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Abstract

Formal verification of programs that utilize loops typically requires the
user to provide inductive loop invariants. Providing such invariants can
be cumbersome which is why a wide range of inference techniques have
been proposed. These techniques are, however, limited with respect to
array programs. In this thesis we introduce progressive loop invariants –
an abstraction that captures information about which loop iterations have
already been executed and which ones will be executed in the future. We,
furthermore, discuss a series of analyses based on progressive loop invariants
that let us infer useful information about the behaviour of array programs
and help us verify such programs. Based on a set of examples we, furthermore,
show that these analyses work well in practice.
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Chapter 1

Introduction

Loops are a vital component of many programs that utilize arrays. Formal
verification of such programs typically requires inductive proofs. To generate
such proofs many verification tools require their users to provide inductive
loop invariants. In the base case of the induction the tool then tries to show
that the invariant holds before the loop is entered and in the step case it
shows that the invariant is preserved when any iteration is executed. It can
then, by induction, assume that this invariant holds in any state that can
be reached by executing arbitrarily many loop iterations. Providing these
invariants puts a burden on the user that is further increased if a tool based
on separation logic is used which typically requires the user to additionally
specify the heap locations that are accessed during the execution of a loop.

To alleviate some of this burden a wide range of automatic analyses
have been proposed (e.g. [5, 16, 19, 24]). Many of these approaches are,
however, limited with respect to array programs, e.g. because they do not
distinguish between different elements in an array. Some recent work tries to
overcome these limitations [15, 17] however these approaches are limited in
the kind of array programs they can handle and the technique described by
Dohrau et al. only produces loop pre- and postconditions and no invariants.
Such invariants are, however, desirable since they e.g. allow us to verify
user-provided invariants even if those user-provided invariants on their own
are not sufficient to verify the program. One such application would be to
automatically infer the necessary information about what heap locations
are accessed while letting the user provide invariants containing information
about what a program calculates.

At the beginning of any iteration an invariant typically gives informa-
tion about what happened in previous iterations. After providing some
background knowledge in Chap. 2 we will, therefore, introduce the novel
concept of progressive loop invariants in Chap. 3 to capture information
about what what loop iterations have already been executed and which ones
will be executed in the future. Additionally we will discuss a technique
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for automatically inferring such progressive loop invariants in that chapter.
Subsequently we will see in Chap. 4 that progressive loop invariants are a
useful abstraction for many different kinds of analyses. In particular we
will use them to (1) extend the analysis described by Dohrau et al. [17]
to produce invariants and apply it to a wider range of array programs, (2)
design an analysis that automatically generates inductive proofs about the
values stored in an array, and (3) design an analysis that identifies loops that
terminate. We evaluate these analyses based on a number of examples and
tests in Chap. 5 and in Chap. 6, after concluding, we discuss a wide range of
directions for future work (Sec. 6.1). The main contributions of this thesis
can be summarized as follows:

• A novel concept of progressive loop invariants that at a given point
during the execution of a loop captures information about what itera-
tions have already been executed and which ones will be executed in
the future

• A technique for automatically inferring progressive loop invariants

• An inference mechanism for invariants containing information about
array locations that are accessed during the execution of a loop

• An inference mechanism for invariants containing information about
values stored in an array

• A termination analysis

• An implementation of these techniques

• An evaluation of these techniques based on a wide range of examples
and tests
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Chapter 2

Background

2.1 Language
The semantics of the language we will use in this thesis is largely standard but
is extended with syntax for verification specific tasks that will be explained
in the remainder of this chapter. Moreover, arrays in this language are heap-
allocated and do not overlap. While we only look at one-dimensional arrays
in this thesis the described techniques can be extended to multi-dimensional
arrays. These techniques, moreover, only require the array implementation
to provide a lookup function and are, therefore, relatively independent of the
underlying implementation (e.g. C-style arrays or linked lists can be used so
long as the implementation guarantees that they do not overlap).

2.2 Separation Logic
Separation logic is an extension of Hoare logic which allows reasoning about
disjoint parts of the heap which can be reasoned about separately [26].
Consequently it is useful for the verification of concurrent programs [23] as
well as for allowing modular verification of large programs by restricting what
heap locations certain parts of a program can modify [25, 28]. Separation logic
is, moreover, commonly extended by introducing fractional permissions and
correspondingly generalized access predicates [7]. An access predicate acc(l,
α) denotes α permissions to a heap location l. acc(l, 0) denotes no
permissions (we sometimes also write acc(l , none)) whereas acc(l, 1)
denotes read-write permissions (we sometimes also write acc(l, write)).
For 0 < α < 1, acc(l, α) denotes read permissions and for α /∈ [0, 1], acc(l,
α) is equivalent to false. In order to execute an assignment to a heap location
or read from a heap location the program has to hold the corresponding
permissions for that location. In particular this also means that if we want
to evaluate an expression, e.g. to check that a boolean condition holds, we
have to have enough permissions to read the value of each heap location
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the expression refers to. If we have all necessary permissions to evaluate an
expression we say that that expression is framed.

When handling arrays it is typically useful to use quantified access predi-
cates which for the purposes of this thesis will have the form ∀q.acc(l, αq).
For example the predicate ∀q.acc(a[q], 0 ≤ q < a.length ? write : none)
denotes read-write access to every element of an array a.

To facilitate verification many tools based on separation logic (e.g. [22])
require guidance, in the form of specifications, from the user. Common forms
of specifications are pre- and postconditions which are logical expressions that
must, respectively, hold before and after a method or function is executed.
In order to call a method we have to make sure its precondition holds and
transfer all permissions required by the precondition to the callee. When
a method returns we get to assume that its postcondition holds and the
permissions mentioned in the postcondition are transferred back to the
caller. Invariants are another form of specification that is often useful when
verifying programs that utilize loops. We will take a closer look at these in
Sec. 2.3. Additionally a user may add assume and assert statements to
a program. When the verifier encounters an assume statement it assumes
that a particular logical expression holds at that point during the program
execution. When it encounters an assert statement it checks that a
particular logical expression is guaranteed to hold at that point. Analogously
we define inhale and exhale statements which can be used to, respectively,
add and remove permissions from the program state. These statements are
useful for encoding a number of different language features: e.g. when
acquiring a lock we may inhale permissions to the heap locations guarded
by that lock which are exhaled again when the lock is released.

2.3 Running Example
Example 1 shows a program that takes a black and white image as input
and increases its brightness by adding 10 to the value of each pixel. We
then model enqueueing that pixel in a rendering pipeline by giving up some
permission to it using an exhale statement.

In order to verify programs, such as this one, that utilize loops one type
of annotation that is often used are inductive loop invariants. These should
be true in any state that can be reached by executing arbitrarily many loop
iterations and require the verifier to do an inductive proof: it checks that the
invariant holds before the loop is entered (base case) and that it is preserved
when executing a loop iteration (step case). If both of these checks succeed
we can then, by induction, assume that it holds in any state that can be
reached by executing arbitrarily many loop iterations. For the invariant on
lines 5 - 6 we first show that image = original_image since q < i is
always false before entering the loop. To prove that the invariant is preserved
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Example 1. A program that brightens an image and renders it

1 var image := get_image()
2 var original_image := image.copy()
3 var i := 0
4 while (i < image.length)
5 invariant ∀q ∈ [0,image.length).image[q] = q < i ?
6 original_image[q] + 10 : original_image[q]
7 {
8 // increase brightness
9 image[i] := image[i] + 10

10
11 // render
12 exhale acc(image[i], 1

2)
13
14 i += 1
15 }

we, then, start out with only the permissions and constraints we obtain from
the invariants, execute a loop iteration, and check that the invariant still
holds in the new state. Finally, since we know that, after exiting the loop,
the loop condition is false we can deduce that q < i is true for all values of
q and, thus, that we have incremented every pixel by 10.

Trying to verify this program will, however, fail since the invariant is not
framed: when checking loop invariants we can only use permissions given to
us by other invariants. Chap. 4.1 will introduce a technique to automatically
infer the necessary framing invariant.

2.4 Abstract Interpretation
Abstract interpretation [9] is a form of static analysis that can be used
for verification without the need for guidance from the user. In abstract
interpretation we use an abstract state belonging to an abstract domain to
represent many program states at once. We then simulate the program’s
execution on this abstract state until we reach a fixed-point, i.e. a point
at which the abstract state stays the same at all program points. The
choice of abstract domain depends on the kind of program-properties we
are interested in. E.g. a popular choice (and the one we will be using in
this thesis) for capturing numerical constraints on program variables is the
polyhedra abstract domain [10]. It captures a set of constraints of the form∑

v∈V

avv ≤ b,

where V is the set of program variables and the corresponding coefficients av

as well as b are constants determined for a particular abstract state during the
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abstract interpretation, i.e. it captures linear relationships between program
variables. Note that equalities can be represented as a pair of constraints: e.g.
the pair of constraints x− y ≤ 1 and y − x ≤ −1 is equivalent to x = y + 1.

An abstract domain, moreover, supports a variety of operations for up-
dating the symbolic state as a program is executed. These include operations
for updating the value of variables as well as for joining states from multiple
control flow branches together. Lastly an abstract domain implements a
widening operation which allows us to obtain a fixed-point even in cases
where the abstract state would otherwise change indefinitely. We can see
all of these operations in action in the following where we use abstract
interpretation with the polyhedra abstract domain to obtain constraints on
the local variables in Example 1.

We start out with an abstraction where i = > indicating that i can have
any value. After executing the statement i := 0 we update our abstraction
to reflect i = 0. After executing the first iteration of the loop our abstraction
reflects i = 1. We have discovered a second state we can be in at the
start of an iteration. In order to start the next iteration we need to join
these two states together. The abstract domain provides a least upper bound
(lub) operation for this purpose. A possible lub for our two states would be
0 ≤ i ≤ 1. We can continue executing the iteration to obtain the abstract
state 1 ≤ i ≤ 2 and compute another lub. In this fashion we successively
generate the abstract states 0 ≤ i ≤ 2, 0 ≤ i ≤ 3, . . . before executing each
iteration.

To ensure that we always reach a fixed-point eventually we use the
widening operation after a predefined threshold of updates on the loop entry
state has been reached. This operation will identify the upper bound on i
as unstable and remove it resulting in the abstraction 0 ≤ i which does not
change in successive iterations. Note that each time we start a new iterations
we have to check that the loop condition holds resulting in the abstract state

0 ≤ i < image.length (2.1)

inside the loop.
Abstract interpretation techniques have to be sound, i.e. they have to

account for all possible behavior of a program. In turn they sacrifice precision,
i.e. they may find behavior that does not exist in concrete executions of a
program. For example polyhedra is not able to capture parity information
so if we were to increment i by 2 in each iteration in Example 1 we would
still obtain the same final constraints as above. Analogous techniques for
obtaining under-approximate constraints, i.e. constraints that are only
satisfied by states reached during the concrete program execution, exist
(e.g. [11, 21, 27]).
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2.5 Inference of Permission Pre- and Postcondi-
tions for Loops

A technique proposed by Dohrau et al. [17] automatically determines the
overall amount of permissions needed to execute a loop in an array program
as well as how the amount of held permission changes after the entire loop
has been executed. Effectively this analysis generates permission pre- and
postconditions for loops.

This technique uses abstract interpretation to obtain constraints on the
values of numerical variables that are modified during the execution of the
loop but crucially gets by without the need for an abstract domain that can
handle permissions and, thus, without introducing additional imprecision
beyond that of the initial abstract interpretation. It achieves this by first
calculating a set of permissions that is sufficient for executing a single loop
iteration, parameterized over the local variables that are modified during
the execution of the loop. Analogously it analyzes by what amount the held
permissions change over that iteration, i.e. what permissions are inhaled
or exhaled. For example during a single iteration of the loop in Example 1
we require acc(image[i], write) and we lose acc(image[i], 1

2).
It is clear that if a heap location is only written and read it suffices to,

for each location, have the maximum amount of permissions that is required
in any iteration of the loop. The same is true in other cases where the
amount of permissions held for a heap location does not change when a
single loop iteration is executed (e.g. if a method call gives back the same
permissions it received when it was called). In order to handle cases where
that is not the case the analysis introduces a soundness condition stating that
executing any two iterations in succession must require no more permissions
than the maximum amount required in either iteration. Intuitively this can
be interpreted as requiring that a location for which we lose permissions in
iteration i is only accessed in that same iteration. By over-approximating
the loop iterations we execute using the constraints we obtained via abstract
interpretation we can calculate the amount of permissions needed to execute
the entire loop. For Example 1, using the results from (2.1), we obtain the
following expression for each location image[q] in our loop precondition:

max
0≤i<image.length

q = i ? write : none

similarly we obtain

max
0≤i<image.length

q = i ? 1
2 : none

as the amount of permissions to image[q] we lose over the execution of
the entire loop.
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wlp(assert A,Q) = A ∧Q wlp(assume A,Q) = A −→ Q

wlp(x = e,Q) = Q[e/x] wlp(s1; s2, Q) = wlp(s1, wlp(s2, Q))
wlp(if(b){s1}else{s2}, Q)=(b−→wlp(s1, Q))∧(¬b−→wlp(s2, Q))
wlp(while(b) invariant A {s}, Q) =

A ∧ ∀~y.((A ∧ b −→ wlp(s,A)) ∧ (A ∧ ¬b −→ Q))[~y/~x]

Figure 2.1: Rules for wlp calculation

Dohrau et al., then, propose a mechanism for eliminating these unbounded
maxima resulting in closed form expression we can use in our pre- and
postconditions:

∀q.acc(image[q], 0 ≤ q < image.length ? write : none) (2.2)

from this precondition we can subtract the amount of permissions we give
away to obtain the postcondition:

∀q. acc(image[q], 0 ≤ q < image.length ? write : none)

− acc(image[q], 0 ≤ q < image.length ? 1
2 : none)

⇐⇒ ∀q. acc(image[q], 0 ≤ q < image.length ? 1
2 : none)

(2.3)

2.6 Weakest Liberal Preconditions
One approach used for program verification is that of generating a weakest
liberal precondition (wlp) [4, 14]. This approach allows us to prove partial
correctness of a program, i.e. that every terminating execution ends in a
state that satisfies the postcondition.

The basic idea of this approach is to start from the postcondition Q and
go through the program backwards. In each step we try to find a condition
that has to hold before that particular statement in order to ensure that the
postcondition holds in the end. We denote the weakest liberal precondition
by wlp(program, Q). Once we reach the beginning of a program we can check
that the precondition P of the program is at least as strong as the wlp we
calculated, i.e. that

P −→ wlp(program, Q).

Calculating the weakest liberal precondition can be done using a set of
rules. E.g. for an assignment i = 0 we simply replace occurrences of i with
0: wlp(i = 0, Q) = Q[0/i]. So for the postcondition Q ≡ (i = 0) we get
the wlp 0 = 0 which is, of course, equivalent to true. The full set of rules for
the language used in this thesis is given in Fig. 2.1. The rule for loops is an
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inductive proof based on an invariant. The wlp consists of three parts: the
first conjunct requires us to show that the invariant holds before we enter
the loop, i.e. the base case of the induction. We then show the step case
of the induction. This is done by quantifying over all possible values of the
variables ~x that change during the execution of the loop and showing

A ∧ b −→ wlp(s,A),

i.e. that every iteration of the loop preserves the invariant A. We have
then inductively shown that A is true in any state that can be reached by
executing arbitrarily many iterations of the loop. As a final step we have to
show that when we exit the loop (i.e. b is false) A is strong enough to obtain
the postcondition Q.
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Chapter 3

Progressive Loop Invariants

In this chapter we will introduce the novel concept of progressive loop invari-
ants and design a mechanism for automatically inferring them. Applications
of progressive loop invariants will be discussed in Chap. 4.

Whereas “regular” loop invariants provide constraints that hold in any
state that can be reached by executing arbitrarily many loop iterations the
idea behind progressive loop invariants is that we stop the execution of the
loop in some state s and try to find constraints that were satisfied in all s′ we
reached in previous iterations (past progressive invariants) or that will be sat-
isfied in all s′ we will reach in future iterations (future progressive invariants).
These can, furthermore, be either over-approximative or under-approximative.
Over-approximative progressive loop invariants can be interpreted as a “po-
tentially precedes”-/“potentially succeeds”-relation between a “current” state
s and another state s′ whereas an under-approximative progressive loop
invariant would be interpreted as a “must precede”-/“must succeed”-relation.

In this chapter we will discuss how we can use an over-approximative
numerical analysis to infer over-approximative progressive loop invariants. It
is, however, in principal possible to infer under-approximative progressive loop
invariants using a similar technique and an under-approximative numerical
analysis.

