
Semantic Querying of Rust Code
Bachelor Thesis Project Description

Nicolas Winkler
Supervised by Prof. Dr. Peter Müller, Vytautas Astrauskas, Federico Poli

Department of Computer Science
ETH Zürich

Zürich, Switzerland

August 15, 2018

1 Introduction

As a relatively young language with a very fast-growing user base, Rust aims to provide
an alternative to languages like C or C++, without baiting programmers to make mis-
takes but rather enforcing safety through restrictions in its type system. Let us take a
look at two such rules that are enforced by Rust.
In Rust, it is not possible to create a reference that lives longer than the value it points to.
This is implemented by making the so called lifetime of a reference part of its type and
prohibiting the creation of references pointing to a value that does not exist long enough
to match the reference’s lifetime. This prevents classic C++ mistakes like returing a
reference to a locally scoped value.

std::string& get_text()
{

std::string text =
"my text";

return text;
}

Listing 1: valid C++ code

fn get_text() -> &'static String
{

let text =
String::from("my text");

return &text;
}

Listing 2: Invalid Rust equivalent
Although modern C++ compilers will emit a warning when compiling the obviously
erroneous code displayed in Listing 1, sometimes the creation of references that outlive
the value they reference is more hidden. By making the lifetime of references part of

1

their type, and prohibiting the creation of references that live longer than their referenced
values, this problem can be entirely prevented.
As a second example, array accesses in Rust are bound checked. It is infamously known
that C and C++ abstain from doing any bound checks for array access, among other
reasons also in order to not lose out on performance. While Rust mostly tries to provide
its language features without runtime overhead, in this case Rust takes the sacrifice of
checking array access by default and therefore producing safer and better debuggable
code. While unchecked array access in combination with incautious programming tech-
niques can lead to possible buffer overflows and exploitable code, checking array bounds
prevents a good part of security flaws often encountered in C and C++ code.
There are a few more similar features in Rust for preventing common coding errors which
are not presented here, mostly implemented as restrictions in the type system which try
to force a good memory management onto the programmer. Although these restrictions
are meant to make Rust a safe language, sometimes they are too harsh. In such cases,
the programmer needs to circumvent part of these rules by wrapping certain statements
of their code inside unsafe blocks.
Namely, operations that are only allowed inside an unsafe block or function are [1]:

• Dereference a raw pointer
• Call an unsafe function or method
• Access or modify a mutable static variable
• Implement an unsafe trait

Let us consider an example usage of the unsafe keyword in Listing 3. We want to use
a global variable to keep count of the number of events that happened. Modifying and
accessing a mutable global variable is forbidden in safe Rust, we therefore need to wrap
the violating operations in an unsafe block.

1 static mut EVENT_COUNTER: i32 = 0;
2

3 fn event_happened() {
4 unsafe { EVENT_COUNTER += 1; }
5 // process event
6 }
7

8 fn main() {
9 // wait for event

10 event_happened();
11 println!("{} events happened!", unsafe { EVENT_COUNTER });
12 }

Listing 3: Example usage of global mutable variable

2

We use the unsafe keyword on lines 4 and 11 to access the static mutable event counter
variable. By doing this, we promise the compiler that we as a programmer take the
precautions to ensure that we will not encounter a data race.

2 Motivation

Rust is still an evolving language and features are regularly added to or removed from
the language. Also the Rust community has not yet agreed upon what should be allowed
inside unsafe blocks. For removing old features or enforcing new rules for unsafe blocks,
it is crucial to analyze existing Rust code and see how often certain coding patterns are
used (and how much code would break by changing or removing a feature).
However, manually searching through the whole Rust codebase for certain use patterns is
simply not doable, so a tool to automate this task should be developed. One might think
of simply downloading the code and running a text-based search tool such as grep over
it, or maybe use a search engine like found on https://searchcode.com/. However,
all currently available search tools either only allow text-based search or are not able to
parse Rust code.
To get an idea of what kind of queries should be answered, let us take a look at some
examples (formulated as English sentences).

