allows
the production of accessibility predicates as access witnesses and is listed in
Appendix B.2. This is necessary because predicate bodies only contain acces-
sibility predicates, but we have to produce access witnesses. Note that it is not
possible to perform syntactic rewriting on the predicate body and reuse the
existing production rule to achieve the same goal, since the syntax for access
witnesses does not allow listing permission amounts. If the predicate body
contains an accessibility predicate with a conditional permission amount (for
example condition ? write : none), respecting this permission amount is
crucial for the soundness of the symbolic execution engine.
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1 exec(σ1, unfold acc(id(e), p), Q) =
2 eval(σ1, p :: e, λ σ2, p′ :: e′ ·
3 assert(σ2.π, 0 ≤ p′)
4 bdy := scale(predbody[x 7→ e′], p′)
5 if bdy contains quantified permissions then
6 consume(σ2, acc(pred(e′), p′), λ σ3, s ·
7 produce(σ3, bdy, s, Q))
8 else
9 consume-preserving(σ2, acc(pred(e′), p′), λ σ3, s ·

10 produce'(σ3, bdy, s, λ σ4, replacements ·
11 σ5 := replace-dependencies(σ4, (pred, e′), replacements)
12 Q(remove-expired-witnesses(σ5))))
13 )

Figure 4.7: The updated symbolic execution rule for unfold statements.

4.4.2 Unfold Statements
While the updated folding rule is rather simple, unfold statements require
more bookkeeping in the presence of witnesses. While it is not necessary to
introduce new witnesses when a predicate instance is unfolded to be able to
preserve the existing witnesses, the existing rule for unfold statements may
still lead to the expiration of witnesses nonetheless, as we have seen in Sec-
tion 3.3.4.

Figure 4.7 shows the updated rule for predicate unfolding. The if statement
on line 5 is necessary, as there is currently no way to preserve witnesses if
the body of a dependency contains quantified permissions, as this would re-
quire quantified access witnesses. We therefore use the old rule when such a
predicate is unfolded, which removes all witnesses that are dependent on the
unfolded predicate instance. In our implementation, we also emit a warning.

The updated rule is also quite similar to the original one, but only because the
bookkeeping code is outsourced to replace-dependencies and produce'.
replace-dependencies replaces the missing dependencies of all witnesses
if necessary. Its implementation is shown in Figure 4.8. produce' is identical
to produce, but recordswhich permissionswere produced andpasses them to
the continuation as a set of predicate identifier and symbolic argument tuples.
Note that it is not possible to determine this set of replacements statically, as
the produce rule may create different branches. Its implementation is shown
in Appendix B.1.

Both the updated fold and unfold rule use remove-expired-witnesses to
delete witnesses with missing dependencies. For the fold rule it is only used
to be sure that no expired witnesses remain, but it should never remove any
witnesses in practice. In the unfold case however, it may be the case that the
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1 replace-dependencies(σ, (pred, args), replacements) =
2 chunks := {c | c ∈ σ.h ∧ id(c) = pred}
3 perm := ∑c∈chunks perm(c)(args)
4 if check(σ.π, perm > 0) then
5 return σ
6

7 h1 := {c | c ∈ σ.h ∧ ¬ is_witness(c)}
8 witnesses := σ.h \ h1
9 foreach c ∈ witnesses

10 d′ := ∅
11 foreach (p, e) ∈ parents(c)
12 if p = pred∧ check(σ.π, e = args) then
13 replacements
14 else
15 d′ := d′ ∪ {(p, e)}
16 h1 := h1 ∪ {w{parents := d′}}
17 sigma{h := h1}

Figure 4.8: A utility method to replace dependencies of witnesses if the given dependency is no
longer satisfiable.

predicate body contains some permissions which are not strictly positive. In
some cases, thismay lead to the removal of accesswitnesses, as our previously
stated invariant is violated. While this introduces incompletenesses, wedidn’t
find a more precise invariant that allows the preservation of witnesses across
unfold operations.

4.5 Joining
As we mentioned earlier, branches that are created during symbolic expres-
sion evaluation are merged into a single branch. To do so, the join operation
is used. It takes a function that may create different branches (Qbranch), exe-
cutes it and then merges the different branches into a single one. Before ac-
cess witnesses were introduced, it was guaranteed that the heaps in different
branches were equal, as expression evaluation cannot change permissions or
write to heap locations. Access witnesses invalidate this assumption, as dif-
ferent branches may create different witnesses, making it necessary to update
the join rule.

While it would be sound to simply drop all witness chunks from different
branches, the arising incompleteness would render our implementation use-
less. Instead, we also join the different heaps. To do so, we update the permis-
sion expression of allwitness chunks thatwere produced indifferent branches
before adding them to the merged state. It is not necessary to update witness
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chunks that are already present in the original heap. For a witness chunk c
from a branch with the branch condition bcs its permission amount is up-
dated to ite(bcs, c.perm, 0), where c.perm denotes the symbolic permission
value stored in c. Hence c can only be used if we can show that bcs holds.

Remember that the invariant forwitness chunks states that wheneverwe have
non-zero permission to a witness chunk, the heap also contains non-zero per-
mission to every dependency of said chunk. Since the proposed heap update
changes the permission values of witness chunks, we have to show that this
update preserves the invariant. To do so, we proceed by an informal case
analysis for a generic witness chunk and dependency pair.

• If we update neither the permission amount of the witness chunk nor
the dependency, the invariant is trivially preserved.

• If we update the permission amount of the witness chunk, but without
modifying the dependency, the invariant is also preserved: Since the
updated permission amount is less or equal than the original amount,
we know that if the updated permission amount is non-zero, then so
was the original permission amount. Since the invariant did hold before
merging, the permission amount of the dependencymust therefore also
be non-zero.

• The case that we update the permission amount of the parents without
updating the permission amount of the witness chunk is irrelevant: If
the permission of the witness chunk remains untouched, this implies
that the witness chunk was already present in the original heap. Since
the invariant holds in the initial heap, it must contain enough permis-
sion to the dependency. Due to being in the original heap, this permis-
sion amount to the dependency is also not updated, therefore trivially
preserving the invariant. The updated parent chunksmay only increase
the new overall permission of the dependency.

• If both the permission amount of the witness chunk and the permis-
sion amount of the parents is modified, the invariant is preserved as
well, since the applied permission update is identical for both permis-
sion amounts.

The updated version listed in Figure 4.9 replaces the original rule. In addition
to performing the same tasks as the original rule, it also updates the permis-
sion value of witness chunks as described above.

4.6 Unfolding Expressions
Unfolding expressions with access witnesses behave like normal unfolding
expressions, but instead of producing the predicate body as normal chunks
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1 join(σ1, Qbranch, Q) =
2 id := fresh
3 data := ∅
4 Qbranch(
5 σ1{π := pc-push(σ1.π, id, true)},
6 λ σ2, ω ·
7 data := data ∪ {(σ2.h, pc-after(σ2.π, id), ω)}
8 success()
9 ) ∧ (

10 (h2, π2, ωs) := foldl(data, (σ1.h, σ1.π,∅),
11 λ (hi, πi, ωi), (hjoined, πjoined, ωsi) ·
12 (cnds, bcsall) := pc-segs(πi)
13 hdi f f := hi \ σ1.h
14 foreach c ∈ hdi f f
15 hjoined := hjoined ∪ {c{perm := ite(bcsall , c.perm, 0)}}
16 (hjoined, pc-add(πjoined, cnds), ωsi ∪ {(bcsall , ωi)}))
17 Q(σ1{π := π2, h := h2}, ωs))

Figure 4.9: The updated join rule. The perm field of witness chunks denotes the stored permis-
sion value.

1 eval(σ1, unfolding dep(pred(e)) in b, Q) =
2 if the unfolding is explicit then
3 eval(σ1, e, λ σ2, e′ ·
4 bdy := predbody[x 7→ e′]
5 join'(σ2,
6 λ σ3, Qjoin ·
7 consume(σ3, dep(pred(e′)), λσ4, s ·
8 produce-dependent(σ4, bdy, pred(e′), s, λ σ5 ·
9 eval(σ5, b, λ σ6, b′ ·

10 Qjoin(σ6, b′))))),
11 Q)
12 else
13 identical to the unfolding rule for accessibility predicates

Figure 4.10: The symbolic execution rule for unfolding witnesses.
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1 eval(σ1, e. f , Q) =
2 eval(σ1, e, λ σ2, e′ ·
3 snap, snapde f , perm := summarise-chunks({c | c ∈ σ2.h ∧ id(c) = f }, e′)
4 assert(σ2.π, 0 < perm)
5 Q(σ2{π :=pc-add(σ2.π, snapde f )}, snap))

Figure 4.11: The updated field access rule.

and temporarily removing the predicate instance from the heap, they keep the
predicate witness and permanently produce the predicate body as witness
chunks.

If the body of the unfolded predicate contains quantified permissions, the
production of the respective chunk is skipped. The symbolic execution rule
for unfolding witnesses is listed in Figure 4.10.

4.7 Field Access
Since witnesses provide read access to fields, we have to update the field ac-
cess rule. The updated rule stated in Figure 4.11 is an adaptation of the field
access rule presented in Figure 4.4 of [6]. It just combines all snapshots from
normal and witness chunks using the summarise-chunks method from Fig-
ure 4.5.

4.8 Function Verification
We also have to slightly change how function verification works. However,
only minor changes are required because we only have to modify the self-
framedness checks for function postconditions. Since these may now contain
witnesses, it is no longer possible to just evaluate the postcondition, instead
we have to produce it. Unlike method verification, the postcondition is not
produced into an empty heap, but into the heap resulting from the production
of the precondition. This is because the function precondition is only asserted
on the caller side. The updated implementation can be found in Figure 4.12.