As an example for what progressive loop invariants look like consider
pausing the execution of the loop in Example 1 after n iterations (i.e. in a
state s where i = n). A possible past progressive invariant would be

0 ≤ i ≤ n (3.1)

and a possible future progressive invariant would be

n ≤ i < image.length. (3.2)

Note that these progressive loop invariants are chosen in such a way that
both the past progressive invariant and the future progressive invariant are
satisfied in the current state—s. We call progressive loop invariants that are
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1 var i′

2 var i := i′

3 // increase brightness
4 image[i] := image[i] + 10
5
6 // render
7 exhale acc(image[i], 1

2)
8
9 i += 1

Figure 3.1: Single iteration of the loop in Example 1. The copy i′ of i is
intruduced in the highlighted lines.

true only for “true predecessors/successors” strict progressive loop invariants.
We will discuss how strict progressive loop invariants can be constructed
from regular progressive loop invariants in Sec. 3.3.

3.1 Constraint Generation
Inferring progressive loop invariants is done in three steps:

(1) We use abstract interpretation to obtain constraints on local variables,
i.e. information about a single state.

(2) We then use this information to add some instrumentation to the
program and run a second abstract interpretation giving us information
about a second state occurring some time after the state from step (1)
is reached.

(3) We can then use the constraints we learned about these two states to
construct progressive loop invariants.

The intuitive idea behind this technique is that we simulate stopping
the execution of the loop after n ≥ 0 iterations in state s. This is done
by introducing copies of all local variables in s before the loop is entered.
We will denote the copy of variable i as i′. To illustrate how this form
of instrumentation can help us relate two states to each other consider the
instrumentation for a single iteration of Example 1 as shown in Fig. 3.1 (note
that this figure is shown for illustrative purposes and does not represent
the instrumentation used by the inference algorithm). Running polyhedra
(we will be using polyhedra in our examples but the techniques described
work independently of the abstract domain used) on this program results in
the constraint i = i′ + 1. Hence, it allows us to relate the final value of i
back to its initial value. Note that without the copy of i this initial value is
“forgotten” by the abstract interpretation resulting in the final state i = >.
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1 var i′

2 assume 0 ≤ i′ < image.length
3 var i := i′

4 while (i < image.length)
5 invariant ∀q ∈ [0,image.length).image[q] = q < i ?
6 original_image[q] + 10 : original_image[q]
7 {
8 // increase brightness
9 image[i] := image[i] + 10

10
11 // render
12 exhale acc(image[i], 1

2)
13
14 i += 1
15 }

Figure 3.2: Example for an instrumented version of Example 1. The high-
lighted lines show the instrumentation that is added base on the constraints
0 ≤ i < image.length that we know hold inside the loop based on step
(1) of the inference.

Similarly, the inference algorithm for progressive loop invariants intro-
duces i′ before the loop as shown in Fig. 3.2 allowing us to relate the states
encountered during the execution of the loop back to the initial state before
the loop. Since we are only interested in s that can be reached by executing
arbitrarily many iterations of the loop we can assume that i′ satisfies the
constraints inside the loop determined in step (1). We then run an abstract
interpretation on the instrumented version of the program in step (2). This
abstract interpretation simulates executing the loop starting from s. Accord-
ingly, the abstract states we obtain abstract over all states we can reach from
s, i.e. they give us constraints that relate s to its successors. For Example 1
these will look like 0 ≤ i′ ≤ i < image.length.

Based on this construction we can see that, for a fixed s (and corre-
sponding fixed i′), these constraints give a future progressive invariant. For
example fixing i′ to n results in the constraint n ≤ i < image.length
for Example 1 which we already identified as a possible future progressive
invariant in (3.2). As we will see next the constraints from (2) actually
over-approximate the successor/predecessor-relation between two states s
and s′ and, therefore, also allow us to derive a past progressive invariant.

3.2 Construction of Progressive Loop Invariants
In this section we will formalize the concept of progressive loop invariants and
formally show that they can be constructed from the constraints generated
as described in the previous section.
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As described above progressive loop invariants relate a current state s
to another state s′. To make the distinction between these states clearer we
will now use the notation decs to denote the value of expression e in state s.
Using this notation the constraint 0 ≤ i′ ≤ i < image.length we derived
in the previous section will be expressed as

0 ≤ dics ≤ dics′ < image.length. (3.3)

We will, moreover, split these constraints into a progressive (P (s, s′)) and
an invariant (I(s)) part such that the progressive part contains only con-
straints that relate the two states, s and s′, to each other and the invariant
part contains only constraints that relate a state to constants. Any set of
constraints can then be rewritten to the form P (s, s′) ∧ I(s) ∧ I(s′). E.g. for
the constraints from (3.3) we get

P (s, s′) := dics ≤ dics′

and

I(s) := 0 ≤ dics < image.length.

Theorem 1. The constraints generated in step (2) satisfy the following
properties:

1. ∀s0 ∈ S0.I(s0), where S0 is the set of states the program may be in
before entering the loop.

2. ∀s, s′. suc∗(s, s′)
1
−→

(
I(s)

2
−→ P (s, s′) ∧ I(s′)

)
, where suc(s, s′) is the

successor relation between s and s′, indicating that s′ can be reached
from s by executing a single loop iteration, and suc∗(s, s′) is its reflexive
transitive closure. This property is the analog of the inductivity property
(∀s, s′. suc(s, s′) ∧ I(s) −→ I(s′)) for regular inductive invariants.

Proof (Sketch). Property 1 follows from the fact that I(·) is generated
using abstract interpretation and, thus, has to at least over-approximate S0.
For property 2 we observe that executing k iterations of the instrumented
loop gives us the property for suck(s, s′) (k steps in suc) and, therefore, for
suc∗(s, s′) after the numerical analysis generalizes over the execution of the
entire loop.

Lemma 1. I(s) holds for every s that is encountered after arbitrarily many
iterations during the concrete execution of the loop.

Proof. For each s0 ∈ S0 we instantiate property 2 for s = s0. Property 1
gives us I(s) so we get I(s′) for every s′ that is reachable by executing the
loop starting form s0.
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3.2.1 Future Progressive Invariants

The future progressive invariant
→
P s of a state s over-approximates the states

we can reach by executing arbitrarily many loop iterations starting from
s. This is exactly what we simulate during step (2), i.e. the constraints
we obtain from step (2) give a future progressive invariant. Based on the
components we identified above we formally define

→
P s as:

→
P s(s′) := P (s, s′) ∧ I(s) ∧ I(s′) (3.4)

For example the future progressive invariant based on (3.3) in the state
where i is n would be:

→
P s(s′) = n ≤ dics′∧0 ≤ n < image.length∧0 ≤ dics′ < image.length

Assuming that image.length ≥ n this can be simplified to the future
progressive invariant we already identified in (3.2):

n ≤ dics′ < image.length

Let us now rewrite implication 2 in property 2 by conjoining its left-
hand-side to its right-hand-side:

I(s) −→ P (s, s′) ∧ I(s) ∧ I(s′) ⇐⇒ I(s) −→
→
P s(s′)

Looking at the entirety of property 2 we can, therefore, derive

∀s, s′. suc∗(s, s′) ∧ I(s) −→
→
P s(s′). (3.5)

Since we typically only instantiate
→
P s for s that we actually encounter during

the execution of the loop, i.e. I(s) is true, we can drop that term and obtain
the property

∀s, s′. suc∗(s, s′) −→
→
P s(s′)

indicating that the future progressive invariant is true in at least every state
that can potentially be encountered in the future.

3.2.2 Past Progressive Invariants

Analogously to future progressive invariants past progressive invariants over-
approximate the the states we were in before we reached s.We construct a
past progressive invariant by switching the position of s and s′. A hint for
why this works is that in our construction s occurs before s′ so switching
their positions has to at least give us some s′ we reached before s. We will
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prove that we over-approximate the predecessors states of s below. Formally,
we define past progressive invariants as:

←
P s(s′) := P (s′, s) ∧ I(s′) ∧ I(s) (3.6)

For example the past progressive invariant based on (3.3) in state s where
i is n would be:

←
P s(s′) = dics′ ≤ n∧0 ≤ dics′ < image.length∧0 ≤ n < image.length.

Again assuming that image.length > n this can be simplified to

0 ≤ dics′ ≤ n

which is exactly the past progressive invariant we already identified in (3.1).
Analogously to what we did for future progressive invariants we can

conjoin the left-hand-side of implication 2 to obtain

∀s, s′. suc∗(s′, s) ∧ I(s′) −→
←
P s(s′) (3.7)

from property 2. The past progressive invariant is, therefore, true in at
least every potential predecessor state (suc∗(s′, s)) that is actually encoun-
tered during the execution of the loop (I(s′)), i.e. it over-approximates the
predecessor states of s.

3.3 Strict Progressive Loop Invariants
In Sec. 3.2 we saw how we can automatically infer progressive loop invari-
ants. These over-approximate the reflexive transitive closure suc∗(s, s′) of
the predecessor/successor relation we observe during concrete executions.
Because of this underlying reflexivity progressive loop invariants are true in
the “current state,” i.e.

→
P s(s) and

←
P s(s) are always true. As we will see in

Chap. 4 this is, in many cases, exactly what we want. There are, however, also
cases in which we are only interested in “true predecessors/successors.” We,
therefore, introduce the strict progressive loop invariants

=⇒
P s(s′) and

⇐=
P s(s′)

which, respectively, over-approximate the transitive closures suc+(s, s′) and
suc+(s′, s) of the concrete predecessor/successor relation. We will look at
two approaches that allow us to obtain strict progressive loop invariants from
regular progressive loop invariants next.

3.3.1 Using Iteration Counters

A simple method for constructing strict progressive loop invariants is to
introduce an iteration counter c to the original program. We then define

=⇒
P

IC

s (s′) :=
→
P s(s′) ∧ dccs < dccs′ (3.8)
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and
⇐=
P

IC

s (s′) :=
←
P s(s′) ∧ dccs > dccs′ , (3.9)

which ensure that we only consider predecessors/successors that occur at
least one iteration before/after the current state.

The precision of this approach is limited by the precision of the constraints
we obtain using abstract interpretation. E.g. for an i that grows exponentially
we can only get linear constraints using polyhedra, i.e. we might get the
constraint i ≥ c which in the case of the strict future progressive invariant
allows us to show dics < dics but not d2ics ≤ dics. The advantage of this
approach is, however, that if the original constraints were within Presburger
arithmetic (as is the case if we use polyhedra) then the strict progressive loop
invariants will also be within Presburger arithmetic. This will later allow
us to eliminate quantifiers and maximum expressions using the techniques
described by Cooper [8] and Dohrau et al. [17]. We, therefore, often prefer
the approach described here to the one described in Sec. 3.3.2 if the additional
precision can be sacrificed.

3.3.2 Using a Data Flow Analysis

The idea behind the approach described in this section is that we can
determine the values of the local variables in the post-state of a loop iteration
based on their values in the pre-state relatively precisely. We do this using a
data-flow analysis (e.g. [3]). E.g. if i is multiplied by 2 in each loop iteration
this analysis would tell us that the value of i in the post-state is equal to
that of 2i in the pre-state. We will denote the vector of expressions we
obtain by applying this analysis for all local variables ~x as ~e. This allows
us to essentially calculate the regular future progressive invariant for direct
successors of s. Formally we define

=⇒
P

DF

s (s′) := P (s, s′)[d~ecs/d~xcs] ∧ I(s) ∧ I(s′) (3.10)

and analogously

⇐=
P

DF

s (s′) := P (s′, s)[d~ecs′/d~xcs′ ] ∧ I(s′) ∧ I(s). (3.11)

Proving that these over-approximate suc+ can be done analogously to the
proofs presented in Sec. 3.2.1 and Sec. 3.2.2.

We can see that for a loop where i grows exponentially P (·, ·) will include
the constraint dics ≤ dics′ . Consequently the strict future progressive
invariant will include the constraint d2ics ≤ dics′ . This is more precise than
the strict future progressive invariant we obtained in Sec. 3.3.1. However,
we can also see that e.g. if i gets assigned j*i, where j is also a local

16



variable, the strict progressive loop invariants
=⇒
P

DF

s (s′) and
⇐=
P

DF

s (s′) exceed
Presburger arithmetic. As a result we are not easily able to eliminate
quantifiers containing this kind of strict progressive loop invariants.

Now that we have seen how we can automatically construct progressive
loop invariants we will look at some of their applications next.
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Chapter 4

Applications

4.1 Evolution of Held Permissions
In this section, we will use progressive loop invariants to infer framing
invariants which will allow us to verify Example 1. These framing invariants
have to capture how the set of permissions we hold changes as we progress
through the loop. In particular they have to be 1) sufficient, i.e. after
executing the first n iterations of the loop they must still contain enough
permissions to finish executing the loop, and 2) be inductive, i.e. if we
execute a single loop iteration starting from any state s that satisfies the
invariant we have to end up in a state s′ that also satisfies the invariant. In
practice inductivity for framing invariants requires that when we compare the
invariants before and after a single loop iteration the amount of permissions
the invariant requires for each heap location must decrease by at least the
the amount that is lost during that iteration.

We construct such an invariant by approximating how the permissions
for each heap location change when the loop is executed up to an arbitrary
iteration. This change is, then, added/subtracted from the precondition
generated by the analysis proposed by Dohrau et. al. (cf. Sec. 2.5).

4.1.1 Exhales

In order to construct invariants we consider stopping the execution of the
loop after n iterations in state s and the set of permissions we need to
finish executing the loop as well as the set of permissions we have given
away up to that point. The technique described by Dohrau et. al. (cf.
Sec. 2.5) allows us to generalize the permissions we need in a single iteration
over a set of loop iterations (represented by their pre-states) satisfying an
over-approximative invariant. Similarly we can use the same technique to
generalize over the set of iterations satisfying the future progressive invariant
which over-approximates the iterations we still need to execute. In this
fashion we obtain a set of permissions that is required to finish executing
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given away
in previous
iterations

required to
finish

executing
loop

over-approximated
using

←
P s

over-approximated
using

→
P s

†

loop precondtion

Figure 4.1: Relationships between sets of permissions after executing the
first n iterations of a loop when no permissions are gained. The shaded area
shows the permissions that are subtracted from the loop’s precondition to
obtain an invariant. The area marked by † has to be empty in order for the
invariant to be inductive. This is guaranteed when the soundness condition
in (4.7) is satisfied.

the loop. Dohrau et al., moreover, describe a technique for generalizing
the permission-loss in a single iteration over all iterations of the loop. We
can, analogously, apply this technique over the past progressive invariant to
over-approximate the permissions we have already given away when we reach
state s. Fig. 4.1 shows these sets in relation to each other for a program that
never gains any permissions.

A sufficient invariant has to, by definition, at least contain the permissions
needed to finish executing the loop. We can also see that it is a necessary
condition for it not to include any permissions that have already been given
away in order to be inductive: if the invariant still requires some of these
permissions there has to either have been an iteration in the past where they
were given away in the concrete execution but the invariant still required
them afterwards or the invariant started requiring them again after they
were already given away in an earlier iteration, i.e. they were “regained.”

As mentioned before we use the loop precondition (which is also shown in
the diagram) as the basis of our invariant. In the case where permissions are
lost we calculate the set of permissions we may already have given away (based

19



on the past progressive invariant) and that we are guaranteed not to need in
the future (based on the future progressive invariant). The corresponding
set is shaded in the diagram. These permissions are, then, subtracted from
the loop precondition. We can see that the resulting invariant contains all
permissions needed to finish executing the loop. It is however not guaranteed
that we do not require any permissions that have already been given away,
i.e. it is not guaranteed that the constructed invariant is inductive. We will
later introduce a soundness condition under which the invariant is inductive
and, hence, the area marked by † in the diagram is empty.

We analyze the permissions for each heap location a[q] separately. Any
iteration in which permissions to this location are lost can then, w.l.o.g.,
be summarized into a single statement exhale acc(a[e], αe), where e is
some expression and αe ≥ 0. As described above we approximate the set of
permissions l(s) that have already been given away by the time we reach
state s as:

l(s) := max
s′′|
←
P s(s′′)∧¬

→
P s(s′′)

(decs′′ = q ? αe : none) (4.1)

Note that in order to be able to summarize the exhales across multiple
iterations into a single max term as we do here, we rely on the same soundness
condition as the analysis described by Dohrau et al. This soundness condition
states that executing any two loop iterations in succession requires no more
permissions than the maximum amount needed to execute them separately.
This means that if we exhale permissions to some array location l in
iteration i we cannot access l in any other iteration (cf. Sec. 2.5), e.g. it does
not allow us run this analysis on a program that reads the value of a[0]
in one iteration and exhales permissions to a[0] in a different iteration.
In addition to requiring this soundness condition here we also inherit it
directly since we rely on the soundness of the loop precondition from which
we subtract l(s) to form an invariant. In Sec. 4.2 we will see how progressive
loop invariants can help us to, in some cases, overcome this limitation.
For Example 1 and the progressive loop invariants

←
P s(s′′) := 0 ≤ dics′′ ≤ dics ∧ dics′′ < image.length

= 0 ≤ dics′′ ≤ i ∧ dics′′ < image.length

and
→
P s(s′′) := dics ≤ dics′′ < image.length

= i ≤ dics′′ < image.length

we calculated in Sec. 3 we get

l(s) := 0 ≤ q < dics ? 1
2 : none. (4.2)
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We subtract l(s) from the loop precondition (2.2) to obtain the invariant

∀q.acc(a[q], (0 ≤ q < image.length ? write : none)−

(0 ≤ q < i ? 1
2 : none))

which allows us to verify the program from Example 1.

