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Abstract

The Rust programming language guarantees memory safety at compile time
by default. However, for some low-level hardware behaviours the rules of
‘safe Rust’ are too restrictive. So-called ‘unsafe Rust’ allows programmers to
model these behaviours in sections marked with the unsafe keyword. Since
the Rust compiler cannot conclude the safety of unsafe sections by itself,
the responsibility of ensuring memory safety is temporarily delegated to the
programmer in such unsafe sections.

Prusti is an automated verifier designed for proving correctness of Rust
programs. So far its focus was mainly on safe Rust code, now the goal is to
expand Prusti to increasingly target unsafe Rust code, too. In this project we
used Prusti for verifying several examples of Rust code containing unsafe
sections, with the aim to evaluate how well Prusti is suited for verifying unsafe
Rust.

Over the course of verifying these examples there were some Prusti features
and specification patterns that we have found very useful, for example
Ghost types, and the ‘unimplemented/trusted’ pattern. Based on what we
experienced during our verification processes, we suggested some additional
features for Prusti. Most prominently, these suggestions include the idea of
Prusti allowing multiple, switchable invariants specified on a single struct,
and the concept of specialised specifications that enable Prusti to leverage
additional knowledge (if available) in its proof.
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Chapter 1

Introduction

Rust is a systems programming language that guarantees memory safety at
compile time by default. This property is based on three core concepts: ownership
of memory, borrowing and aliasing xor mutability.

Each value in Rust has an owner variable. As soon as the owner variable goes
out of scope, the memory used by its value is reclaimed immediately. During
the lifetime of the owner variable, Rust allows the borrowing of a value, i.e. the
creation of a reference to it. These references are not allowed to outlive the owner
variable, which prevents traditional safety issues like use-after-free or dangling
pointers.

Rust’s aliasing xor mutability property ensures that the two types of borrowing,
namely shared borrowing for read access and exclusive mutable borrowing for
write access, are never present at the same time. This makes concurrent reads
and writes impossible in Rust and thus prevents conventional race conditions and
memory safety bugs like accessing invalid references.

While these safety rules guarantee that no undefined behaviour can ever be
caused by safe Rust code, they are too restrictive to model some of the low-level
hardware behaviours that are required for system software. For this reason Rust
introduces the unsafe keyword. It is used to temporarily delegate the responsibility
of ensuring memory safety in the code to the programmer.

If an API contains unsafe code, its author could choose to directly expose this
internal unsafe code to the users of the API. However, it is considered more
idiomatic to encapsulate internal unsafe code with a safe API. When a programmer
declares an API as safe, they assure that the API conforms with Rust’s safety rules.
This means that the programmer is responsible for ensuring that (1) no matter
what input the API is given by a client, no memory safety bug can be triggered,
and (2) any internal unsafety hidden in the safe API is properly guarded.

Since the Rust compiler cannot conclude the safety of unsafe sections by itself,
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2 1. Introduction

it relies on the programmer and assumes that the code is sound and bug-free in
order to include it in the program’s safety guarantee. However, if this assumption
is wrong and there is in fact a bug in unsafe code, this can result in the safety
guarantee of the entire Rust program being compromised.

Unfortunately, reasoning about the correctness of unsafe code is very hard for
programmers, as one often has to consider actions taken by the Rust compiler that
are not visible to the programmer. For example, when reasoning about panic safety,
a programmer needs to manually check the consistency of stack variables for
every (invisible) unwinding path which is inserted by the compiler automatically [1].

For this reason, tools with varying degrees of automation are built to help program-
mers to ensure correctness. One strategy is to search for bugs and remove them,
another strategy is to prove the correctness of the code given.

One recently developed program which searches for bugs in Rust code is RUD-
RA [1], written to specifically target unsafe sections. RUDRA is programmed to
recognise certain patterns in the code that have been found to often appear in
connection with memory safety bugs. It scans Rust packages and marks sections
where these patterns appear, indicating a potential memory safety bug to the
programmer.

RUDRA’s developers scanned and analysed the entire Rust package registry
using RUDRA. They discovered 264 previously unknown memory safety bugs.
The 112 RustSec advisories they filed correspond to 51.6% of memory safety
bugs reported to RustSec since 2016 (until the time of the publishing of their
paper in 2021). Among them were bugs in some of the most often used Rust
packages (e.g. in std, the Rust standard library, or in rustc, the Rust compiler).
Some of them had gone undiscovered for years despite these important packages
being written and thoroughly reviewed by Rust experts, and despite the Rust
community’s efforts to manually audit unsafe code in Rust [1].

There is, however, one major drawback of programs like RUDRA that search for
bugs: false negatives. Even if we do not find a single bug in a program, that
does not mean that there is none. There might still be bugs which go unnoticed,
undermining the security of the entire program, or even a whole system.

The problem of false negatives is remedied by a different approach where, instead
of searching for bugs, one tries to prove the correctness of a program (and thus
the absence of bugs). An automated verifier takes this approach and is designed
to prove that a given program conforms with its specifications. An example is
Prusti [2], an automated program verifier which is currently being developed at
ETH Zürich. It is built upon the Viper [3] verification infrastructure (also developed
at ETH) and is targeted at the Rust programming language. Prusti allows the user
to provide specifications through various features and checks whether they can be
proved for the given piece of code [4].
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When Prusti’s development began, the focus was on safe Rust code. Increasingly
now, the goal is to expand Prusti to also target certain patterns of unsafe Rust
code.

The aim of this project is to evaluate how well Prusti is suited for verifying the
absence of vulnerabilities caused by memory safety bugs.





Chapter 2

Methodology

The aim of this project is to assess Prusti’s capabilities with regard to verifying
unsafe Rust code. For this purpose we use Prusti to verify several code examples
from the Rust standard library and from the Rust crates directory. Within these
code examples, we focus on the vulnerable sections where memory safety bugs
have been found in the past, and try to verify them after these bugs have been
fixed. Focusing on these sections gives us the possibility of a direct comparison
of verifying the fixed code (which should be successful) with verifying the buggy
code using the same specifications (which should fail), thus allowing us to assess
Prusti’s capabilities in verifying unsafe Rust code.

In Sec. 2.1 we describe our procedure for analysing and verifying each of our
examples. Furthermore, in Sec. 2.2 we provide information regarding the tools we
used for our project and the detailed technical specifications. Sec. 2.3 goes into
more detail regarding our process of choosing our examples to verify.

2.1 Verification process

As mentioned above, the selection of our code excerpts is based on previously
found memory safety bugs, and our goal for each of our examples is to prove
with Prusti that these sections are now memory safe, after they have been fixed.
We therefore limit our verification to the parts of the code that are relevant for the
bug and its fix, but try to leave out anything else, so as to keep the size of our
examples as small as possible.

We start our verification of each example by getting an overview of the Rust
features that are present in the relevant sections of the code. Some of them might
not be supported by Prusti (yet). In such cases, we check whether we can rewrite
the code so that these features are avoided, but without changing anything that
is relevant to the bug and its fix. Adapting the code in such a way might not be
feasible for some examples, meaning we will not be able to verify those examples.
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6 2. Methodology

However, if we manage to find a workaround for any features Prusti does not
support, then we can proceed by writing Prusti specifications for our code.

If Prusti fails to verify the fixed code with the specifications we wrote, then we have
to find the reason for this failure: do we need to refine our specifications? Is Prusti
missing a feature that is necessary to verify this code? Is there another bug in the
code that has not been noticed yet?

After successfully verifying the code, we check what happens when we run Prusti
on the buggy code, with the same specifications. This verification should fail! If it
verifies regardless, we have to find out what went wrong. One possible problem
is that our Prusti specifications are buggy. We go back to the previous step to
correct our specifications, then try to verify the fixed version first again. If our
specifications are not the problem, then another possibility is that there is a bug in
Prusti itself and we will therefore not be able to verify the example with its current
version.

2.2 Tools and technical details

For verifying our examples we used the following version of Prusti:
9e45f825a96c82fb8d95993f1ae5df66c7b77db6 [5].

We used the symbolic execution backend of Viper as the underlying Viper server,
specifically an experimental version from the ‘meilers silicarbon qponly’ branch [6],
and version 4.8.7 of the Z3 SMT solver.

For our Viper verifications in Chapter 6 we used version 4.2.2 of the Viper IDE for
VS Code [7].

A list of all configuration flags we used for our Prusti verifications is provided in
Sec. A.1.

2.3 Choosing Code Examples to Verify

As mentioned in the previous chapter, we used the bugs found by the Rudra
project [8] as the starting point for choosing our examples to verify. The Rudra
team analysed the Rust standard library and the rust crates published on the main
Rust package index, crates.io, and published a collection of memory safety bugs
in unsafe Rust code [9] [10]. In this chapter we describe our process of choosing
suitable examples among these bugs for our project.

Since the Rudra program uses several analysers, the bugs on the list have been
categorised according to which analyser found them. For this project we focused
on the 83 examples where bugs were found by the so-called ‘UnsafeDataflow’
analyser, as these were the most suitable ones for assessing Prusti’s capabilities
regarding unsafe code.
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We proceeded by looking at each example in this subset separately. Some of them
had to be excluded for various reasons, as they were not suitable for our project
after all. For instance, we excluded any examples which have not yet received a
fix, as the primary goal for our examples was to verify the fixed code (and only
dealing with the buggy code once we have been successful with this task). This
restriction reduced our set of examples by half. We further noticed that there was
a large subset of bugs that were essentially about the same problem (namely a
vector being handed to a reader without being initialised). In most cases, this
problem was solved in a way that did not require any unsafe sections anymore
(by initialising the vector from the start)1, meaning these examples were not of
interest for assessing Prusti on unsafe Rust code. Our set of eligible bugs was
again reduced roughly by half.

Once this pre-selection was complete, resulting in a set of 25 examples, we
checked for each one of them whether it contained features that Prusti does not
support (yet). If so, we tried to find a way to avoid these features by rewriting
the code slightly differently. Furthermore, we assessed whether the code excerpt
relevant for verification would be of a reasonable size for Prusti with regard to
performance. Finally, whenever we chose a new example to verify we tried to
avoid examples that were too similar to previous ones. With this approach we
hoped to achieve a bigger variety of features and concepts in our examples, which
would give us the opportunity to test Prusti’s usefulness for verifying unsafe code
more thoroughly.

In the following chapters we are going to present the four examples we eventually
verified. For each of them we explain the code and the problem that had to be
fixed, as well as the process and results of verifying the code with Prusti.

1Chapter 3 shows an example where this problem was solved in a different (unsafe) way. We
will therefore see more about this group of bugs in that chapter, specifically in Sec. 3.3.





Chapter 3

Example 1: glium::buffer::Content::read

Our first verification example is from a crate called glium. In Sec. 3.1 we present
the function we are going to verify, before we proceed with verifying it in Sec. 3.2.

3.1 Context

In this section we present the original code of the function we are going to verify,
then show what problem the Rudra team found with this function and how this
problem has been addressed. Due to the somewhat special way this problem was
handled we state a slightly altered goal for verifying the function, before we start
the actual process of verifying it in Sec. 3.2.1.

The Content::read function Our first example is about the read function in
the implementation of the trait glium::buffer::Content for type [T], shown in
Fig. 3.1 [11][12]. Note that T is required to implement the Copy trait.