• Find all functions that return an i32 and take no arguments.
• Compute the percentage of unsafe blocks that access a global mutable variable.
• Find all unsafe blocks that call C functions.
• Count the number of unsafe blocks that are possibly executed when calling a certain

function.
• Find most important unsafe blocks based on how much code depends on them.

A comparable project, that works for many languages would be SemmleQl [2]. But since
it is unclear if it can be extended to support queries of our desired scale and since it
currently does not support Rust, it is not suitable for use in this project.

3 Possible Solutions and Ideas

3.1 Query Language

One important part of developing a tool for semantic querying, is to find a suitable query
language. It must be expressive enough to allow a user to formulate complex queries,
yet it needs to be possible to run given queries efficiently. Since querying the entire Rust
codebase (or at least the publicly available part) means querying several gigabytes of
Rust code, this need for efficiency becomes even clearer.

3

https://searchcode.com/

Let us take a look at a few options for a query language:

• Basic pattern matching for Rust expressions is used in Rust macros. They can
basically be thought of pattern matching and substitution on the abstract syntax
tree. However, macros are bound to operate locally on the code, which means
for example when searching for function calls, it is not possible to filter by some
property of the called function.

• In a blog post [3], Niko Matsakis proposed to use Datalog as a query language for
such a tool. Datalog, as a very expressive query language, would certainly be a
good choice for this project. As a downside it should be noted that sometimes it
can be tedious to formulate very simple queries in Datalog.

• One option would be to use an SQL-like query language. Using the RECURSIVE
keyword, even complex queries requiring fixpoint iterations can be expressed. How-
ever writing raw SQL queries can be very tedious and confusing, so a more clearly
laid out wrapping language would be needed.

• Since we basically need to run queries over the abstract syntax tree of Rust code,
query languages for XML databases like XQuery are also a feasible possibility.
Choosing this option would also require us to check how scalable and performant
existing implementations are.

• As a further alternative, it would be possible to give a tree grammar for queries,
which can be run over the abstract syntax trees of Rust crates to match certain
nodes. This approach would also require to design a suitable query syntax and
implement an interpreter for it.

3.2 Implementation

Regardless of the querying method used, to run a query over all public Rust code, the
code needs to be downloaded and indexed properly. Rust projects are usually organized
in crates. A crate is built using Rust’s build system and package manager cargo, which
also manages all dependencies to other crates. The default package repository for cargo,
https://crates.io, contains at the time of writing 16’873 crates. To maximize the
impact of our tool, we want to be able to query all of these crates.
To query multiple gigabytes of code for a certain pattern, it is essential to store infor-
mation about the code in a way that allows efficient execution of queries. Also it is
beneficial to use some framework that can parallelize well over large data sets. One
option to run queries would be to encode queries into a language understood by a data
analysis framework like Datafrog [4] or Differential Dataflow [5].

4

https://crates.io

4 Core Goals

4.1 Collect Questions

To get an idea of what questions should be possible to answer using the tool and to
make the tool fit the Rust community’s needs, we would like to collect questions that
have come up in discussions, especially in those regarding the unsafe code usage. The
tool shall then be built with the goal of delivering answers to these questions.

4.2 Query Language

A suitable query language has to be chosen (or invented, if none suitable exists already)
to express the collected questions in the previous goal. For this, both expressivity and
performance requirements of this project have to be taken into account.

4.3 Compiler Plugin

To extract all relevant information into an easily queriable format, a plugin for the Rust
compiler needs to be created. It shall use the interface that the Rust compiler exposes
to IDEs to extract the internal representation of the Rust code. The plugin should then
output the gathered information in a queriable and storable format.

4.4 Storage

To store the downloaded and indexed crates, a suitable storage solution has to be chosen.
Since an inefficient storage method can quickly become the bottleneck for the search tool,
performance aspects have to be taken into account.

4.5 Import Crates

As a last implementation goal, all crates from https://crates.io/ need to be down-
loaded, indexed and stored using the previously determined method. This should happen
in reasonable time. One must for example pay attention that crates are only downloaded
and indexed once, even if they appear many times as dependencies of other crates.