Inductivity

By construction the inferred invariant is sufficient but not necessarily in-
ductive. In this section we will come up with a soundness condition we can
automatically check during the runtime of the inference. If this condition
holds our invariant is guaranteed to be inductive and we can use it to verify
the method. If the soundness condition does not hold we generate false as
the invariant. Another option would have been to produce the invariant as
described above but warn the user that it might not be inductive. Besides
resulting in specifications that allow us to verify the loop the advantage
of the former approach is that a user who is just looking at the extended
program can very easily spot an invariant that consists of only the false
literal and this is a strong indication for a user that something needs their
attention. Moreover, the current implementation additionally provides the
invariant we would otherwise construct in a comment.

The inductivity property states that for arbitrary states s and s′, where
s′ is reachable from s by executing a single loop iteration, i.e. suc(s, s′)
holds, the invariant requires at least αe fewer permissions to a[e] from s′

than it requires from s. We are, therefore, interested in lower-bounding the
difference between two instantiation of our loop invariant. After the loop
preconditions cancel out we are left with l(s′)− l(s) which expands to

max
s′′|
←
P s′ (s′′)∧¬

→
P s′ (s′′)

(decs′′ = q ? αe : none)−

max
s′′|
←
P s(s′′)∧¬

→
P s(s′′)

(decs′′ = q ? αe : none) .
(4.3)

To show that the invariant we generate is inductive an additional sound-
ness condition must, then, be strong enough to allow us to show that the
lower bound

l(s′)− l(s) ≥ (decs = q ? αe : none) (4.4)

holds.
We observe that this bound is always violated if (4.3) is negative be-

cause αe has to be non-negative. We formulate the following the soundness
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condition under which (4.3) is non-negative:

∀s, s′.αe > none ∧ suc(s, s′) −→

∀s′′.
(←
P s(s′′) ∧ ¬

→
P s(s′′)︸ ︷︷ ︸

right max positive

∧¬
(←
P s′(s′′) ∧ ¬

→
P s′(s′′)

)
︸ ︷︷ ︸

left max = none

−→decs′′ 6= q

) (4.5)

The intuitive interpretation of this condition is that we check that no permis-
sions are ever “regained.” Note that the set of concrete states that lie in the
past only grows and the set of concrete states we will encounter in the future
only shrinks as we progress through the loop. If the same is true about our
progressive loop invariants (which over-approximate these sets) we can see
that the soundness condition (4.5) is always satisfied. In Def. 1 we formally
define this notion of monotonicity for progressive invariants. Some abstract
domains, including polyhedra, guarantee that the progressive loop invariants
we generate with their aid satisfy this property. In cases where this property
is not guaranteed we can still check a version of (4.5) during the inference’s
runtime as we will see later.

Definition 1. Monotonicity
Let

←
S s :=

{
s′
∣∣∣∣←P s(s′)

}
and

→
S s :=

{
s′
∣∣∣∣→P s(s′)

}
be the set of states satisfying

the past progressive invariant and future progressive invariant of state s
respectively. A family of past progressive invariants is called monotone iff

∀s, s′. suc(s, s′) −→
←
S s ⊆

←
S s′ .

A family of future progressive invariants is called monotone iff

∀s, s′. suc(s, s′) ∧ I(s) −→
→
S s ⊇

→
S s′

Some elaborations explaining under which circumstances the progressive
loop invariants we generate using polyhedra are monotone are given in
Appendix A. Even when the soundness condition (4.5) is satisfied we need
an additional soundness condition to be satisfied in order to show that
the lower bound (4.4) holds. We derive this soundness condition by lower-
bounding (4.3) as
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l(s′)− l(s)

= max
s′′

←
P s′(s′′) ∧ ¬

→
P s′(s′′) ∧ ¬

(←
P s(s′′) ∧ ¬

→
P s(s′′)

)
∧ decs′′ = q ? αe : none

= max
s′′

←
P s′(s′′) ∧ ¬

→
P s′(s′′) ∧

(
¬
←
P s(s′′) ∨

→
P s(s′′)

)
∧ decs′′ = q ? αe : none

∗
≥ max

s′′
suc∗(s′′, s′)∧I(s′′)∧¬

→
P s′(s′′)∧

(
¬
←
P s(s′′)∨suc∗(s, s′′)

)
∧decs′′=q ? αe : none

∗∗
≥ max

s′′
suc∗(s′′, s′)∧I(s′′)∧¬

→
P s′(s′′)∧

(
¬I(s′′)∨suc∗(s, s′′)

)
∧decs′′=q ? αe : none

= max
s′′

suc∗(s′′, s′) ∧ I(s′′) ∧ ¬
→
P s′(s′′) ∧ suc∗(s, s′′) ∧ decs′′= q ? αe : none

≥ suc∗(s, s′) ∧ I(s) ∧ ¬
→
P s′(s) ∧ suc∗(s, s) ∧ decs = q ? αe : none

= ¬
→
P s′(s) ∧ decs = q ? αe : none

* under-approximate
←
P s′(s′′) as suc∗(s′′, s′)∧ I(s′′) and

→
P s(s′′) as suc∗(s, s′′)

(I(s) is true since we encounter s during the execution of the loop)
** over-approximate

←
P s(s′′) as I(s′′)

We can, therefore, ensure that the lower-bound (4.4) holds if(
¬
→
P s′(s) ∧ decs = q ? αe : none

)
≥ (decs = q ? αe : none)

for any iteration. For any pair of states s and s′ that directly succeed each
other we get the following additional soundness condition:

∀q.∀s, s′.αe = none ∨ (suc(s, s′) ∧ decs = q −→ ¬
→
P s′(s)) (4.6)

Since this condition relies on the progressive loop invariants we generate
(which the user does not have ahead of time) we want to be able to au-
tomatically check this condition at the runtime of the inference. We can
do this by restricting the progressive loop invariants to immediate prede-
cessors/successors which we can achieve using a similar approach to that

used when constructing
⇐=
P

IC

s (s′) but we constrain the iteration counters
to dc + 1cs = dccs′ instead of dccs < dccs′ . We can, then, strengthen the
soundness condition (4.6) to:

∀q.∀s, s′.αe =none∨
(←
P s′(s)∧dc+1cs =dccs′∧decs =q−→¬

→
P s′(s)

)
(4.7)
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Intuitively this condition states that we should be able to tell with
certainty whether some state lies in the future or in the past. Note that even
after introducing iteration counters we may still be unable to distinguish
two states that are identical except in their iteration counters, e.g. if the
constraints do not contain the branch counters at all. The soundness condition
would be false in such cases.

Analogously we can derive the following soundness condition from (4.5):

∀s, s′.αe > none ∧
←
P s′(s) ∧ c = 1 −→

∀s′′.
( ←
P s(s′′) ∧ ¬

→
P s(s′′) ∧ ¬

(←
P s′(s′′) ∧ ¬

→
P s′(s′′)

)
−→decs′′ 6= q

) (4.8)

Theorem 2. Soundness Condition
The invariants we generate using the technique described in this section are
sufficient and inductive if

∀q.∀s, s′.αe =none∨
(←
P s′(s)∧dc+1cs =dccs′∧decs =q−→¬

→
P s′(s)

)
and

∀s, s′.αe > none ∧
←
P s′(s) ∧ c = 1 −→

∀s′′.
( ←
P s(s′′) ∧ ¬

→
P s(s′′) ∧ ¬

(←
P s′(s′′) ∧ ¬

→
P s′(s′′)

)
−→decs′′ 6= q

)
hold.

After introducing c the constraints from (3.3) change as follows:

0 ≤ i′ < image.length ∧ i′ + c ≤ i < image.length (4.9)

consequently we get the following soundness condition from (4.7):

∀q.∀s, s′.
(

0 ≤ q < image.length ? 1
2 : none

)
= none ∨

(dics = q ∧ (0 ≤ dics ∧ dics + 1 ≤ dics′ < image.length) −→
dics < dics′ + 1 ∨ image.length ≤ dics)

which we can see is true.
Note that if the abstract domain we use does not give us constraints that

are within Presburger arithmetic we can use Cooper’s quantifier elimination
algorithm [8] to eliminate the quantifiers in (4.7), i.e. the soundness condition
is decidable.

As a final step we use the maximum elimination technique described by
Dohrau et al. to obtain a closed-form expression from the maximum term
that we can use in our loop invariant.
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Remarks

There are a number of different approaches that can be used to generate
framing invariants. Firstly we consider simply generating the invariant

max
s′′|
→
P s(s′′)

(decs′′ = q ? ps′′ : none) , (4.10)

where ps′′ gives the permissions needed to execute the iteration starting
from state s′′. This approach effectively calculates a sufficient precondition
over all potential future loop iterations. It is, therefore, sufficient. We,
moreover, require similar soundness conditions to (4.5) and (4.7) to prove
inductivity. What makes this approach undesirable is that it leaks permissions:
for Example 1 we would, with the future progressive invariant from (3.5),
generate the invariant

∀q.i ≤ q < image.length −→ acc(a[q], write),

which is not sufficient to evaluate the invariant on line 5 of Example 1 since
it does not give us enough permission to read the values we have already
incremented.

Another approach one might consider would be to simply give away
the permissions exhaled in all iterations that satisfy the past progressive
invariant, i.e. maximize over

{
s′′
∣∣∣∣←P s(s′′)

}
instead of

{
s′′
∣∣∣∣←P s(s′′) ∧ ¬

→
P s(s′′)

}
in (4.1). This approach is, however, neither sound nor inductive: from
Fig. 4.1 we can see that since

←
P s(·) is an over-approximation it may be

true for iterations that have not been executed, yet, and, thus, give away
permissions that are still needed.We can also see that the generated invariant
is not necessarily inductive: since it is over-approximative we can choose
←
P s(·) := true. In this case we give away all permissions before we enter the
loop and then, since the invariant does not change, we do not give away any
permissions during its execution.

4.1.2 Inhales

Analogously to our approach for exhales we can handle iterations that gain
more permissions than they lose by first summarizing them into a single
statement inhale acc(a[e], αe). We then add an additional term g(s) to
our invariant for location a[q] that captures the gain up to the point where
we reach s:

g(s) := max
s′′|P
←s

(s′′)∧¬P
→s

(s′′)
(decs′′ = q ? αe : none) , (4.11)

where P
←s

and P
→s

are under-approximative progressive loop invariants. As
mentioned before these can, in principle, be generated using the same tech-
nique described in Sec. 3.1 using an under-approximative abstract domain.
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The current implementation uses user-provided under-approximative past
progressive invariants and uses false if none are provided.

The resulting invariant is inductive, i.e. does not inhale permissions that
are not inhaled in the concrete execution at exactly the current iteration.
This is guaranteed because P

←s
and P

→s
are under-approximative, i.e. any state

that satisfies them is guaranteed to be reached, correspondingly any inhale
that happens based on these progressive loop invariants is guaranteed to
happen in the concrete execution. It is, moreover, sufficient, i.e. contains
enough permissions to execute the remainder of the loop, if the original
precondition of the loop was sufficient w.r.t. the under-approximative abstract
state since the progressive loop invariants we use being under-approximative
guarantees that we inhale all necessary permissions before we need them.

As a final step we, again, use the maximum elimination technique de-
scribed by Dohrau et al. to obtain a closed-form expression.

4.2 Access Order
The analysis described by Dohrau et al. calculates the loop precondition as
the maximum amount of permissions required for an array location across
all loop iterations. For this reason it introduces a soundness condition
stating that executing any two loop iterations in succession requires no
more permissions than the maximum amount of permissions required to
execute each iteration individually. This condition is violated if we e.g.
exhale permissions to a particular location and access that location in a
later iteration. In this section we will use progressive loop invariants to
extend the analysis described by Dohrau et al. to overcome some of the
limitations imposed by the soundness condition and formulate a new more
precise soundness condition. We, moreover, show that the same techniques
can be used to extend the analysis described in Sec. 4.1 which relies on the
same soundness condition as the analysis described by Dohrau et al.

For a program that violates the soundness condition, i.e. where executing
two iterations in succession requires more permissions than is required to
execute either iteration on its own, we can see that the order in which
iterations are executed is important.

Let us illustrate this observation based on an example. Example 2 shows
a modified version of Example 1 with an additional exhale statement on
the highlighted line. Let us look at image[0] which is accessed when i is 0
and when i is 1. In the first iteration (when i is 0) we write to image[0]
and exhale half a permission to it. We then, in the second iteration (when
i is 1), exhale another half of a permission. Therefore we have to start out
with full write permission and we are left with no permissions to image[0].
For Example 3 which shows the same program as Example 2 but it accesses
the array in the reverse order we get different results. We first exhale half
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Example 2. Accessing each array location twice in ascending order

1 var image := get_image()
2 var i := 0
3 while (i < image.length)
4 {
5 // increase brightness
6 image[i] := image[i] + 10
7
8 // render
9 exhale acc(image[i], 1

2)
10 if (i ≥ 1) exhale acc(image[i - 1], 1

2)
11
12 i += 1
13 }

Example 3. Accessing each array location twice in descending order

1 var image := get_image()
2 var i := image.length - 1
3 while (i >= 0)
4 {
5 // increase brightness
6 image[i] := image[i] + 10
7
8 // render
9 exhale acc(image[i], 1

2)
10 if (i ≥ 1) exhale acc(image[i - 1], 1

2)
11
12 i -= 1
13 }

a permission to image[0] in the second to last iteration (when i is 1) but
we then still need to have write permission in order to execute the write at
the beginning of the last iteration (when i is 0). We, therefore, need to start
out with acc(image[0], 3

2) which is equivalent to false. We require different
preconditions for these examples. However, for the analysis described by
Dohrau et al. which only analyzes which values i takes on but not in which
order it takes them on both of these program look the same.

In the remainder of this section we will first, in Sec. 4.2.1, introduce a
technique that allows us to determine the order in which different statements
of a program access the same array location. We will then, in Sec. 4.2.2, see
how we can use the order we identify to extend the inference for loop pre-
and postconditions described by Dohrau et al. and invariants described in
Sec. 4.1 to programs that do not satisfy the original soundness condition.
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Figure 4.2: Matrix O and order graph for the exhales in Example 2.

4.2.1 Generating the Order Graph

We represent the order in which different statement of a program access
the same array location using the order graph. Each statement we analyze
is represented by a node of the graph and a (directed) edge of the graph
indicates that the statement at beginning the edge potentially access a
location before the statement at the end of the edge. The order graph for
the exhales in Example 2 is shown in Fig. 4.2. Additionally we define the
order matrix O as the adjacency matrix of the order graph.

The main idea of the technique we use to calculate the order graph is
that for any given states s and s′ the progressive loop invariants can tell
us whether s′ can be reached before s (the past progressive invariantof s is
true for s′) and/or after s (the future progressive invariantis true). If we
can, therefore, find the iterations in which two statements access the same
array location we can use progressive loop invariants to decide whether and
in what direction there should be an edge between them.

For any pair of statements stmt1 accessing a[i] that is executed if b1 is
true and stmt2 accessing a′[i′] that is executed if b2 is true we can see that
two iterations starting from states s and s′ respectively satisfy the constraint

L :≡ db1cs ∧ db2cs′ ∧
(
dacs = da′cs′

)
∧
(
dics = di′cs′

)
(4.12)

iff stmt1 accesses the same location in the iteration starting from s as stmt2
accesses in the iteration starting from s′. We can, therefore, check in what
order these statements access the same location by checking whether (4.12) is

compatible with
=⇒
P

IC

s (s′) and
⇐=
P

IC

s′ (s) as defined in Def. 2. The reason we
use strict progressive loop invariants is that we are only interested in accesses
to the same location in different iterations. We handle accesses to the same
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location in a the same iteration during the analysis of a single iteration that
is already part of the analyses described by Dohrau et al. and in Sec. 4.1.

Definition 2. Compatibility

A formula L is compatible with
=⇒
P

IC

s (s′) iff

L ∧
=⇒
P

IC

s (s′)

is satisfiable.

Likewise, a formula L is compatible with
⇐=
P

IC

s′ (s) iff

L ∧
⇐=
P

IC

s′ (s)

is satisfiable.