The function first calculates the length len, which it uses to create a large enough
vector with Vec::with_capacity(len). Then it uses the unsafe set_len function
to set the length of the vector to len, and hands a mutable reference to the vector
to the closure f. If f returns an error, this error is propagated up to the caller of
read. Otherwise, read returns the vector in its state after the call to f.

The problem Originally, read was declared as a safe function. The problem
here is that the vector does not get initialised before being handed to f. Since f

can be user-defined, it is possible that it reads this uninitialised buffer. Reading
uninitialised memory is undefined behaviour and is not allowed to happen. This
bug was found and reported by the Rudra team [13].

The fix According to this crate’s programmers, the read function is not meant to
be used with just any arbitrary closure f. Instead, the closure provided to read is

9



10 3. Example 1: glium::buffer::Content::read

1 /// Trait for types of data that can be put inside buffers.

2 pub unsafe trait Content {

3 /// A type that holds a sized version of the content.

4 type Owned;

5

6 /// Prepares an output buffer,

7 /// then turns this buffer into an `Owned`.
8 fn read<F, E>(size: usize, _: F) -> Result<Self::Owned, E>

9 where F: FnOnce(&mut Self) -> Result<(), E>;

10

11 /* ... */

12 }

13

14 unsafe impl<T> Content for [T] where T: Copy {

15 type Owned = Vec<T>;

16

17 #[ inline ]

18 fn read<F, E>(size: usize, f: F) -> Result<Vec<T>, E>

19 where F: FnOnce(&mut [T]) -> Result<(), E>

20 {

21 assert!(size % mem::size_of::<T>() == 0);

22 let len = size / mem::size_of::<T>();

23 let mut value = Vec::with_capacity(len);

24 unsafe { value.set_len(len) };

25 f(&mut value)?;

26 Ok(value)

27 }

28

29 /* ... */

30 }

Figure 3.1: Original code of trait Content and its implementation for [T]

supposed to have certain properties. For this reason, the API of the function was
changed to be unsafe, and a warning was added in the function’s documentation,
stating what conditions need to hold so that read can be used safely (i.e. so
that no undefined behaviour can occur). This note about safety requirements for
closure f reads as follows [14]:

User-provided closure F must only write to and not read from &mut

Self.

Aim of verification Under these circumstances, the objective of our verification
is slightly different than in the examples that will follow: instead of verifying the
code itself as it is, we verify the code assuming that all the safety requirements
stated in the documentation hold (but nothing more). If the verification is infeasible
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under these conditions, then the safety requirements are possibly insufficient for
guaranteeing safe use of this function.

3.2 Verification

In this section we show our approach to verifying the read function under the
conditions stated above. In Sec. 3.2.1 we show our Prusti specifications for the
code and explain the changes we need to make in the code in order to be able to
use Prusti for this verification. In Sec. 3.2.2 we use the model and specifications we
created in Sec. 3.2.1 and test whether the code is verifiable under the assumption
that the safety conditions from the documentation hold.

3.2.1 Specification process

The function we want to verify in this section is the read function in glium::buffer

::Content for [T], where T is a generic type parameter for a type implementing
the Copy trait. Since slices and traits are both not (completely) supported in Prusti
we rewrite this function as an independent function read, and replace the slice type
with a vector. Therefore, the types Self::Owned and Self, which in the original
code correspond to Vec<T> and [T], respectively, both become vectors in our
version of the code.

The read function takes a closure f as an argument, with the type of the closure
defined by the type parameter F. To avoid closures, which are not supported by
Prusti, we remove this argument from the function and write f as a separate
function instead. For simplicity, we also omit the type parameter E that is used for
the errors and instead use a very simple error type SomeError whenever an error
appears in the code.

After these changes, the signatures of our functions read and f look as follows:

pub unsafe fn read (size: usize) -> Result<Vec, SomeError>

fn f (v: &mut Vec) -> Result<(), SomeError>

Vec and its Type Invariant The Rust vector type Vec<T> takes a generic type
parameter T that defines the type of the vector’s elements. It has a length and
a capacity, where the length is the number of elements that are currently in the
vector, and the capacity is the total amount of space allocated for elements of the
vector [15]. The vector’s elements must be valid values of type T, i.e. the vector
has to be initialised up to its length. The rest of the allocated space does not have
to be initialised. These ‘rules’ make up the type invariant of Vec<T>.

The goal is now to model this type and its invariant for our verification. We create
a struct Vec with three fields: a raw pointer of type *const T named ptr (meant
to indicate the location of the vector in memory), as well as len and cap, both of
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type usize and representing the vector’s length and capacity, respectively. For the
element type we use a type alias named T instead of a generic type parameter.
This way we can avoid problems caused by non-linear arithmetic in our verification,
which could otherwise occur due to the type size of generic type T not being
known.

Now that we have defined the Vec struct, we use Prusti to describe its type
invariant, as shown in Fig. 3.2: the size of the allocation is limited according to
Rust rules (line 2), the pointer field must not be null (line 3), and the length can
never be greater than the capacity1 (line 4). On lines 5-34 the permissions of
access to the vector are defined, first for the case of non-zero-sized types in the
if-clause, then for zero-sized types (ZSTs) in the else-clause.

On lines 12-16 and 28-32,

raw_range(self.ptr, std::mem::size_of::<T>(),

self.len, self.cap)

means that the Vec has access to a range of raw memory blocks of the type size
of T, starting at an offset of self.len from self.ptr, and ranging until the end
of the vector’s allocation (at offset self.cap from self.ptr). Such raw memory
blocks can only be written to but not read from.

The macro

own_range!(self.ptr, 0, self.len)

on the other hand states that the vector does not only own the raw memory blocks
for the range of the first self.len blocks, but that this range consists of valid,
initialised values of the vector’s element type, i.e. reading and using these values
is allowed. Contrary to raw_range, which has to receive the size of the blocks as an
extra argument, the block size for own_range is given by the vector’s element type.
Finally, the dealloc! macro gives Vec the right to deallocate the corresponding
memory.

This invariant that we defined in Prusti corresponds to the type invariant of Vec
that we described before. We defined it using Prusti’s #[structural_invariant] ,
which is used to specify type invariants that are used to prove memory safety.

Prusti’s design for verifying memory safety Prusti is designed to verify mem-
ory safety separately from general correctness and the absence of panics. Key-
words and instructions containing the prefix (or infix)‘structural’ are used for
proving memory safety, whereas their ‘normal’ counterparts are used for proving
correctness. For example, for proving memory safety we need to use

• #[structural_requires(...)] instead of #[requires(...)]
for preconditions,

1If a Rust vector’s length exceeds its capacity, the whole vector has to be reallocated [15].
Therefore, a vector will never be in a state where its length is greater than its capacity.
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1 #[ structural_invariant(

2 std::mem::size_of::<T>() * self.cap <= (isize::MAX as usize)

3 && !self.ptr.is_null()

4 && self.len <= self.cap

5 && (

6 if std::mem::size_of::<T>() != 0 {

7 (self.cap != 0 ==> (

8 own_range!(

9 self.ptr,

10 0,

11 self.len)

12 && raw_range(

13 self.ptr,

14 td::mem::size_of::<T>(),

15 self.len,

16 self.cap)

17 && raw_dealloc!(

18 *self.ptr,

19 std::mem::size_of::<T>() * self.cap,

20 std::mem::align_of::<T>())

21 ))

22 } else {

23 self.cap == usize::MAX

24 && own_range!(

25 self.ptr,

26 0,

27 self.len)

28 && raw_range(

29 self.ptr,

30 std::mem::size_of::<T>(),

31 self.len,

32 self.cap)

33 }

34 )

35 ) ]

36 pub struct Vec {

37 ptr: *const T,

38 len: usize,

39 cap: usize,

40 }

Figure 3.2: Vec and its invariant
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• #[structural_ensures(...)] instead of #[ensures(...)]
for postconditions,

• #[structural_invariant(...)] instead of #[invariant(...)]
for type invariants, and

• prusti_structural_assert! instead of prusti_assert!
for assertions.

This isolation of the memory safety proof from the correctness proof helps Prusti
prevent us from writing some nonsensical specifications. For example, Prusti
does not allow us to specify memory safety requirements as preconditions for
safe functions (i.e., using #[structural_requires(...)] on a safe function is not
allowed). By definition, a safe function must be safe regardless of what context it
is called in, or what values it gets passed as arguments. If there are preconditions
that need to be fulfilled in order for some function to be memory safe, then that
means that the function is unsafe.

As for structural postconditions: since they are used for proving memory safety,
the properties specified inside structural postconditions must hold independently
of whether the function exits regularly or with a panic. As a consequence, Prusti
prohibits the use of the result keyword in structural postconditions, because a
result is only available if the function does not panic, i.e. only in one of the two
cases where a structural postcondition must hold.

If the postcondition about the result is nevertheless needed for the proof of memory
safety, we can annotate the function with #[no_panic_ensures_postcondition]

in order for Prusti to be able to assume the result in the non-panic-situation at
least. Without such an annotations, ‘normal’ postconditions are simply ignored
for the memory safety proof, so this annotation is like a notification for Prusti to
include this postcondition (in the case of no panic) when it verifies memory safety.
We are going to see this in use several times throughout our examples.

Contrary to structural preconditions, #[structural_ensures(...)] is allowed on
safe functions. It is convenient for properties that are ensured by the function both
in the panic and no-panic cases. Otherwise, duplicate postcondition specifications
would be necessary for properties like these, one with #[ensures(...)] for the
case without a panic, and one with #[panic_ensures(...)] , for the panicking
case.

The Vec::with capacity function In the read function of our example, a new
vector is created using with_capacity. Fig. 3.3 shows the Prusti specifications of
the Vec::with_capacity function we use for the verification. The function’s body
is omitted and replaced with the unimplemented! macro, which is why the function
has to be annotated with #[trusted] in order to verify.

In its precondition it says that allocation must never fail and that the capacity given
as an input must not be too big, so that Rust’s size limit for allocations is not
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1 impl Vec {

2 #[trusted]

3 #[no_panic_ensures_postcondition]

4 #[requires(allocation_never_fails())]

5 #[requires(

6 std::mem::size_of::<T>() * capacity

7 <= (isize::MAX as usize)

8 )]

9 #[ensures(result.capacity() == capacity)]

10 #[ensures(result.len() == 0)]

11 pub fn with_capacity(capacity: usize) -> Vec {

12 unimplemented!();

13 }

14 }

Figure 3.3: Vec::with capacity

exceeded. The postconditions ensure that the Vec returned by the function will
actually have the capacity that was given as the argument, and that it will be empty
(i.e. len is zero). The methods capacity and len used on lines 9 and 10 here are
both pure getter methods for the vector’s capacity and length fields, respectively.
Their exact code and Prusti specifications can be seen in Sec. A.2, Fig. A.1.

Note that we cannot use #[structural_ensures] for the postconditions here,
since they use the keyword result to describe the vector returned by the function.
As explained before, Prusti verifies functionality and memory safety separately and
a ‘normal’ postcondition like this one is simply ignored by the memory safety proof.
We therefore need to add the annotation #[no_panic_ensures_postcondition] ,
which allows Prusti to consider the postconditions for its memory safety proof. If
there is no panic, Prusti can assume the postconditions to hold at the call site of
the function after it returns.

The unsafe set len method Once the vector is created, read uses the unsafe
method Vec::set_len on line 24 of Fig. 3.1 to set its length to len, the length it
calculated previously (line 22) and which it already used as the capacity argument
in with_capacity. The set_len method forces the length of a vector to the given
argument new_len. However, in doing so, it does not maintain the invariant of the
vector [16], because it completely ignores the initialisation of the vector elements.
No excess elements are dropped when the length of the vector gets decreased by
set_len, and no new elements are initialised when the length is increased.