4.9 Function Axiomatization
The addition of accesswitnessesmakes it necessary to introduce an additional
step during function axiomatization. Viper functions are translated to sym-
bolic functions in the underlying SMT solver. Since the SMT solver has no
access to the symbolic heap (it is only known to the symbolic execution en-
gine), each translated function has an additional argument, which represents
the part of the heap that is accessible by said function. This additional ar-
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1 verify(π0, function f un(x : T) : Tr) =
2 x′ := fresh
3 σ1 := {γ := ∅[x 7→ x′], h := ∅, π := π0}
4 produce(σ1, exh-variant( f unpre), fresh, λ σ2 ·
5 produce(σ2, {γ := σ2.γ[result 7→ fresh]}, f unpost, fresh, λ _, _ ·
6 success())) ∧
7 produce(σ1, inh-variant( f unpre), fresh, λ σ2 ·
8 eval(σ2, f unbody, λ σ3, _ ·
9 consume(σ3{γ := σ3.γ[result 7→ fresh]}, f unpost, λ _, snap ·

10 success())))

Figure 4.12: The updated function verification rule.

gument is provided by the snapshot that gets produced when the function’s
precondition is consumed during symbolic function evaluation.

To provide the SMT solver with the necessary knowledge about the function
definition and its postcondition, two SMTaxioms are emitted during the func-
tion axiomatization step: the definitional axiom and the postcondition axiom.
Section 3.6 of the original description [6] contains amore detailed description.

Since functionpostconditionsmay contain accesswitnesses, we require knowl-
edge about the snapshots of the witnesses that get produced during function
evaluation to be able to create correct witness chunks. However, the trans-
lation of Viper functions to SMT functions prevents us from creating this
snapshot from within Viper (doing so would require on the fly evaluation
which comes with other issues). We solve this challenge by creating an ad-
ditional SMT function for each Viper function. This additional function is
called snapshot function and is a symbolic representation of the snapshot of
all witnesses in the function postcondition. It takes the same arguments as
the symbolic function (all arguments of the Viper function plus a snapshot).
The additional snapshot axiom provides a definition of the snapshot function.
It is generated by recording the snapshot snap that is produced during the
function verification code (compare line 9 of Figure 4.12). snap is a symbolic
expression in terms of the formal function arguments and therefore perfectly
suited as a definition for the snapshot function. We use the same trigger for
the snapshot axiom as for the definitional axiom.

4.10 Function Evaluation
Finally, the rule for function evaluation needs to be updated as well. If the
function’s postconditions containwitnesses, weproduce themusing the snap-
shot function that is described in Section 4.9. To guarantee minimal interfer-
ence with the original function evaluation rule, we introduce a special case
for such functions and use the existing function evaluation code for the de-
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1 eval(σ1, f un(e), Q) =
2 eval(σ1, e, λ σ2, e′ ·
3 join'(σ1{h := σ1.h},
4 λ σ3, Qjoin ·
5 consume(σ3, f unpre[x 7→ e′], λ σ4, s ·
6 if f un returns a Ref∧ f unpost contains accessibility predicates then
7 snap := f un$snapshot(e′, s)
8 produce(σ4{h := σ3.h}, f unpost[x 7→ e′], snap, λ σ5 ·
9 Qjoin(σ5, f un(e′, s)))

10 else
11 Qjoin(σ4{h := σ3.h}, f un(e′, s)))
12 Q))

Figure 4.13: The updated function evaluation rule

fault case. The updated code is shown in Figure 4.13. The symbolic function
is denoted by f un, the snapshot function by f un$snapshot.
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Chapter 5

Prusti

Now that we have seen what access witnesses are and how they can be imple-
mented in a symbolic execution based verifier, this chapters explains how to
leverage them in Prusti’s Rust-to-Viper encoding to achieve our goal of sup-
porting pure functions that return shared borrows.

5.1 Background
Before we can explain our encoding changes, we first have to explain how the
current encoding works in more detail. Rust types are encoded using Viper
predicates. Each Rust variable is translated to a Ref-typed Viper variable, ac-
companied by the appropriate predicate instance for the Rust type. Figure 5.1
shows how Rust types are translated to Viper predicates in a small example.

All Rust functions can be annotated with preconditions and postconditions

1 struct Pair {
2 fst: i32,
3 snd: i32,
4 }

1 predicate i32(self: Ref) {
2 // implementation omitted
3 }
4

5 predicate pair(self: Ref) {
6 acc(self.fst) && i32(self.fst) &&
7 acc(self.snd) && i32(self.snd)
8 }

Figure 5.1: Encoding of Rust types (top) to Viper predicates (bottom).
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which are appropriately translated to Viper, where they are checked. Rust
functions can also be annotated as pure, meaning that they are side-effect free
and deterministic. Pure functions are encoded as Viper functions and can
therefore be used in Rust specifications (preconditions and postconditions).

However, encoding pure functions to Viper functions fundamentally conflicts
how Rust types are modeled. The problem is that the return type is encoded
as a part of the postcondition. Since all Rust types are encoded as predicate
instances, and Viper function postconditions cannot contain any accessibility
predicates, this approach does not work with pure functions. By using a dif-
ferent type encoding for pure functions, it is possible to support boolean and
integer types as return values for pure functions. This is done by usingViper’s
Bool and Int types instead of the corresponding predicate instances. How-
ever, this approach does not generalize to shared references, rendering the
encoding of such pure functions impossible. By leveraging access witnesses,
we are able to extend the type encoding for pure functions to overcome this
limitation.

5.2 Type Encoding for Pure Functions

When pure Rust functions return a shared borrow, this shared borrow is al-
ways obtained by reborrowing from an argument or a field of an argument.
Since the Viper encoding of Rust types causes the type predicates of rebor-
rows to be inside the type predicate of the corresponding argument, we can
use access witnesses to specify that the type predicate of the return value is
somewhere inside one of the arguments’ type predicates. Since access wit-
nesses can be used in the postcondition of Viper functions, this encoding al-
lows us to also encode pure Rust functions that return shared borrows.

However, just using all arguments as dependencies is not very precise and
can be improved by leveraging the information of Rust’s borrow checker. Re-
borrowing causes the borrowed-from location to be blocked. To determine
the exact dependencies of the return value, we filter all arguments and only
keep the ones that are currently blocked by the reborrowed return value.

Since pure function calls can be chained, we also have to update the type
encoding in function preconditions. Previously, the permission to the type-
predicate instance of each argument was passed to the Viper function as an
accessibility predicate. Since access witnesses cannot be used in places where
real permissions are required, this encoding prevented chaining pure func-
tion calls. By using access witnesses instead of accessibility predicates for the
type-predicate instances of function arguments, we can fix this issue and al-
low the chaining of pure functions. Figure 5.2 shows how our new encoding
translates a pure function that returns a shared borrow to a Viper function.
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1 struct Point {
2 x: i32,
3 y: i32,
4 }
5

6 struct Line {
7 start: Point,
8 end: Point,
9 }

10

11 impl Line {
12 #[pure]
13 fn get_start(&self) -> &Point {
14 &self.start
15 }
16 }

1 predicate i32(r: Ref) { ... }
2 predicate Point(r: Ref) { ... }
3 predicate Line(r: Ref) { ... }
4

5 function line_get_start(self: Ref): Ref
6 requires dep(Line(self))
7 ensures dep(Point(result), Line(self))
8 {
9 // implementation omitted

10 }
Figure 5.2: A minimal example that shows how the updated Rust-to-Viper encoding of pure
functions works.

5.3 Encoding Function Calls
The changes we have seen so far allow functions to return shared borrows, as
well as chaining function calls. However, to access fields of returned shared
borrows, we also have to change the encoding of function calls. The reason is
that field accesses require unfolding the returned access witness. To unfold
the returned access witness, the result of the function call has to be available
as a local variable. We therefore encode all function calls that return a shared
reference using a let expression to bind the result to a fresh variable. This
allows unfolding the returned access witness by using said variable and thus
enables field accesses of function results. An encoded function call to the
function line_get_start from Figure 5.2 thus looks like this:

let fresh_var == (line_get_start(l)) in ...
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Before passing the generated Viper program to the verifier, the original en-
coding used to perform several optimizations. Because those optimizations
do not work correctly in the presence of let expressions, we were forced to
disable them for function calls that are encoded using a let expression. The
purpose of said optimizations is to prevent a specific incompleteness in the
verification backend from causing spurious verification failures. Therefore,
Rust programs using pure functions that return shared borrows may experi-
ence the effects of this incompleteness as failing assertions, loop invariants or
specifications. Section 6.1will describe the incompleteness inmore detail. We
leave the incorporation of let expressions into those optimization algorithms
to future work.
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Chapter 6

Implementation and Evaluation

This chapter discusses the challenges of implementing the rules presented in
Chapter 4 in Silicon, Viper’s symbolic execution based backend verifier. Then,
we evaluate the performance and expressiveness of our implementation.

6.1 Challenges With Implementing Snapshot Summa-
rization

Snapshot summarization in Silicon was introduced in [6] for the implemen-
tation of quantified permissions. As discussed in Section 6.2 of [7], snapshot
summarization allows Silicon to overcome certain incompletenesses of the de-
fault greedy heap lookup algorithm in the presence of disjunctive aliasing.
However, the summarization approach suffers from other incompletenesses,
some of which manifest in the presence of quantifiers with heap-dependent
triggers.

Every time we summarise some heap chunks, we generate a fresh snapshot
s1. Without any further information (the snapshot definition), the underlying
SMT solver (Z3 in the case of Silicon) does not know anything about this new
snapshot. If s1 happens to occur in the trigger of a quantified assertion (for
example if the corresponding Viper trigger contains a field dereference), this
often leads to incompletenesses.

