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Abstract

To further improve a rapidly evolving programming language such as
Rust, it is necessary to analyze how certain features are used. In order
to gain insights into how Rust is used, we created a tool which allows
queries expressed in a datalog-like query language to be run over large
amounts of Rust code. Using this tool, we were able to run certain
queries over thousands of Rust projects and get answers in a matter
of seconds. It is a good foundation to answer some basic questions
and sets a solid base for extensions when searching for certain specific
features.
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Chapter 1

Introduction

Rust is a relatively new systems programming language with growing pop-
ularity. It aims to be an alternative for the prevalent C and C++ with a focus
on a safe typesystem that ensures memory- and thread-safety.

To still allow very low-level programming, Rust introduced the unsafe key-
word to denote blocks of code, or whole functions, that may bypass some of
the rules enforced by the compiler. Code inside an unsafe-block or inside an
unsafe function is essentially allowed to do three things that are otherwise
forbidden [6]:

• Access or update a static mutable variable.

• Dereference a raw pointer.

• Call unsafe functions.

By making use of unsafe code, one still needs to uphold the invariants of the
typesystem in order to ensure the memory- and thread-safety of Rust code.
In other words, when such an error occurs, for example when an access to
an invalid memory address is made, it reduces the searching for bugs to
these unsafe parts of the code.

What exactly unsafe code is allowed to do as well as what circumstances it
can take for granted is part of an active discussion going on1. For finding
out common use cases that already exist, a tool to analyze the use of certain
language features is needed. While some of these analyses, for example
measuring the usage of a certain keyword, can be done easily by running
a text-based search tool over the code and counting matches, some require
more sophistication.

1https://github.com/rust-rfcs/unsafe-code-guidelines/
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1. Introduction

For many programming languages there exist tools, for example Semmle
QL [3], that allow for semantic querying. We could not find a tool for Rust
that suits our needs.

To answer these types of queries, we developed a prototype for a tool that
runs queries expressed in a datalog-like query language on the semantic
structure of Rust code. It consists of a wrapper around the Rust compiler
that produces a database containing the queriable information. As a second
part, we developed a query interpreter that allows queries to be compiled
and then run over the database. We will introduce some possible questions
we want to answer in Chapter 2, then, after a quick introduction to the Rust
ecosystem, we will introduce the design of the tools as well as the choice
of query language in Chapter 4. Chapter 5 presents the prototype that was
developed and some performance measurements.
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Chapter 2

Motivating Queries

To get an idea of what queries the developed tool should be able to answer
we want to pose some questions about Rust code in English with the goal in
mind to be able to express them as a query and query arbitrary Rust code
with it.

Important to note is that there should be a way to query for semantic prop-
erties of the code. In contrast to just searching the code with a regex tool,
one should for example be able to search for functions that call themselves
recursively.

2.1 Simple Queries
There should be a way to “apply a filter” to some elements in the language.
For example:

• Find all functions that return an i32 and take no arguments.

• Find all if-blocks that have a single boolean variable as condition.

2.2 Recursive Queries
We also want to be able to compute the transitive closure of some relation
between language objects. As an intuitive example, if we maintain some
popular library, before removing a deprecated function, we may want to
find out what consequences the removal of this function would have. For
this we would want to find all functions that can cause the invocation of the
deprecated function (i.e. those that would be affected if it were removed).
We need to find all functions that may directly call a deprecated function,
but also the ones that call a function, which then may call a deprecated
function and so forth.
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2. Motivating Queries

2.3 Thief Functions
In a Letter released on August 8th, 2018 “Detecting Unsafe Raw Pointer
Dereferencing Behavior in Rust” [7], Zhijian Huang, Yong Jun Wang, and
Jing Liu describe how they searched some crates for what they call thief
functions. Thief functions are functions that fulfill the following three crite-
ria:

1. The return value of the function is a mutable reference or data containing
mutable references as member fields.

2. The input arguments of the function contain no mutable references.

3. The function is not declared with unsafe

These functions are somehow cheating the Rust typesystem and are a pos-
sible cause of errors (e.g. they might create multiple mutable references to
the same value).