Checking compatibility can be done using an SMT-solver: the satisfiability
modulo theories (SMT) problem is the problem of deciding whether a logical
formula containing expressions belonging to some set of theories (e.g. integer
arithmetic) is satisfiable. Since many theories are undecidable an SMT-solver
can typically output one of three results: “satisfiable,” “unsatisfiable,” and
“unknown.” An edge in the order graph indicates that a statement potentially
accesses a location before another. Conversely if there is no edge from
stmt1 to stmt2 we can be sure that stmt1 does not access a location before
stmt2 accesses it. In cases where we are unsure whether there should be an
edge between stmt1 and stmt2 because the SMT-solver returned the result
“unknown” we have to conservatively add the edge so we do not violate the
definition of the order graph.

If (4.12) is compatible with both
=⇒
P

IC

s (s′) and
⇐=
P

IC

s′ (s) the statements
potentially access the same location in any order. If (4.12) is only compatible

with
=⇒
P

IC

s (s′) then stmt1 potentially accesses each location before stmt2
accesses it but never after stmt2 accesses it. Analogously if (4.12) is only

compatible with
⇐=
P

IC

s′ (s) stmt2 potentially accesses each location before
stmt1 does. If neither check succeeds both statements are guaranteed to
never access the same location.

We can, analogously, use the under-approximative strict progressive loop
invariants P

=⇒ s
(s′) and P

⇐= s′
(s) to check whether stmt1 is guaranteed to access

a location before stmt2 does and vice versa. An edge in the resulting order
graph is interpreted as a “must access before” relation. We can, therefore,
only add an edge if we are sure that it should be part of the order graph, i.e.
we do not add an edge if the SMT-solver returns “unknown.”

Once we have constructed the order graph we can use the information it
stores to extend the analyses described by Dohrau et al. and in Sec. 4.1 as
described in the next section.
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4.2.2 Extending Pre-/Postcondition and Invariant Inference

The technique for inferring loop postconditions described by Dohrau et al.
relies on us being able to calculate a sound loop precondition. It then
calculates the total change in permissions over the entire loop and adds or
subtracts those permissions to the precondition. Analogously the invariant
inference described in Sec. 4.1 calculates the change in permissions up to
the current iteration and adds or subtracts those permissions from the loop
precondition. We will, therefore, first look at how we can generate sound loop
preconditions even when the soundness condition described by Dohrau et al.
does not hold.

The precondition inference described by Dohrau et al. calculates the
amount of permissions we need to execute the single iteration starting from
state s. We will denote this terms with r(s). It then calculates the loop
precondition as

max
s|I(s)

r(s),

where I(s) over-approximates the loop iterations we execute. The idea of
how we extend this approach is that if by the time we reach s we have lost
some permissions l(s) and gained some permissions g(s) we still need to have
the permissions r(s) to execute the iteration starting from s, i.e. we are
looking for some amount of permissions r′(s) we need to start the loop with
such that

r′(s)− l(s) + g(s) ≥ r(s)

After isolating r′(s) we obtain

r′(s) ≥ r(s) + l(s)− g(s).

Since we cannot require negative amounts of permissions we lower-bound
r′(s) by none. We get

r′(s) := max(r(s) + l(s)− g(s),none). (4.13)

If we are able to calculate this r′(s) for every iteration we can then calculate
a sound precondition

max
s|I(s)

r′(s).
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For Example 2 we will see that we can calculate:

r(s) ≡ (q = i ? write : none) + (0 ≤ q = i− 1 ? 1
2 : none)

l(s) ≡ (0 ≤ q < i ? 1
2 : none) + (0 ≤ q < i− 1 ? 1

2 : none)

g(s) ≡ none
r′(s) ≡ max(r(s) + l(s)− g(s),none)

∗≡ (0 ≤ q ≤ i) ? write : none

* for simplicity we assume 0 ≤ i here which we would usually only get from
I(s) during the generalization step

from which we can calculate the precondition

∀q.acc(image[q], 0 ≤ q < image.length ? write : none).

We will likewise see how we can calculate these terms for Example 3:

r(s) ≡ (q = i ? write : none) + (0 ≤ q = i− 1 ? 1
2 : none)

l(s) ≡ (i < q < len ? 1
2 : none) + (0 ≤ q ∧ i− 1 < q < len− 1 ? 1

2 : none)

g(s) ≡ none
r′(s) ≡ max(r(s) + l(s)− g(s),none)

≥ (0 ≤ q = i < len− 1) ? 3
2 : none,

where len = image.length. Since permissions may not be larger than 1
this will, as we expected based on the discussion at the beginning of the
section, result in the precondition false (unless image contains at most one
element).

We will discuss how we can automatically calculate the permission loss
l(s) up to s and the permission gain g(s) up to s next.

Losing Permissions

In this section we will see how we can calculate the permission loss l(s)
up to the point where we reach s. We lose permissions when an exhale
statement is executed. We will, therefore, only look at exhale statements
in this section and only consider the oder graph for the exhale statements
of a program. If some statement exhales p permissions to location l and
then at a later point in time another statement exhales p′ permissions to
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Example 4. No location is accessed multiple times

1 var image := get_image()
2 var i := ramdom_number(from: 0, to: a.length - 1)
3 while (i < image.length)
4 {
5 if (i % 2 == 0) {
6 exhale acc(image[i], 1

2)
7 } else {
8 exhale acc(image[i - 1], 1

2)
9 }

10 i += 2
11 }

location l the total loss of permissions is p+ p′. The idea of the approach we
present is that we can identify this kind of scenario using the order graph.

For Example 2 we have already seen the order graph for its exhale
statements in Fig. 4.2. For now, we will assume that the order graph is
acyclic. We will later discuss how we can detect and, in some cases, eliminate
cycles. In an acyclic graph we can then observe that every exhale only
accesses each location once (otherwise there would have to be an edge from
some statement to itself which would be a cycle). If we look at each exhale
statement in isolation the soundness condition of the analysis described in
Sec. 4.1.1 stating that we exhale permissions to each array location in at
most one iteration, therefore, holds. Consequently we can use the analysis
described in Sec. 4.1.1 to calculate the loss li(s) for each exhale statement
i separately and obtain the overall permission loss for n exhale statements

l(s) =
n∑

i=1
li(s).

Moreover, we noted in Sec. 4.2.1 that any two statements that are not
connected by an edge in the order graph are guaranteed to never access the
same array location. We can, therefore, also analyze any set of exhale
statements where there is no edge between any two statements in that set
together using the analysis described in Sec. 4.1.1. For c such sets we can
calculate the total loss by summing up the loss li(s) we calculate for each
set:

l(s) =
c∑

i=1
li(s). (4.14)

Forming such sets instead of calculating the loss for each exhale state-
ment separately can sometimes improve the precision of the loss we calculate.
This occurs when the over-approximation of the states we encounter during
the loop execution leads us to believe that two exhale statements can
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# exhales # checks inference
time [s]

check
time [s]

total
time [s] overhead

1 0 7.1 0.0 7.1 0.2%
2 1 33.2 0.9 34.1 2.6%
3 3 71.9 2.3 74.2 3.2%
4 6 230.3 4.8 235.1 2.1%
5 10 298.4 10.2 308.6 3.4%

Figure 4.3: Results for simulating checks required to calculate optimal graph
coloring based on a program similar to the one shown in Example 4 that is
extended to different numbers of exhale statements.

access the same location but we can show that that is not the case using
progressive loop invariants. We illustrate this problem based on the pro-
gram shown in Example 4. Using polyhedra we would get the constraints
0 ≤ i < image.length. Analyzing both statements separately and adding
the results together tells us that we lose write permission to almost every
element with an even index. This is sound since we always have more per-
missions in the concrete execution than are required by the specifications.
However, we can see that the parity of the initial value of i is preserved. We,
therefore, know that in any concrete execution either only the exhale on
l. 6 or only the exhale on l. 8 is executed. We can also deduce this using
progressive loop invariants: the future progressive invariant of a state with
an even i is only true for states where i is even and the future progressive
invariant for a state with an odd i is only true for states where i is odd.
The order graph for Example 4, therefore, does not contain an edge between
the two exhale statements and, hence, allows us to assume that the two
statements never access the same array location. We can then use the analysis
described in Sec. 4.1.1 to calculate the more precise loss of half a permission
to every array element with an even index.

Finding sets of nodes in the order graph such that there is no edge between
any nodes within that set is equivalent to the vertex coloring problem of
the order graph. A vertex coloring needs to ensure that there is no edge
between any two vertices that are assigned the same color. However, two
nodes that are assigned different colors need not necessarily be connected by
an edge. It should be noted that an optimal vertex coloring in terms of the
loss we calculate, i.e. a coloring that minimizes the loss we calculate, is one
that maximizes the kind of “overlap” we just discussed between vertices of
the same color and is not necessarily a minimal vertex coloring, i.e. a vertex
coloring that uses the fewest colors possible. A technique for calculating a
suitable vertex coloring is presented next.
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Calculation of Vertex Coloring

As we mentioned a vertex coloring resulting in the smallest possible loss l(s)
should maximize the amount of “overlap” between vertices of the same color.
We can calculate this “overlap” for any pair of statements stmt1 exhaling
p permissions from a[i] that is executed if b1 is true and stmt2 exhaling p′
permissions from a′[i′] that is executed if b2 is true by looking only at the
locations that both statements access and taking the minimum amount of
permissions that is required is exhaled by both statements. We can express
this as

max
s,s′|I(s)∧I(s′)

L(s, s′) ? min(p, p′) : none,

where

L(s, s′) :≡ db1cs ∧ db2cs′ ∧
(
dacs = da′cs′

)
∧
(
dics = di′cs′

)
.

We can, moreover, eliminate this unbounded maximum using the maximum
elimination mechanism described by Dohrau et al. Calculating the overlap
for any combination of two exhale statements (not including the overlap
with itself which obviously always exists) in a loop containing n exhale
statements requires us to calculate

n(n− 1)
2

of these maximum terms, i.e. the number of checks we have to perform
grows quadratically in n. Furthermore, even a single such check can be quite
expensive: Fig. 4.3 shows the runtimes for simulating the calculation of the
necessary checks for a series of programs with different numbers of exhale
statements. This simulation performs the checks described above but it does
not analyze the results as we would have to if we wanted to use them to
find an optimal vertex coloring. We can see that the time required for these
checks increases rapidly. At the same time the runtime of the inference itself
increases because the size of the terms we give to the maximum elimination
to calculate li(c) increases. Overall the relative overhead introduced by
the overlap checks stays about the same. It should be noted that this is a
relatively simple example and accordingly the overhead is relatively small
for some examples the overhead is about 30%.

Moreover, one can imagine scenarios where we have a choice between
reducing the amount of permissions lost for a few locations by a large amount
or for many locations by a small amount. It is unclear what the better choice
in such a scenario would be. It is, however, clear that unifying two colors if
possible can only improve our solution. Instead of trying to find a solution
that globally minimizes l(s) we, therefore, use an algorithm that efficiently
calculates such a local optimum which works well in practice.
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1 var roots = nodes.filter(no incoming edges)
2 var generations
3 generations.push(roots)
4 while (generations.top is non-empty) {
5 currentGeneration = generations.top
6 nextGeneration = currentGeneration.flatMap(successors)
7 generations.push(nextGeneration)
8 }
9 var currentColor = 0

10 var alreadyColored
11 while (generations is non-empty) {
12 generation = generation.pop()
13 toColor = generation without alreadyColored
14 toColor.assignColor(currentColor)
15 currentColor += 1
16 alreadyColored.add(toColor)
17 }

Figure 4.4: Pseudo code for calculating a graph coloring of the order graph.

This algorithm finds some roots (vertices with no incoming edges) and
calculates the length of the longest path from these roots to each vertex.
Vertices with the same longest path length are then assigned the same color.
Pseudo code for the algorithm is shown in Fig. 4.4. It starts out by finding
the roots from which we explore the graph in generations by following the
the outgoing edges of every node in the previous iteration. Since the graph
is acyclic this search terminates. Nodes that are part of the nth generation
we discover can be reached from a root via a path of length n. We, then,
remove each node from every generation except the last one of which it is a
member. Afterwards, the nth generation contains only nodes for which the
longest path that reaches it has length n. Finally, we assign each generation
a different color.

Lemma 2. Soundness
The coloring calculated by the algorithm shown in Fig. 4.4 assigns every pair
of vertices that are connected by an edge a different color.

Proof. We show that assuming that there is an edge connecting two vertices
that are assigned the same color leads to contradiction. If there were an
edge from a vertex v1 to a vertex v2 and they are both assigned the same
color the longest path that reaches them has to have the same length of n for
each of them. However we can construct a path to v2 by using the longest
path to v1 and appending the edge to v2 to it. This path has a length of
n+ 1 which contradicts the assumption that the longest path reaching v2
has length n.
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Lemma 3. For every vertex v1 that is assigned color c > 0 there exists a v2
that is assigned color c− 1 such that there is an edge v2 → v1 in the order
graph.

Proof. Recall that a vertex v is assigned to color n iff the longest path
from a root that reaches v has length n. Let us consider a longest path that
reaches v1: v′1 → v′2 → · · · → v2 → v1. This v2 exists because the lemma
states that v1 is assigned some color c > 0, i.e. the longest path to v1 has at
least length 1. We will, moreover, show that this v2 satisfies the lemma, i.e.
that the color n it is assigned is n = c − 1. We observe that v2 cannot be
assigned to a color n < c− 1 since the path v′1 → v′2 → · · · → v2 has length
c− 1. Furthermore assuming that v2 is assigned a color n > c− 1 leads to a
contradiction: we could extend the longest path to v2 of length n by adding
the edge v2 → v1 to it and construct a path to v1 of length n+ 1 > c. This
contradicts the assignment of v1 to color c. We have shown that n ≮ c− 1
and n ≯ c− 1. Consequently n = c− 1.

Lemma 4. Local Optimality
No two colors calculated by the algorithm shown in Fig. 4.4 can be merged
without violating the soundness property from Lemma 2.

Proof. We show that for any pair of distinct colors c1 and c2 there exists
a vertex v1 that is assigned color c1 and a vertex v2 that is assigned color c2
such that there is an edge between v1 and v2. Recall that we assign colors
based on the length of the longest path from a root that reaches a vertex, i.e.
the longest path that reaches each vertex in c1 has length c1 and the longest
path that reaches each vertex in c2 has length c2. We will w.l.o.g. assume
that c1 < c2 (this implies that 0 < c2). Let v2 be an arbitrary vertex that is
assigned color c2. We can apply Lemma 3 to get a v′ that is assigned color
c2−1 such that an edge v′ → v2 exists. Analogously we can find a v′′ in color
c2 − 2 such that the path v′′ → v′ → v2 exists and so on, i.e. by induction
we can show that for some v1 that is assigned color c1 there exists a path
from v1 to v2. The intuitive interpretation of an edge in the order graph is
a “potentially accesses before” relation. It is clear that if stmt1 potentially
accesses a location before stmt2 and stmt2 potentially accesses that location
before stmt3 then stmt1 also potentially accesses the location before stmt3,
i.e. the “potentially accesses before” relation is transitive. In terms of the
order graph this means that whenever there is a path from v to v′ there also
is an edge v → v′ that connects v and v′ directly. We have shown that there
is a path from v1 to v2. Consequently there also is an edge v1 → v2, i.e. we
have found a v1 in color c1 and a v2 in color c2 that are connected by an
edge in the order graph. We can, therefore, not merge c1 and c2 without
violating Lemma 2.
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For Example 2 and Example 3 only the vertex coloring that assigns a
different color to each of the two exhale statements is possible. Using the
technique described in Sec. 4.1.1 we can separately derive

l1(s) = (0 ≤ q < i ? 1
2 : none)

as the loss for the exhale on l. 9 of Example 2,

l2(s) = (0 ≤ q < i− 1 ? 1
2 : none)

for the exhale on l. 10 of Example 2,

l3(s) = (i < q < image.length ? 1
2 : none)

for the exhale on l. 9 of Example 3, and

(0 ≤ q ∧ i− 1 < q < image.length− 1 ? 1
2 : none)

for the exhale on l. 10 of Example 3. For each example we then calculate
the total loss up to the iteration starting from state s by summing the results
for the two exhales together. For Example 2 we get

l(s) ≡ l1(s)+ l2(s) ≡ (0 ≤ q < i ? 1
2 : none)+(0 ≤ q < i−1 ? 1

2 : none)

and for Example 2 we get

l(s) ≡ l3(s)+l4(s) ≡ (i < q < len ? 1
2 : none)+(0 ≤ q∧i−1 < q < len−1 ? 1

2 : none).

Handling Cycles. During the previous discussion we assumed that the
order graph does not contain any cycles. We will now look at how we handle
programs for which the order graph contains cycles. We distinguish two
kinds of cycles the order graph may contain: true cycles indicate that a
statement potentially accesses the same location again later on, i.e. that
it potentially accesses the same location multiple times. In the context of
exhale statements this means that we keep losing permissions. While it
might in principle be possible to upper-bound the amount of permissions that
is lost in some such cases our analysis simply requires that the order graph
does not contain any true cycles as a soundness condition. Since the order
graph is constructed based on the progressive loop invariants we calculate
we will look at how true cycles can be detected next so we can automatically
check that the soundness condition holds during the inference.