The fact that the type invariant of Vec might not hold anymore after a use of
set_len is exactly the reason why this method is declared as an unsafe function.
It can only be used safely if additional precautions are taken. The documentation
on set_len states two safety conditions which need to hold for a safe use of
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set_len [16]:

(1) new_len must be less than or equal to the capacity

(2) all elements at old_len..new_len must be initialised

In the case of our example, the function is as follows on line 24, just after the
creation of the vector value:

unsafe { value.set_len(len) };

The new length len is equal to the capacity we used for creating the vector,
therefore, the first safety condition holds. However, no elements have been
initialised so far, thus the second condition is violated in our example, meaning
that after the call to set_len the invariant of Vec will be broken.

But is it possible that the overall code is memory safe nonetheless? Regarding
the safety of the function, remember that the documentation of glium::buffer
::Content::read only states: “User-provided closure F must only write to and not
read from &mut Self.” According to the programmers of this functions it should
therefore be safe to use read as long as the closure fulfils these conditions.

The vector with the broken invariant We therefore want to find out whether it
is possible to verify read despite the invariant of Vec being broken, but assuming
that the conditions stated in the documentation hold. In order to do this, we need
a way to model the vector in the state where its invariant is broken from the call to
set_len. However, Prusti does not allow us to define several alternative invariants
on the same struct, so we create a new, slightly different struct for the vector type,
with a weaker invariant. We call this struct BrokenVec, and show it in Fig. 3.4.

BrokenVec has an additional field init_pt that allows us to define the initialisation
separately from the len field: instead of len, we now use init_pt in the definition
of the permission ranges, to indicate the index up to which the vector is initialised.
Both len and init_pt still have to be within the capacity, but we do not say
anything about the relation between len and init_pt in the invariant, i.e. we
allow len to be greater than init_pt, so that this version of the vector can contain
uninitialised elements within its length.

Ghost code Note that we use a different type for index init_pt than for len and
cap: Int instead of usize. Int is a mathematical (i.e. unbounded) integer type
used in Prusti, and it is a Ghost type. So-called Ghost code refers to data and
computations that are only inserted into code for the purpose of its verification [17].
It is only taken into consideration during verification, but not when the code is
run normally. Therefore, Ghost code must not affect the regular code in a way
that changes the program’s behaviour, it may only be deployed to facilitate the
program’s verification.
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1 #[structural_invariant(

2 std::mem::size_of::<T>() * self.cap <= (isize::MAX as usize)

3 && !self.ptr.is_null()

4 && self.len <= self.cap

5 && Int::new(0) <= self.init_pt

6 && (self.init_pt).to_usize() <= self.cap

7 && (

8 if std::mem::size_of::<T>() != 0 {

9 (self.cap != 0 ==> (

10 own_range!(

11 self.ptr,

12 0,

13 (self.init_pt).to_usize())

14 && raw_range(

15 self.ptr,

16 std::mem::size_of::<T>(),

17 (self.init_pt).to_usize(),

18 self.cap)

19 && raw_dealloc!(

20 *self.ptr,

21 std::mem::size_of::<T>() * self.cap,

22 std::mem::align_of::<T>())

23 ))

24 } else {

25 self.cap == usize::MAX

26 && own_range!(

27 self.ptr,

28 0,

29 (self.init_pt).to_usize())

30 && raw_range(self.ptr,

31 std::mem::size_of::<T>(),

32 (self.init_pt).to_usize(),

33 self.cap)

34 }

35 )

36 )]

37 struct BrokenVec {

38 ptr: *const T,

39 len: usize,

40 cap: usize,

41 init_pt: Int,

42 }

Figure 3.4: BrokenVec and its invariant
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Since init_pt is only used for our Prusti specification and does not appear in any
of the actual computations of the program, it makes sense to use a Ghost type
here to make it clear that this field is separate from the rest of the code and does
not affect its behaviour, it only serves to aid our verification. Because init_pt

is of type Int, we need a conversion function from Int to to_usize if we want to
compare it with usize values, and we also need to add a condition in the invariant
stating that init_pt is non-negative.

Specifications for BrokenVec’s set len method We can now define set_len

as a method of BrokenVec (see Fig. 3.5). As a precondition we require the first
of the two safety conditions from set_len’s documentation to hold. The second
safety condition (that new_len must be smaller or equal to init_pt) is left out
to allow the situation occurring in the read function, where this condition does
not hold. The postcondition says that after the call to set_len, the length of the
vector will have the value of new_len, while the capacity and init_pt will remain
unchanged.

Inside the body of the method, we unpack the invariant using the Prusti macro
unpack! (line 9), which makes the conditions and knowledge held by the invariant
available inside the function. Then, the length of the vector is set to its new value.
In the end, the invariant has to be packed again (line 13). If the len field was
changed in a way that violates the conditions of the invariant, then calling pack!

will fail. But if BrokenVec’s invariant still holds, it can be packed again without a
problem.

Since the vector is behind reference &mut self in this method, this reference
needs to be opened first, using open_mut_ref! (line 8), before the invariant can
be unpacked. The macro take_lifetime! (line 7) is needed to give a name (lft_
self) to self’s lifetime, which is used by open_mut_ref! as an argument. At the
end of the function, when the invariant has been packed, the reference needs to
be closed again, using close_mut_ref! (line 14).

Function f The read function calls closure f after set_len was used for forcing
the length of the vector to its capacity without initialising any elements, i.e. at a
time when the invariant of the vector is broken. Therefore, we change the input
type of our function f from &mut Vec to &mut BrokenVec.

Due to no elements being initialised at this point, init_pt will be zero. The
permissions that f gets are therefore only raw permissions for the whole range of
the vector:

raw_range(self.ptr, std::mem::size_of::<T>(), 0, self.cap)

Meanwhile, the range of own_range is [0..0]. Therefore, f does not hold any
permissions to read the elements of the vector, it can only write to them. This
situation corresponds exactly to the safety requirements stated in the documen-
tation of read, i.e. we are able to test if verification is possible under exactly the
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1 impl BrokenVec {

2 #[ structural_requires(new_len <= self.cap) ]

3 #[ structural_ensures(self.len == new_len) ]

4 #[ structural_ensures(self.init_pt == old(self.init_pt)) ]

5 #[ structural_ensures(self.cap == old(self.cap)) ]

6 unsafe fn set_len(&mut self, new_len: usize) {

7 take_lifetime!(self, lft_self);

8 open_mut_ref!(lft_self, *self, self_witness);

9 unpack!(*self);

10

11 self.len = new_len;

12

13 pack!(*self);

14 close_mut_ref!(*self, self_witness);

15 }

16 }

Figure 3.5: BrokenVec::set len

conditions that are supposedly sufficient to make the read function safe, which is
the goal we set for this example at the beginning of this section.

Due to f being a closure given to read as an argument in the original code, we
do not know anything about its implementation. Since we model it as a separate
function now and not as an argument anymore, we need a different way to model
this ‘black box’ behaviour. We can leave the body unknown by using the macro
unimplemented!. For our verification we then have to annotate f as a trusted
function with #[trusted] . This tells Prusti to just assume that this function verifies,
regardless of its implementation. The specifications of f now look as follows:

#[trusted]

fn f(v: &mut BrokenVec) -> Result<(), SomeError> {

unimplemented!();

}

Implementing the read function Fig. 3.6 shows how we implement the read

function and what Prusti specifications we use for it. The two preconditions at the
top are needed to make sure the preconditions of Vec::with_capacity hold and
the vector can be created smoothly. The third precondition makes sure that the
assert! statement at the very beginning holds. Note that putting such an assertion
in the code is essentially just a way of declaring (and enforcing!) a precondition in
plain Rust: it only lets the rest of the function body execute if it holds.

This precondition not only makes sure that size is a multiple of the type size of
T, it also prevents this function from being executed when T is a zero-sized type,
since a calculation modulo zero is not allowed and therefore the precondition never
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1 #[requires(allocation_never_fails())]

2 #[requires(size <= (isize::MAX as usize))]

3 #[requires(size % std::mem::size_of::<T>() == 0)]

4 pub unsafe fn read (size: usize) -> Result<Vec, SomeError> {

5 assert!(size % std::mem::size_of::<T>() == 0);

6 let len = size / std::mem::size_of::<T>();

7

8 let mut value: Vec = Vec::with_capacity(len);

9

10 let mut broken_value = break_vec(value);

11

12 unsafe { broken_value.set_len(len) };

13 match f(&mut broken_value) {

14 Ok(_) => {

15 Ok(unsafe { repair_vec(broken_value)} )

16 },

17 Err(e) => Err(e),

18 }

19 }

Figure 3.6: Function read with vector transformations

holds. If we set T to be a zero-sized type, our verification of read will consequently
always be successful, as the function would never even be entered.

Note also that the original Rust implementation used the ?-operator to directly
return errors returned by f. However, there is no support for the ?-operator in
Prusti yet, so we replaced it with a match-expression instead.

In the remainder of this subsection we show our implementation of the main part
of the function and how we put our two structs Vec and BrokenVec to use. When
the read function creates the vector using Vec::with_capacity, the usual type
invariant of std::vec::Vec still holds. It is only afterwards, when set_len is called,
that the invariant becomes broken, just before the call to f. However, the ‘normal’
invariant needs to hold again at the time when read returns the vector, at the very
latest. Otherwise, the broken vector would be exposed to code outside of read,
which relies on the invariant of the vector to be intact.

Therefore, we use BrokenVec only temporarily: after the vector is created as a
normal Vec through Vec::with_capacity, we build a BrokenVec out of it before set

_len is called, use this for the rest of the execution, but turn it back into a normal
Vec before the function returns. For these transformations from Vec to BrokenVec

and back we introduced two extra functions, break_vec and repair_vec.

Transforming Vec to BrokenVec Fig. 3.7 shows the function transforming a
‘normal’ Vec into a BrokenVec. First of all, we unpack Vec’s invariant to make its
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1 #[no_panic_ensures_postcondition]

2 #[ensures(

3 result.ptr == old(vec.ptr)

4 && result.len == old(vec.len)

5 && result.init_pt == old(Int::new_usize(vec.len))

6 && result.cap == old(vec.cap)

7 )]

8 fn break_vec(mut vec: Vec) -> BrokenVec {

9 unpack!(vec);

10 let broken = BrokenVec {

11 ptr: vec.ptr,

12 len: vec.len,

13 cap: vec.cap,

14 init_pt: Int::new_usize(vec.len)

15 };

16

17 vec.ptr = new_ptr();

18 vec.len = 0;

19 vec.cap = 0;

20 pack!(vec);

21 broken

22 }

Figure 3.7: Transformation from Vec to BrokenVec

permissions and properties available to the function. Then we create a BrokenVec

instance, giving its fields the values from vec’s fields. init_pt gets its value from
vec.len since at this point initialisation and length are still the same. Our new
vector also gets the permissions stated in its invariant from vec.

Right now, both vec and the new broken refer to the same allocation in memory
(and share the same permissions to access it). Before we can return the BrokenVec

to read, we need to make vec forget about this allocation and its old field values.
Otherwise, the allocation would get deallocated when vec goes out scope and is
dropped at the end of break_vec. Simply overwriting the vec variable itself with a
new Vec would not do the trick, as the old Vec would in this case be dropped when
it gets overwritten, thus we would not be able to prevent the allocation from being
deallocated this way.