4.6 Evaluation

Evaluate the effort needed with the new system to answer the questions collected earlier.
Attention should be brought to the following points:

• Are the yielded results correct?

5

https://crates.io/

• Can the collected questions be expressed in the query language and be answered
to a satisfying degree?

• How long does a reasonably complex query take to run? Is the tool suitable to
answer questions that come up spontaneously during a meeting?

• How complex is the formulation of queries?

5 Extension Goals

5.1 Web-Frontend

To allow the developed tool to be used by the wider Rust community, a web frontend
should be developed where queries can be entered and submitted. The query should
then be compiled as needed and run in real time. Since the charm of such a frontend is
gone when queries take too long to execute, the tool should deliver an answer for most
queries in under 5 seconds. This poses a problem when using a larger framework like
Differential Dataflow, since compilation usually takes several minutes.

5.2 Incremental Update of Code Database

Another nice-to-have feature would be a technique to redownload and reindex certain
packages individually without recreating the whole database. This way, when new ver-
sions of a package are published, the search tool could be updated in relatively short
time. Depending on how this database will be structured, this can either be a rather
easy task or require a bit of sophistication.

5.3 Result Visualisation

Certain types of queries have easily visualizable results. For example, one could query
the number of unsafe-blocks that only contain one single function call and compare it to
the number of unsafe-blocks used in other ways. To help grasp those numbers, displaying
them in a pie chart would be a good option.
While determining, which type of chart is most suitable for a given query is probably
best left to the user, the tool should derive what charts can be generated from the query
result and provide the user with a selection of suitable charts.

5.4 Compiler Extension

Extend the Rust compiler with an interface that exposes the search function to compiler
consumers for example IDEs. This would allow IDEs to implement an advanced search
function which can be of use in big projects and across different crates.

6

6 Schedule

Collect Questions 1 Week
Query Language 2 Weeks
Compiler Plugin 2 Weeks
Database 4 Weeks
Import Crates 2 Weeks
Evaluation 2 Weeks
Extension Goals 2 Weeks
Thesis writing 4 Weeks

References

[1] S. Klabnik, C. Nichols, and Contributions from the Rust Community. (2017)
The Rust Programming Language. Accessed on 2018/07/09. [Online]. Avail-
able: https://doc.rust-lang.org/book/second-edition/ch19-01-unsafe-rust.html#
unsafe-superpowers

[2] (2018) Semmleql. Accessed on 2018/07/13. [Online]. Available: https://semmle.
com/ql

[3] N. Matsakis. (2017) Project idea: datalog output from rustc. Ac-
cessed on 2018/06/07. [Online]. Available: https://internals.rust-lang.org/t/
project-idea-datalog-output-from-rustc/4805

[4] F. McSherry. Datafrog. [Online]. Available: https://github.com/rust-lang-nursery/
datafrog

[5] ——. Differential Dataflow. [Online]. Available: https://github.com/frankmcsherry/
differential-dataflow

7

https://doc.rust-lang.org/book/second-edition/ch19-01-unsafe-rust.html#unsafe-superpowers
https://doc.rust-lang.org/book/second-edition/ch19-01-unsafe-rust.html#unsafe-superpowers
https://semmle.com/ql
https://semmle.com/ql
https://internals.rust-lang.org/t/project-idea-datalog-output-from-rustc/4805
https://internals.rust-lang.org/t/project-idea-datalog-output-from-rustc/4805
https://github.com/rust-lang-nursery/datafrog
https://github.com/rust-lang-nursery/datafrog
https://github.com/frankmcsherry/differential-dataflow
https://github.com/frankmcsherry/differential-dataflow

	Introduction
	Motivation
	Possible Solutions and Ideas
	Query Language
	Implementation

	Core Goals
	Collect Questions
	Query Language
	Compiler Plugin
	Storage
	Import Crates
	Evaluation

	Extension Goals
	Web-Frontend
	Incremental Update of Code Database
	Result Visualisation
	Compiler Extension

	Schedule