It should also be possible to express a query that filters all functions by these
conditions.
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Chapter 3

The Rust Compiler and Its Ecosystem

3.1 Cargo
A big advantage of Rust over C and C++ is that it comes with a package
manager. Each Rust project is organized into packages, so-called “Crates”.
Cargo acts as package manager and build system for these packages at the
same time. With a single invocation of cargo build, we can let Cargo down-
load and compile all necessary dependencies, compile them all and finally
build the desired package. An index of published crates can be found on
https://crates.io/. At the time of writing, it contains over 20’000 pack-
ages that can all be easily downloaded and built with Cargo.

This lies in a heavy contrast to ecosystems like the ones of C and C++,
which are not as focused on open source and use many different build tools.
This makes it a lot harder to track dependencies between codebases and
practically impossible to have a language-global dependency management.

3.2 Rustc
The Rust compiler is called rustc. It is itself written in Rust and uses
LLVM [5] as a backend.

A standard compilation is carried out in several steps. First, the Rust code is
parsed into an AST (abstract syntax tree) representation. The AST is a direct
representation of the source code. Each statement, function, control flow
block etc. is represented as a node in a big tree. For each crate compiled,
one such tree is constructed.

From the AST representation the compiler then generates the so-called HIR
(short for high-level intermediate representation). HIR is basically an im-
proved AST, where for example some function call expressions already con-
tain a link to the function they’re calling. On the other hand, some informa-
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3. The Rust Compiler and Its Ecosystem

tion is also erased, so are for-loops reduced to infinite loops that contain a
conditional break-statement.

This HIR is then again lowered into the so called MIR (mid-level IR). During
this lowering step, all the type checking is performed. On the MIR, various
optimizations can then be carried out. Also the borrow-checker is run.

From MIR, the LLVM-IR is generated on which again optimization passes
are run and finally the output binary of the compiler is produced.

For extracting syntactic information about the code, we use the combination
of these three representation levels. While HIR and especially AST are more
direct representations of the Rust code, MIR contains more type information.
Also all static function calls are resolved, a feature that we are using heavily
in this project.
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Chapter 4

Tool Design

4.1 Query Language
As a query language we experimented with two options of which we then
settled on the second one:

• SQL-like syntax

• Datalog-like syntax

SQL provides a simple syntax to express filters and joins over a dataset.
A query to search for functions having the same return type and that are
calling each other could look like this.

select f, g
from f: Function, g: Function
where f.calls(g) && f.return_type() == g.return_type()

To extend the SQL-like syntax to support expressing queries that need a
fixpoint iteration, we introduced the UNION-keyword along with the Self-
relation, which refers to the relation currently being defined, to express that
allows expressing a query that should be run on its own output until a
fixpoint is reached.

To search for all functions that possibly call an unsafe function (possibly
through other functions in between) we could work with something like
this:

select f
from f: Function
where f.is_unsafe()

union
select f
from f: Function, s: Self

7



4. Tool Design

where f.calls(s)

To write more complex queries and structure them clearly, it would also be
helpful to have named queries. We could rewrite the above query as follows:

let IsUnsafe =
select f
from f: Function
where f.is_unsafe();

let CallsUnsafe =
select f
from f: IsUnsafe

union
select f,
from f: Function, s: Self
where f.calls(s);

return CallsUnsafe;

As SQL is a widely adopted and well-known query language, this query
language would be very easy to get used to for many people. With the
extension for denoting recursion, it also allows for very complex queries to
be expressed.

When adopting aggregator functions from standard SQL, it would for exam-
ple also allow querying the number of functions that are called from more
other functions than they call functions themselves.

As a downside of the SQL-like approach, it should be mentioned that, while
it would allow for very sophisticated queries when implemented like de-
scribed above, it would need a rather complex query interpreter, for example
it would need to enforce a non-trivial type system of the query language.

For the second option we were considering, the one that we finally imple-
mented exposes some predefined relations as datalog facts and lets us define
rules to deduce more advanced relations.