The problem is that the definition of s1 may be part of a quantifier which
contains s1 in its trigger. This happens if the summarization is done dur-
ing the evaluation of the quantifier’s body. The symbolic execution rule for
quantifier evaluation generates an auxiliary quantifierwhich contains all path
conditions that were recorded during the evaluation of the quantifier’s body,
including the snapshot definition. This auxiliary quantifier uses the same
trigger expression as the original quantifier and thus contains s1.
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1 predicate p(r: Ref)
2

3 function f(r: Ref): Int
4 requires acc(p(r), write)
5

6 method foo() {
7 var xs: Seq[Ref]
8 inhale forall x: Ref :: { f(x) } x in xs ==> acc(p(x), write)
9 inhale forall x: Ref :: { f(x) } x in xs ==> f(x) == 1

10 assert forall x: Ref :: { f(x) } x in xs ==> f(x) == 1
11 }

Figure 6.1: A minimal Viper program demonstrating the incompleteness caused by snapshot
summarization. The assert statement on line 10 fails, even though no changes to the program
state have been made after the completely identical inhale statement.

As a consequence, we can only learn the definition of s1 if we are able to in-
stantiate the quantifier. To do so, Z3 needs to be able to show that some other
snapshot s2 is semantically equal to s1, such that the trigger is matched and
the quantifier body is instantiated. But without the definition of s1 (which
only occurs within the quantifier) Z3 cannot know whether s2 is equal to s1,
creating a chicken-and-egg problem. Figure 6.1 contains a minimal example
that fails due to exactly this problem.

For performance reasons, Silicon maintains a cache of snapshot summaries,
which are reused if there were no changes to the summarized heap chunks.
As a side-effect this also reduces the impact of the aforementioned incom-
pleteness. If a summary is reused, Z3 trivially knows that the reused snapshot
s1 is equal to the occurrence of the same snapshot in a trigger. However, this
approach only works if summaries can be reused. Since the summarization
code always uses all potentially relevant heap chunks to generate a summary
for a resource, seemingly unrelated heap changesmay lead to the invalidation
of a snapshot summary and trigger the incompleteness.

Since access witnesses also use the summarization code, they are affected by
the same incompleteness. To reduce its impact, we investigated whether the
snapshot definition could be emitted independently of the auxiliary quanti-
fier. It turns out that for witnesses, the snapshot definition itself is often in-
dependent from the quantified variables and therefore could be emitted sep-
arately from the quantifier. However, in almost all the cases, the snapshot
definition occurs on the right hand side of an implication whose left hand
side contains quantified variables. This renders pulling the snapshot defini-
tion out of the quantifier virtually impossible. Doing so, requires to show that
there exists a choice for each variable such that the left hand side of the impli-
cation evaluates to true. Not only is existential quantification in SMT solvers
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poorly supported in general, but in some instances this cannot be shown at
all.

Another approach would be to generate additional triggers for the quantifier
containing the snapshot definition and use them to instantiate its body on
demand. However, one has to be careful not to introduce matching loops.

6.2 Expressiveness of Viper Programs
In this section, we evaluate the expressiveness of access witnesses by compar-
ing three different Viper encodings of methods that insert an element into a
sorted list.

6.2.1 Scenario
The goal of each encoding is to implement and verify a Viper program that in-
serts a single element into a sorted list of non-primitive items. More precisely,
we require the implementation of 3 Viper methods (ordered by increasing
difficulty):

1. Inserting an item at the front. This method is given a list r that is sorted
in ascending order and an item it that is guaranteed to be smaller or
equal to all elements in r. The method has to return a new list that is
sorted in ascending order and contains it at the first position, followed
by the elements in r in the original order.

2. Inserting an item at the back. This method is given a list r that is sorted
in ascending order and an item it that is greater or equal to all elements
in r. The method has to return the updated list r still sorted in ascend-
ing order, containing the original elements at their original positions,
followed by it as the last element.

3. Inserting an item at an arbitrary, but given position. This method is
given a list r that is sorted in ascending order, an integer pos that in-
dicates the position where the new element has to be inserted, and an
item it that is smaller or equal to all elements in r with an index that
is strictly smaller than pos and greater or equal to all other elements in
r. The method has to return a new list that is sorted in ascending order
and contains it at index pos. The other elements of the returned list
have to be equal to the original items in r.

The encoding of the list and the item types follows Prusti’s approach (com-
pare Section 5.1) and is given in Figure 6.2. It is not allowed to modify this
encoding. Additionally, the following utility functions are defined (a possible
implementation for each of them is provided in Figure 6.3:

• A function length(r) which returns the length of a given list r.
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1 field sort_value: Int
2

3 predicate item(r: Ref) { acc(r.sort_value, write) }
4

5 field element: Ref
6 field next: Ref
7

8 predicate list(r: Ref) {
9 acc(r.element, write) && acc(r.next, write) &&

10 acc(item(r.element), write) &&
11 (r.next != null ==> acc(list(r.next), write)
12 }

Figure 6.2: Viper encoding of a linked list with non-primitive items.

• A function at(r, i) which returns the i-th item of r.

• Aboolean function lte(l, r)which indicateswhether item l is smaller
or equal than item r.

Note that while it is allowed to define additional, encoding specific functions,
we prohibit the definition of alternatives to the mentioned utility functions.
This means that to compare two list items, only lte may be used. Further-
more, the insert methods have to treat the items as if they were abstract; that
is, they are not allowed to directly access the fields of an item.

6.2.2 Witness-Based Encoding
An entirelywitness-based encoding cannot be implemented in Viper, because
there is no way to assert that an entire subset of the heap has not been mod-
ified. More precisely, there is no way to compare entire subsets of a heap.
When we encode the different methods, we require write permission to the
list r in order to be able to insert the given element. However, this also im-
plies this method could arbitrarily modify the items. As a consequence, each
method must ensure in its postcondition that no items were modified. Since
methods have to treat items as if they were abstract, it is not possible to write
such a postcondition, as it would require to check whether the subset of the
heap that is accessible by each item is equal to its initial state.

6.2.3 Purification
It is possible to implement a solution to our problem statement entirely with-
out access witnesses while still using function chaining. This approach in-
volves using domains, a Viper feature we didn’t cover in Chapter 2. Domains
allow the modeling of custom types. Each domain definition may contain
various domain functions. In contrast to normal Viper functions, they do not
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1 function length(r: Ref): Int
2 requires dep(list(r))
3 ensures result > 0
4 {
5 unfolding dep(list(r)) in
6 r.next == null ? 1 : 1 + length(r.next)
7 }
8

9 function at(r: Ref, i: Int): Ref
10 requires dep(list(r)) && 0 <= i && i < length(r)
11 ensures dep(item(result), list(r))
12 {
13 unfolding dep(list(r)) in
14 i == 0 ? r.element : at(r.next, i - 1)
15 }
16

17 function lte(l: Ref, r: Ref): Bool
18 requires dep(item(l)) && dep(item(r))
19 {
20 (unfolding dep(item(l)) in l.sort_value) <=
21 (unfolding dep(item(r)) in r.sort_value)
22 }

Figure 6.3: A possible implementation of the defined utility functions.

have any precondition, postcondition, or even body. Instead, one uses axioms
to define the semantics of such functions.

We use domains to implement an alternative heap representation, which al-
lows us to overcome the issue we encountered in the previous section. More
specifically, explicitly modeling a user defined heap allows us to implement
the comparison of entire heap subsets. However, it also requires the transla-
tion of all heap-dependent functions to domain functions, which is why this
approach is called purification.

Implementing a Custom Heap

Our custom heap implementation uses a single domain named Snapshot. As
mentioned earlier, we assume a type encoding similar to the one Prusti uses.
In addition to the type encoding from Figure 6.2, we generate a set of do-
main functions and axioms for each type: The snapshot construction function
takes all fields of a type T as arguments and returns a Snapshot (the type de-
fined by our custom domain). The types of the arguments correspond to the
Viper type of each field, except for Ref-typed fields, which are translated to
a Snapshot-typed argument. For each field, an additional domain function
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is generated that acts as a lookup function and can be used to deconstruct
the snapshot. Additionally, we generate axioms to specify that the snapshot
construction is a bijective operation and the lookup functions are the inverse
functions of the construction function. The additional domain encoding of
the list and item types from the problem statement is shown in Figure 6.4.
The snapshot of the null reference is denoted by a special domain function
snap$null without any arguments (it is therefore equivalent to a constant).
Furthermore, we generate one heap-dependent Viper function per type that
is responsible to create the snapshot. The functions for the list and item type
are listed in Figure 6.5.

Modeling Head-Dependent Functions

All heap-dependent functions (except the snapshot generation functions) are
translated to domain functions in our Snapshot domain. This translation is
identical to the function axiomatization implemented in Silicon, which in turn
follows the approach of Heule, Kassios, Müller, et al. [8], and prevents match-
ing loops in recursive functions. In Figure 6.6, we provide an example encod-
ing for the length function from Figure 6.3.

Analysis

The complete code of our implementation can be found in Section C.1. Note
that there are some minor differences to the encoding we described in the
previous sections that were omitted for complexity reasons.

Besides the huge encoding overhead to reproduce what Silicon internally al-
ready implements, we also had to manually provide some guidance to the
verifier in the form of assertions to successfully verify our solution. Further-
more, our encoding currently lacks the possibility to check the preconditions
of the original heap-dependent functions. On the other hand, it allows us to
both chain function applications and compare snapshots from different pro-
gram states.

The manual guidance that is required to successfully verify our implementa-
tion currently prevents this approach from being a viable option for the au-
tomatic encoding of types that is, for example, used by Prusti. However, we
believe that it should be possible to tweak the encoding such that many of our
additional assertions become unnecessary.