Theorem 3. Soundness Condition
If the order graph on the exhale statements of a program is free from true
cycles the loss l(s) we calculate upper-bounds the loss we observe in concrete
executions.
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Example 5. Program that generates a pseudo cycle

1 var image := get_image()
2 var i := 0
3 while (i < image.length)
4 {
5 exhale acc(image[i], 1

2)
6 if (0 ≤ i + k < image.length) exhale acc(image[i + k], 1

2)
7 i += 1
8 }

As we discussed during the proof of Lemma 4 the “potentially accesses
before” relation that is represented by edges in the order graph is transitive.
In terms of the graph this means that if there is a path from a vertex v1 to
a vertex v2 then there is also an edge that connects v1 and v2 directly. For a
node v that is part of a true cycle this means that since there is a path from
v to v there also has to be an edge from v to itself. We can, therefore, check
whether an order graph contains any true cycles by checking whether any
entries on the main diagonal of its adjacency matrix, i.e. the order matrix
O are 1. If we find such entries the soundness condition is violated and we
simply generate false as the invariant and pre- and postconditions as we
already do when the soundness condition in Theorem 2 is violated.

The other kind of cycle the order graph can contain are pseudo cycles. A
pseudo cycle exists when two statements may access the same array location
in any order in different concrete executions, i.e. for different parameter
values, user-input, randomness, etc. but in a single concrete execution they
access each array location in a particular order and they each access each
array location at most once.

To illustrate what pseudo cycles are and when they occur we consider
Example 5 which contains two exhale statements that exhale some amount
of permissions from image[i] and image[i + k] respectively, where k
is some unknown constant (e.g. a method parameter). We can see that for
negative k we first exhale from a particular location using the exhale
on l. 5 and, then, from the same location again using the exhale on l. 6.
Analogously if k is positive we first use the exhale on l. 6 and then the
one on l. 5 for each location. Both of these scenarios are potential program
behaviours. Consequently the order graph contains edges in both directions
between the corresponding two nodes. In any single concrete execution (i.e.
for a fixed k) we can, however, only observe one of the two edges, i.e. we
can never execute the same exhale statement on the same location twice.
We can observe this based on the order graph as well: there is no edge from
either of the statements to itself (i + k cannot take on the same value for
different values of i while k remains constant). We will use this observation
to automatically detect pseudo cycles and eliminate them.
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Figure 4.5: A order graph containing three pseudo cycles.

Pseudo cycles only exist between pairs of nodes so, after checking that
the graph does not contain true cycles, they can be found by checking the
order graph for nodes that are connected by edges in each direction. This
can be done by checking the order matrix O for entries where Oij = Oji = 1.
Furthermore, we can observe that we can remove either edge without affecting
the possible vertex colorings of the graph since the other edge remains and
prevents us from assigning the same color to each of its endpoints. However,
since nodes can be part of multiple pseudo cycles we have to be careful to
make sure the resulting graph does not contain any additional cycles that
are a result of the original pseudo cycles. Fig. 4.5 illustrates this issue: if we
remove the dotted edges we have resolved each of the three pseudo cycles
but the remaining graph still contains a cycle. We can avoid this issue by
always keeping the edge that goes from a node with a lower index in the
order matrix O to a node with a higher index in O. Note that this also
preserves the transitivity property required to prove Lemma 4: for any two
edges from v1 to v2 and from v2 to v3 where the index of v2 is larger than
that of v1 and the index of v3 is larger than that of v2 the transitive edge
from v1 to v3 is also kept.

Remarks. In practice we summarize the permissions we lose in a single
iteration into a single expression. For Example 2 this expression would look
similar to(

q1 = image ∧ q2 = i ? 1
2 : none

)
+
(
q1 = image ∧ q2 = i− 1 ∧ i ≥ 1 ? 1

2 : none
)
.

This expression gives us the amount of permissions we lose for any location
q1[q2]. We can obtain a condition under which this expression is (potentially)
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greater than 0 by analyzing it syntactically. To separate out different locations
that are accessed during a single iteration we convert this condition into
disjunctive normal form (DNF) and assume the disjuncts each refer to a
different statement. We can see that if this separation does not work, i.e.
a single disjunct refers to multiple statements, we may observe additional
cycles in our graph. While this reduces the precision of our approach (we
generate false) it should be noted that this can never cause unsoundnesses.

Gaining Permissions

In this section we will see how we can calculate the permission gain g(s)
up to the point where we reach s. The soundness condition described by
Dohrau et al. states that executing any two iterations in succession must not
require more permissions than the maximum that is needed to execute each
of them individually. If we gain permissions during one of the iterations we
provide additional permissions that then no longer have to be given before
the iterations are executed, i.e. we reduce the amount of permissions that
is needed and, therefore, do not violate the soundness condition. We can,
however, still profit from the order information we calculate to calculate a
more precise gain.

As we mentioned in Sec. 4.2.1 we can use order checks based on the
under-approximative strict future progressive invariant P

=⇒ s
(s′) to construct

an order graph where each edge is interpreted as a “must access before”
relationship. The calculation of g(s) works analogously to the calculation of
l(s): We find a vertex coloring and use the technique described in Sec. 4.1.2
to calculate the combined gain gi(s) for each set of statements assigned the
same color i. For c colors we then calculate the overall gain as the sum

g(s) =
c∑

i=1
gi(s). (4.15)

We handle inhales under-approximatively, i.e. we only consider program
behaviour that is guaranteed to happen in concrete executions, in the analysis
described in Sec. 4.1.2. Therefore, “overlap”-scenarios where the analysis
described in Sec. 4.1.2 thinks two inhales can access the same location but
this is never the case in concrete executions cannot occur. Because there is
no overlap between the locations accessed by any two statements that are
not connected by an edge calculating the combined gi(s) using the technique
described in Sec. 4.1.2 for sets of statements with no edges between them
gives the same result as calculating the gain for each statement separately
and adding both results together. Any vertex coloring of the order graph,
hence, results in the same permission gain being calculated.

Furthermore, we observe that the order graph calculated from under-
approximative progressive loop invariants cannot contain true cycles: if a
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statement is part of a cycle it can only be executed after it has already been
executed before. Consequently the statement can never be executed which
is a contradiction since the under-approximative progressive loop invariants
guarantee that every state that satisfy them is reached, i.e. that the statement
is executed. Pseudo cycles can occur since they are resolved for any concrete
execution and can be eliminated using the same technique we described for
exhales.

Remarks. Similarly to what we described for exhales we separate differ-
ent locations that are accessed in an iteration by deriving some condition
under which we gain permissions and converting it to DNF. If this separation
is not exact we may end up with true cycles in the order graph. In such cases
we can simply ignore these cycles since, as we mentioned at the beginning of
this section, the soundness condition described by Dohrau et al. holds.

Invariants and Postconditions

Once we have calculated a sound precondition using l(s) and g(s) we can
calculate invariants and loop postconditions. For invariants this is done in a
similar fashion to what we described in Sec. 4.1: the invariant for state s is
given by

precondition− l(s) + g(s).

Analogously to what we described above we can extend the analysis for
calculating the overall change in permissions over the execution of the entire
loop described by Dohrau et al. by constructing sets of exhales and sets of
inhales that can be given to their analysis without violating their soundness
condition. These sets are constructed in the same manner we just described.
Consequently we calculate the loss li over the execution of the entire loop
and the gain gi over the execution of the entire loop. We then form the sum
for c colors analogously to what we described for l(s) and g(s):

l =
c∑

i=1
li (4.16)

g =
c∑

i=1
gi (4.17)

We then calculate the postcondition in a similar fashion to what Dohrau et al.
described: the loop postcondition is given by

precondtion− l + g.

We saw during the construction of l(s) that we require the order graph to
not contain any true cycles. The extended analysis can, therefore, handle
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Example 6. Partial sums

1 var a = get_array()
2 var a_orig = a.copy()
3 var i = 1
4 while (i < a.length) {
5 a[i] = a[i - 1] + a[i]
6 i += 1
7 }
8 ensures ∀q. 0 ≤ q < a.length −→ a[q] = sum(of: a_orig, from: 0, to: q)

programs where each statement accesses each array location at most once
provided the generated progressive loop invariants are strong enough to show
that that is the case. This soundness condition is, moreover, automatically
checked by the implementation of this analysis.

4.3 Functional Specifications
In this section we will look at a technique that utilizes progressive loop
invariants to infer functional specifications, i.e. specifications containing
information about what a method calculates (e.g. that the final array is
sorted), for array programs. This approach requires the user to provide
a method postcondition and infers inductive loop invariants and method
preconditions that allow us to verify the program.

The approach is based on the technique for calculating weakest liberal
preconditions described in Sec. 2.6. The main idea is to use wlp generation for
loop-free code and handle loops by automatically inferring invariants instead
of requiring the user to provide them. In order generate these invariants the
inference looks at the read/write-dependencies between elements of an array
and across iterations of a loop. We distinguish two kinds of dependencies:
those where we read a value that was previously written during the execution
of the loop (we call these recursive dependencies) and those where we read
the original value that was present in an array before we entered the loop
(we say that these dependencies reach outside the loop).

For Example 6 which stores the partial sums of an array up to and
including element i at location a[i] part of the dependency graph is
shown in Fig. 4.6. While this graph can be unboundedly large the analysis
exploits that loops typically access an array in a regular fashion resulting in a
dependency graph that repeats some pattern. For Example 6 we can clearly
see such a pattern. The analysis then constructs an inductive proof over this
repeating pattern. The main idea behind generating wlps is that requirements
a postcondition imposes on the value of some variable or heap location l can
be translated to a requirement on the values of variables and heap locations
l depends on. Similarly we try to construct an inductive proof over the
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Figure 4.6: Read/write-dependencies between array elements across multiple
iterations for Example 6. Arrows indicate dependencies from the point where
a value is written to the point where it is read. Black arrows indicate depen-
dencies on values generated in earlier loop iterations (recursive dependencies)
while curved, gray arrows indicate dependencies on values generated outside
the loop (reaching outside the loop).

repeating structure we identify to show that the requirements imposed by
the user-provided postcondition are always met during the execution of the
loop. For requirements imposed on recursive dependencies we show this via
induction whereas any requirements on dependencies reaching outside the
loop are passed on to the loop’s precondition. We will first take a look at
how we can handle single loops in Sec. 4.3.1 and then extend the approach
to successive and nested loops in Sec. 4.3.2.

4.3.1 Single Loops

We will first look at a technique that allows us to identify a repeating pattern
in the read/write-dependency graph and how we can distinguish recursive
dependencies from dependencies that reach outside the loop. Based on this
pattern we then define the structure of the inductive proof, i.e. what we
want to show in the base and step cases of the induction and which loop
iteration corresponds to which induction step. We define this structure for
a template invariant which we construct heuristically based on the user-
provided postcondition.
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In order to discover repeating patterns we first need to introduce some
notation. We define the universe of array locations as the cartesian product
of arrays with their indices:

L := A× Z

We then define the set

W ⊆ L

of array locations we write to during a single loop iteration and for each
w ∈W we define the set

Rw ⊆ L

of locations the value we write to w depends on. We can calculate these sets
using a data-flow analysis (e.g. [3]).

For Example 6 a data-flow analysis will indicate that we write to W =
{a[i]} and the new value of a[i] depends on the previous values of
Ra[i] = {a[i - 1],a[i]}.

As described above we want to separate recursive dependencies from
dependencies that reach outside the loop next. We will then try to prove the
postcondition inductively over the recursive dependencies (e.g. for Example 6
we have to inductively show that we have calculated the partial sums up to the
current i) and we pass on the requirements for the remaining dependencies
to the precondition (for Example 6 this will be ∀q.a[q] = a_orig[q]).
We can identify recursive dependencies using an analogous approach to the
one described in Sec. 4.2.1: we use progressive loop invariants to check which
dependencies (potentially) read values that were previously written to by
the loop. We define the set of recursive dependencies

R̂w := {r | r ∈ Rw ∧ written(r)} . (4.18)

Analogously to the checks described in Sec. 4.2.1 we calculate written(r)
using the check:

written(r) :≡ ∃w ∈W, s, s′. (dr.arraycs = dw.arraycs′)∧(dr.indexcs = dw.indexcs′)∧
⇐=
P

IC

s (s′).

For Example 6 we generate the checks

(dacs = dacs′) ∧ (di - 1cs = dics′) ∧
⇐=
P

IC

s (s′) (4.19)

and

(dacs = dacs′) ∧ (dics = dics′) ∧
⇐=
P

IC

s (s′) (4.20)
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of which only the check (4.19) succeeds. Accordingly we get the set of
recursive dependencies for Example (6):

R̂a[i] = {a[i - 1]}

We have, thus, identified the recursive structure indicated by black arrows in
Fig. 4.6.

We will construct an inductive proof over this recursive structure. We do
this based on a template invariant T (x; s) which for a given array location x
checks whether s satisfies some version of the postcondition that essentially
captures what work we have already done. We will introduce a heuristic for
generating these templates later on. The idea is to generate an inductive
proof over these templates. In particular in the step case of the induction
we will assume that we have T(x; s) for all recursive dependencies of every
w ∈W and we show that after executing a single loop iteration we obtain
T (w; s). In addition to the templates for recursive dependencies we also
use the precondition requirements Cw(s) which for every w ∈ W give the
requirements on the dependencies that reach outside the loop and that we
pass on to the loop precondition. We will also see how these precondition
requirements are constructed later on. These requirements are an additional
assumption during the step case. In the full step case we consider an arbitrary
iteration starting from state s and every w ∈ W that we write to in that
iteration. We assume that s satisfies

Cw(s) ∧
∧

r∈R̂w

T (r; s)

and we show that after executing the iteration we end up in a state s′ that
satisfies

T (w; s′).

Note that if R̂w is empty we simply start from Cw(s). Note also that we
omit showing that Cw(s′) is established for the next induction step. Since
Cw, by definition, only refers to locations that have not, yet, been written to
we know that Cw(s′) does not refer to any locations we write to during the
iteration starting from s. The iteration starting from s, therefore, trivially
preserves Cw.

This construction works well for postconditions that only refer to a single
array location and, therefore, result in a proof over a single induction variable.
In cases where the postcondition refers to multiple array locations and we
perform a proof over multiple induction variables the template will also be
parameterized in multiple locations and we have to account for all possible
combinations of reads and writes. E.g. for two locations we would have to
consider every pair of writes w1, w2 ∈W and show that if we start out in a
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state s satisfying

Cw1(s) ∧ Cw2(s) ∧
∧

r1∈R̂w1 ,r2∈R̂w2

T (r1, r2; s)

we reach a state s′ satisfying

T (w1, w2; s′).

If the postcondition refers to n array locations the number of tuples inWn for
which we have to perform the step case of the induction grows exponentially in
n. We will, therefore, generate a template T (s) and precondition requirements
C(s) that consider all reads/writes that occur during a single iteration at
once. While the size of such templates can, in the worst case, still grow
exponentially it is oftentimes possible to simplify the resulting formula to
avoid this fate. In the step case for such templates we start out from a state
s that satisfies

C(s) ∧ T (s)

and we show that we reach a state s′ satisfying

T (s′)

We will look at how these templates are generated next.

Template Generation

To generate the template we first obtain a loop postcondition by executing
the wlp calculation until we reach the end of the loop. We will convert the
resulting loop postcondition into the form

∀~v.F (~v), (4.21)

where F (·) gives us the loop postcondition at a single point and does not
contain quantifiers. This is not a restriction since we can convert any
postcondition into this form by eliminating existential quantifiers via Skolem-
ization [13] and pulling universal quantifiers out of inner expressions. For
Example 6 the postcondition is already in this form so we obtain.

F (q) ≡ 0 ≤ q < a.length −→ a[q] = sum(of:a_orig,from:0,to:q).

We then syntactically replace all array locations referred to in F (·) with
n new quantified variables to obtain a new, equivalent, formula

∀(~v,~l) ∈ B. F ′(~v,~l), (4.22)

46



where B contains the original locations referred to in F (~v). E.g. for Example 6
we obtain

B = {(q, l)|l = a[q]} (4.23)

and

F ′(q, l)≡0≤q<a.length−→dlcs =sum(of:a_orig,from:0,to:q).