The first query, finding all functions that call each other and have the same
return type, we write:

calls_indirect(F, G) :- calls(F, G).
calls_indirect(F, G) :- calls(F, H), calls_indirect(H, G).

pair(F, G) :- calls_indirect(F, G), return_type(F, T),
return_type(G, T).

8



4.2. Extractor

The rule for pair describes how to deduce our desired relation from a set of
predefined facts. We first define the relation of all functions that possibly
call each other by starting with all direct calls and then recursively defin-
ing the transitive closure of this relation. With the defined relation we can
then apply two joins to filter only these tuples that represent two functions
returning the same type.

Note that this query language very easily maps to the library functions that
datafrog exposes. It is possible to create an interpreter for this language in
reasonable time. Also, because it is less complex, query performance will be
more predictable. These are the main two reasons why we finally chose the
datalog approach.

We wanted to create a tool to query rust code for our described queries.
As queries should yield a result quickly we deemed it unfavorable to run
queries directly on Rust code, as parsing and semantic analysis would take
a lot of time. A suitable design would first iterate over the Rust code to be
queried and create an index on which the queries can then be run. Since
Cargo provides a nice modular compilation system, we can create these
indices on a Crate basis. After we generated an index for each Crate, we
want to be able to run queries on all these indices together.

With these thoughts in mind, we structured the tool into the following three
parts:

• The Extractor is a wrapper around rustc which reads out the needed
data from the internal data structures of the compiler and stores it into
a file per crate.

• The Linker then reads all the files generated by the extractor and stores
them into a larger database.

• The Engine opens the database and waits for input queries which are
then processed.

4.2 Extractor

The extractor is implemented as a wrapper around rustc that implements
a visitor on the HIR datastructure.

For each element that the visitor encounters, it determines whether this el-
ement needs to be extracted. If yes, all necessary information about it (e.g.
in the case of a function this would be what arguments it takes, what type it
returns, what other functions it calls) is stored in a data structure which is it-
self then part of a larger Crate-struct. This data structure is then serialized
to a file using the Serde [4] library.
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4. Tool Design

4.3 Linker

The linker deserializes all files created by the extractor and creates one large
list of functions, structs, types, modules etc. Each function is assigned a
unique global 64-bit index and is stored at this index in the global function
list. The same is done for all structs and types etc.

As a next step, all calls of functions to other functions are resolved and
stored as tuples of two integers in a new relation. Again the same is done
for all other extracted data that can have references across crates.

The merged list is then stored again into one file.

4.4 Engine

The Engine is responsible for compiling and running queries. It parses the
input query using a parser generated by LALRPOP [2], a parser genera-
tor framework for Rust. The AST of the query is then transformed into a
combination of join-, antijoin-, union- and fixpoint operations.

Each datalog rule can contain arbitrarily many clauses separated by a comma,
where all clauses but the first one can be negated. The commas basically rep-
resent a join if the following clause is not negated, respectively an antijoin,
if it is negated. For example the following rule

my_rule(A, B) :- first_clause(B), joined_with(B, A), !but_not(A).

is transformed into a join on B between first clause(B) and joined with(B,
A). The result of this join is then antijoined with but not(A).

If more than one rule for a relation exists, then a union operation is created
that merges all rules together.

If a relation is somewhere used in its own definition, the whole relation is
marked as recursively defined. It needs to have at least one base case (i.e. a
rule that is not recursively defined).

From this representation, Rust code that uses the Datafrog [1] framework
is generated. Datafrog is a very lightweight and fast datalog engine, that
exposes methods to perform joins and antijoins. We chose to use it because
it exposes a simple interface that fits exactly our needs, it doesn’t add any
complexity to the system and still performs very well.

The generated Rust code is saved to a temporary file and compiled with
rustc to produce a dynamic library exposing a function to run the query.
This dynamic library is then loaded into the engine and the function to run
the query is invoked. We chose this design, because it allows us to keep
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4.4. Engine

the database loaded in memory and run as many queries as desired without
reloading the database.