6.2.4 Hybrid Approach
Our last implementation uses the same custom heap encoding as the purifi-
cation approach from the previous section to model user defined snapshots.
However, we do not encode the heap-dependent functions into the domain.
Instead, we leverage access witnesses to be able to chain heap-dependent
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1 domain Snapshot {
2 function snap$null(): Snapshot
3

4 function snap$item(sv: Int): Snapshot
5 function snap$item$inv(s: Snapshot): Int
6

7 axiom ax$snap$item$cons {
8 forall s: Snapshot :: {snap$item$inv(s)}
9 snap$item(snap$item$inv(s)) == s

10 }
11 axiom ax$snap$item$inv {
12 forall i: Int :: {snap$item(i)}
13 snap$item$inv(snap$item(i)) == i
14 }
15

16

17 function snap$list(el: Snapshot, n: Snapshot): Snapshot
18 function snap$list$inv1(s: Snapshot): Snapshot
19 function snap$list$inv2(s: Snapshot): Snapshot
20

21 axiom ax$snap$list$inv1 {
22 forall s1: Snapshot, s2: Snapshot :: {snap$list(s1,s2)}
23 snap$list$inv1(snap$list(s1,s2)) == s1
24 }
25 axiom ax$snap$list$inv2 {
26 forall s1: Snapshot, s2: Snapshot :: {snap$list(s1,s2)}
27 snap$list$inv2(snap$list(s1,s2)) == s2
28 }
29 axiom ax$snap$list$cons {
30 forall s: Snapshot :: {snap$list$inv1(s)}{snap$list$inv2(s)}
31 snap$list(snap$list$inv1(s), snap$list$inv2(s)) == s
32 }
33 }

Figure 6.4: The additional domain encoding required to model the item and list types.
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1 function gensnap$item(r: Ref): Snapshot
2 requires acc(item(r), write)
3 {
4 unfolding acc(item(r), write) in snap$item(r.snapshot_value)
5 }
6

7 function gensnap$list(r: Ref): Snapshot
8 requires acc(list(r), write)
9 {

10 unfolding acc(list(r), write) in snap$list(
11 gensnap$item(r.element),
12 r.next == null ?
13 snap$null() :
14 gensnap$list(r.next))
15 }

Figure 6.5: The Viper functions that generate our user defined snapshots. Consult Figure 6.4
for more information about the used domain functions.

functions and thus benefit fromSilicon’s built-in function axiomatization. The
encoding of all heap-dependent functionsmatches the one shown in Figure 6.3.
The snapshot generation functions fromFigure 6.5 are updated to requirewit-
nesses instead of normal permissions, but otherwise work identically. They
are used in various method postconditions to specify that said method does
not update the respective subset of the heap. Checking whether two items a
and b are identical is as easy as comparing whether their snapshots are equal:

getsnap$item(a) == getsnap$item(b)

The full encoding is shown in Section C.2. Since we leverage access witnesses
to allow the chaining of heap-dependent functions, wedo not have to translate
heap-dependent functions to domain functions, resulting in a simpler overall
design. The custom snapshot representation is used to specify that the imple-
mented methods do not update the list elements. Another advantage of this
encoding over purification is that it does not require any manual guidance
to verify, except for the same assertions that are required for lists of primi-
tive types. As a result, we deem this encoding fit for use if memory equality
assertions have to be encoded.

6.3 Correctness and Performance Tests

Finally, we check our implementation changes for both correctness issues and
performance impacts in various setups. This includes a comparison of differ-
ent configurations and versions of Silicon, as well as measuring the overall
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1 function trigger$list(l): Bool
2

3 function length(l: Snapshot): Int
4 function length$limited(l: Snapshot): Int
5 function length$stateless(l: Snapshot): Bool
6

7 axiom length$def {
8 forall l: Snapshot ::
9 {length(l)}{length$stateless(l),trigger$list(l)}

10 length(l) == (snap$list$inv2(l) == nullsnap() ?
11 1 :
12 1 + length$limited(snap$list$inv2(l)))
13 }
14

15 axiom length$post {
16 forall l: Snapshot ::
17 {length$limited(l)} length$limited(l) > 0
18 }
19

20 axiom length$aux1 {
21 forall l: Snapshot ::
22 {length(l)} length$limited(l) == length(l)
23 }
24

25 axiom length$aux2 {
26 forall l: Snapshot ::
27 {length$limited(l)} length$stateless(l)
28 }

Figure 6.6: The translation of function length from Figure 6.2 into a domain function.

execution time our updated version of Prusti needs to verify Rust’s top 500
crates.

6.3.1 Silicon
Our implementation of access witnesses in Silicon is currently guarded by a
feature flag: To enable support for access witnesses, --enableWitnesses has
to be passed as a command line argument. This first series of tests and bench-
marks compares different configurations of Silicon against the upstream ver-
sion to check whether our changes introduced unsoundnesses, incomplete-
nesses, or performance regressions. We use the testcases from the upstream
Viper testsuite.

The 4 tested configurations are:

49



6. IMPLEMENTATION AND EVALUATION

1. Silicon’s default configuration. We expect neither performance nor func-
tional regressions compared to the upstream version.

2. Silicon with enabled support for access witnesses. No functional re-
gressions are expected; however, there might be a negative impact on
the verification performance.

3. Silicon with enabled summarization of non-quantified heap chunks us-
ing the --enableMoreCompleteExhale command line argument. More
details about summarization of non-witness chunks are provided in [7].
We include this configuration since it is the default configuration used
in Prusti. It is known to suffer from incompletenesses, we therefore ex-
pect some testcases to fail. In Viper programs generated by Prusti, it has
shown significant performance improvements over the default config-
uration; however, it is unclear whether enabling this feature will also
improve the verification performance of our testset.

4. Silicon with both access witness support and summarization of non-
quantified chunks. This is the intended default configuration for Prusti
if our encoding of shared borrows in pure functions using access wit-
nesses is merged into the upstream version. Again, we expect no ad-
ditional functional regressions compared to configuration 3, but cannot
guarantee the absence of a negative performance impact.

Test Environment

All tests were executed on a desktop computer with a 6-core (12 threads)
AMD Ryzen 5 2600X 3.60GHz CPU, 32GB of RAM, and an NVMe SSD. The
host operating system is Arch Linux. To ensure using a consistent and repro-
ducible environment, all tests were executed in a Docker container which we
published on Docker Hub1. To obtain a local copy of the benchmark environ-
ment one can use the command

docker pull nicolastethz/thesis-benchmark:1.0.0

The upstream version of Silicon that is used as a baseline is built from the
following commits:

• 1fd8693a0e72d88c04b7a3de4a2a2ddff23a9117 for Silicon itself

• 09341c4be21e69f93e7b3c0d94624b57708bdda8 for Silver, which con-
tains code that is shared between different verifiers, for example the
Viper parser.

Our new Silicon version that is being evaluated is built from the following
commits:

1https://hub.docker.com/r/nicolastethz/thesis-benchmark
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• f86278412b5c9db947466e6adf87a51815da3dfb for Silicon

• 1af9b5bd0f257d1bedc8bd98036d5af00487a25e for Silver

Benchmark Method

As we already mentioned, we used the testcases from the Viper testsuite for
our evaluation. More precisely, those testcaseswere taken from the aforemen-
tioned upstream versions of Silicon and Silver. Our testset contains over 900
Viper programs covering all language features. We provide an archive con-
taining the entire testset online2. Note that none of those testcases actively use
access witnesses, as this would prevent a comparison between the different
configurations.

To determine the total verification time, every test was executed 5 times. We
removed both the fastest and the slowest result and then took the average of
the remaining 3 results to determine the overall verification time. All testcases
are verified in the same JVM process. Additionally, we also record whether
the actual verification result matched the expected result to be able to deter-
mine functional regressions.

Results

Our test results show no newly failing testcases in Silicon’s default config-
uration compared to the upstream version. Enabling witnesses introduces 2
additional failing testcases. Analyzing those failures shows that enablingwit-
nesses is expected to make those testcases fail due to the changed semantics
of fold statements and field lookups. In configuration 3 (enabling snapshot
summarization), 9 additional testcases fail. We analyzed the testcases inmore
detail and came to the conclusion that 5 of the failing testcases occur due to
incompletenesses, 3 testcases are expected to fail as they check for an incom-
pleteness of the default heap lookup algorithm which no longer occurs when
summarization is used, and one testcase fails because of a known unsound-
ness in the current summarization code. Note that this unsoundness does
not affect Prusti, as the Viper code generated by Prusti is known not to con-
tain any constructs that trigger said unsoundness. When both witnesses and
summarization are enabled, there are no testcases that fail in addition to the
ones that already fail when each feature is enabled individually.

An overview over the observed performance changes is shown in Table 6.1.
Note thatwe excluded all testcases that verifywithin less than 100ms from this
analysis as they suffer from from fluctuation. With an increase in verification
time over all remaining 823 testcases of only 0.47%, the default configuration
of our Silicon implementation shows no performance regressions. The worst-
case overhead in total verification time for a single testcase is 21% or 142ms.

2http://doi.org/10.5281/zenodo.3385185
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Figure 6.7: Box plots of the relative performance overhead (horizontal, in percent) of each
configuration (from top to bottom: default configuration, enabling access witnesses, enabling
snapshot summarization, enabling both access witnesses and snapshot summarization). While
the first graph includes outliers, they are ignored in the second graph. The box of each dataset
ranges from the first quartile to the third quartile, with the orange line marking the median. The
whiskers range from the lowest value that is still within 1.5 times the interquartile range of the
first quartile to the highest value that is still within 1.5 times the interquartile range of the third
quartile.
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Configuration 1 2 3 4
Average Increase in Verification Time 0.47% 4.68% 5.53% 9.09%
Median Increase in Verification Time 0.63% 1.02% 0.91% 1.24%
Maximum Increase in Verification Time 21% 121% 72% 163%

Table 6.1: Relative changes in verification time for various configurations of Silicon compared to
the upstream version. Only tests with identical verification results in both versions are considered.
Additionally, only tests with a total verification time of at least 100ms are considered to determine
the maximum increase in verification time.