We saw earlier that we construct an inductive proof over the locations ~l. The
main idea behind the templates we generate is that we define a set B′(s)
which conceptually gradually collects locations for which we have already
established the point-wise postcondition F ′(~v,~l) as we execute additional
loop iterations. We will later see that we may need F ′(·, ·) for additional
locations during the inductive proof. These locations will also be included in
B′(s). Based on B′(s) we construct the template

T (s) := ∀(~v,~l) ∈ B′(s). F ′(~v,~l). (4.24)

In order to make sure that every element in B eventually ends up in B′(s)
we define the set

E(s) :=
{

(~v,~l)
∣∣∣∣∣ (~v,~l) ∈ B ∧

n∧
i=1
¬fut-wrt(~li)

}
(4.25)

which will make up part of B′(s). Similarly to the checks we used in Sec. 4.2
we can also generate conditions under which we potentially write to a location
l later on:

fut-wrt(l) :≡∃w ∈W, s′. (dw.arraycs′=dl.arraycs) ∧ (dw.indexcs′=dl.indexcs)∧
=⇒
P

IC

s (s′) ∧ loop-condition(s)

We want B = E(s) when we exit the loop so we can show the loop postcon-
dition. Since the future progressive invariant can be over-approximative we
add the loop condition as an additional conjunct here. This makes fut-wrt(l)
always false after we exit the loop and, thus, ensures that B = E(s) when we
exit the loop. Note that every B′(s) contains the locations that are required
in B but that are never written to during the execution of the loop, i.e.
F ′(·, ·) for these locations becomes a loop precondition.1 Furthermore, there
will typically be equalities between variables in ~v, ~l, and variables of state s′
in the definition of E(s), allowing us to eliminate many of these variables.
For Example 6 we can derive

E(s) = {(q, l) | l = a[q] ∧ 0 ≤ q < dics} .
1It can be useful to separate these locations into a second invariant to improve readability

of the generate specifications.
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The induction we described is over all array locations we write to. Not
all of these locations are necessarily in B. We, therefore, have to additionally
include at least the locations required by future induction hypotheses in
B′(s). We formulated the induction hypothesis

Cw(s) ∧
∧

r∈R̂w

T (r; s)

earlier and, therefore, need to ensure that Rw ⊆ B′(s) for each step. Since
we are constructing a combined template for all w ∈W we will use

R̂ :=
⋃

w∈W

R̂w. (4.26)

We want to add locations that are part of R̂ in a future iteration. We can
formulate that a location l is needed as part of the induction hypothesis
during the iteration starting from state s using the predicate

req(l, s) :≡ ∃r ∈ R̂. (dr.arraycs = l.array)∧(dr.indexcs = l.index) . (4.27)

Moreover, we only want to include l in B′(s) once the point-wise postcondition
F ′(·, ·) has been established for that location. Similarly to how we constructed
E(s) from locations that have taken on their final values we include these
additional locations once their value does not change (i.e. l is not written to)
before we require it as part of the induction hypothesis in s. Analogously to
req(l, s) we can define

wrt(l, s) :≡ ∃w ∈W. (dw.arraycs = l.array) ∧ (dw.indexcs = l.index)

to check whether we write to a location in a particular iteration. Moreover,
as we mentioned we want to be able to check whether such a write happens
between two iterations s and s′. We can do this by checking whether there
exists an iteration starting from s′′, during which we write to l, and that
must happen after s and before s′. In terms of progressive loop invariants
we can formulate this property as

betw(l, s, s′) := ∃s′′.wrt(l, s′′) ∧ P
→s

(s′′) ∧ P
⇐= s′

(s′′),

where P
⇐= s′

(s′′) is a strict under-approximative past progressive invariant.
Analogously to how we defined strict over-approximative progressive loop
invariants P

⇐= s′
(s′′) is only true for s′′ that do not belong to the same iteration

as s′. We use the strict progressive loop invariant here because the induction
hypothesis has to hold before the iteration starts. Any writes that occur
during the iteration, therefore, have no effect on it. We can now put all of
these predicates together to formulate what requirements have already been
established when we reach state s:

ind(l, s) = ∃s′.req(l, s′) ∧ ¬betw(l, s, s′) (4.28)
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Moreover, we define the set of these locations

h(s) = {l | ind(l, s)}

We discussed earlier that if the loop postcondition refers to multiple locations
we have to consider every possible combination of locations. We can define
the cartesian product

H(s) := h(s)n =
{
~l

∣∣∣∣∣
n∧

i=1
ind(~li, s)

}

to represent these combinations. For Example 6 we get

H(s) = {a[di - 1cs]} .

We, however, also need to allow for any combinations with locations in E(s).
Moreover, we need the locations h(s) for our inductive proof independent of
what the values of the quantified variables ~v are. We, therefore define B′(s)
as

B′(s) :=
{

(~v,~l)
∣∣∣∣∣

n∧
i=1

ind(~li, s) ∨ ∃(~v′, ~l′) ∈ E(s).~v = ~v′ ∧~li = ~l′i

}
. (4.29)

For Example 6, after some simplification, we get the template

T (s) = ∀q. 0 ≤ q < i −→ a[q] = sum(of:a_orig,from:0,to:q).

We then check that this invariant is inductive as we normally would
during the calculation of a wlp: we check

T (s) −→ wlp(loop-body, T (s′)) (4.30)

using an SMT-solver. This check fails for Example 6 with the invariant we
just identified. This is due to the dependencies that reach outside the loop.
We can obtain the conditions under which (4.30) is violated by looking at

c(s) := T (s) ∧ ¬wlp(loop-body, T (s′)). (4.31)

For our example this simplifies to the condition

a[i] 6= a_orig[i]. (4.32)

This is a condition on a dependency outside the loop so we want to choose a
Cw that ensures that this condition cannot hold. We can obtain such a Cw by
generalizing its negation over the loop. Since we may write to these locations
we, moreover, try to require the resulting constraints only for as long as
we have to and drop them when they are no longer required in any future

49



iteration. Hence, we only generalize over future iterations. Accordingly we
define

C(s) := ∀s′.
→
P s(s′) −→ ¬c(s′). (4.33)

Since locations in C(s) are, by definition, never written to in earlier iterations
it is clear that it suffices for

→
P s(s′) to be monotone, i.e. for the set of states

s′ that satisfy it not to grow (cf. Def. 1), for C(s) to be inductive.
If (4.31) contains constraints on recursive dependencies we can try to

refine T (s) by strengthening it. By only strengthening T (s) we ensure that
we are still able to prove that the loop postcondition holds after we exit
the loop. The current implementation refines invariants by choosing the
strongest possible invariant — false. Though this invariant is not necessarily
the weakest possible invariant, this invariant fits well into the context of wlps
since it allows us to verify the loop and the resulting loop precondition is
still a sufficient precondition. Note that even if we do not require refinement
the invariants we generate may not be as weak as they can be. This can be
due to imprecisions in our progressive loop invariants or because a weaker
invariant does not follow the schema used by our heuristic generation of
templates.

Since (4.31) contains no such constraints in the case of our example we
calculate

C(s) = ∀q. i ≤ q < a.length −→ a[q] = a_orig[q]. (4.34)

We are then able to verify the loop with the inductive invariant C(s) ∧ T (s).
In the case of our example we get the loop precondition

∀q. 0 ≤ q < a.length −→ a[q] = a_orig[q]

which is guaranteed to hold because of the assignment on l. 2 of Example 6.

4.3.2 Extension to Multiple Loops

In this section we will extend the technique described in Sec. 4.3.1 to multiple
loops. For successive loops this is relatively straight forward: we first calculate
the wlp up to the postcondition of the last loop. We then use the technique
described in Sec. 4.3.1 to infer an invariant for that loop. This invariant also
has to hold before the loop is entered and, therefore, is also a precondition for
the loop. We can then continue the wlp generation based on that precondition
until we reach the next loop and repeat the process.

We will discuss nested loops based on an outer loop containing a single
inner loop. The technique we describe can be applied recursively for deeper
nestings and can similarly be extended to multiple successive inner loops.
The idea for handling nested loops is that we push the obligation for the
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inductive proof over the inner loop to the the inner loop. The outer loop
simply collects the point-wise conditions generated by the inner loop (E(s))
and generates a proof (H(s)) only over locations it directly writes to (writes
outside the inner loop).

To construct E(s) we first need to extend the results of the data-flow-
analysis for inner loops to the outer one. To distinguish the dependencies we
identify for the inner and outer loop we will use W ′ to refer to the writes
we identify for a single iteration of the inner loop and W for the outer
loop. We over-approximatively extend the result for the inner loop using the
over-approximative invariant I(·) of the inner loop. We write to a location
l during the execution of the inner loop only if (i.e. all l that satisfy this
formula are in W )

∃s.I(s) ∧ l ∈W ′[d~xcs/~x],

where ~x are the local variables of the program. Additionally there may be
locations the outer loop writes to directly that also end up in W . We can use
this projection to correctly calculate the set E(s) of locations whose value
will not change during the execution of the remainder of the outer loop.

As mentioned above, because the inductive proof for locations written to
by an inner loop is pushed to the inner loop we only calculate req(l, s) over
R̂ for locations that the outer loop writes to directly. This requires us to be
able to soundly approximate R̂. If the outer loop writes to a location l after
the inner loop is executed and Rl contains dependencies on locations that
the inner loop writes to this requires us to generalize the dependencies of
the inner loop. This requires us to calculate the transitive closure over the
dependency graph of the inner loop which is not easily possible. We instead
introduce a soundness condition shown in Def. 4 which we can check using
an SMT-solver.

Theorem 4. Soundness Condition
If for every write to location l that, within a single iteration of the outer loop,
that occurs after the inner loop

@s.I(s) ∧ l ∈W ′[d~xcs/~s],

holds the dependencies we identify can be used to construct an inductive
proof.

Based on E(s) and req(l, s) we can construct B′(s) as we did before and
obtain the invariant template

T (s) := ∀(~v,~l) ∈ B′(s). F ′(~v,~l)

for the outer loop analogously to the template we construct for loops with
loop-free bodies. We then calculate the weakest liberal precondition over the
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body of the outer loop. During this calculation we encounter the inner loop
which we treat recursively based on the loop postcondition we calculate for
the invariant template of the outer loop.

Once we have calculated wlp(outer-loop-body, T(s)) we can calculate C(s)
for the locations inner loops do not write to as we did before. Additionally
we have some C ′(s) containing a precondition for an iteration of the outer
loop that ensures that C(s) of the inner loop is satisfied. We can obtain
this C ′(s) by tracking the inner loops’ C(s) separately from the remaining
preconditions during the calculation of wlp(outer-loop-body, T(s)). Contrary
to what is the case for C(s) there is no guarantee that locations referenced in
C ′(s) are not written to in earlier iterations of the outer loop. We, therefore,
have to explicitly check that

C(s) ∧ C ′(s) ∧ T (s) −→ wlp(outer-loop-body, C ′(s′))

holds, i.e. that C ′(s) is inductive. If this check fails we can try to refine our
invariant. As mentioned before the current implementation simply refines
every invariant to false.

4.4 Termination Analysis
In this section we will explore a technique that utilizes progressive loop
invariants to automatically prove loop termination. The approach presented
in this section can for certain kinds of loops give us a guarantee that they
terminate.

The basic idea behind this technique is to show that a the execution of
a loop must eventually reach a state from which it can only exit the loop.
Using progressive loop invariants we can check that the execution of the
loop cannot continue after reaching state s by showing that no state s′ can
succeed it, i.e. there is no s′ that satisfies the future progressive invariant for
s:

Q(s) :≡ @s′.
=⇒
P

DF

s (s′). (4.35)

We use the strict future progressive invariant here because were interested
whether we can execute additional iterations after the current iteration. For
Example 1 we can see that the state s where i 7→ image.length− 1 and
the strict future progressive invariant

=⇒
P

DF

s (s′) = dics′ < dics′ < image.length

satisfies Q(s).
In order to prove termination it is, however, not sufficient to find a state

s for which Q(s) holds but we also have to show that we are guaranteed to
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Figure 4.7: Illustration of a possible transition through states during the
execution of a loop and the connection between states and the iteration
counter c. The connection marked with E is not possible since we may loop
in s3, i.e. there are multiple values of the iteration counter associated with
s3.

reach such an s during the execution of the loop. Fig. 4.7 illustrates this
issue. We can find a state (s4) from which we have to exit the loop. However,
we may loop in s3 forever and never reach s4. One approach for solving this
issue would be to under-approximate the states reached during the concrete
execution of the loop (e.g. using [21] which under-approximates polyhedra)
and show that it contains such an s. Such under-approximative numerical
analyses are, however, not a standard. Moreover, we can resolve this problem
using a different approach: iteration counters. Fig. 4.7 indicates how they
can be useful. We know that the iteration counter never takes on the same
value twice, i.e. they cannot loop in the way s3 does in Fig. 4.7. If we are
then able to connect each value of the iteration counter to a state during the
execution of the loop as shown for s1 and s2 in Fig. 4.7 we know that we
cannot loop on these states. In contrast to that we are not able to connect
a value of an iteration counter to s3 since we reach s3 multiple times with
different values of the iteration counter.

We automate this analysis by introducing an iteration counter (c) to the
original program. We then try to show that at some point during the loop’s
execution every possible state satisfies Q(s):

∃i ≥ 0.∀s.dccs = i ∧ I(s) −→ Q(s). (4.36)

Lemma 5. Soundness
Any program that satisfies (4.36) terminates.

Proof. We want to assure ourselves that this check can never succeed for
a loop that does not terminate and distinguish two cases of loops that do
not terminate: we can (1) always keep executing additional iterations or (2)
a single iteration does not terminate. We can see that in the first case the
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iteration counter (c) reaches every non-negative value i and, hence, that
there is always some state s that we reach during the concrete execution for
which the left-hand-side of the implication is true. The check in (4.36) can,
therefore, never succeed in case (1).

In case (2) the loop body must contain an inner loop or a method/function
call that does not terminate. We handle such cases by recursively checking
inner loops. Since method/function calls may be recursive we do not want to
check their termination recursively. Instead we conservatively assume that
they may not terminate which also allows the analysis to be modular.
After introducing c we obtain

I(s) :≡ (0 ≤ dccs = dics < image.length)

for Example 1 and we can see that (4.36) is satisfied. Since the loop does
not contain any nested loops or method/function calls we, therefore, know
that the loop terminates.

In practice we distinguish three possible results of the analysis: (1) the
loop terminates, (2) if we can show that all inner loops and method/function
calls terminate we can also assume that the outer loop terminates, and (3)
we do not know whether the loop terminates.

Note that, again, if I(·) and
=⇒
P

DF

s (·) are within Presburger arithmetic
we can use Cooper’s quantifier elimination technique [8] to eliminate the
quantifiers in (4.36). If I(·) is generated using polyhedra it is guaranteed to

be within Presburger arithmetic. As mentioned in Sec. 3.3.2
=⇒
P

DF

s (·) is not
guaranteed to be within Presburger arithmetic. We use it because we are
interested in obtaining the best precision possible. We over-approximate any

subexpressions of
=⇒
P

DF

s (·) which exceed Presburger arithmetic in order to
eliminate the quantifiers in (4.36). Consequently we loose some but not all

of the additional precision
=⇒
P

DF

s (·) gives us.
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Chapter 5

Evaluation

An implementation in Sample [2] of the techniques described in this thesis is
available at [1]. It uses Apron’s [20] implementation of the polyhedra abstract
domain for abstract interpretation and the SMT-solver Z3 [12] to aid in
simplifying terms as well as to check various conditions (soundness-conditions,
ordering, etc.). This implementation automatically infers over-approximative
progressive loop invariants and strict progressive loop invariants that are
generated using the technique described in Sec. 3. It, moreover, lets the user
specify under-approximative progressive loop invariants which are used by
the various analyses that rely on them. Furthermore, the implementation
includes the extended inference for invariants and loop pre- and postconditions
described in Sec. 4.1 and Sec. 4.2. It implements the automatic generation
of inductive proves for functional postconditions described in Sec. 4.3. This
analysis is implemented orthogonally to the inference of framing specifications,
i.e. the framing of the functional invariants we generate has to be done
manually. Moreover, it does not currently implement Skolemization for
existential quantifiers and can, therefore, only be used for postconditions
that do not contain existential quantifers. Furthermore, the implementation
includes an implementation of the termination analysis described in Sec. 4.4.

We evaluate the techniques described in this thesis based on this im-
plementation and a set of test programs written in the Viper intermediate
language [22] and we use the Silicon verifier to check that the generated
specifications are correct, i.e. that they let us verify the program. All tests
were run on a 3.6 GHz Intel Core i9-9900K CPU running macOS 10.15.

In the remainder of this chapter we will look at the inference of fram-
ing specifications, functional specifications and at the termination analysis
separately.