Instead, we have to overwrite each of the fields inside vec with new values. The
integers can be overwritten with zero, but to obtain a new pointer we create
a function new_ptr with return type *const T. We leave it unimplemented and
annotate it as a trusted function, and in its postcondition we ensure that the
returned pointer is non-null.

Note that the behaviour described above only occurs as described if Vec actually
gets dropped, i.e. if Vec implements the Drop trait. Otherwise, nothing would
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1 #[no_panic_ensures_postcondition]

2 #[structural_requires(

3 broken_vec.len == (broken_vec.init_pt).to_usize()

4 )]

5 #[ensures(

6 result.ptr == old(broken_vec.ptr)

7 && result.len == old(broken_vec.len)

8 && result.cap == old(broken_vec.cap)

9 )]

10 unsafe fn repair_vec(mut broken_vec: BrokenVec) -> Vec {

11 unpack!(broken_vec);

12 let repaired = Vec {

13 ptr: broken_vec.ptr,

14 len: broken_vec.len,

15 cap: broken_vec.cap

16 };

17

18 broken_vec.ptr = new_ptr();

19 broken_vec.len = 0;

20 broken_vec.cap = 0;

21 broken_vec.init_pt = Int::new(0);

22

23 pack!(broken_vec);

24 repaired

25 }

Figure 3.8: Transformation from BrokenVec back to Vec

happen when vec goes out of scope and the function could incorrectly be verified
even if vec’s fields are not overwritten. To ensure that vec’s behaviour upon going
out of scope is realistically modelled, we added a Drop implementation for Vec
when we verified this example. (We did the same for BrokenVec as well, for the
reverse transformation that we will see later on).

Once the fields of vec have been overwritten, we can pack vec’s invariant again
and then return our new vector, broken. In the postcondition of break_vec, we
have to use old expressions to refer to the values of vec’s fields at the beginning
of the function, before they were overwritten.

Transforming BrokenVec back to Vec For the reverse transformation, we do
essentially the same in the other direction (see Fig. 3.8): we unpack the invariant of
broken_vec, create a Vec, repaired, which takes the field values from broken_vec,
then overwrite the fields of broken_vec before we pack its invariant again and
return the Vec we created. The postcondition also works in the same way as the
one of break_vec.
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The only big difference is that we have a structural precondition for this func-
tion: init_pt must be equal to len, otherwise we cannot build a Vec out of the
BrokenVec. This precondition means that the ‘normal’ vector invariant must not
actually be broken (with init_pt ̸= len) at this point anymore if we want to make
a ‘normal’ Vec out of the BrokenVec again. As explained before, functions with a
structural precondition must be unsafe. We therefore have to turn repair_vec into
an unsafe function.

3.2.2 Final verification specifications and results

Let us summarise briefly what we prepared for the verification in the last subsection.
First of all, we moved closure f outside of read’s arguments to be an independent
function. We left it unimplemented and marked it as a trusted function. Then we
defined two versions of the vector struct: Vec, the ‘normal’ one with the usual
type invariant that is also described in the documentation, and a second one,
BrokenVec, which contains an additional field, the Ghost field init_pt, and has a
slightly weaker invariant, allowing init_pt and len to be unequal.

In our main read function we use the ‘normal’ Vec at the beginning, for creating the
vector through its associated function with_capacity, as well as at the end, when
a vector is returned. For the computation in between, however, we use BrokenVec,
and its method set_len. We use the two functions break_vec and repair_vec for
changing the vector from Vec to BrokenVec and back. Among these two functions,
repair_vec is an unsafe function due to its precondition that init_pt and len

must be equal once more before the BrokenVec can be transformed back to a
‘normal’ Vec.

Recall that the documentation of Content::read states that for read to be safe,
the closure f provided to it must only write to the vector and not read from it.
Remember also that our Prusti specifications correspond to the assumption that
this condition holds. When we run our verification with these specifications, Prusti
gives us the output shown in Fig. 3.9. It is not able to prove that the precondition
to repair_vec holds, i.e. it cannot prove that broken_vec is initialised exactly up
to its length after it returns from f, meaning that read is actually not safe under
this assumption.

This makes sense, since the assumption only said that f may only write to but not
read from the vector, it does not say that it has to write to it or that it has to initialise
exactly the first len elements of the vector. Therefore, this safety condition does
not prevent the vector from still being only partly initialised, or not at all.

Verification with an additional postcondition for f Let us now make an exper-
iment where we assume that we know that f does not read from the vector, and
that it writes exactly len elements to the vector, then returns. To assume this, we
add a postcondition to our function f as shown in Fig. 3.10. With this additional
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Figure 3.9: Caption

1 #[trusted]

2 // additional condition that is NOT stated in the documentation!!

3 #[structural_ensures((v.init_pt).to_usize() == v.len)]

4 fn f(v: &mut BrokenVec) -> Result<(), SomeError> {

5 unimplemented!();

6 }

Figure 3.10: Adding a postcondition to f

postcondition, Prusti is able to verify the program successfully. Therefore, this
additional assumption about f is what it takes for read to actually be safe.

3.3 Similar examples

During our analysis of the list of bugs that were found with the Rudra tool we came
across many examples with a similar problem to this one. Oftentimes a vector
was created using Vec::with_capacity (or a similar method), then given to a user
implemented function (often some read function from the Read trait) without being
initialised first.

The programmers expected these read functions to fill the buffer exactly up to its
length, since this is what read functions of the Read trait are used for conventionally.
However, the Read trait does in fact not promise this behaviour of its read functions,
and since these functions are often user-implemented there is no guarantee that
they actually behave in this way, i.e. that they fill the whole buffer and do not read
its contents before it is initialised. It is problematic if such a function does read
the buffer’s contents before it has been initialised, because reading uninitialised
memory is undefined behaviour and must never occur in a safe function.

While in the example we discussed in this chapter the problem was solved by
turning Content::read into an unsafe function, most of the other examples with
this problem were solved by simply initialising the vector2 before handing it to the

2e.g. by creating it directly with the vec! macro, or by using Vec::resize instead of
Vec::set_len to change its length
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user-implemented function. This initialisation is of course an overhead (especially
if in most of the use cases, the initialised values are just overwritten again right
away), but it makes the function safe again. Note that initialising the vector from
the beginning is completely safe and no unsafe blocks are needed for this, which
is why after the fix these examples were not eligible for our project anymore.

3.4 Suggestion for Prusti: switchable invariants

In the verification of the read function that we showed in Sec. 3.2.1, we modelled
the Vec type both in its usual state, when its type invariant holds, as well as in
a state where this type invariant was broken temporarily. We were only able to
do this by defining two different structs, each holding a different invariant, and
transforming our vector back and forth between these two implementations.

However, verifications like this would be more practical if Prusti allowed us to
define multiple invariants on one type, and to switch from one invariant to the
other depending on the state our struct is in. Being able to provide multiple
invariants for one struct (e.g. a stronger and a weaker one) would allow us to
model programs where the invariant of a struct gets temporarily broken for some
part of the computation, but holds again in the end.

And while it could of course be considered ironic to allow an invariant to have
multiple versions, or ‘variants’, it would facilitate the use of Prusti for verifying
unsafe Rust, where not all properties of a type can be maintained at all times
during a computation.





Chapter 4

Example 2: bam::bgzip::Block::load

This example is about the load function in bam::bgzip::Block. We start Sec. 4.1
by presenting the original (fixed) code relevant for this chapter, and explaining how
it makes use of special type properties in order to work the way it does. We will
then show the bug that Rudra found in the previous version of this code. Sec. 4.2
is about the verification of this example, showing how we simplified and adapted
the fixed code, what Prusti specifications we wrote for it, and what we got as a
result when we ran Prusti first on the fixed, then on the buggy version of the code.

Sec. 4.3 discusses a special aspect of this example and how the verification of
similar examples could follow the pattern we used for our Prusti specifications
here. Based on our experience of verifying this example, Sec. 4.4 suggests the
addition of a new Prusti feature to better accommodate the verification pattern
described in Sec. 4.3.

4.1 Context, features, and concepts

The struct bam::bgzip::Block is shown in Fig. 4.1. It has four fields, and among
them are uncompressed and compressed, both of type Vec<u8>. They each have
a maximum size, stated in the comments. The definitions of the constants used
are shown in Fig. 4.2. As we will see later on, the two remaining fields of Block
(buffer and offset) are irrelevant in this discussion of the example, which is why
we do not go into further detail about them here.

Fig. 4.3 shows the Block struct’s load method, which is where Rudra found a
bug. It makes sure both uncompressed and compressed are empty, then performs
various computations (which we left out here) before ultimately calculating a
variable block_size via the function analyze_extra_fields.

This block_size is used for calculating the compressed vector’s new length that is
used by the set_len method on lines 37-38 of Fig. 4.3.

27
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1 /// A bgzip block, that can contain compressed,

2 /// uncompressed data, or both.

3 /// ...

4 #[derive(Clone)]

5 pub struct Block {

6 // Uncompressed contents,

7 // max size = [MAX_BLOCK_SIZE](constant.MAX_BLOCK_SIZE.html).

8 uncompressed: Vec<u8>,

9 // Compressed contents + footer (empty if uncompressed),

10 // max size = `MAX_COMPRESSED_SIZE + FOOTER_SIZE`.
11 compressed: Vec<u8>,

12

13 // Buffer used to read the header.

14 buffer: Vec<u8>,

15 offset: Option<u64>,

16 }

Figure 4.1: bam::bgzip::Block original code

1 /// Biggest possible size of the compressed and uncompressed block

2 /// (`= 65536`).
3 pub const MAX_BLOCK_SIZE: usize = 65536;

4

5 const HEADER_SIZE: usize = 12;

6 const MIN_EXTRA_SIZE: usize = 6;

7 const FOOTER_SIZE: usize = 8;

8

9 /// Biggest possible length of the compressed data

10 /// (excluding header + footer).

11 /// Equal to [MAX_BLOCK_SIZE](constant.MAX_BLOCK_SIZE.html)

12 /// `- 26 = 65510`.
13 pub const MAX_COMPRESSED_SIZE: usize =

14 MAX_BLOCK_SIZE - HEADER_SIZE - MIN_EXTRA_SIZE - FOOTER_SIZE;

Figure 4.2: Definitions of the constants
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Before this new length is set, there is a safety check aiming to make sure that the
new length (left-hand side below) will not exceed compressed’s maximum capacity
(right-hand side below; see comments in Fig. 4.1), i.e. that

block_size - HEADER_SIZE - MIN_EXTRA_SIZE

<= MAX_COMPRESSED_SIZE + FOOTER_SIZE

By rearranging the inequality above, we get

block_size

<= MAX_COMPRESSED_SIZE + FOOTER_SIZE + HEADER_SIZE + MIN_EXTRA_SIZE

The sum on the right hand side is equal to MAX_BLOCK_SIZE, hence the safety
check in the code, on line 25:

block_size <= MAX_BLOCK_SIZE.

If this inequality does not hold, an error is returned.

The second part of the safety check, on line 26, makes sure that the subtraction
on line 38 does not overflow. It does so by checking that block_size is not smaller
than what is subtracted from it.

Once the new length of the vector is set, the vector is given to the read_exact

function of stream (one of the arguments of load). stream is of a type that
implements the Read trait, i.e. it is a so-called ‘reader’.

