Inference of Progressive Loop Invariants for
Array Programs

Master’s Thesis Description

Nils Becker
Supervisors: Jérome Dohrau, Alexander J. Summers, Prof. Dr. Peter Miiller

Department of Computer Science, ETH Zurich, Switzerland

September 2019

1 Introduction

In order to guide the verification of a program many program verification tools
require the user to provide specifications. These either allow the verifier to assume
specific properties at a certain point in a program or instruct it to verify that a
specific property holds at a certain point in a program. One form of specification
that is oftentimes used to verify loops is an inductive loop invariant. The tool
checks that this invariant holds before the loop is entered and that each iteration
of the loop preserves this invariant. If both of these checks succeed we can then,
by induction, assume that the invariant holds in any state that can be reached
by executing arbitrarily many loop iterations.

In addition to functional specifications (e.g. constraints on the value of each
array element), tools based on separation logic, such as the Viper tools [4], require
framing specifications, in the form of permissions, indicating which memory
locations are potentially accessed by a certain part of a program. A method
for verifying the framing of certain categories of array-accessing loops without
the need for user-supplied loop invariants was proposed by Dohrau et al. [3].
This approach first analyzes the permissions needed for a single loop iteration
as a function of its environment (e.g. the value of an iteration variable). Based
on these results it then generates a precondition for the loop, indicating which
permissions are required to execute the entire loop, as well as a postcondition,
indicating what permissions are left after executing the entire loop.

In contrast to many similar analyses this approach does not rely on a fixed-
point analysis to determine the amounts of permissions required for different
memory locations (though a fixed-point analysis is used to obtain constraints on
the values of local variables). In such a fixed-point analysis the program state
would be represented in an abstract domain and the program would be executed
symbolically until a fixed-point is reached. To guarantee that a fixed-point is
always reached precision beyond a certain point is sacrificed. E.g. if our abstract
domain tracks the constraint 0 < ¢ < 5 and we execute a single loop iteration in
which we increment ¢ by 1 we obtain the new constraint 1 <+¢ < 6. To continue
executing the loop we need to merge the original constraint with the new one.



0~ O O Wi

var a = get_int_array(); var old_a = a.copy(); var i = 0
while (i < a.length)
invariant Vx. x < i 7 alx] == old_alx]+1 : alx] == old_alx]
invariant Vx. i < x < a.length = write_access(alx])

ali] += 1
i 4= 1

Fig. 1. A simple example of a loop iterating over an array and possible corresponding
progressive loop invariants for that program. The invariant on line 3 summarizes the
effects of iterations that have already been executed while the one on line 4 provides an
upper bound on the iterations that will still be executed.

Instead of generating 0 < ¢ < 6 we may choose to drop the upper bound and
generate 0 < ¢ whereafter subsequent iterations of the loop will not change the
constraint anymore i.e. we have reached a fixed-point.

Because it does not utilize a fixed-point analysis, one of the main advantages
of the approach described above is that it does not require an abstract domain
that can handle permission predicates to be designed. The analysis can, however,
only infer pre- and postconditions for loops. Invariants, which would e.g. be
able to express how the amount of permissions held after each iteration changes,
cannot be inferred. These may e.g. be useful when combining its results with
user supplied functional specifications or the results of other analyses. Moreover,
it is imprecise for programs that access arrays at indices that are heap-dependent
or that cannot be expressed in Presburger arithmetic. It is, also, oblivious to
the order in which loop iterations are executed and, hence, requires a soundness
condition to be satisfied that ensures that no loop iteration exhales (gives away)
permissions that are needed by any other iteration. The algorithm generates
preconditions based on the results for a single loop iteration by requiring the
maximum amount of permissions that may be needed for each array location,
thus, combining the requirements for different iterations into a single expression.
This approach cannot easily be extended to functional specifications since there is
no easy way for combining the effects of array updates across multiple iterations
(without knowing the order in which they are executed).

The goal of this thesis is to design an analysis to capture information about
how the program state evolves at different points during the execution of a loop.
The information captured by such an analysis will be more fine grained than that
captured by the analysis described by Dohrau et. al and will, therefore, allow us
to reason about the order in which the effects of a loop take place instead of just
summarizing the overall effects in the form of a postcondition. In particular this
analysis will infer progressive loop invariants, invariants that capture the effects
of loop iterations that have already been executed as well as information about
iterations that will happen in the future. Lines 3 and 4 of Fig. 1 show examples
of what such invariants may look like. Similar to what Dohrau et al. described



the analysis will generalize the results for a single iteration over the part of the
loop that has already been executed or the part that will happen in the future,
as necessary. In addition to the direct applications of this analysis (e.g. obtaining
information about the values in an array or checking loop termination by proving
that the amount of permissions necessary to execute the remainder of the loop
constantly decreases with each iteration) this analysis can be combined with the
one described by Dohrau et al. to overcome some of the limitations described
above (e.g. weakening the soundness condition described above by ensuring that
permissions that are exhaled are only used by earlier loop iterations).

2 Core Goals

e Design a mechanism for inferring progressive loop invariants.

— Manually explore feasibility of different approaches for approximating
the effect of past loop iterations and underestimating the iterations that
will still be executed.

— Formalize the most successful approach.

o Explore use-cases of the analysis. Possible applications include:

— Analyzing how array values develop during the execution of a loop and
inferring corresponding loop invariants.

— Analyzing what permissions are available at different points during loop
execution and inferring corresponding loop invariants.

— Checking loop termination.

e Implement at least one of theses analyses as an extension of the existing
inference mechanism for loop pre- and postconditions.
Evaluate the analysis on examples and well-known benchmarks (e.g. [1]).

3 Extension Goals

e Design and implement a mechanism for inferring constraints about array
values and compare the results to existing works such as [2].

¢ Design and implement a mechanism for inferring inductive loop invariants
as framing specifications of loops iterating over arrays and explore how the
resulting information about the order in which iterations are executed can
be used to apply the analysis to additional programs that do not satisfy the
soundness condition described by Dohrau et al.

o Explore how the precision of the analysis can be improved for programs that
access arrays at indices that are heap-dependent or that cannot be expressed
in Presburger arithmetic.

References

1. SV-Benchmarks - Collection of verification tasks. https://github.com/sosy-lab/sv-
benchmarks.



2. L Dillig, T. Dillig, and A. Aiken. Fluid updates: Beyond strong vs. weak updates. In
A. D. Gordon, editor, Programming Languages and Systems, pages 246266, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

3. J. Dohrau, A. J. Summers, C. Urban, S. Miinger, and P. Miiller. Permission inference
for array programs. In H. Chockler and G. Weissenbacher, editors, Computer Aided
Verification (CAV), volume 10982 of LNCS, pages 55—74. Springer-Verlag, 2018.

4. P. Miiller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In International Conference on Verification, Model
Checking, and Abstract Interpretation, pages 41-62. Springer, 2016.