55



Program LOC Loops Prec. Prec.
New Time* Time

New
addLast 12 1 (1) X X 21 4 303
append 13 1 (1) X X 32 13 763
array1 17 2 (2) X X 28 11 826
array2 23 3 (2) X X 35 28 481
array3 23 2 (2) X X 24 25 733
arrayRev 18 1 (1) X X 28 24 404
bubbleSort 23 2 (2) X X 34 29 967
copy 16 2 (1) X X 27 25 151
copyEven 17 1 (1) X X 27 26 267
copyEven2 14 1 (1) X X 20 21 956
copyEven3 14 1 (1) X X 23 24 973
copyOdd 21 2 (1) X X 55 58 386
copyOddBug 19 2 (1) X X 57 45 920
copyPart 17 2 (1) X X 30 38 762
countDown 21 3 (2) X X 32 46 965
diff 31 2 (2) X X 70 11 394
find 19 1 (1) X X 43 20 693
findNonNull 19 1 (1) X X 40 22 154
init 18 2 (1) X X 28 36 300
init2d 23 2 (2) X X 52 65 450
initEven 18 2 (1) X X 26 57 565
initEvenbug 18 2 (1) X X 28 67 074
initNonCnst 18 2 (1) X X 27 43 013
initPart 19 2 (1) X X 30 48 891

Program LOC Loops Prec. Prec.
New Time* Time

New
initPartBug 19 2 (1) X X 31 9 351
insertSort 21 2 (2) X X 35 24 329
javaBubble 24 2 (2) X X 32 29 521
knapsack 21 2 (2) X X 45 61 796
lis 37 4 (2) X X 73 179 213
matrixmult 33 3 (3) X X 78 88 812
mergeinter 23 2 (1) X X 56 117 311
mergeintbug 23 2 (1) X X 59 129 545
memcopy 16 2 (1) X X 28 39 048
multarray 26 2 (2) X X 40 70 569
parcopy 20 2 (1) X X 30 44 150
pararray 20 1 (1) X X 31 46 909
parCopyEven 22 2 (1) X X 79 233 871
parMatrix 35 4 (2) X X 80 175 806
parNested 31 4 (2) X X 57 66 689
relax 33 1 (1) X X 55 56 578
reverse 21 2 (1) X X 42 267 022
reverseBug 21 2 (1) X X 42 272 241
sanfoundry 27 2 (1) X X 37 82 357
selectSort 26 2 (2) X X 38 139 992
strCopy 16 2 (1) X X 21 72 783
strLen 10 1 (1) X X 15 23 174
swap 15 1 (1) X X 19 98 100
swapBug 15 1 (1) X X 19 72 126

* Times as reported by Dohrau et al. in [17]. These were generated using a different machine.

Figure 5.1: Experimental results for the test suite used by Dohrau et al.
and comparison to their results. “LOC” indicates the lines of code for
each example. “Loops” indicates the number of loops and the maximum
nesting depth in parentheses. “Prec.” and “Prec. New” respectively indicate
whether the generated specifications are precise for the analysis described by
Dohrau et al. and the one described in this thesis. All times are given in ms.

5.1 Framing Specifications
We will first compare the framing specifications we generate using the analysis
described in this thesis to those generated by the analysis described by
Dohrau et al., then look at some examples that violate their soundness
condition and finally remark upon some general points.

5.1.1 Comparison to Dohrau et al.

Fig. 5.1 shows the results for running the analysis described in this thesis on
the suite of examples used by Dohrau et al. For all examples our analysis is
able to infer invariants which the analysis described by Dohrau et al. was
not able to do and we can use Silicon to verify the resulting programs which
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because the approach described by Dohrau et al. did not generate invariants
was previously also not possible. Moreover, the soundness condition in
Theorem 2 holds in every example, i.e. the progressive loop invariants we
generate are reasonably precise and we do not simply generate false as
specifications. This suite does not contain examples where the techniques
described in Sec. 4.2 are required as the analysis described by Dohrau et al.
cannot handle such cases. All experiments were, however, performed using
the entire analysis.

In cases where our approach is imprecise, i.e. based on manual inspection
of the generated invariants we could find an invariant that requires less
permissions this stems from imprecisions in the numerical analysis which
can potentially be alleviated by using a different abstract domain. We can,
furthermore, see that the new analysis is precise in a couple of examples
where the analysis described by Dohrau et al. is imprecise. This precision
gain stems from the fact that the new analysis automatically instruments
programs with branch counters, i.e. counters for each if-branch and else-
branch in the body of the loop that count how often this branch is taken.
Additionally there is a counter that counts the number of iterations of a loop
we have executed. These counters allow the numerical analysis to infer more
precise constraints e.g. if a program only accesses array elements with an
even index we can capture that with a constraint like i = 2b, where b is the
iteration counter. Without such a counter polyhedra is not able to express
such divisibility constraints.

We can, moreover, observe that the runtime of of the new analysis is
much longer than that of the one described by Dohrau et al. This is in part
due to the additional work the new analysis has to do to infer additional
specifications. Additionally our analysis uses the SMT-solver Z3 to simplify
terms which the analysis described by Dohrau et al. does not. For simple
examples this method is much slower than the internal simplification used
by Dohrau et al. (typically simplifications using Z3 account for 95-98% of
the runtime of the inference). The results we obtain from Z3 are however
simpler, benefiting both the readability of the generated specifications and in
some cases reducing the (potentially exponential in the number of variables)
blowup in the size of a term during the maximum elimination described
by Dohrau et al. For some large examples this reduction in term size and
accordingly the runtime of the maximum elimination can outweigh the
overhead introduced by using Z3.

5.1.2 Further Examples

Over the course of this thesis I developed a test suite containing 30 tests
for framing specifications. These test cases do not necessarily represent real-
world examples but are interesting to look at as they show the limitations of
the new analysis. The results for this test suite are shown in Fig. 5.2.
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Program Loops #
Acc.

Orig.
Soundn. Prec. Time

basic1 1 (1) 1 X X 12 919
basic2 1 (1) 1 X X 8 593
basic3 1 (1) 1 X X 11 722
basic4 1 (1) 1 X X 20 619
advanced1 1 (1) 1 X X 1 642
advanced2 1 (1) 1 X X 7 240
advanced3 1 (1) 1 X X 26 434
advanced4 1 (1) 1 X X 300
advanced5 1 (1) 1 X X 46 837
overapproximate1 1 (1) 1 X X 53 105
overapproximate2 1 (1) 1 X X 39 365
overapproximate3 1 (1) 1 X X 6 338
imprecision 1 (1) 1 X X 6 478
doubleExhale1 1 (1) 2 X X 18 863
doubleExhale2 1 (1) 2 X X 22 053

Program Loops #
Acc.

Orig.
Soundn. Prec. Time

doubleExhale3 1 (1) 2 X X 19 511
doubleExhale4 1 (1) 2 X X 29 054
doubleExhale5 1 (1) 2 X X 48 762
exhaleRequire1 1 (1) 3 X X 27 905
exhaleRequire2 1 (1) 3 X X 42 369
exhaleRequire3 1 (1) 3 X X 47 272
exhaleRequire4 1 (1) 3 X X 62 309
exhaleRequire5 1 (1) 3 X X 85 697
exhaleRequire6 1 (1) 3 X X 86 093
inhaleRequire1 1 (1) 3 X X 45 018
inhaleRequire2 1 (1) 3 X X 41 390
inhaleRequire3 1 (1) 3 X X 34 462
precision1 1 (1) 1 X X 312 067
precision2 1 (1) 1 X X 77 780
pseudoCycles 1 (1) 2 X X 43 565

Figure 5.2: Results for the test suite developed during this thesis. “Loops”
gives the number of loops and the maximum nesting depth for each test
case. “# Acc.” gives the maximum number of accesses to the same array
location. “Orig. Soundn.” indicates whether the soundness condition de-
scribed by Dohrau et al. is satisfied. “Prec.” indicates whether the generated
specifications are reasonably precise. All times are given in ms.

We can see a couple of examples where we generate specifications that
are imprecise, i.e. they require more permissions than is necessary. These
are due to a violation of the soundness condition in Theorem 2. In such
cases we generate false as an invariant and precondition. In most cases the
soundness condition is violated because of imprecisions introduced during
the abstract interpretation. Mostly, these imprecisions occur when the the
value of the iteration variable does not behave monotonically since polyhedra
is not able to capture constraints that relate earlier values of that variable
to later ones in such cases. Additionally there are a couple of examples
where the order graph (cf. Sec. 4.2) is cyclic and, therefore, violates the
soundness condition in Theorem 4. In all test cases shown in Fig. 5.2 where
that is the case this is due to a single statement accessing the same location
multiple times during concrete executions and not due to imprecisions in the
progressive loop invariants. I was not able to construct an example where
such imprecisions would result in a cyclic order graph where the soundness
condition described in Theorem 2 was not also violated.

Apart from violations of soundness conditions we can observe a couple of
other examples where the generated specifications are imprecise. These are
all due to imprecisions during the numerical analysis.
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Program Loops Prec. Their
Time*

Our
Time

init2d 2 (2) X ~40 12 518
append 1 (1) X ~20 7 953
copy 1 (1) X ~10 5 090
copyOdd 1 (1) X ~40 11 588
copyOddBug 1 (1) X ~50 7 983
copyPartial 1 (1) X ~10 4 653
find 1 (1) X ~20 8 219
findNonnull 1 (1) X ~20 10 501
init 1 (1) X ~10 2 618
initEven 1 (1) X ~40 4 939
initEvenBug 1 (1) X ~40 4 692

Program Loops Prec. Their
Time*

Our
Time

initNonConst 1 (1) X ~20 2 169
initPartial 1 (1) X ~10 2 333
initPartialBug 1 (1) X ~20 2 704
memcopy 1 (1) X ~40 4 109
mergeInter 2 (1) X ~90 22 151
mergeInterBug 2 (1) X ~110 20 719
reverse 2 (1) X ~30 17 401
reverseBug 2 (1) X ~40 18 189
strcopy 1 (1) X ~70 3 843
strlen 1 (1) X ~20 1 458

* Times as reported by Dillig et al. in [15]. These were generated using a different machine.

Figure 5.3: Experimental results for the inference of functional specifications
based on the examples used by Dillig et al. “Loops” gives the number of
loops and maximum nesting level each example contains. “Prec.” indicates
whether the specifications we generate are precise. “Their Time” gives the
runtime reported by Dillig et al. and “Our Time” gives the runtime of our
analysis. All times are given in ms.

5.1.3 Discussion

The framing specifications generated by the analysis described in this thesis
for simple programs are generally relatively easily readable. For example we
get the following invariant for Example 1:

∀q1.acc(a[q1], (a.length > q1∧0 ≤ q1?(q1 ≤ i∧i 6= q1?1
2 : write) : none))

For more complicated programs especially those where permissions to the
same location are exhaled in multiple iterations the generated specifications
quickly become less readable.

5.2 Functional Specifications

5.2.1 Comparison to Dillig et al.

A technique described by Dillig et al. [15] automatically infers information
about the values stored at different array locations. In contrast to our
analysis it does this without the need for a user-provided postcondition. In
turn their analysis is limited in the kinds of programs it can generate precise
constraints for: it introduces a soundness condition that requires that if we
write to an array location l in one loop iteration we may not read or write
to l in any other iteration. This soundness condition checks that there are
no read/write-dependencies across loop iterations. Our analysis does not
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have this restriction, i.e. it can generate precise specifications for programs
with arbitrary read/write-dependencies across loop iterations of a single loop.
However, because our analysis relies on potentially imprecise progressive loop
invariants and a heuristic template invariant generation the specifications it
generates are also imprecise in some cases.

Fig. 5.3 compares the results of our analysis to those of the analysis
described by Dillig et al. The table includes results for all examples used by
Dillig et al. except for three examples that use arrays of arrays which the
current implementation cannot handle and two examples for which we cannot
easily formulate meaningful postconditions. The remaining examples are
extended by manually providing the postconditions and under-approximative
progressive loop invariants required by our analysis.

Additionally, I manually looked at the invariants and preconditions our
analysis generates for each example to decide whether they are as precise
as handwritten specifications. For most examples this means that we can
infer the wlp true indicating that the program postcondition is guaranteed
to hold for all program executions. Additionally, the suite contains some
examples that contain bugs. Our analysis is able to correctly identify these
bugs and either infers false as the precondition or a precondition that is
strong enough to ensure that the buggy behaviour is not exhibited. The
imprecisions in some of the examples stem from approximations we use
during the analysis in order to be able to decide some quantified formulas.
Disabling these approximations allows us to generate precise specifications for
some of these examples. However, without these approximation the analysis
does not terminate in some cases. Lastly we can observe that our analysis is
a lot slower than that described by Dillig et al. A large portion (95-98%)
of the runtime of our analysis can again be attributed to the simplifications
performed by Z3.

5.2.2 Discussion

For simple examples the functional specification generated by the analysis
described in this thesis are relatively easily readable. We can e.g. look at
the “init” example used by Dillig et al. This example iterates over an array
and initializes each element with some value c that is passed as a method
parameter. For this example we provided the postcondition

∀q. 0 ≤ q < a.length −→ a[q] = c.

Our analysis then generates the loop invariant

∀q. a[q] = c ∨ 0 > q ∨ i ≤ q.

We can rewrite this invariant into an implication

∀q. 0 ≤ q < i −→ a[q] = c
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Program Loops Term. Res. Res.
w/o PI Time

additionalStrength 1 (1) X X X 118
basic1 1 (1) X X X 17
basic3 1 (1) X X X 16
basic4 1 (1) X X X 9
basic5 1 (1) X X X 7
basic6 1 (1) X X X 18
linear1 1 (1) X X X 29
linear2 1 (1) X X X 102
nested1 2 (2) X X X 22
nested2 2 (2) X X X 21
nested3 2 (2) X X X 161
nested4 2 (2) X X X 211
nested5 2 (2) X X X 131
nested6 3 (2) X X X 26
nested7 3 (3) X X X 171

Figure 5.4: Experimental results for the termination analysis. “Loops” gives
the number of loops and maximum nesting level each test contains. “Term.”
indicates whether a program is guaranteed to terminate in concrete executions.
“Res.” gives the result we obtain with the progressive loop invariant based
analysis and “Res. w/o PI” gives the result we obtain using the alternative
analysis based on unreachable iterations. All times are given in ms.

which is what we would typically choose when writing the invariant by hand.
Moreover, we infer true as the precondition for this example which indicates
that the postcondition is always satisfied. For more complicated examples
the invariants we generate quickly become much less readable, however.

5.3 Termination Analysis

5.3.1 ExperimentalResults

Fig. 5.4 shows the results for the termination analysis based on its test suite.
It also compares these results to those of an alternative analysis that we
will introduce and discuss in Sec. 5.3.2. The tests contained in this suite do
not access the heap resulting in much faster runtimes of the overall analysis.
Similarly to what we discussed in Sec. 5.1 and Sec. 5.2 the progressive loop
invariants are reasonably precise in cases where the iteration variables behave
monotonically. Overall we can observe that in such cases the termination
analysis is often able to prove termination (of programs that terminate in
concrete executions).
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5.3.2 Discussion

We will compare the approach described in Sec. 4.4 to two alternative
approaches that are not based on progressive loop invariants. The first
one is a simple analysis based on iteration counters and we will see that
our analysis is stronger than it. The second alternative is existing work by
Boralleras et al. [6] and we will see that many concepts of our analysis are
similar to aspects of their analysis.

Unreachable Iterations

As we discussed before if we keep executing additional iterations the iteration
counter reaches every non-negative value. Conversely if the loop terminates
there has to be some value i that the iteration counter never takes on. We
can approximate this check using

∃i ≥ 0.@s.dccs = i ∧ I(s) (5.1)

and handle nested loops recursively as we did during the analysis described
in Sec. 4.4. Similarly we also handle method and function calls by assuming
that they may not terminate as we did in Sec. 4.4. The results for this
analysis are given as “Res w/o PI” in Fig. 5.4.
The termination check of the analysis described in Sec. 4.4 is given as

∃i ≥ 0.∀s.dccs = i ∧ I(s) −→ @s′.
=⇒
P

DF

s (s′). (4.36)

We can see that for any i that makes the outer existential in (5.1) true the left-
hand-side of the implication in (4.36) is always false making the termination
check of the analysis described in Sec. 4.4 true. Hence, the progressive loop
invariant based approach is at least as strong as (5.1), i.e. it recognizes that
a loop terminates in at least all of the cases that are recognized by (5.1).
It is, moreover, clear that the progressive loop invariant based approach is

stronger whenever
=⇒
P

DF

s (s′) is the deciding factor. Based on the results
shown in Fig. 5.4 we can see that in practice this additional strength can
almost never be observed. There is a single example (“additionalStrength”)
where the analysis described in Sec. 4.4 is stronger.

This example was specifically designed to show this additional strength
and is given in Example 7. In this example j grows exponentially whereas i
only grows linearly. It is, therefore, clear that j will at some point be larger
than i and the loop will terminate. Because polyhedra cannot represent
exponentials, however, it will approximate j using some linear function. For
example in my experiments the analysis lower-bounded j with some function
with a slope of 8. Based on these constraints it looks like the difference
between i and j might always stay the same. With the strict progressive
loop invariant we are however able to show that all future values of j are at
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Example 7. Progressive loop invariants show termination

1 var i = 60
2 var j = 1
3 while (j < i) {
4 i += 8
5 j *= 2
6 }

s0 s1 s2

true
∧i′ = 0

i < image.length
∧i′ = i + 1

i ≥ image.length
∧i′ = i

Figure 5.5: Control flow graph for Example 1. The initial state is s0, s1
represents states during the loop execution, and s2 represents the final states
of the program. The first line of the conditions for each edge give constraints
under which the edge can be used. The second line restricts the post-states
fo the edge by relating them back to the corresponding pre-states.

least twice as large as the current value. We, therefore, only have to show
that the ratio i

j will at some point be ≤ 2 to show that we exit the loop after
the next iteration. This is possible with the linear constraints we have. Note
that it is possible for i to grow so fast compared to the linear constraint we
get for j that the ratio i

j is always larger than 2.
We can, therefore, summarize that progressive loop invariants are, at

least in some cases, useful in the context of termination analysis. We will
look at some existing work in the domain of termination analysis next to see
how progressive loop invariants relate to a more advanced technique.