Remember the discussion about reader implementations in Sec. 3.3. Even though
the programmers of this crate probably expected the read_exact function to read
exactly compressed.len many elements into compressed and that it does not read
any of the contents of compressed while doing so. However, the second part of
this assumption is not guaranteed by the Read trait [18][19]. The load function
could be called with a user-implemented reader, where nothing is known about
what stream.read_exact actually does. Therefore, in order to be sure that nothing
bad happens in read_exact (or after), the vector’s type invariant must hold when
read_exact is called.

How can it therefore be alright for Block::load to take an empty vector, forcibly
increase its length, and then hand it to an unknown read_exact function? In
general, it is indeed not safe to do this. However, in this specific case the vector’s
invariant actually holds when read_exact is called because of a special properties
of the vector’s element type u8.

The Copy trait In Rust, ‘move semantics’ are the default, meaning that after an
assignment y = x;, the value in x has ‘moved’ into y and x cannot be used any-
more. However, the vector element type u8 implements the trait std::marker::Copy,
meaning it has ‘copy semantics’ instead, and x is still in scope after an assignment
y = x;. A value of a Copy type is defined purely by its bit pattern and can therefore
be duplicated by copying its bits. Copy types do not have a drop handler, therefore
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1 impl Block {

2

3 /* ... */

4

5 /// Reads the compressed contents from `stream`.
6 /// Panics if the block is non-empty

7 /// (consider using [reset](#method.reset)).

8 pub fn load<R: Read>(

9 &mut self,

10 offset: Option<u64>,

11 stream: &mut R)

12 -> Result<(), BlockError> {

13

14 assert!(

15 self.compressed.is_empty()

16 && self.uncompressed.is_empty(),

17 "Cannot load into a non-empty block");

18

19 /* ... */

20

21 let block_size =

22 analyze_extra_fields(&self.buffer[HEADER_SIZE..])?

23 as usize + 1;

24

25 if block_size > MAX_BLOCK_SIZE

26 || block_size < HEADER_SIZE + MIN_EXTRA_SIZE {

27 return Err(BlockError::Corrupted(

28 format!(

29 "Block size {} > {} or < {}",

30 block_size, MAX_BLOCK_SIZE,

31 HEADER_SIZE + MIN_EXTRA_SIZE)));

32 }

33

34 unsafe {

35 // Include footer in self.compressed

36 // to read footer in one go.

37 self.compressed.set_len(

38 block_size - HEADER_SIZE - MIN_EXTRA_SIZE);

39 }

40 stream.read_exact(&mut self.compressed)?;

41 Ok(())

42 }

43

44 /* ... */

45

46 }

Figure 4.3: Original code of Block::load
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1 impl Block {

2 /// Creates an empty block.

3 pub fn new() -> Self {

4 // Initialize vectors so that we do not have problems

5 // with uninitialized memory.

6 let mut uncompressed = vec![0; MAX_BLOCK_SIZE];

7 uncompressed.clear();

8 let mut compressed

9 = vec![0; MAX_COMPRESSED_SIZE + FOOTER_SIZE];

10 compressed.clear();

11

12 Self {

13 uncompressed,

14 compressed,

15 buffer: Vec::new(),

16 offset: None,

17 }

18 }

19

20 /* ... */

21 }

Figure 4.4: Original code of Block::new

calling drop on such a value is a no-op and does therefore not affect the value’s
bit pattern, meaning the value remains valid despite the drop.

How the Copy trait allows the read exact call in load to be safe New in-
stances of Block are created through the constructor Block::new (shown in
Fig. 4.4). Both uncompressed and compressed have u8 as their fixed element
type, and both of them are first zero-initialised up to their maximum capacity, then
cleared using Vec::clear.

However, being of type u8, the elements of the vectors are not affected by the drop
in Vec::clear and therefore the whole memory area of the vectors still consists of
valid values of type u8 even after the two vectors are cleared in Block::new.

So despite the length of the vectors being zero at the beginning of Block::load,
their allocated memory still holds valid values up to their capacity, and when
set_len increases the length of compressed, the elements in this area will already
be initialised u8-values.

The range [0..new_len] of the vector is therefore initialised, meaning the type
invariant of Vec (as shown in Chapter 3) holds, and handing the vector to a
potentially user-defined reader does not pose a problem here.
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1 pub struct Block {

2 // Uncompressed contents,

3 // max size = [MAX_BLOCK_SIZE](constant.MAX_BLOCK_SIZE.html).

4 uncompressed: Vecu8, // Vec<u8>,

5 // Compressed contents + footer (empty if uncompressed),

6 // max size = `MAX_COMPRESSED_SIZE + FOOTER_SIZE`.
7 compressed: Vecu8, // Vec<u8>,

8 }

Figure 4.5: Block struct
(without Prusti specifications)

The bug and its fix At the time when Rudra analysed this crate, the overflow
check on line 26 was missing. If block_size was too small, it was therefore possi-
ble that the set_len function set the length to a value greater than compressed’s
capacity on lines 37-38. This problem was solved by the additional condition in
the safety check.

4.2 Verification

This section shows our Prusti verification of the example described above. In
Sec. 4.2.1 we discuss the process of simplifying the code and writing suitable
specifications for verification. Sec. 4.2.2 provide a brief summary of the final
specifications resulted from this process, then state the outcome of the verification
of the fixed code. Sec. 4.2.3 shows what happens when we run Prusti with the
same specifications on the buggy version of the code.

4.2.1 Specification process

We start this section by modelling the Block and vector structs for our verification.

The offset field of Block does not appear in the relevant code sections that we
want to verify (see Fig. 4.3). We are going to see later in this section that we
will not need the buffer field either, so we can omit both of these fields from our
definition of the Block struct (Fig. 4.5).

The remaining fields, uncompressed and compressed, are both vectors with fixed
element type u8. In Sec. 4.1 we explained that this fixed element type is important
because of the way the code leverages u8’s special properties. Therefore, we
create a specialised version of the vector type, which we call Vecu8.

Vecu8 and its invariant We model Vecu8 similarly to Vec back in Chapter 3,
with three fields: ptr (the pointer to the vector in memory), len (the length), and
cap (the capacity). However, this time we declare ptr as having type *const u8
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1 pub struct Vecu8 {

2 ptr: *const u8,

3 len: usize,

4 cap: usize,

5 }

Figure 4.6: Vecu8 struct
(initial version, without Prusti specifications)

(see Fig. 4.6) instead of *const T1. As a result, Vecu8’s elements are fixed to be
of type u8, which allows us to specialise our specifications of the vector and its
methods according to u8’s properties.

In Chapter 3 we explained the type invariant of Rust vectors (and used it for
our struct Vec in that example). However, the code here leverages the fact that
once they have been initialised, u8-typed elements do not become invalid even
when they are dropped (as explained in Sec. 4.1). Therefore, if a vector is for
example initialised up to its capacity and cleared afterwards (like what happens
in Block::new), then even though the length will be zero, the whole allocation will
still be initialised.

In order to make use of the knowledge that a vector can be initialised beyond its
length, we need to detach the definition of the access permissions in the vector’s
invariant from the len field. Only then can the initialisation remain in the same
state even when len is modified.

We achieve this by adding a Ghost field init_pt, just like we did in the previous
chapter for BrokenVec. This additional field again allows us to define the initialisa-
tion separately from len. Fig. 4.7 shows the resulting Vecu8 struct with its invariant,
where we use init_pt instead of len as the delimiter between the own_range and
raw_range.

Note that there is a difference between the invariant here, and the one we used for
BrokenVec in Chapter 3: here, we have the additional requirement that len must
be smaller or equal to init_pt, meaning that the vector must be initialised at least
up to its length. This property was not required for BrokenVec, where we allowed
the vector to contain uninitialised memory within its length, which normally should
not happen.

Vecu8’s methods With this definition of Vecu8 and its invariant we can write
specifications for its methods clear and set_len accordingly.

Fig. 4.8 shows our specifications for the clear function. To illustrate the fact that
these specifications are specialised for vectors with an element type implement-

1In the definition of Vec’s ptr in Chapter 3, T was a type alias modelling the generic type
parameter of Vec<T> and could therefore be defined as any arbitrary type.
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1 #[structural_invariant(

2 std::mem::size_of::<u8>() * self.cap <= (isize::MAX as usize)

3 && !self.ptr.is_null()

4 && self.len <= (self.init_pt).to_usize()

5 && (self.init_pt).to_usize() <= self.cap

6 && (

7 self.cap != 0 ==> (

8 own_range!(

9 self.ptr,

10 0,

11 (self.init_pt).to_usize())

12 && raw_range(

13 self.ptr,

14 std::mem::size_of::<u8>(),

15 (self.init_pt).to_usize(),

16 self.cap)

17 && raw_dealloc!(

18 *self.ptr,

19 std::mem::size_of::<u8>() * self.cap,

20 std::mem::align_of::<u8>()))

21 )

22 )]

23 pub struct Vecu8 {

24 ptr: *const u8,

25 len: usize,

26 cap: usize,

27 init_pt: Int,

28 }

Figure 4.7: Vecu8 and its invariant

ing the Copy trait, and are therefore not valid for the general Vec<T> type, we
renamed the clear function ‘clear_for_copy_types’. We leave the function body
unimplemented and mark the function as trusted, specifying its behaviour through
Prusti postconditions. Like the normal clear method it sets the length to zero and
preserves the capacity. However, init_pt preserves its value, meaning that the
Vecu8 remains initialised up to that point, despite being empty.

When it comes to the set_len method (Fig. 4.8, bottom half), we have already
seen in the previous chapter that this is an unsafe function which only alters the
len field without caring about the initialisation state of the vector. The len field
takes the value of new_len, while cap and init_pt remain the same.

Unlike in the previous chapter, however, we do not ignore the second safety
condition stated in set_len’s documentation [16]: this time we require that new_
len must be smaller or equal to init_pt. This precondition is enough to cover
both of the safety conditions, since by transitivity it implies that new_len is also
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1 impl Vecu8 {

2 /* ... */

3

4 #[trusted]

5 #[structural_ensures(self.len == 0)]

6 #[structural_ensures(self.cap == old(self.cap))]

7 #[structural_ensures(self.init_pt == old(self.init_pt))]

8 fn clear_for_copy_types(&mut self) {

9 unimplemented!();

10 }

11

12 /* Safety:

13 - new_len must be less than or equal to cap.

14 - The elements at old_len..new_len must be initialized. */

15 #[structural_requires(new_len <= (self.init_pt).to_usize())]

16 #[structural_ensures(self.len == new_len)]

17 #[structural_ensures(self.cap == old(self.cap))]

18 #[structural_ensures(self.init_pt == old(self.init_pt))]

19 unsafe fn set_len(&mut self, new_len: usize) {

20 take_lifetime!(self, lft_self);

21 open_mut_ref!(lft_self, *self, self_witness);

22 unpack!(*self);

23 self.len = new_len;

24 pack!(*self);

25 close_mut_ref!(*self, self_witness);

26

27 }

28

29 /* ... */

30 }

Figure 4.8: Prusti specifications for Vecu8::clear for copy types and Vecu8::set len

smaller or equal to cap.

Block and its constructor Let us now have a look at the function where Blocks
are created: Block::new. The original code uses the macro vec! to create the vec-
tors uncompressed and compressed, giving them each a length and zero-initialising
them up to their respective lengths right away. Since the vec! macro is not sup-
ported by Prusti, however, we replaced it with an unimplemented, trusted function
Vecu8::new_init (see Fig. 4.9).

