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Introduction
Rust is an emerging systems programming language, aiming to provide a memory-safe
and type-safe alternative to C and C++. It features an ownership type system, where
each value has at most one owner (a variable or a function argument) at all times. The
owner is responsible for deallocating the memory occupied by the owned value once it
goes out of scope, allowing Rust to provide memory safety guarantees without requiring a
garbage collector. Ownership can be transferred by moving the value, which is illustrated
in Listing 1.

Since moving values all the time is both tedious and potentially expensive, Rust allows
one to create references, which are typically called borrows. Rust distinguishes between
two types of borrows, mutable and immutable ones. Often times, immutable borrows are
also called shared borrows. While there is no upper bound on how often a value can
be immutably borrowed, only one mutable borrow can be active at all times. Also, no
immutable borrow may exist while a mutable borrow is active. This design allows Rust
to prevent data races at compile time.

Recently, Astrauskas et al. published a working paper on a novel verification technique
for Rust programs [1] which exploits Rust’s ownership type system for verification. While
the approach currently supports ownership and mutable borrows, support for shared
borrows is very limited; currently, shared borrows may only be used as arguments to
so-called pure functions. A pure function is a function that is both deterministic and
side-effect free. This allows pure functions to be used in specifications.

1 let x: String = ”Hello”.to_string();
2 let y = x; // Transfer ownership to y
3 let z = x; // Compile error: x was already moved

Listing 1: Transferring ownership of a value in Rust.
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This thesis aims to extend the support for shared borrows in the aforementioned
technique. The central goal is to allow pure functions to return shared borrows.

Problem
The ownership type system is what enables modular verification of Rust programs.
Through ownership information one can determine which memory locations can be
accessed by each function, allowing verifiers to not only reason about which memory
locations may be changed, but also about which of them are guaranteed to be preserved.
This is called framing and is one of the main challenges of modular verification.

However, static types and ownership alone do not provide enough information to
determine whether a memory access is allowed, as illustrated in Listing 2. The technique
from [1] therefore uses capabilities to keep track of the access rights to memory locations
and to model the Rust compiler’s internal representation of this information. Capabilities
are computed for each program point and are subsequently used for framing. They may
be packed and unpacked: the former is needed when an entire struct is passed as an
argument or a return value, the latter when members of a packed struct are accessed.

1 struct Pair {
2 fst: i32,
3 snd: i32,
4 }
5

6 fn foo() {
7 let mut p = Pair { fst: 0, snd: 1 };
8 let x = &mut p;
9 p.fst = 2;

10 x.snd = 1;
11 }

Listing 2: An example which demonstrates that ownership does not imply being allowed
to access memory locations. While p owns the created Point, the statement on line
9 causes a compile error. Since x mutably borrows p, the read and write permissions
are temporarily transferred to x. As long as x is active, p cannot be used to access the
underlying Point.

Prusti — an implementation of the technique described in [1] — translates Rust pro-
grams to Viper [2], an intermediate verification language. Viper’s logic is based on
implicit dynamic frames [4] and uses so-called permissions to solve the framing problem.
Similar to Rust, where a memory location can be accessed if a reference has the necessary
capability, memory locations in Viper can be accessed if the required permission is held
to do so. Unlike Rust, Viper’s permission accounting is much more precise; for example,
the implicit packing and unpacking operations for capabilities are explicit operations in
Viper. Moreover, while a shared reference capability in Rust can be duplicated, Viper’s
permissions are non-duplicable; instead, they can be split and recombined. Therefore,
figuring out which Viper operations to emit is an extremely challenging task in some
cases (for instance when a borrow expires).

This mismatch between the precise permission accounting in Viper and the more
relaxed model used in Rust both complicates and significantly slows down the verification
process. It is also the reason why pure functions cannot return shared borrows.
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Approach
Our plan is to change or extend Viper’s permission model to make it better suited
for modeling Rust code. As a starting point, we plan to explore a new mechanism
which eliminates the need to perform explicit unpacking by allowing Viper code to peek
arbitrarily deep into a packed capability. One of Viper’s verification backends — Silicon
— recently gained support for custom resources [3], which we might want to leverage for
the evaluation of our methodology.

As mentioned before, the primary goal is to allow pure functions to return shared
borrows. Our approach might be suitable to also support other types of shared borrows,
for instance shared references as arguments to impure functions. However, supporting
internal mutability (for instance Rust’s Cell<T>), which allows writing to memory to
which only a shared borrow exists, is beyond the scope of this thesis.

Goals
Core Goals
1 Collect Samples

In a first step, we will collect a set of Rust programs, that we want to be able to verify,
but are currently not verifiable.

2 Design Methodology

The second goal is to develop a methodology as an extension of Viper that enables the
verification of the collected sample set. A starting point was sketched in the previous
section. The potential interactions of this extension with the Viper features used by
Prusti have to be considered.

3 Extending Viper and Prusti

To determine whether the designed methodology actually works, it should be imple-
mented in both Viper and Prusti.

4 Evaluation

Finally, the implementation from the previous goal should be evaluated against both
the chosen sample set and functions from the top 500 Rust crates on crates.io that fall
into the supported subset of Rust. Furthermore, the interaction with the Viper features
Prusti uses has to be explicitly tested.

Extensions
1 Interaction with Other Viper Features

Since Prusti does not use all language features Viper offers, the interaction between
those unused features (quantified permissions for example) and the designed extension
could be tested as an extension of this thesis.
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2 Soundness

Another possible extension is to provide a formal proof why the chosen methodology is
sound.

3 Support Shared Borrows in Impure Functions

Since shared borrows often occur as arguments to impure functions, extending the
methodology to support such arguments may be considered.

4 Support References as Struct Members

Rust allows structs to have members that are shared references. As a fourth extension,
support for such struct members may be implemented.

Schedule
Task Finished by Estimate
Project Description 24.03.2019 3 weeks
Collecting Sample Programs 31.03.2019 1 week
Methodology Design 28.04.2019 4 weeks
Implementation 12.05.2019 2 weeks
Evaluation and Bugfixing 02.06.2019 3 weeks
Extensions and Buffer 21.07.2019 8 weeks
Thesis Writing 01.09.2019 7 weeks
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