
Generalized Verification Support for
Magic Wands

Bachelor’s Thesis Description

Nils Becker, nbecker@student.ethz.ch

Supervisors:
Alexander J. Summers, alexander.summers@inf.ethz.ch

Malte Schwerhoff, malte.schwerhoff@inf.ethz.ch

ETH Zürich, March 2017

1 Introduction

The Viper project [3], consisting of an intermediate language and verification tools, is
being developed by the Chair of Programming Methodology at ETH Zurich. It uses two
verifiers: Silicon, which is based on symbolic execution, and Carbon, which is based on
verification condition generation.
These tools are based on separation logic, within which one operation is the magic

wand, which, among other things, can be used to encode information about partial data
structures. Since verification in the presence of magic wands has been shown to be
undecidable, one approach to automating their verification is for the verifier to require
guidance, in the form of ghost code, from the user. This ghost code is statements that
are inserted into the program code, but are not part of the program execution. Rather,
they instruct the verifier to transform the current verification state.
In their paper [4], Schwerhoff and Summers describe a lightweight and largely auto-

mated approach for verifying properties expressed using magic wands. Their approach
is restricted to only a few ghost operations, that can be nested. In their approach the
package ghost operation is used to create a magic wand instance and add it to the current
verification state.
For example, packaging acc(x.f) −∗ Cell(x), where Cell() is defined as predicate

Cell(x: Ref) {acc(x.f)} and acc(x.f) means full access to x.f, requires the verifier
to prove that Cell(x) follows from acc(x.f). This, too, requires guidance, resulting in
the package statement package acc(x.f) −∗ folding Cell(x) in Cell(x), which can
be verified using Viper. In this case two ghost operations were used: package instructs

1



the verifier to add the magic wand to the current verification state and folding replaces
the definition of Cell() with the predicate when proving the right-hand-side.
Blom and Huisman have developed [1] a different technique that allows arbitrary blocks

of statements to guide the verifier when proving that the right-hand-side of the magic
wand follows from its left-hand-side. Their approach can therefore be used to verify more
general magic wands. Note especially, that since arbitrary code blocks can be used for
the proof of the right-hand-side, it is possible to branch during the proof by using regular
if-then-else statements.
Another problem with the current approach is Viper’s error reporting for nested ghost

operations and functions, which makes it difficult to localize errors. For example, consider
package Cell(x) −∗ 1 unfolding Cell(id(x)) in 2 id(x) == x, where Cell() is
defined as above and id() is the identity function with the precondition Cell(x). Note
also that 1 and 2 are not part of the Viper syntax, but serve to denote the two
distinct states, at the marked points, in the following discussion. This package opera-
tion will always fail, because after unfolding Cell() in state 1 it is no longer available
in state 2 and thus the precondition of the second id() cannot be established. For
this example the current mechanism for error reporting only includes information about
which package operation failed and that the precondition of id(x) could not be veri-
fied. This information is, however, not sufficient to figure out which of the two id(x)
calls caused the issue. Note that, while the problem is not specific to magic wands
(assert unfolding Cell(id(x)) in id(x) == x would lead to the same issue), it is
especially relevant with respect to magic wands, since the current implementation re-
quires all ghost operations to be nested. In addition to improving error reporting the
goal of this thesis is to generalize Viper’s support for magic wands.

2 Core Goals

• Design a language extension for Viper that enables expressing more general proofs
and proof structures for magic wands. This extension should support blocks of
statements as ghost operations, branching within a proof and it should work well
with nested package operations.

• Implement this language extension for at least one of Viper’s verifiers.

• Develop test cases and real world examples using magic wands that can be verified
using the new approach, but not using the old one.

• Evaluate the annotation overhead of the new approach, by comparing it to the old
approach based on a set of examples, and assess the value of keeping the old syntax
as syntactic sugar. If necessary, reimplement the old syntax for the new approach.

• Improve error reporting to display all necessary information to localize errors in
more complex proof structures (including proofs that do not use magic wands).

2



3 Extended Goals

• Evaluate implications of the new syntax on referencing intermediate states and, if
necessary, add syntax to facilitate such references: since the current syntax requires
the proof for the right-hand-side of a magic wand to be nested inside the package
operation it is, for example, not currently possible to reference the states 1 and
2 from the example above, since this would require a nested version of the label
operation.

• Integrate magic wands with quantified permissions. Quantified permissions in Viper
in their simplest form look like forall x:Ref :: c(x) ==> acc(x.f), meaning
that for any x that satisfies the condition c(x) access to a field f of x can be
obtained. Quantified magic wands could be implemented as two independent parts:
the first one can be understood as sets of magic wands. In this case acc(x.f) from
the example above is simply replaced by a magic wand. The second step would
be to allow quantified permissions inside the left-hand-sides and right-hand-sides
of magic wands. Both Müller in her master’s thesis [2] and Schwerhoff in his PhD
thesis [5] outlined basic support for the former, but these approaches have neither
been fully developed nor implemented.

• Improve and extend Silicon’s heuristics for inferring magic wand related annotations
to work well with the new approach.

• Investigate to which extent similar heuristics can be implemented in Carbon.

• Develop support for using magic wands in functions. This will most likely require
an applying expression, similar to unfolding for predicates, that can be used to
temporarily apply a magic wand.

References

[1] Stefan Blom and Marieke Huisman. Witnessing the elimination of magic wands. In-
ternational Journal on Software Tools for Technology Transfer, 17(6):757–781, 2015.

[2] Nadja Müller. Generalised Verification for Quantified Permissions. Master’s thesis,
ETH Zürich, Switzerland, 2016.

[3] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure for
permission-based reasoning. In B. Jobstmann and K. R. M. Leino, editors, Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI), volume 9583 of LNCS,
pages 41–62. Springer-Verlag, 2016.

[4] M. Schwerhoff and A. J. Summers. Lightweight Support for Magic Wands in an
Automatic Verifier. In J. T. Boyland, editor, European Conference on Object-Oriented
Programming (ECOOP), volume 37 of LIPIcs, pages 614–638. Schloss Dagstuhl, 2015.

3



[5] Malte Schwerhoff. Advancing Automated, Permission-Based Program Verification
Using Symbolic Execution. PhD thesis, ETH Zürich, 2016.

4