The postcondition states that the length of the resulting vector takes the value
of the length argument of the function, and that the vector is also initialised
up to that point. We need to annotate the function with #[no_panic_ensures_

postcondition] to allow Prusti to assume the postcondition for its memory safety
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1 impl Vecu8 {

2 #[trusted]

3 #[no_panic_ensures_postcondition]

4 #[ensures(result.len == length)]

5 #[ensures(result.init_pt == Int::new_usize(length))]

6 fn new_init(length: usize, val: u8) -> Self {

7 unimplemented!();

8 }

9

10 /* ... */

11 }

Figure 4.9: Vecu8::new init with Prusti specifications

1 impl Block {

2 /// Creates an empty block.

3 pub fn new() -> Self {

4 /* Initialize vectors so that we do not

5 have problems with uninitialized memory. */

6 /* vec![0; MAX_BLOCK_SIZE]; */

7 let mut uncompressed = Vecu8::new_init(MAX_BLOCK_SIZE, 0);

8 uncompressed.clear_for_copy_types();

9

10 /* vec![0; MAX_COMPRESSED_SIZE + FOOTER_SIZE]; */

11 let mut compressed = Vecu8::new_init(

12 MAX_COMPRESSED_SIZE + FOOTER_SIZE, 0);

13 compressed.clear_for_copy_types();

14

15 Self {

16 uncompressed,

17 compressed,

18 }

19 }

20

21 /* ... */

22 }

Figure 4.10: Block::new

proof (in the non-panicking case), as we need the result keyword and thus cannot
use a structural postcondition for this function.

Fig. 4.10 shows our implementation of Block::new. After the two vectors have
been created and initialised they are both cleared using clear_for_copy_types,
meaning that their initialisation stays intact. Therefore, when the Block to be
returned is created out of these two vectors, they are both initialised up to their



4.2. Verification 37

1 #[structural_invariant(

2 (self.uncompressed.init_pt).to_usize() == MAX_BLOCK_SIZE &&

3 (self.compressed.init_pt).to_usize() == MAX_COMPRESSED_SIZE +

4 FOOTER_SIZE

5 )]

6 pub struct Block {

7 // Uncompressed contents,

8 // max size = [MAX_BLOCK_SIZE](constant.MAX_BLOCK_SIZE.html).

9 uncompressed: Vecu8, // Vec<u8>,

10 // Compressed contents + footer (empty if uncompressed),

11 // max size = `MAX_COMPRESSED_SIZE + FOOTER_SIZE`.
12 compressed: Vecu8, // Vec<u8>,

13 }

Figure 4.11: Block with its invariant

respective maximum capacities.

Since dropping elements of these two vectors will not invalidate their values, this
initialisation state will not change throughout the rest of the Block’s lifetime in the
program. We can therefore write an invariant for Block where we declare this
unchanging initialisation state of the two vectors, as shown in Fig. 4.11

The Block::load method Now that we have defined Block’s invariant, we can
also prepare its load method for verification. The method starts with an assert
statement making sure that both vectors are empty upon entry into the function.
This assertion is equivalent to checking a precondition before starting the actual
execution of the function, therefore we put this condition into a Prusti precondition
to make sure it holds when the function is called (see Fig. 4.12).

For this purpose we need to implement the is_empty method for our Vecu8 and
write specifications for it, as shown in Fig. 4.13. We write a postcondition to ensure
the correct result. Then, we need to tell Prusti that this function is pure and that it
terminates, so that we can use it inside our Prusti precondition for load.

After the assert statement, there is a big part of the function that does not really
matter to our verification (which we also omitted when we showed the original
code of the function in Fig. 4.3). It suffices if we continue at line 21 of that figure,
where the block_size variable is defined.

There, it is enough for us to know that analyze_extra_fields returns a u16 (if it
is successful). We therefore model analyze_extra_fields as an unimplemented,
trusted function with return type u16, shown in Fig. 4.14. Since it is unimplemented,
its argument does not matter, so it can be omitted. As a result, the buffer field
of Block is not used anywhere in our function anymore and this is why it was
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1 impl Block {

2

3 /* ... */

4

5 /* Cannot load into a non-empty block */

6 #[requires(

7 self.uncompressed.is_empty() &&

8 self.compressed.is_empty()

9 )]

10 pub fn load(&mut self) -> Result<(), BlockError> {

11 assert!(

12 self.uncompressed.is_empty() &&

13 self.compressed.is_empty(),

14 "Cannot load into a non-empty block");

15

16 let block_size = analyze_extra_fields() as usize + 1;

17

18 if block_size > MAX_BLOCK_SIZE

19 || block_size < HEADER_SIZE + MIN_EXTRA_SIZE {

20 return Err(BlockError{});

21 }

22

23 unsafe {

24 // Include footer in self.compressed

25 // to read footer in one go.

26 self.compressed.set_len(

27 block_size - HEADER_SIZE - MIN_EXTRA_SIZE

28 );

29 }

30

31 match stream_read_exact(&mut self.compressed) {

32 Ok(_) => Ok(()),

33 Err(e) => Err(e),

34 }

35 }

36 }

Figure 4.12: Block::load
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1 impl Vecu8 {

2 /* ... */

3

4 #[pure]

5 #[terminates]

6 #[ensures(result == (self.len == 0))]

7 fn is_empty(&self) -> bool {

8 self.len == 0

9 }

10 }

Figure 4.13: Vecu8::is empty

1 #[trusted]

2 fn analyze_extra_fields() -> u16 {

3 unimplemented!();

4 }

Figure 4.14: analyze extra fields

no problem to omit the buffer field in our definition of the Block struct at the
beginning of this section.

After the definition of block_size comes the safety check. It makes sure the new
length of compressed does not exceed its capacity. Otherwise, an error2 is returned
before this new length is actually set.

Finally, compressed is handed to the reader function. In order to avoid traits, which
are not fully supported by Prusti yet, we created a separate function stream_read_

exact (see Fig. 4.15) to replace the call of stream.read_exact in the original code
in Fig. 4.3. Since the concrete implementation of the reader function is unknown,
we left our function unimplemented, annotating it as trusted. However, we did
change its signature: since Prusti does not support slice types, we changed the
type of the function’s argument buf from the original &mut [u8] to &mut Vecu8.
Furthermore, we also used a match-expression in order to avoid the ?-operator,
just as we did for the previous example in Chapter 3.

Our redefinition of the reader function allows us to simplify Block::load’s signature
in the way that is shown in Fig. 4.12: we can omit all the arguments apart from &mut

self because none of the other arguments are used anywhere in our simplified
implementation of the method.

2Note that in original code, BlockError was defined as an enum type, with three variants.
However, we simplified this type to a unit-like struct BlockError, i.e. a struct without any fields,
since it is not relevant for our verification to know exactly what kind of error is returned.
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1 #[trusted]

2 fn stream_read_exact(buf: &mut Vecu8) -> Result<(), BlockError>{

3 unimplemented!();

4 }

Figure 4.15: stream read exact

4.2.2 Verifying the fixed code

We start this section with a short overview summarising the specifications we
wrote for this example. Then we show the result of Prusti verifying the example
with these specifications.

First of all, we defined a specialised vector type, Vecu8 in Fig. 4.7, with fixed
element type u8, and a Ghost field init_pt, which is used to declare the access
rights to the vector independently of its len field.

We defined the function new_init (Fig. 4.9) as a replacement for Rust’s vec!

macro. It sets both len and init_pt to the length given to it as an argument.
Therefore, the vectors created by this function start out with the ‘normal’ vector
invariant, where these two fields are still the same.

Vecu8’s methods clear_for_copy_types and set_len, are shown in Fig. 4.8. Both
of them only alter the len field while leaving the initialisation as it was. This
is normal for unsafe function set_len, which does not care about initialisation.
However, this specification of clear_for_copy_types is not generally true for the
clear function and only holds in this special case, thanks to the elements being
of type u8. Vecu8’s method is_empty (Fig. 4.13) is a pure function used for the
precondition of Block::load.

Our simplified Block struct and its invariant are shown in Fig. 4.11. The invariant
makes sure that both fields uncompressed and compressed are initialised in the
entire range of their respective initial lengths, i.e. the lengths they are given at the
time of their creation. Block::new in Fig. 4.10 creates new blocks that abide by
the rules of this invariant. No additional Prusti specifications were needed for this
function.

Finally, Block::load (Fig. 4.12), has the aforementioned precondition making sure
both vectors are empty at the start. It also calls analyze_extra_fields (Fig. 4.14)
and stream_read_exact(Fig. 4.15), which we simplified and left unimplemented,
annotating them both as trusted for our verification.

Verification result Verifying the code with the modifications and Prusti specifi-
cations described above was successful.

In the next subsection, we will use these same specifications to make sure that
verification is not successful anymore if the overflow bug is present in the code.
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Figure 4.16: Prusti’s output when we verify the code containing the overflow bug

4.2.3 Verifying the buggy code

In this section, we roll back the fix of the overflow bug in the Block::load function,
meaning we return back to the old version of the safety check, using

if block_size > MAX_BLOCK_SIZE {...}

again, instead of the improved

if block_size > MAX_BLOCK_SIZE

|| block_size < HEADER_SIZE + MIN_EXTRA_SIZE {...}.

The output that we got from running Prusti on this buggy version of the code, with
the same specifications as before, is shown in Fig. 4.16.

Prusti gives us a verification error and refers to a potential overflow exactly at the
place of the problematic subtraction operation. Therefore, we have successfully
written specifications which allow Prusti to verify the fixed code, but do not enable
Prusti to (wrongly) prove the code containing the overflow bug.

4.3 Similar code patterns

Normally, the invariant for std::vec::Vec uses the field len to indicate the border-
line between own_range and raw_range permissions. However, the code in this
example only works because it makes use of a special property of the type used
for the vector elements. As a consequence, specifying the ‘normal’ vector invariant
in Prusti would not be enough to verify this example.

Therefore whenever code leverages a type’s properties to make the program work,
Prusti specifications probably need to be adapted. The specifications need to
describe the functions’ and types’ behaviour in the special case, and will not be
applicable to the general case anymore. Only then can Prusti make use of the
special properties needed to verify the program.
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4.4 Suggestion for Prusti: specialised specifications

In the case of the example above, the Prusti specifications we defined on our
function clear_for_copy_types are not generally valid for std::vec::Vec::clear.
They are only valid in the special case of the vector being specialised for element
types implementing the Copy trait, where we can make use of the knowledge that
the dropped elements do not become invalid.

Let us compare our specialised specifications for clear_for_copy_types in the
case where T: Copy with the specifications that would be appropriate if T was
allowed to be any type (we call this version of the clear function clear_for_

general_types here):

1 #[structural_ensures(self.len == 0)]

2 #[structural_ensures(self.cap == old(self.cap))]

3 #[structural_ensures(self.init_pt == old(self.init_pt))]

4 fn clear_for_copy_types(&mut self) {...}

5

6 #[structural_ensures(self.len == 0)]

7 #[structural_ensures(self.cap == old(self.cap))]

8 #[structural_ensures(self.init_pt == 0)]

9 fn clear_for_general_types(&mut self) {...}

Their behaviour with regard to len and cap are the same in both cases, but the
specifications differ for the Ghost field init_pt. In the case of clear_for_copy_
types we know that the values that were initialised before remain initialised even
after this function is executed. This is not true in the general case, where the type
passed to the struct does not necessarily implement the Copy trait. The dropped
values can become invalid; certainly we do not know them to be valid anymore,
therefore init_pt has to be zero after the execution of clear_for_general_types.