The query language exposes some predefined relations in the query lan-
guage. An example would be calls(F, G) which indicates whether a func-
tion F calls an other function G. Before executing queries, the query engine
loads these relations from the database file generated by the linker.

Database Format Internally, all these relations are stored as lists of integer
tuples. This allows us to use datafrog to perform very fast join operations
on the data. To get back to the name of the function, a lookup in the global
function list has to be made.

While this structuring greatly accelerates querying speed, it requires all the
tuple data staying in memory, which can use multiple gigabytes of memory
when querying large amounts of data.
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Chapter 5

Implementation and Evaluation

Due to time constraints, the query tool does not support querying all details
of the Rust programming language. It is a rather minimal subset of queries
that work. We focused on queries on functions and their attibutes, however
the architecture of query language and the engine are not specifically bound
to this subset and can be extended to also support queries on individual
statements in a function.

The extractor extracts for each function its full path, its argument types, its
return type, the paths of all functions it calls and whether it is unsafe or not.
For all structs, it stores the type of its fields. For all functions, modules and
crates a contains-relationship is extracted.

This exposes the following native relations to the query language:

calls, function, in_module, modules_in_crates, is_unsafe,
is_struct, is_type, is_reference_to, is_mutable_reference,
tuple, slice, argument_types, is_struct_type, field_types,
return_type

The extractor could be extended to extract more features of the code. If
desired, one could extract information about all expressions and control
flow blocks to analyze more coding patterns.

The linker would analogously need to be extended to support linking the
new data together.

The component that would require the least amount of changes in order to
add more queriable features to the tool would be the query interpreter. As
more extracted information would just appear as more “native” relations
that are provided, the parsing and compiling of the queries should not need
to change.

13



5. Implementation and Evaluation

5.1 Working Queries
Even though the tool could be extended to support a lot more queries, there
are still some interesting queries that work in the prototype.

Type Twins Let us define two functions that have the same return type
and where one function directly calls the other one “type twins”. A query
finding all such type twins can easily be expressed in our query language
using only one rule as can be seen in Listing 1.

// we declare the new relation that we want to define
// and specify between which types this should be a relation.
decl type_twins(Function, Function);

// definition of the relation `type_twins` as a join of three
// other relations. Notice the free variable `t` used to imply
// the existence of some common return type.
type_twins(f, g) :-

calls(f, g), return_type(f, t), return_type(g, t).

// define what is done with the results of the query (print all).
!for_each(type_twins, {

|(f, g)| {
println!("type twins: {} --> {}",

data.format_function(f),
data.format_function(g)

);
}

});

Listing 1: Query code to find all type twins

Thief Functions We recall our definition of a thief function from the in-
troduction. Basically a function is a thief function, if it returns a value con-
taining a mutable reference, however it does not take anything containing
mutable data as an argument.

We can write a query that is filtering all functions by this criterion:

// helper relation to indicate which types contain mutable data or references
decl contains_mut(Type);

// which functions return a type containing something mutable
decl returns_mut(Function);

14



5.1. Working Queries

// which functions have arguments that contain something mutable
decl mutable_arg(Function);

// negation of above relation
decl not_mutable_arg(Function);

// functions not marked as `unsafe`
decl safe_function(Function);

// the relation we are interested in! is a function a thief function?
decl thief(Function);

// used to map functions to their containing crate
decl fn_crate(Function, Crate);

// thief functions with the crate they are located in
decl thief_with_crate(Function, Crate);

contains_mut(t) :- is_mutable_reference(t).
contains_mut(t) :- is_struct_type(t, s), field_types(s, f), contains_mut(f).
contains_mut(t) :- tuple(t, f), contains_mut(f).
contains_mut(t) :- slice(t, f), contains_mut(f).

returns_mut(f) :- return_type(f, t), contains_mut(t).

mutable_arg(f) :- argument_types(f, t), contains_mut(t).
not_mutable_arg(f) :- function(f), !mutable_arg(f).

safe_function(f) :- function(f), !is_unsafe(f).