Configuration 2 3 4
Average Increase in Verification Time 3.07% 5.15% 6.02%
Median Increase in Verification Time 0.97% 0.77% 0.99%
Maximum Increase in Verification Time 36% 72% 82%

Table 6.2: Relative changes in verification time for various configurations of Silicon compared to
the upstream version when verifying buggy programs (programs for which verification fails). Only
passing testcases are included in the evaluation. Furthermore, only tests with a total verification
time of at least 100ms are considered to determine the maximum increase in verification time.

Configuration 2 3 4
Average Increase in Verification Time 4.68% 5.85% 11.53%
Median Increase in Verification Time 1.06% 1.05% 1.43%
Maximum Increase in Verification Time 121% 69% 163%

Table 6.3: Relative changes in verification time for various configurations of Silicon compared
to the upstream version when verifying correct programs (programs for which verification suc-
ceeds). Only passing testcases are included in the evaluation. Furthermore, only tests with a
total verification time of at least 100ms are considered to determine the maximum increase in
verification time.

The other configurations come with larger average and maximum perfor-
mance increases. However, the median performance overhead is very low,
which hints at a small number of testcases being responsible for the major-
ity of the overall overhead. A more detailed breakdown reveals that this is
indeed the case. Figure 6.7 shows that all configurations have barely any per-
formance overhead except for a few outliers. Note that no configuration has
more than 40 outliers in over 800 testcases.

Since we assumed that programs for which verification succeeds may suffer
from more overhead, we split all testcases into two categories: correct pro-
grams and buggy programs. A program is categorized as correct if its ver-
ification succeeds and buggy otherwise. Table 6.2 and Table 6.3 show that
the average overhead for correct programs is indeed slightly larger. Further-
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Figure 6.8: Box plots of the relative performance overhead (horizontal, in percent) of config-
uration 2 (enabling access witnesses) for buggy programs (top dataset) and correct programs
(bottom dataset). While the first graph includes outliers, they are ignored in the second graph.
A detailed description of the elements of each box plot is provided in Figure 6.7.

more, the maximum performance overhead for configurations with enabled
support for access witnesses always occurs in correct programs. However,
the median overhead barely changes and remains below 2% in all testcases.
Analyzing the box plots of the performance overheads of both testsets in Fig-
ure 6.8, Figure 6.9, and Figure 6.10 again shows that only few testcases are
responsible for the majority of the observed overhead. Furthermore, the ver-
ification of correct programs is only minimally slower than the verification of
buggy programs. However, in configurations that enable witness support,
it seems that outliers occur more often for correct programs than for buggy
programs.

We omit a detailed breakdown of the default configuration here, as its perfor-
mance is very similar to the baseline. Figure D.1 in Appendix D provides the
corresponding box plot for the default configuration.

We also tested whether performance overhead is linked to the lines of code of
each testcase (sloc) or the sum of all assignments, fold statements, and unfold
statements. We chose that secondmetric because our modifications of Silicon
significantly updated the symbolic execution rules for those statements. Fig-
ure 6.11 displays the performance overhead versus those two properties for
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Figure 6.9: Box plots of the relative performance overhead (horizontal, in percent) of configura-
tion 3 (enabling snapshot summarization) for buggy programs (top dataset) and correct programs
(bottom dataset). While the first graph includes outliers, they are ignored in the second graph.
A detailed description of the elements of each box plot is provided in Figure 6.7.

configuration 4. Both metrics seem to be rather unreliable to predict the per-
formance overhead of a testcase. However, there are too few testcases with a
large performance overhead to draw any conclusions. The same plots for con-
figuration 2 and 3 are equally inconclusive and can be found in Figures D.2
and D.3 in Appendix D.

6.3.2 Prusti

Encoding

Since we changed the Rust-to-Viper encoding in Prusti, we also analyze the
impact of those changes on verification performance. To do so, we let both the
upstream version and our updated version of Prusti encode all Rust testcases
from Prusti’s testsuite to Viper programs. Those two new testsets of Viper
programs (one for the upstream version of Prusti and one for our updated
version) were then verified using our updated Silicon implementation, mea-
suring the overall verification time. We used the identical test environment as
for the Silicon evaluation. Again, all testcases were executed 5 times, measur-
ing the the overall execution time and he fastest and slowest results were then
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Figure 6.10: Box plots of the relative performance overhead (horizontal, in percent) of con-
figuration 4 (enabling access witnesses and snapshot summarization) for buggy programs (top
dataset) and correct programs (bottom dataset). While the first graph includes outliers, they are
ignored in the second graph. A detailed description of the elements of each box plot is provided
in Figure 6.7.

removed before taking the average of the remaining threemeasurements. The
evaluated commit identifiers of Prusti are:

• b65d22f2893279c1a9794b615de2cf06cb5bbaec for the upstream ver-
sion of Prusti.

• 35a1516b3b0551b7761657a123c0cd125847d4e8 for our updated version
of Prusti.

The commit identifiers for our updated Silicon version are identical to the
ones we already stated in the previous section. Note while the used Silicon
version is identical for both versions of Prusti, the used configuration is dif-
ferent: to verify the testsuite generated by the upstream version we use con-
figuration 3 (the default configuration plus snapshot summarization), while
we use configuration 4 (default configurationwith enabled snapshot summa-
rization and accesswitnesses) to verify the testsuite generated by our updated
version of Prusti.

The evaluation of the observed overheads shows that the verification of Viper
programs generated by our updated version of Prusti has an overall perfor-
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Figure 6.11: Performance overhead (vertical, in percent) of configuration 4 vs sloc of the testcase
(horizontal, left) and its total number of assignments, fold statements, and unfold statements
(horizontal, right) for all 812 testcases that take more than 100ms to verify. 11 failing testcases
are not shown.

mance overhead of 43% compared to the Viper programs that were generated
using the upstream version of Prusti. However, the median overhead is only
2.70%, while the maximum overhead is 254%. This again hints at few outliers
causing most of the overall performance overhead, which is confirmed by the
plot in Figure 6.12. Even tough the outliers account for a large part of the per-
formance overhead, the verification of Viper programs in this testset suffers
from a noticeable but non-critical slowdown.

Distinguishing between correct and buggy programs shows that the testcases
with the largest overhead are again correct programs, while buggy programs
have a maximum performance overhead of 98%. The median overhead for
programs that fail during verification is 2.11%, compared to 3.22% for cor-
rect programs, drawing a similar picture to the one we observed during the
analysis of the Silicon testcases. However, the box plots for the two groups
of testcases in Figure 6.13 reveals that correct programs in fact do suffer from
higher slowdown than buggy programs.

We assume that the higher overhead for programs with succeeding verifica-
tion may be caused an accumulation of many access witness chunks over the
course of the verification. A higher amount of access witnesses increases the
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Figure 6.12: Box plots of the relative verification performance overhead (horizontal, in percent)
of the updated Rust-to-Viper encoding over the upstream encoding. While the first graph includes
outliers, they are ignored in the second graph. A detailed description of the elements of each
box plot is provided in Figure 6.7.

cost of the expiration check that is performed after each heap update. Since
verification failures abort the verification process, they prevent the accumula-
tion of access witness chunks. On the other hand, programs that successfully
verify cannot prevent this and thus may suffer from an increased overhead
for the expiration check. However, further investigation is required to con-
firm this hypothesis.

Top 500

In order to check how our updated version of Prusti performs in a real world
scenario, we used it to verify the top 500 Rust crates on https://crates.io.
This evaluation is identical to the one conducted in part 1 of Section 7.2 of [1].
In the tested scenario we only suffer from roughly 17% performance overhead
(8h 10min instead of 7h), which is noticeable but definitely not critical. No
verification tasks failed or timed out.
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Figure 6.13: Box plots of the relative verification performance overhead (horizontal, in percent)
of the updated Rust-to-Viper encoding over the upstream encoding for buggy programs (top
dataset) and correct programs (bottom dataset). While the first graph includes outliers, they are
ignored in the second graph. A detailed description of the elements of each box plot is provided
in Figure 6.7.
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Chapter 7

Future Work

Our first design and implementation of access witnesses opens various op-
portunities for future work. There is room for improvements and extensions
of the underlying design of access witnesses, complementary language fea-
tures, aswell as implementation optimizations in both Silicon andPrusti. This
chapter provides an overview about some of those opportunities.

7.1 Supporting Quantified Permissions
Section 3.4 mentions that access witnesses do not support quantified permis-
sions. We have seen how the current implementation suffers from this limita-
tion in Section 4.6. Supporting quantified permissions not only requires de-
veloping semantics on the Viper level, but also involves solving many open
questions for the implementation. For example, one has to find a new way
to model access witnesses that allows using quantified permissions as depen-
dencies. As we already mentioned in Section 3.4, another challenge may be
designing an algorithm to allow partial expiration of quantified access wit-
nesses.

7.2 Incorporating Magic Wands
Besides fields and predicate instances, Viper also supports another resource
type calledmagic wands. One could extendwitnesses to support magic wands
as dependencies, expressing that some permission is inside a magic wand’s
footprint (more details on magic wands in Viper can be found in [2] and [4],
[9] describes magic wands in Silicon).

Since magic wands may occur within the body of predicates, one could also
explore witnesses for magic wands (a witness that expresses that somemagic
wand is obtainable in the current state). Note that this most likely also in-
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cludes defining semantics for temporarily applying magic wands, as well as
maybe defining semantics for fractional magic wands.