Based on this observation we would consider it useful if Prusti allowed users
to specialise specifications (such as the postconditions above) depending on
the traits that a certain type implements. Then we could write specifications for
the general case as well as specialised ones that are used whenever additional
information is available, e.g. because of a type parameter implementing a certain
trait.

In the case of this example we would then write our specifications for Vec<T>

::clear for both the specialised and general case. If T implements Copy, then the
specialised specifications of clear can be used for verifying, and otherwise the
general ones are used.

Instead of only being able to write specifications suiting the most general use
case of a function, data structure, type etc., this feature of specialised Prusti
specifications would allow users to utilise additional knowledge for our verification
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if any is available. This way the behaviour of functions and data structures in
special cases will better be accounted for.





Chapter 5

Example 3: std::vec::Vec::from iter

This chapter is about a function in the Rust standard library, Vec::from_iter in
SpecFromIter<T, I> for Vec<T>, where a double free bug was found [20]. The
bug was subsequently fixed [21].

5.1 Context, features, and concepts

We start this section by introducing the std::vec::IntoIter struct and explaining
how it works. We proceed by giving an overview of the function Vec::from_iter

in SpecFromIter<T, I> for Vec<T>. We show what the double free bug found in
this function was about, as well as how it could be fixed.

The IntoIter Struct The struct std::vec::IntoIter is created by the Vec::into

_iter method, which is provided by the IntoIterator trait [22]. The cap field
indicates the amount of allocated space and corresponds to the capacity of the
vector the IntoIter was created from. buf points to the start of the IntoIter’s
allocated memory, while end indicates the end of the initialised elements of the
IntoIter, pointing one past the last element of the original vector (meaning the
difference between end and buf is equal to the length of the original vector). The
pointer ptr is used to move along the iterator IntoIter when for example the next

method is called. The remaining two fields, phantom and alloc will not be relevant
for our discussion in this chapter, which is why we will not go into detail about
them.

As we have seen in the previous two examples, the type invariant of std::vec
::Vec states that the elements within the length of the vector are initialised. This
condition is transferred to IntoIter when it is built, meaning that starting from the
element pointed to by buf up until one before where end points, all elements are
initialised at the time of the creation of IntoIter. At this moment in time, buf and
ptr both still point to the element at the start of the allocation. As the ptr pointer

45
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advances, the elements between buf and ptr are the elements that have already
been read, while the ones between ptr and end are still initialised.

The Vec::from iter function Fig. 5.1 shows the Vec::from_iter function in
SpecFromIter<T, I> for Vec<T> as it is today. It takes as an argument an object
iterator of some type I which implements various traits, among others the
Iterator trait, as well as SourceIter<Source: AsVecIntoIter>, which allows it
to be turned into an IntoIter. The two calls of iterator.as_inner().as_into_
iter() (on line 15 and on line 33 of Fig. 5.1) do exactly that, they return the object
as a type IntoIter.

Before the second of these calls, iterator is passed to SpecInPlaceCollect

::collect_in_place on lines 29-30, which goes through the remaining elements
between ptr and end and collects some of them at the beginning of the iterator,
starting at buf. The number of elements collected is the returned value len. Now,
the first len elements are initialised too, in addition to the elements between ptr

and end.

In this state, src is defined as iterator returned as an IntoIter (line 33). The
length that was returned by the collect_in_place function is to be the length
of the new vector created on line 39. But before this vector can be created and
returned, the initialised elements remaining between ptr and end need to be
dropped. Furthermore, since the new vector is to be created through Vec::from_

raw_parts from the memory where src is allocated, src needs to forget about this
allocation. Otherwise it would be deallocated when src is dropped at the end of
the function, which would pose a problem for the returned vector, as it still uses
this same allocation.

Originally, these two tasks of dropping the remaining elements and forgetting the
allocation were done by first calling IntoIter::drop_remaining and then calling
IntoIter::forget_allocation, both shown in Fig. 5.2. Fig. 5.3 shows how the
last few lines of from_iter looked (instead of lines 37-41 in Fig. 5.1).

drop_remaining calls self.as_mut_slice(), which returns the slice of memory
between self.ptr and self.end. This slice is then dropped and self.ptr set to
self.end to indicate that there are no elements left to read in the iterator.

forget_allocation overwrites the individual fields of the IntoIter to make src

forget about the allocation, thus preventing the allocation from being dropped once
the IntoIter goes out of scope.

The Bug There is a detail that was overlooked in the version of the code de-
scribed above. Drops might panic, and if a panic occurs during the process of
dropping the slice in drop_remaining, the code will exit and the IntoIter will be
dropped. Any elements of the slice that have already been dropped are dropped
again because they are also part of the IntoIter’s allocation. This double free



5.1. Context, features, and concepts 47

1 // excerpt from rust/library/alloc/src/vec/in_place_collect.rs

2 impl<T, I> SpecFromIter<T, I> for Vec<T>

3 where

4 I: Iterator<Item = T>

5 + SourceIter<Source: AsVecIntoIter>

6 + InPlaceIterableMarker,

7 {

8 default fn from_iter(mut iterator: I) -> Self {

9 if T::IS_ZST || (/* ... */ ) {

10 // fallback to more generic implementations

11 return SpecFromIterNested::from_iter(iterator);

12 }

13

14 let (src_buf, src_ptr, dst_buf, dst_end, cap) = unsafe {

15 let inner = iterator.as_inner().as_into_iter();

16 (

17 inner.buf.as_ptr(),

18 inner.ptr,

19 inner.buf.as_ptr() as *mut T,

20 inner.end as *const T,

21 inner.cap,

22 )

23 };

24

25 // SAFETY:

26 // `dst_buf` and `dst_end` are

27 // the start and end of the buffer.

28 let len = unsafe {

29 SpecInPlaceCollect::collect_in_place(

30 &mut iterator, dst_buf, dst_end)

31 };

32

33 let src = unsafe { iterator.as_inner().as_into_iter() };

34

35 /* ... Some assertions ... */

36

37 src.forget_allocation_drop_remaining();

38

39 let vec = unsafe { Vec::from_raw_parts(dst_buf, len, cap) };

40

41 vec

42 }

43 }

Figure 5.1: Vec::from iter original code
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1 impl<T, A: Allocator> IntoIter<T, A> {

2

3 /* ... */

4

5 pub(super) fn drop_remaining(&mut self) {

6 unsafe {

7 ptr::drop_in_place(self.as_mut_slice());

8 }

9 self.ptr = self.end;

10 }

11

12 /// Relinquishes the backing allocation, equivalent to

13 /// `ptr::write(&mut self, Vec::new().into_iter())`
14 pub(super) fn forget_allocation(&mut self) {

15 self.cap = 0;

16 self.buf =

17 unsafe { NonNull::new_unchecked(RawVec::NEW.ptr()) };

18 self.ptr = self.buf.as_ptr();

19 self.end = self.buf.as_ptr();

20 }

21 }

Figure 5.2: drop remaining and forget allocation as separate functions

1 impl<T, I> SpecFromIter<T, I> for Vec<T>

2 where

3 I: Iterator<Item = T> + SourceIterMarker,

4 {

5 default fn from_iter(mut iterator: I) -> Self {

6 /* ... */

7

8 // drop any remaining values at the tail of the source

9 src.drop_remaining();

10 // but prevent drop of the allocation itself

11 // once IntoIter goes out of scope

12 src.forget_allocation();

13

14 let vec = unsafe { Vec::from_raw_parts(dst_buf, len, cap) };

15

16 vec

17 }

18 }

Figure 5.3: The last few lines of from iter before the bug fix
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1 impl<T, A: Allocator> IntoIter<T, A> {

2

3 /* ... */

4

5 #[ cfg(not(no_global_oom_handling)) ]

6 pub(super) fn forget_allocation_drop_remaining(&mut self) {

7 let remaining = self.as_raw_mut_slice();

8

9 // overwrite the individual fields instead of creating a new

10 // struct and then overwriting &mut self.

11 // this creates less assembly

12 self.cap = 0;

13 self.buf =

14 unsafe { NonNull::new_unchecked(RawVec::NEW.ptr()) };

15 self.ptr = self.buf.as_ptr();

16 self.end = self.buf.as_ptr();

17

18 // Dropping the remaining elements can panic,

19 // so this needs to be done only

20 // after updating the other fields.

21 unsafe {

22 ptr::drop_in_place(remaining);

23 }

24 }

25 }

Figure 5.4: IntoIter::forget allocation drop remaining original code

bug [20] results from the fact that both the IntoIter and the slice to be dropped
share parts of the same allocation.

The Bug Fix The solution to this problem was to merge these two functions
into one and switch up the order of doing things a little. IntoIter::forget_

allocation_drop_remaining (shown in Fig. 5.4) only stores the slice in a local
variable at first, then proceeds by first overwriting the fields of the IntoIter like
forget_allocation used to do. Now that the IntoIter does not refer to the same
allocation as the slice anymore, it is safe to drop the slice remembered in local
variable remaining. If a panic occurs while dropping remaining, dropping the
IntoIter will not lead to any double frees anymore as it does not share any
memory with the slice anymore.

5.2 Verification

This section is about the verifying the from_iter function introduced in the previous
section. In Sec. 5.2.1, we show how we build up the specifications needed for
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this verification, then summarise the final result of this process in Sec. 5.2.2.
Unfortunately, we have not been able to completely verify the fixed code yet.
Consequently, no section on testing our specifications on the buggy version of the
code is included in here.

5.2.1 Specification process

In this section we show how we went about verifying the from_iter function
together with IntoIter::forget_allocation_drop_remaining.

Vec and its invariant The Vec struct we use in this example and its invariant
are identical to the one we used in Sec. 3.2.1, Fig. 3.2, including the type alias
T replacing the generic type parameter. The getter methods len and capacity

are also identical to the ones used in Sec. 3.2.1. In addition to what we used in
previous examples we also need Vec::from_raw_parts for this one; this function
will be shown in more detail later on.

Defining IntoIter and its invariant We define our own IntoIter struct, leaving
out the fields that we do not need (see Fig. 5.5). Instead of ptr::NonNull we use
a normal *const T pointer for buf but add the non-null condition to the invariant
(line 5).

Fig. 5.5 also shows the rest of the invariant we use to describe our IntoIter. It is
very similar to the one we used for Vec in Fig. 3.2, but adapted to IntoIter and
the fact that instead of the len field a pointer is used here, as described in the
following.

Because we are talking about several pointers this time, we need to add the
conditions on lines 7-8, stating that they all belong to the same allocation. To be
able to describe the order of the pointers in lines 10-13, we have to use address_

from(pointer, base_pointer), which returns the distance from base_pointer to
pointer as a value of type Int1. These lines therefore mean that buf points to an
address that is smaller or equal to the one pointed to by ptr, which is smaller or
equal to the one pointed to by end, and they are all within cap distance from buf.

Lines 17-37 specify the permission ranges for the IntoIter. They are similar to
the ones we defined for Vec in Fig. 3.2 (in the case where T was not zero-sized),
but here we again use address_from to calculate the length of the respective
ranges. Different from Vec, we have three ranges here instead of two, namely
first a raw_range between buf and ptr (where the elements have already been
read as ptr advanced), then an own_range from ptr to end (where the remaining
initialised elements are), and finally another raw_range for the rest of the allocated
space. The raw_dealloc part is the same as for Vec before.