// we search for all functions that fulfill the mentioned criteria.
thief(f) :- returns_mut(f), not_mutable_arg(f), safe_function(f).

fn_crate(f, c) :- in_module(f, m), modules_in_crates(m, c).

thief_with_crate(f, c) :- thief(f), fn_crate(f, c).

!for_each(thief_with_crate, {
|(f, c)| {

println!("function {} in crate {}",
data.format_function(f),
data.format_crate(c)

);

15



5. Implementation and Evaluation

}
});

Semi-Unsafe Functions To give a simple example of a query that makes
use of recursion, we can search for all functions that possibly cause the
invocation of an unsafe function.

decl possible_unsafe(Function);

possible_unsafe(F) :- is_unsafe(F).
possible_unsafe(F) :- calls(F, G), possible_unsafe(G).

!for_each(possible_unsafe, {
|(f, )| {

println!("maybe unsafe: {:?}",
data.format_function(f));

}
});

5.2 Performance Measurements

To get an idea of the performance of the tool, we compiled some crates
using the extractor and measured the running time of the linker and of
some queries.

As extracting information from a crate performs a full compilation of it, the
performance of the extractor is the bounded by compilation time. It adds
negligible overhead to it, therefore we don’t provide any measurements for
the extractor here.

Since compiling all crates on https://crates.io takes a lot of time and
processing power, we chose 9507 arbitrary crates as a test set. These crates
combined contain 2’417’817 functions.

We ran some queries on this dataset, to get an idea of the query performance.

Before we can run the queries, the query engine needs to load the database
into memory. This loading takes a bit of time (in our case it was about
two minutes). However, as the database only needs to be loaded once, and
afterwards as many queries as desired can be run, we excluded it from our
measurements.

We ran each query 20 times on an Intel® Core™ i7-7600U with 16 GB of
LPDDR3 1866 MHz RAM running Debian (4.19.0-1-amd64).
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5.2. Performance Measurements

Query Average running time [s] Standard Deviation
Type Twins 0.231 0.00334
Thief Functions 0.673 0.00403
Semi-unsafe Functions 0.128 0.0192

These numbers show us that even for relatively big number of crates, also
non-trivial queries execute very fast. We can assume that we would also get
reasonable execution times when running queries over all crates published
on https://crates.io.
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Chapter 6

Conclusions and Future Work

While the tool we originally planned to create was supposed to support
more queries than it does now, it can do enough to yield some interest-
ing results. The separation between the extractor, linker and query engine
proved to be a good design choice that enables fast querying times.

It is a good prototype that can be extended for any project aiming to analyze
large amounts of Rust code.

6.1 Possible Improvements

6.1.1 Join Ordering

In our tool, the query compiler naively maps the datalog rules to the under-
lying joins and antijoins. This puts the burden of ordering the joins on the
query writer. Consider the following example showing that sometimes the
ordering of joins matters:

decl call_each_other(Function, Function);
call_each_other(F, G) :- calls(F, G), calls(G, F).

Listing 2: A Query finding functions that both contain a call to the other one

decl call_each_other(Function, Function);
call_each_other(F, G) :- function(F), function(G),

calls(F, G), calls(G, F).

Listing 3: A query equivalent to the one above but much slower and more
memory consuming

19



6. Conclusions and Future Work

The query displayed in Listing 2 we can express as a simple join over a
binary relation. Since the calls-relation only contains pairs of functions,
the two additional joins added by Listing 3 don’t add any restrictions to
the query, i.e. the queries should yield the same result. However when
the unnecessary joins are performed from left to right, first a temporary list
containing all pairs of functions needs to be generated. For big data sets,
this relation can quickly take up terabytes of memory.

A very basic join-ordering query optimizer would already help for such
cases and should not be a big problem to implement.

6.1.2 Web Frontend
As queries run relatively fast once the data is extracted, a web frontend
could be created where queries can be entered and run over a large number
of crates (ideally all crates published on https://crates.io).

20
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