7.3 Foldable Predicates
In our design, access witnesses can only express that a permission is present
in the current program state; that is, it can be obtained by unfolding some
predicate instance. One could extend the definition to also include predicate
instances that can be folded in the current program state. This would have
the beneficial effect of simplifying some aspects of the design (for example
unfold operations would not need to update the dependencies of witnesses
anymore). However, it also increases the overall complexity of access wit-
nesses, and introduces the possibility of cycles in the dependency relation, so
the drawbacks of the increased complexity must be compared to the benefits
before proceeding with this idea.

7.4 Snapshot and Memory Equality
In Section 6.2.2 we mentioned that Viper currently provides no way to check
whether two heap subsets are equal. As we have seen, this is a major issue
when writing method specifications, especially for more complex Viper pro-
grams. Moreover, one may want to be able to state that an object was not
modified, but may have been moved to a new heap location. Developing an
extension that allows stating such properties would significantly simplify us-
ing access witnesses to their full potential.

7.5 Supporting Access Witnesses in Carbon
We only implemented access witness support in Silicon. Viper also features
a second verifier based on verification condition generation named Carbon.
Implementing support for access witnesses in Carbon is both important to
provide a consistent user experience across theViper ecosystemand for access
witnesses to become a more mature language feature.

7.6 Addressing Summarization Incompletenesses
The summarization incompleteness we described in Section 6.1 is one of the
major issues that kept reappearing as unexpected verification failures during
the course of this thesis. It also forces Prusti to perform several optimiza-
tions of the generatedViper programbefore passing it to the verification back-
end. Developing a new, more complete approach to snapshot summarization
would therefore not only resolve a major incompleteness in Silicon, but also
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has the potential to greatly simplify verification frontends that leverage Viper.
Some starting points are provided in Section 6.1.

7.7 Field Lookups and Unfold Statements
The actual implementation of access witnesses is incomplete in the presence
of a field lookup r.f when the heap contains a quantified chunk for field f.
While the implementation of such field lookups is quite simple in the frame-
work for symbolic execution (compare Figure 4.11), implementing it in the
context of Silicon proves to be quite a bit more complex. Since Prusti does not
use quantified permissions, the implementation of a field lookup rule that
summarizes witness chunks and quantified chunks was deferred to future
work.

Furthermore, unfold statements for access witnesses were not implemented
as they can be simulated by unfolding expressions. Completing the imple-
mentation should be straightforward.

7.8 Selective Witness Generation
The current implementation creates many access witnesses that remain un-
used during verification. Our evaluation in Section 6.3.1 showed that the per-
formance impact of enabling access witnesses is barely noticeable for many
Viper programs. However, for few programs this overhead is as large as
120%, even tough those programs do not even use access witnesses. Hence,
implementing an optimization that only generates the witnesses that are re-
quired to verify each function or method could significantly improve the ver-
ification performance for those programs.

7.9 Calling Pure Functions That Return Shared Bor-
rows from Non-Pure Code

While our changes to the Rust-to-Viper encoding allow calling pure functions
that return shared borrows in other pure functions as well as specifications,
it is currently impossible to call them in non-pure code. The reason is that
Prusti’s internal bookkeeping for permissions and their state does not know
how to deal with witnesses yet. To enable using such pure functions every-
where, one needs to incorporate accesswitnesses in the permission bookkeep-
ing code, such that it can emit the required fold and unfold operations where
they are required.
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Chapter 8

Conclusion

We designed access witnesses—a new language feature for Viper—which ex-
tend the permission model to allow reasoning about permissions which are
present in the current program state, but not directly available. Moreover, we
also implemented them in a symbolic execution based backend verifier. We
demonstrated the suitability of our language feature to improve the support
for Rust programs in Prusti by extending its Rust-to-Viper encoding to include
support for pure functions returning shared borrows. Our evaluation shows
that our implementation significantly improves the expressiveness of Viper at
the cost of an acceptable performance loss. Furthermore, we list several op-
portunities for future work to evolve and improve upon our work. This thesis
is a first step in understanding the new permission design access witnesses
enable.
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Appendix A

Why Access Witnesses Must Not
Provide Write Access

Access witnesses only provide read access. In Chapter 3, we mentioned that
allowing write access wouldmake the overall design unsound, as it would al-
low creating circular, recursively defined structures. Figure A.1 demonstrates
this in a minimal example. It creates a circular list composed of a single el-
ement. Lines 18 to 24 create a list with a single element a. On line 26 we use
get_field_witnesses to obtain access witnesses for all fields of a, which is
aliased by a new variable c. Assuming that access witnesses provide write
access, we reassign the next field of a to point to itself on line 27, thereby
creating a circular list.

The program state after this assignment is not only inconsistent, but also vio-
lates one of the assumptions behind Viper’s permission model, which is that
every predicate instance can only be unfolded finitely many times. It is in-
consistent, since the actual permission amount to a.next and a.val is not
just greater than 1, but infinite. To obtain a permission amount of n ∈ N, one
just has to unfold acc(list(a), write) n times.
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1 field val: Int
2 field next: Ref
3

4 predicate list(r: Ref) {
5 acc(r.val, write) && acc(r.next, write) &&
6 (r.next != null ==> acc(list(r.next), write))
7 }
8

9 function get_field_witnesses(r: Ref): Ref {
10 requires dep(list(r))
11 ensures dep(result.val, list(r))
12 && dep(result.next, list(r))
13 {
14 unfolding dep(list(r)) in r
15 }
16

17 method create_circular_list() {
18 var a: Ref
19 inhale acc(a.val, write)
20 inhale acc(a.next, write)
21

22 a.next := null
23 fold acc(list(a), write)
24

25 var c: Ref
26 c := get_field_witnesses(a)
27 c.next := a
28 }

Figure A.1: A minimal Viper program that demonstrates how witnesses that allow write access
enable the creation of circular structures.
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Symbolic Execution Rules of Utility
Methods

B.1 produce'

1 produce'(σ, v : V, s, Q) =
2 Q(σ{π := pc-add(σ.π, {v, s = unit})},∅)
3

4 produce'(σ1, e, s, Q) =
5 eval(σ1, e, λ σ2, e′·
6 produce'(σ2{h := σ1.h}, e′, s, Q))
7

8 produce'(σ1, acc(id(e), p), s, Q) =
9 produce id(e, p) in its quantified version as c

10 Q(σ, (c, e))
11

12 produce'(σ1, a1 && a2, s, Q) =
13 produce'(σ1, a1, f irst(s), λ σ2, c1 ·
14 produce'(σ2, a2, second(s), λ σ3, c2 ·
15 Q(σ3, c1 ∪ c2)))
16

17 produce'(σ1, e?a1 : a2, s, Q) =
18 eval(σ1, e, λ σ2, e′ ·
19 branch(σ2, e′,
20 λ σ3 · produce'(σ3, a1, Q),
21 λ σ3 · produce'(σ3, a2, Q)))
22

23 produce'(σ1, forall x : T :: c(x) ==> acc(id(e(x)), p(x)), s, Q) =
24 exactly like the rule from [6], and returning {ch,∅}
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B.2 produce-dependent

1 produce-dependent(σ1, a, id(e), s, Q) =
2 eval(σ1, e, λ σ2, e′ ·
3 Let parents ⊆ σ.h be the set of all chunks for id(e′)
4 produce-dependent'(σ1, a, {(p, e′) | p ∈ parents}, s, Q))
5

6 produce-dependent'(σ, e, s, parents, Q) =
7 produce(σ, e, s, Q)
8

9 produce-dependent'(σ1, acc(id(e), p), s, parents, Q) =
10 eval(σ1, p :: e, λ σ2, p′ ::: e′ ·
11 Let v be e′ 6= null if id denotes a field, and true otherwise
12 c := id∗(e′, parents, s, p′)
13 h3 := σ1.h ∪ {c}
14 Q(σ2{h := h3}))
15

16 produce-dependent'(σ1, a1 && a2, s, parents, Q) =
17 produce-dependent'(σ1, a1, f irst(s), parents, λ σ2 ·
18 produce-dependent'(σ2, a2, second(s), parents, Q))
19

20 produce-dependent'(σ1, e ? a1 : a2, s, parents, Q) =
21 eval(σ1, e, λ σ2, e′ ·
22 branch(σ2{h := σ1.h}, e′,
23 λ σ3 · produce-dependent'(σ3, a1, s, parents, Q),
24 λ σ3 · produce-dependent'(σ3, a2, s, parents, Q)))
25

26 produce-dependent'(σ1, forall x : T :: c(x) ==>
27 acc(id(e(x)), p(x)), s, parents, Q) =
28 Q(σ1)
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Viper Programs from Expressiveness
Evaluation

This chapter provides the complete Viper programs that were developed dur-
ing the evaluation in Section 6.2. Note that both examples use syntax that is
not described in Chapter 2. Consult the Viper tutorial [4] for the missing de-
tails.