Conditional Termination (Existing Work)

A technique proposed by Boralleras et al. [6] represents a program with its
control flow graph (CFG) where each node represents a set of states and
edges represent pieces of straight-line-code. The CFG for our Example 1 is
shown in Fig. 5.5. Their analysis proves termination by trying to generate
conditions under which each edge is only used finitely many times.

In their approach each edge is associated with a condition that indicates
when the edge is used and that relates the pre- and post-states of that
edge to each other. Conceptually this is somewhat similar to progressive
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loop invariants. However, it should be noted that the conditions used by
Boralleras et al. are exact but only relate the pre- and post-states of an edge
to each other whereas progressive loop invariants are over-approximative and
are able to relate any two states to each other. Based on these conditions
Boralleras et al. are, then, able to construct ranking functions for each edge
of the CFG. Ranking functions are integer-valued functions over the values of
local (integer) variables whose value is (1) lower-bounded, (2) decreases each
time the corresponding edge in the CFG is used, and (3) does not increase
when any other edge is used. If such a function exists the corresponding edge
can only be used finitely many times.

We can construct such a function based on a template which we adjust
so the function satisfies the properties (1) - (3) listed above. Boralleras et al.
propose linear combinations of program variables as a template for ranking
functions and, then, try to find a coefficient for each variable to obtain a
ranking function. E.g. for our running example a viable ranking function
would be image.length− i. We can observe that these ranking functions
have the same shape as constraints captured by polyhedra. Using progressive
loop invariants we can, therefore, potentially capture the same information
that this approach can capture.

The main advantage over our approach comes from the fact that the
approach proposed by Boralleras et al. also allows them to find ranking
functions that only work once some condition is met. The authors propose
a method for filtering the CFG using these conditions and exclude the
corresponding cases for which we have already proven termination. Thus we
can successively eliminate additional conditions under which the program
terminates until we are either able to show that the whole program terminates
or we cannot find any further ranking functions. In future work it may be
interesting to try obtaining conditions under which (4.36) holds which would
allow us to apply a similar technique.

In summary, we note that progressive loop invariants are somewhat similar
to concepts used by state of the art termination analyses. It, therefore, seems
worthwhile to investigate further applications of progressive loop invariants
for termination analyses in the future.
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Chapter 6

Conclusion

We have introduced the concept of progressive loop invariants and seen that
they are useful as the foundation of a wide range of analyses. We have,
furthermore, seen that we can infer such progressive loop invariants using
an abstract interpretation based approach. We then used these progressive
loop invariants to extend existing work on framing specifications for loops
enabling us to infer inductive loop invariants. Additionally we introduced a
method for obtaining information about the order in which statements in
a loop access the same array location. We introduced the order graph to
represent this information and used it extend our analysis such that we can
infer invariants and loop pre- and postconditions for a wide range of array
programs. We, moreover, used the order graph as part of a technique that
automatically generates inductive proofs for properties on the values stored
in an array. Finally we introduced a technique that uses progressive loop
invariants to prove that a loop terminates.

Furthermore, we have seen that using polyhedra we can infer sufficiently
precise progressive loop invariants for a range of examples that allow the
techniques we built based on progressive loop invariants to produce good
results.

While the provided implementation uses the polyhedra abstract domain
the techniques presented in this thesis are independent of the abstract domain
that is used (however, it should be noted that the analyses profited from the
fact that constraints generated using polyhedra are within Presburger arith-
metic in order to efficiently eliminate quantifiers and maximum-expressions).
These techniques can, therefore, be adapted to other abstract domains and
directly benefit from future developments in the field of abstract interpreta-
tion.
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6.1 Future Work
There is a wide range of directions for the techniques described in this thesis
that are worth exploring in the future. One such direction is handling cyclic
order graphs. Possible approaches to this issue include techniques to upper-
bound the number of times the cycle occurs in concrete executions or showing
that the cycle has no effect (e.g. that the total amount of permission gain/
loss is always 0). As discussed earlier the specifications for programs that
exhale from the same location in multiple iterations are not necessarily as
precise as they can be. In future work it may be useful to look at techniques
to improve the precision of these specifications, including trying to split
exhale statements (e.g. into one that exhales from even indices and one
that exhales from odd ones) in the order graph to allow us to further
maximize the overlap between exhales that are maximized together.

The inference for functional specifications could, furthermore, benefit
from improved refinement techniques. The current implementation, moreover,
does not preserve the triggers of the user-provided postcondition. Preserving
these triggers may help both during the inductivity checks performed during
the inference and when verifying the program extended with the inferred
specifications. Another approach for inferring framing specifications is to
use the dependencies we determine to produce recursive functions. These
functions would rely only on the initial values of the array and, thus, eliminate
explicit dependencies on the values of other array elements. This approach
has the advantage of not requiring user-provided postcondition. The reason it
was not pursued within the scope of this thesis is that it requires the verifier to
generate an inductive proof for many interesting properties. It may however
still be interesting to explore further in the future. Conversely, recursive
programs can exhibit similar dependency structures as those captured by
the dependency graph used by the inference for functional specifications.
Consequently it may be worth exploring how a similar analysis could be used
to generate inductive proofs over recursive programs.

In the context of the termination analysis it may be interesting to try split-
ting the program similarly to what Borralleras et al. describe. Analogously
to how we used over-approximative progressive loop invariants to prove that
at some point there is no state left that allows us to continue executing the
loop it may, furthermore, be possible to use under-approximative progressive
loop invariants to show that we are guaranteed to never reach such a state
and, therefore, prove loop non-termination.

The techniques described in this thesis are imprecise if arrays are accessed
at indices that are not expressible in Presburger arithmetic or that depend
on heap values. Furthermore, they cannot handle overlapping arrays or
arrays of arrays. In the future it might be worth investigating if and how
these limitations can be overcome. Additionally we mentioned that the
specifications we generate are sometimes hard for the user to understand.
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Improved simplification techniques may help in such cases.
We used user-provided under-approximative progressive loop invariants

at several point during the analyses described in this thesis. Implementing an
automatic inference for such progressive loop invariants is another direction
for future work. Lastly it may be worth exploring additional applications
where progressive loop invariants are useful. We have seen how we can use
progressive loop invariants to determine dependencies between array values.
Such information may, e.g. be useful for code optimization (e.g. [18]) or
parallelization (e.g. [29]).
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Symbols Glossary

P (s, s′) A set of constraints that relate an earlier state s to a later state
s′.

I(s) An over-approximative invariant that indicates whether we can
reach s at the start of an iteration during the execution of a
loop.

→
P s(s′) The future progressive invariant indicates that the iteration

starting from s′ occurs after the one starting from s (cf. also (3.4)
in Sec. 3.2.1).

←
P s(s′) The past progressive invariant indicates that the iteration start-

ing from s′ occurs before the one starting from s (cf. also (3.6)
in Sec. 3.2.2).

=⇒
P s(s′) The strict future progressive invariant indicates that the it-

eration starting from s′ is a “true successor” to the iteration
starting from s. In contrast to

→
P s(s′) s′ may not occur in the

same iteration as s (cf. also (3.8) in Sec. 3.3.1 and (3.10) in
Sec. 3.3.2).

⇐=
P s(s′) The strict past progressive invariant indicates that the iteration

starting from s′ is a “true predecessor” to the iteration starting
from s. In contrast to

←
P s(s′) s′ may not occur in the same

iteration as s (cf. also (3.9) in Sec. 3.3.1 and (3.11) in Sec. 3.3.2).

l(s) The permission loss up to (but not including) the iteration
starting from state s (cf. also (4.1) in Sec. 4.1.1 and (4.14) in
Sec. 4.2.2).
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g(s) The permission gain up to (but not including) the iteration
starting from state s (cf. also (4.11) in Sec. 4.1.2 and (4.15) in
Sec. 4.2.2).

l The total permission loss over the execution of the entire loop
(cf. also (4.16 in Sec. 4.2.2).

g The total permission gain over the execution of the entire loop
(cf. also (4.17 in Sec. 4.2.2).

r(s) The amount of permissions required to execute the single itera-
tion starting from state s.

r′(s) The amount of permissions required at the beginning of the loop
to execute the single iteration starting from s after accounting
for the permission gain and loss up to s (cf. also (4.13) in
Sec. 4.2.2).

A The universe of arrays.

L The universe of array locations is defined as pairs of arrays and
indices (L := A× Z).

W The set of array locations we write to during a single loop
iteration.

Rw The set of array locations that are data dependencies for the
value we write to w ∈W .

R̂w The set of recursive dependencies, i.e. dependencies on values
we generate during the execution of the loop for location w ∈W
(cf. also (4.18) in Sec. 4.3.1).

R̂ The set of all recursive dependencies, i.e. the union of all R̂w for
w ∈W for a single loop iteration (cf. also (4.26) in Sec. 4.3.1).

Cw(s) The precondition requirements are a logical expression containing
requirements for dependencies that reach outside the loop, i.e.
dependencies on values that are not produced by the loop (cf.
also Sec. 4.3).

C(s) The combined precondition requirements for all writes in an
iteration (cf. also (4.33) in Sec. 4.3.1).
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T (x; s) The template invariant is the basis of the inductive proof we
generate for a loop postcondition. It is constructed heuristically
based on the loop postcondition (cf. also Sec. 4.3).

T (s) The combined invariant template for a single loop iteration (cf.
also (4.24) in Sec. 4.3.1).

F (~v) The point-wise loop postcondition gives the loop postcondition
for each assignment of the quantified variables ~v (cf. also (4.21)
in Sec. 4.3.1).

F ′(~v,~l) Point-wise loop postcondition that is additionally parameterized
in the array locations ~l it references (cf. also (4.22 in Sec. 4.3.1).

B Set containing tuples (~v,~l) with all possible assignments of
the quantified variables and array locations used in the loop
postcondition (cf. also (4.22) in Sec. 4.3.1).

B′(s) Set containing tuples (~v,~l) with assignments of the quantified
variables and array locations we construct the invariant template
over (cf. also (4.29) in Sec. 4.3.1).

E(s) The set containing elements of B that have been finalized, i.e.
that we will not write to during the remainder of the loop (cf.
also (4.25) in Sec. 4.3.1).

req(l, s) Indicates whether the induction hypothesis of the proof we are
constructing refers to location l in the iteration starting from
state s (cf. also (4.27) in Sec. 4.3.1).

betw(l, s, s′) Indicates whether location l is guaranteed to be written to
between the time we reach s and the time we reach s′ (cf.
also (4.32) in Sec. 4.3.1).

ind(l, s) Indicates whether we need the template invariant for location l
as part of our inductive proof in the future and whether we have
already established the template invariant for l (cf. also (4.28)
in Sec. 4.3.1).

Q(s) indicates whether we are guaranteed to exit the loop after
reaching s (cf. also (4.35) in Sec. 4.4).
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Appendix A

Monotonicity Using
Polyhedra

In Sec. 4.1 we introduced the concept of monotonicity for progressive loop
invariants. We will now discuss under which circumstances the progressive
loop invariants generated using polyhedra are monotone. For convenience
the corresponding definition is repeated here.

Definition 1. Monotonicity
Let

←
S s :=

{
s′
∣∣∣∣←P s(s′)

}
and

→
S s :=

{
s′
∣∣∣∣→P s(s′)

}
be the set of states satisfying

the past progressive invariant and future progressive invariant of state s
respectively. A family of past progressive invariants is called monotone iff

∀s, s′. suc(s, s′) −→
←
S s ⊆

←
S s′ .

A family of future progressive invariants is called monotone iff

∀s, s′. suc(s, s′) ∧ I(s) −→
→
S s ⊇

→
S s′

Fig. A.1 shows the state space we analyze for the instrumented version
of a simple program. The monotonicity property requires that the horizontal
slice (past progressive invariant) does not shrink when following arrows and
that the vertical slice (future progressive invariant) does not grow when
following arrows. This has to be the case for the concrete states (indicated
by points in the diagram) since conceptually we can see that the set of past
states grows while the set of future states shrinks as we progress through the
loop. It is therefore oftentimes the case that the progressive loop invariants
we generate are also monotone.

In the optimal case polyhedra finds the convex hull of these concrete sets.
The shaded area in Fig. A.1 indicates the convex hull. We can see that, as we
follow the arrows, the horizontal slice of the convex hull does not get narrower
and the vertical slice of the convex hull does not get wider, i.e. progressive
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Figure A.1: Instrumented numerical states for a program where the local
variable i successively takes on the values 0, 1, 8, and 5. Similarly to the
instrumentation we used in Chap. 3 i′ stores previous values of i. The
progressive loop invariant inference technique can be interpreted as taking
a horizontal slice of the graph for past progressive invariants and a vertical
slice for future progressive invariants. For example if we are in a state where
i = 8 we find points on the line i = 8 to find previous values of i and points
on the line i′ = 8 to find future values of i. Arrows show an execution
where i′ stores the value of i from the previous iteration, i.e. the points
reached correspond to suc(i′,i). The convex hull of the concrete states is
indicated by the shaded area.

loop invariants based on the convex hull are also monotone. In general we
can see that the monotonicity properties relate to the orientation of the
edges of the convex hull in the plane. For the future progressive invariant
we look at the edges that are above and below the arrow we follow and for
the past progressive invariant we look at the edges that are left and right
of the arrow. The top and bottom edges have to be parallel to the i′-axis
or angled toward the the arrow we follow for the set of states satisfying the
future progressive invariant to not get bigger, i.e. for the future progressive
invariant to be monotone. Analogously the left and right edges have to be
parallel to the i-axis or angled away from the arrow for the set of states that
satisfy the past progressive invariant to not become smaller, i.e. for the past
progressive invariant to be monotone.
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Figure A.2: Instrumented numerical states for a program where the local
variable i successively takes on the values 8, 1, 7, and 5. The area indicated
by the dashed line is what we typically get using polyhedra.

Since the concrete sets of past states (represented by points in the
diagram) is monotone as we follow an arrow we add points left or right of
where we end up. If this point falls within the interval between existing
points (e.g. as is the case for the point (5, 5) in Fig. A.1) the left and right
edges of the convex hull simply connect the outermost points vertically to
their equivalents at the start of the arrow, i.e. the left and right edges of
the convex hull are parallel to the i-axis. If a new point falls outside this
interval the corresponding edge of the convex hull must angle away from the
arrow to enclose that point.

For the concrete set of future states we take points away as we follow an
arrow. We cannot argue analogously to how we argued for the past states
however. Fig. A.2 shows a simple example where the set of concrete future
states behaves monotonically but the convex hull does not. While polyhedra
can, in principal, find this convex hull experience shows that polyhedra
usually finds weaker constraints for examples where i does not increase or
decrease monotonically especially if widening is used. For the example in
Fig. A.2 we would typically expect to get

1 ≤ i ≤ 8 ∧ 1 ≤ i′ ≤ 8.

This constraint corresponds to the area indicated by the dashed line in
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Fig. A.2. Constraints like these that do not relate i′ to i are always parallel
to the coordinate-axes.

For cases where i increases or decreases monotonically we can argue
analogously to how we argued for past progressive invariants that if we take
away a point such that there still remain points above and below it the top
and bottom constraints are parallel to the i′ axis and if we take away a point
on the edge of that interval the corresponding constraint is angled towards
the arrow.

We can, moreover, extend these deliberations to programs with multiple
local variables, i.e. higher dimensional spaces. Furthermore, we note that
if the constraints we identify are oriented the way described above and the
local variables behave monotonically we can use widening which typically
means removing a constraint, i.e. an edge in the diagram and the remaining
constraints will still have to be oriented correctly. We can see this based on
the fact that the orientation to all arrows is the same for each constraint if
the local variables are monotone.

Lastly we should note that the constraints we generate using polyhedra
are not guaranteed to (and in many cases do not) correspond to the convex
hull. The convex hull, however, gives the most precise constraints that
polyhedra can find and any implementation will try to find constraints as
close to it as possible. We have seen that the convex hull guarantees that we
construct monotone past progressive invariants but not that we construct
monotone future progressive invariants. In practice the progressive loop
invariants we construct from polyhedra are almost always monotone (e.g. the
progressive loop invariants for every example in the test suites we discussed
in Sec. 5 are monotone).
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