C.1 Purified Solution
1 domain Snapshot {
2 function snap$item(sv: Int): Snapshot
3 function snap$list(el: Snapshot, n: Snapshot): Snapshot
4 function nullsnap(): Snapshot
5

6 function tag(s: Snapshot): Int
7

8 axiom tagdef_nullsnap {
9 tag(nullsnap()) == 0

10 }
11 axiom tagdef_list {
12 forall s: Snapshot, n: Snapshot ::
13 {snap$list(s,n)} tag(snap$list(s,n)) == 1
14 }
15 axiom tagdef_item {
16 forall sv: Int :: {snap$item(sv)} tag(snap$item(sv)) == 2
17 }
18

19 function snap$item$inv(s: Snapshot): Int
20 function snap$list$inv1(s: Snapshot): Snapshot
21 function snap$list$inv2(s: Snapshot): Snapshot
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22

23 axiom item1 {
24 forall i: Int ::
25 {snap$item(i)} snap$item$inv(snap$item(i)) == i
26 }
27 axiom item2 {
28 forall s: Snapshot ::
29 {snap$item$inv(s)} snap$item(snap$item$inv(s)) == s
30 }
31

32 axiom list1 {
33 forall s1: Snapshot, s2: Snapshot ::
34 {snap$list(s1,s2)} snap$list$inv1(snap$list(s1,s2)) == s1
35 }
36 axiom list2 {
37 forall s1: Snapshot, s2: Snapshot ::
38 {snap$list(s1,s2)} snap$list$inv2(snap$list(s1,s2)) == s2
39 }
40 axiom list3 {
41 forall s: Snapshot ::
42 {snap$list$inv1(s)}{snap$list$inv2(s)}
43 snap$list(snap$list$inv1(s), snap$list$inv2(s)) == s
44 }
45

46 function trigger$list(l: Snapshot): Bool
47 function trigger$item(l: Snapshot): Bool
48

49 axiom trgf$list {
50 forall l: Snapshot :: {trigger$list(l)} trigger$list(l)
51 }
52

53 axiom trgf$item {
54 forall l: Snapshot :: {trigger$item(l)} trigger$item(l)
55 }
56

57 function lte(l: Snapshot, r: Snapshot): Bool
58 function lte$limited(l: Snapshot, r: Snapshot): Bool
59 function lte$stateless(l: Snapshot, r: Snapshot): Bool
60

61 axiom lte$def {
62 forall l: Snapshot, r: Snapshot :: { lte(l, r) }
63 lte(l, r) == (snap$item$inv(l) <= snap$item$inv(r))
64 }
65
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66 axiom lte$aux1 {
67 forall l: Snapshot, r: Snapshot :: { lte(l, r) }
68 lte(l, r) == lte$limited(l, r)
69 }
70

71 axiom lte$aux2 {
72 forall l: Snapshot, r: Snapshot :: { lte$limited(l, r) }
73 lte$stateless(l, r)
74 }
75

76 function at(l: Snapshot, i: Int): Snapshot
77 function at$limited(l: Snapshot, i: Int): Snapshot
78 function at$stateless(l: Snapshot, i: Int): Bool
79

80 axiom at$def {
81 forall l: Snapshot, i: Int ::
82 { at(l,i) }{ at$stateless(l,i), trigger$list(l) }
83 at(l,i) == (i == 0 ?
84 snap$list$inv1(l) :
85 at$limited(snap$list$inv2(l), i-1))
86 }
87

88 axiom at$aux1 {
89 forall l: Snapshot, i: Int :: { at(l,i) }
90 at$limited(l,i) == at(l,i)
91 }
92

93 axiom at$aux2 {
94 forall l: Snapshot, i: Int :: { at$limited(l,i) }
95 at$stateless(l,i)
96 }
97

98 function length(l: Snapshot): Int
99 function length$limited(l: Snapshot): Int

100 function length$stateless(l: Snapshot): Bool
101

102 axiom length$def {
103 forall l: Snapshot ::
104 { length(l) }{ length$stateless(l), trigger$list(l) }
105 length(l) == (snap$list$inv2(l) == nullsnap() ?
106 1 :
107 1 + length$limited(snap$list$inv2(l)))
108 }
109

73



C. VIPER PROGRAMS FROM EXPRESSIVENESS EVALUATION

110 axiom length$post {
111 forall l: Snapshot :: { length$limited(l) }
112 length$limited(l) > 0
113 }
114

115 axiom length$aux1 {
116 forall l: Snapshot :: { length(l) }
117 length$limited(l) == length(l)
118 }
119

120 axiom length$aux2 {
121 forall l: Snapshot :: { length$limited(l) }
122 length$stateless(l)
123 }
124 }
125

126 field sort_value: Int
127

128 predicate item(r: Ref) {
129 acc(r.sort_value)
130 }
131

132 function getsnap$item(r: Ref): Snapshot
133 requires item(r)
134 {
135 unfolding item(r) in snap$item(r.sort_value)
136 }
137

138 field element: Ref
139 field next: Ref
140

141 predicate list(r: Ref) {
142 acc(r.element) && acc(r.next) &&
143 item(r.element) && (r.next != null ==> list(r.next))
144 }
145

146 function getsnap$list(r: Ref): Snapshot
147 requires list(r)
148 {
149 unfolding list(r) in snap$list(
150 getsnap$item(r.element),
151 r.next == null ? nullsnap() : getsnap$list(r.next))
152 }
153
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154 method insert_first(r: Ref, it: Ref) returns (node: Ref)
155 requires r != null
156 requires list(r)
157 requires item(it)
158 requires forall i: Int, j: Int ::
159 (0 <= i && i <= j && j < length(getsnap$list(r))) ==>
160 lte(at(getsnap$list(r), i), at(getsnap$list(r), j))
161 requires forall i: Int ::
162 (0 <= i && i < length(getsnap$list(r))) ==>
163 lte(getsnap$item(it), at(getsnap$list(r), i))
164 ensures node != null
165 ensures list(node)
166 ensures length(getsnap$list(node)) ==
167 old(length(getsnap$list(r))) + 1
168 ensures old(getsnap$item(it)) == at(getsnap$list(node), 0)
169 ensures forall i: Int ::
170 1 <= i && i < length(getsnap$list(node)) ==>
171 at(getsnap$list(node), i) == old(at(getsnap$list(r), i - 1))
172 ensures forall i: Int, j: Int ::
173 (0 <= i && i <= j && j < length(getsnap$list(node))) ==>
174 lte(at(getsnap$list(node), i), at(getsnap$list(node), j))
175 {
176 node := new(element, next)
177 node.element := it
178 node.next := r
179 fold list(node)
180 assert trigger$list(getsnap$list(node))
181 }
182

183 method insert_last(r: Ref, it: Ref)
184 requires r != null
185 requires list(r)
186 requires item(it)
187 requires forall i: Int, j: Int ::
188 { at(getsnap$list(r),i), at(getsnap$list(r),j) }
189 (0 <= i && i <= j && j < length(getsnap$list(r))) ==>
190 lte(at(getsnap$list(r), i), at(getsnap$list(r), j))
191 requires forall i: Int :: { at(getsnap$list(r),i) }
192 (0 <= i && i < length(getsnap$list(r))) ==>
193 lte(at(getsnap$list(r), i), getsnap$item(it))
194 ensures list(r)
195 ensures length(getsnap$list(r)) ==
196 old(length(getsnap$list(r))) + 1
197 ensures at(getsnap$list(r), length(getsnap$list(r)) - 1) ==
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198 old(getsnap$item(it))
199 ensures forall i: Int :: { at(getsnap$list(r),i) }
200 (0 <= i && i < length(getsnap$list(r)) - 1) ==>
201 at(getsnap$list(r), i) == old(at(getsnap$list(r), i))
202 ensures forall i: Int, j: Int ::
203 {at(getsnap$list(r), i), at(getsnap$list(r), j)}
204 (0 <= i && i <= j && j < length(getsnap$list(r))) ==>
205 lte(at(getsnap$list(r), i), at(getsnap$list(r), j))
206 {
207 if (length(getsnap$list(r)) == 1) {
208 var node: Ref
209 node := new(element, next)
210 node.next := null
211 node.element := it
212 fold list(node)
213 assert trigger$list(getsnap$list(node))
214 assert trigger$list(getsnap$list(r))
215 unfold list(r)
216 r.next := node
217 fold list(r)
218 assert trigger$list(getsnap$list(r))
219 assert old(at(getsnap$list(r), 0)) == at(getsnap$list(r), 0)
220 } else {
221 assert trigger$list(getsnap$list(r))
222 unfold list(r)
223 label k
224 assert forall i: Int ::
225 (0 <= i && i < length(getsnap$list(r.next))) ==>
226 old(at(getsnap$list(r), i + 1)) ==
227 at(getsnap$list(r.next), i)
228 insert_last(r.next, it)
229 fold list(r)
230 assert trigger$list(getsnap$list(r))
231 assert forall i: Int ::
232 (1 <= i && i < length(getsnap$list(r))-1) ==>
233 old[k](at(getsnap$list(r.next), i-1)) ==
234 at(getsnap$list(r), i)
235 assert old(at(getsnap$list(r), 0)) == at(getsnap$list(r), 0)
236 }
237 }
238

239 method insert_at(r: Ref, it: Ref, pos: Int) returns (node: Ref)
240 requires r != null
241 requires list(r)
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242 requires forall i: Int, j: Int ::
243 { at(getsnap$list(r),i), at(getsnap$list(r),j) }
244 (0 <= i && i <= j && j < length(getsnap$list(r))) ==>
245 lte(at(getsnap$list(r), i), at(getsnap$list(r), j))
246 requires item(it)
247 requires 0 <= pos && pos <= length(getsnap$list(r))
248 requires forall i: Int :: { at(getsnap$list(r),i) }
249 (0 <= i && i < pos) ==>
250 lte(at(getsnap$list(r), i), getsnap$item(it))
251 requires forall i: Int :: { at(getsnap$list(r),i) }
252 (pos <= i && i < length(getsnap$list(r))) ==>
253 lte(getsnap$item(it), at(getsnap$list(r), i))
254 ensures node != null
255 ensures list(node)
256 ensures length(getsnap$list(node)) ==
257 old(length(getsnap$list(r))) + 1
258 ensures forall i: Int ::
259 { at(getsnap$list(node),i) }{ at(getsnap$list(r), i) }
260 (0 <= i && i < pos) ==>
261 at(getsnap$list(node), i) == old(at(getsnap$list(r), i))
262 ensures at(getsnap$list(node), pos) == old(getsnap$item(it))
263 ensures forall i: Int ::
264 { at(getsnap$list(r),i) }{ at(getsnap$list(node),i) }
265 (pos < i && i < length(getsnap$list(node))) ==>
266 at(getsnap$list(node), i) ==
267 old(at(getsnap$list(r), i - 1))
268 ensures forall i: Int, j: Int ::
269 { at(getsnap$list(node),i), at(getsnap$list(node),j) }
270 (0 <= i && i <= j && j < length(getsnap$list(node))) ==>
271 lte(at(getsnap$list(node), i), at(getsnap$list(node), j))
272 {
273 if (pos == 0) {
274 node := insert_first(r, it)
275 } else {
276 if (pos == length(getsnap$list(r))) {
277 insert_last(r, it)
278 node := r
279 } else {
280 assert trigger$list(getsnap$list(r))
281 unfold list(r)
282 assert forall i: Int ::
283 (0 <= i && i < length(getsnap$list(r.next))) ==>
284 old(at(getsnap$list(r), i + 1)) ==
285 at(getsnap$list(r.next), i)
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286 label k
287 node := insert_at(r.next, it, pos - 1)
288 r.next := node
289 assert forall i: Int ::
290 (pos - 1 < i && i < length(getsnap$list(r.next))) ==>
291 at(getsnap$list(r.next), i) ==
292 old(at(getsnap$list(r), i))
293 label l
294 fold list(r)
295 assert trigger$list(getsnap$list(r))
296 assert old(at(getsnap$list(r), 0)) ==
297 at(getsnap$list(r), 0)
298 assert forall i: Int :: (1 <= i && i < pos) ==>
299 old[k](at(getsnap$list(r.next), i-1)) ==
300 at(getsnap$list(r), i)
301 node := r
302 }
303 }
304 }

C.2 Hybrid Solution

1 domain Snapshot {
2 function snap$item(sv: Int): Snapshot
3 function snap$list(el: Snapshot, n: Snapshot): Snapshot
4 function nullsnap(): Snapshot
5

6 function snap$item$inv(s: Snapshot): Int
7 function snap$list$inv1(s: Snapshot): Snapshot
8 function snap$list$inv2(s: Snapshot): Snapshot
9

10 axiom item1 {
11 forall i: Int ::
12 {snap$item(i)} snap$item$inv(snap$item(i)) == i
13 }
14 axiom item2 {
15 forall s: Snapshot ::
16 {snap$item$inv(s)} snap$item(snap$item$inv(s)) == s
17 }
18

19 axiom list1 {
20 forall s1: Snapshot, s2: Snapshot ::
21 {snap$list(s1,s2)} snap$list$inv1(snap$list(s1,s2)) == s1
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22 }
23 axiom list2 {
24 forall s1: Snapshot, s2: Snapshot ::
25 {snap$list(s1,s2)} snap$list$inv2(snap$list(s1,s2)) == s2
26 }
27 axiom list3 {
28 forall s: Snapshot ::
29 {snap$list$inv1(s)}{snap$list$inv2(s)}
30 snap$list(snap$list$inv1(s), snap$list$inv2(s)) == s
31 }
32 }
33

34 field sort_value: Int
35 field element: Ref
36 field next: Ref
37

38 predicate item(r: Ref) {
39 acc(r.sort_value)
40 }
41

42 function getsnap$item(r: Ref): Snapshot
43 requires dep(item(r))
44 {
45 unfolding dep(item(r)) in snap$item(r.sort_value)
46 }
47

48 function lte(l: Ref, r: Ref): Bool
49 requires dep(item(l)) && dep(item(r))
50 {
51 (unfolding dep(item(l)) in l.sort_value) <=
52 (unfolding dep(item(r)) in r.sort_value)
53 }
54

55 predicate list(r: Ref) {
56 acc(r.element) && acc(r.next) && item(r.element) &&
57 (r.next != null ==> list(r.next))
58 }
59

60 function getsnap$list(r: Ref): Snapshot
61 requires dep(list(r))
62 {
63 unfolding dep(list(r)) in snap$list(
64 getsnap$item(r.element),
65 r.next == null ? nullsnap() : getsnap$list(r.next))
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66 }
67

68 function length(r: Ref): Int
69 requires dep(list(r))
70 ensures result > 0
71 {
72 unfolding dep(list(r)) in r.next == null ?
73 1 :
74 1 + length(r.next)
75 }
76

77 function at(r: Ref, i: Int): Ref
78 requires dep(list(r)) && i in [0..length(r))
79 ensures dep(item(result), list(r))
80 {
81 unfolding dep(list(r)) in i == 0 ?
82 r.element :
83 at(r.next, i - 1)
84 }
85

86 method insert_first(r: Ref, it: Ref) returns (node: Ref)
87 requires r != null
88 requires list(r)
89 requires item(it)
90 requires forall i: Int, j: Int ::
91 (0 <= i && i <= j && j < length(r)) ==>
92 lte(at(r, i), at(r, j))
93 requires forall i: Int ::
94 (0 <= i && i < length(r)) ==> lte(it, at(r, i))
95 ensures node != null
96 ensures list(node)
97 ensures length(node) == old(length(r)) + 1
98 ensures old(getsnap$item(it)) == getsnap$item(at(node, 0))
99 ensures forall i: Int ::

100 (1 <= i && i < length(node)) ==>
101 getsnap$item(at(node, i)) ==
102 old(getsnap$item(at(r, i - 1)))
103 ensures forall i: Int, j: Int ::
104 (0 <= i && i <= j && j < length(node)) ==>
105 lte(at(node, i), at(node, j))
106 {
107 node := new(element, next)
108 node.element := it
109 node.next := r
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110 assert unfolding list(r) in true
111 fold list(node)
112 }
113

114 method insert_last(r: Ref, it: Ref)
115 requires r != null
116 requires list(r)
117 requires item(it)
118 requires forall i: Int, j: Int :: { at(r,i), at(r,j) }
119 (0 <= i && i <= j && j < length(r)) ==>
120 lte(at(r, i), at(r, j))
121 requires forall i: Int :: { at(r,i) }
122 (0 <= i && i < length(r)) ==> lte(at(r, i), it)
123 ensures list(r)
124 ensures length(r) == old(length(r)) + 1
125 ensures getsnap$item(at(r, length(r) - 1)) ==
126 old(getsnap$item(it))
127 ensures forall i: Int :: { at(r,i) }
128 (0 <= i && i < length(r) - 1) ==>
129 getsnap$item(at(r, i)) == old(getsnap$item(at(r, i)))
130 ensures forall i: Int, j: Int :: {at(r, i), at(r, j)}
131 (0 <= i && i <= j && j < length(r)) ==>
132 lte(at(r, i), at(r, j))
133 {
134 if (length(r) == 1) {
135 var node: Ref
136 node := new(element, next)
137 node.next := null
138 node.element := it
139 fold list(node)
140 unfold list(r)
141 r.next := node
142 fold list(r)
143 } else {
144 unfold list(r)
145 assert forall i: Int ::
146 (0 <= i && i < length(r.next)) ==>
147 old(at(r, i + 1)) == at(r.next, i)
148 insert_last(r.next, it)
149 fold list(r)
150 }
151 }
152

153 method insert_at(r: Ref, it: Ref, pos: Int) returns (node: Ref)
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154 requires r != null
155 requires list(r)
156 requires forall i: Int, j: Int :: { at(r,i), at(r,j) }
157 (0 <= i && i <= j && j < length(r)) ==>
158 lte(at(r, i), at(r, j))
159 requires item(it)
160 requires 0 <= pos && pos <= length(r)
161 requires forall i: Int :: { at(r,i) }
162 (0 <= i && i < pos) ==> lte(at(r, i), it)
163 requires forall i: Int :: { at(r,i) }
164 (pos <= i && i < length(r)) ==> lte(it, at(r, i))
165 ensures node != null
166 ensures list(node)
167 ensures length(node) == old(length(r)) + 1
168 ensures forall i: Int :: { at(node,i) }{ at(r, i) }
169 (0 <= i && i < pos) ==> getsnap$item(at(node, i)) ==
170 old(getsnap$item(at(r, i)))
171 ensures getsnap$item(at(node, pos)) == old(getsnap$item(it))
172 ensures forall i: Int :: { at(r,i) }{ at(node,i) }
173 (pos < i && i < length(node)) ==>
174 getsnap$item(at(node, i)) ==
175 old(getsnap$item(at(r, i - 1)))
176 ensures forall i: Int, j: Int :: { at(node,i), at(node,j) }
177 (0 <= i && i <= j && j < length(node)) ==>
178 lte(at(node, i), at(node, j))
179 {
180 if (pos == 0) {
181 node := insert_first(r, it)
182 } else {
183 if (pos == length(r)) {
184 insert_last(r, it)
185 node := r
186 } else {
187 unfold list(r)
188 assert forall i: Int ::
189 (0 <= i && i < length(r.next)) ==>
190 old(at(r, i + 1)) == at(r.next, i)
191 node := insert_at(r.next, it, pos - 1)
192 r.next := node
193 fold list(r)
194 node := r
195 }
196 }
197 }
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Appendix D

Additional Plots from Performance
Evaluation
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Figure D.1: Box plots of the relative performance overhead (horizontal, in percent) of configu-
ration 1 (default configuration) for buggy programs (top dataset) and correct programs (bottom
dataset). While the first graph includes outliers, they are ignored in the second graph. A detailed
description of the elements of each box plot is provided in Figure 6.7.
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Figure D.2: Performance overhead (vertical, in percent) of configuration 2 (enabling access
witnesses) vs sloc of the testcase (horizontal, left) and its total number of assignments, fold
statements, and unfold statements (horizontal, right) for all 821 testcases that take more than
100ms to verify. 2 failing testcases are not shown.
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Figure D.3: Performance overhead (vertical, in percent) of configuration 3 (enabling snapshot
summarization) vs sloc of the testcase (horizontal, left) and its total number of assignments,
fold statements, and unfold statements (horizontal, right) for all 814 testcases that take more
than 100ms to verify. 9 failing testcases are not shown.
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