1address_from is a Prusti equivalent of the offset_from function used for raw pointers in
Rust.
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1 #[structural_invariant(

2 Int::new_usize(std::mem::size_of::<T>())

3 * Int::new_usize(self.cap)

4 <= Int::new_usize(isize::MAX as usize)

5 && !self.buf.is_null()

6

7 && same_allocation(self.buf, self.ptr)

8 && same_allocation(self.buf, self.end)

9

10 && Int::new_isize(0) <= address_from(self.ptr, self.buf)

11 && address_from(self.ptr, self.buf)

12 <= address_from(self.end, self.buf)

13 && address_from(self.end, self.buf) <= Int::new_usize(self.cap)

14

15 && std::mem::size_of::<T>() != 0

16

17 self.cap != 0 ==> (true

18 && raw_range(

19 self.buf,

20 std::mem::size_of::<T>(),

21 0,

22 address_from(self.ptr, self.buf).to_usize())

23 && own_range!(

24 self.buf,

25 address_from(self.ptr,self.buf).to_usize(),

26 address_from(self.end, self.buf).to_usize())

27 && raw_range(

28 self.buf,

29 std::mem::size_of::<T>(),

30 address_from(self.end, self.buf).to_usize(),

31 self.cap)

32

33 && raw_dealloc!(

34 *self.buf,

35 std::mem::size_of::<T>() * self.cap,

36 std::mem::align_of::<T>())

37 )

38 )]

39 struct IntoIter {

40 buf: *const T,

41 cap: usize,

42 ptr: *const T,

43 end: *const T,

44 }

Figure 5.5: IntoIter with its invariant
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The case of T being a zero-sized type is excluded in this example by line 15. We
do not need this case in this example, because in case of T being a ZST a more
generic implementation of from_iter is used instead of the one discussed here –
see Fig. 5.1, lines 9-12.

The from iter Function and its Prusti Specifications For the Rudra bug and
its fix that we want to verify only the last few lines of the from_iter function are
actually relevant. We therefore simplify the code by writing a function from_iter_

ending that only contains these last few lines, namely lines 37-41 of Fig. 5.1. In
order to be able to do this we need to model src’s state at the start of this code
section, i.e. after collect_in_place has already been called and has returned
len.

Remember that in addition to the elements between ptr and end, the first len
elements of the IntoIter are also initialised at this moment of the execution,
while any elements in between those two regions are not, just like the ones
lying beyond the end pointer. Since Prusti does not allow us to define a second
invariant for the same struct to describe this new situation, we decided to define
a new struct altogether, a special variant of the IntoIter struct, which we call
IntoIterAfterCollect. We can then use this as the input type to our function
from_iter_ending.

Defining IntoIterAfterCollect Our struct IntoIterAfterCollect differs from
IntoIter in that it contains an additional field len, representing the value that is
returned by collect_in_place and stored in a local variable in the original code.
The reason we put it into the struct here is so that we can use it for our permission
specifications in the struct’s invariant, as we want to be able to model the fact that,
after collect_in_place returns, the first len elements will also be initialised.

Fig. 5.6 shows how we defined the invariant on IntoIterAfterCollect. It is almost
identical to the one for IntoIter, except for a few changes in connection to the
len field: line 10 states that the distance from buf to ptr must be larger than len.
On lines 17-20, we have an additional own_range for the first len elements.

Now we can use an input prep of this new type IntoIterAfterCollect for from
_iter_ending, modelling the state of the IntoIter as it comes back from the
collect_in_place function. Before we can hand prep to IntoIter::forget_

allocation_drop_remaining, we need to make a ”normal” IntoIter out of prep
again. This transformation is done on lines 9-14 in Fig. 5.7 by building a new
IntoIter object src and assigning all the pointers accordingly (prep.len is forgot-
ten, of course).

For us to have access to the knowledge of IntoIterAfterCollect’s invariant, and
specifically to be able to hand prep’s permissions over to src, we need to unpack
prep.
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1 #[structural_invariant(

2 (Int::new_usize(self.cap) *

3 Int::new_usize(std::mem::size_of::<T>())

4 <= Int::new_isize(isize::MAX))

5 && !self.buf.is_null()

6

7 && same_allocation(self.buf, self.ptr)

8 && same_allocation(self.buf, self.end)

9

10 && Int::new_usize(self.len) <= address_from(self.ptr, self.buf)

11 && address_from(self.ptr, self.buf)

12 <= address_from(self.end, self.buf)

13 && address_from(self.end, self.buf) <= Int::new_usize(self.cap)

14

15 && std::mem::size_of::<T>() != 0

16 && (self.cap != 0 ==> (true

17 && own_range!(

18 self.buf,

19 0,

20 self.len)

21 && raw_range(

22 self.buf,

23 std::mem::size_of::<T>(),

24 self.len,

25 address_from(self.ptr, self.buf).to_usize())

26 && own_range!(

27 self.ptr,

28 0,

29 address_from(self.end, self.ptr).to_usize())

30 && raw_range(

31 self.ptr,

32 std::mem::size_of::<T>(),

33 address_from(self.end, self.ptr).to_usize(),

34 self.cap

35 - address_from(self.ptr, self.buf).to_usize())

36

37 && raw_dealloc!(

38 *self.buf,

39 std::mem::size_of::<T>() * self.cap,

40 std::mem::align_of::<T>())

41 ))

42 )]

Figure 5.6: IntoIterAfterCollect with its invariant
(continued on the next page)
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43 struct IntoIterAfterCollect {

44 buf: *const T, /* corresponds to `buf` in original IntoIter */

45 len: usize, /* the new length returned by collect_in_place */

46 ptr: *const T, /* corresponds to `ptr` in original IntoIter */

47 end: *const T, /* corresponds to `end` in original IntoIter */

48 cap: usize, /* corresponds to `cap` of original IntoIter */

49 }

Figure 5.6: IntoIterAfterCollect with its invariant (cont.)

1 fn from_iter_ending(mut prep: IntoIterAfterCollect) -> Vec {

2 let stash_ptr = prep.buf;

3 let stash_len = prep.len;

4 let cap = prep.cap;

5

6 unpack!(prep);

7 stash_range!(stash_ptr, 0, stash_len, stash1);

8

9 let mut src = IntoIter {

10 buf: prep.buf,

11 ptr: prep.ptr,

12 end: prep.end,

13 cap: prep.cap,

14 };

15

16 /* destroying prep */

17 prep.cap = 0;

18 prep.len = 0;

19 prep.buf = new_raw_vec();

20 prep.ptr = prep.buf;

21 prep.end = prep.buf;

22 pack!(prep);

23

24 unsafe {src.forget_allocation_drop_remaining();}

25 restore_stash_range!(stash_ptr, 0, stash1);

26

27 todo!();

28 // let vec = unsafe {

29 // Vec::from_raw_parts(

30 // stash_ptr as *mut T,

31 // stash_len,

32 // cap)

33 // };

34 // vec

35 }

Figure 5.7: from iter ending with Prusti specifications
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1 /* replaces `NonNull::new_unchecked(RawVec::NEW.ptr())` */

2 #[trusted]

3 #[no_panic]

4 #[no_panic_ensures_postcondition]

5 #[ensures(!result.is_null())]

6 fn new_raw_vec() -> *mut T {

7 unimplemented!();

8 }

Figure 5.8: Function new raw vec

However, there is a problem with handing the permissions of prep over to src:
compared to IntoIter, IntoIterAfterCollect has an additional owned range
at the beginning. In the original code, forget_allocation_drop_remaining will
simply not know about this since it is given an IntoIter and the task to drop
the initialised elements between ptr and end. However, since we declare the
permissions explicitly in Prusti, we have to take care of the first range of owned
memory. We use the stash_range! Prusti command, which hides the indicated
own_range and makes it look like there is a raw_range in that memory region
instead. With the first own_range stashed away like this, we can now build our
IntoIter with fitting permissions without problems.

There remains just one last detail we need to deal with before we call forget_
allocation_drop_remaining: we now have two objects of different types in the
same memory region, namely prep and src. Once forget_allocation_drop_

remaining drops the initialised region of src and returns src with only a raw_range,
the two structs will have different permissions even though they share the same
allocation. In order to avoid such a conflict, we make the prep variable forget about
this allocation, but without dropping it. We achieve this by overwriting prep’s fields
(see Fig. 5.7, lines 17-21), just as the original code already does for the IntoIter

in forget_allocation_drop_remaining, and just like we did in Chapter 3 when
we transformed the vector back and forth between Vec and BrokenVec.

To simplify getting a new pointer for prep.buf, we replaced

unsafe{ NonNull::new_unchecked(RawVec::NEW.ptr()) }

with an unimplemented, trusted function new_raw_vec (Fig. 5.8). In the original
function, a constant is returned, which means that a panic is impossible and we
can annotate the function with #[no_panic] . Adding the annotation #[no_panic_

ensures_postcondition] makes sure that the postcondition can be assumed at
the call site of new_raw_vec. This way it is guaranteed that the pointer is never null.
After overwriting the fields, we pack! the invariant of this completely altered prep.

IntoIter’s forget allocation drop remaining method Now, src is ready to be
handed to forget_allocation_drop_remaining, which is shown in Fig. 5.9. Since
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1 impl IntoIter {

2 unsafe fn forget_allocation_drop_remaining(&mut self) {

3

4 let (remaining_ptr, remaining_len)

5 = (self.ptr as *mut T, self.len());

6

7 take_lifetime!(self, lft_self);

8 open_mut_ref!(lft_self, *self, self_witness);

9 unpack!(*self);

10

11 // overwrite the individual fields instead of creating a new

12 // struct and then overwriting &mut self.

13 // this creates less assembly

14 self.cap = 0;

15 self.buf = new_raw_vec() as *const T;

16 self.ptr = self.buf;

17 self.end = self.buf;

18

19 // Dropping the remaining elements can panic, so this

20 // needs to be done only after updating the other fields.

21 unsafe {

22 drop_in_place(remaining_ptr, remaining_len);

23 }

24 pack!(*self);

25 close_mut_ref!(*self, self_witness);

26 }

27

28 /* original: provided by trait `ExactSizeIterator`
29 which vec::IntoIterator implements */

30 #[ non_verified_pure ]

31 #[ pure ]

32 #[ terminates ]

33 #[ no_panic ]

34 #[ no_panic_ensures_postcondition ]

35 fn len(&self) -> usize {

36 unsafe {self.end.offset_from(self.ptr) as usize}

37 }

38 }

Figure 5.9: IntoIter’s methods forget allocation drop remaining and len
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1 #[trusted]

2 #[structural_requires(

3 own_range!(to_drop,0,len))]

4 #[structural_ensures(

5 raw_range(to_drop,std::mem::size_of::<T>(),0,len))]

6 unsafe fn drop_in_place(to_drop: *mut T, len: usize) {

7 unimplemented!();

8 }

Figure 5.10: Function drop in place

Prusti does not support slices, we replaced the call self.as_raw_mut_slice() on
line 7 of Fig. 5.4 by instead simply remembering the pair of pointer and length of the
slice that would have been returned by this function2. In the original code, the len

method used to obtain the length here is provided by the trait ExactSizeIterator
which IntoIter implements. For simplicity, and to avoid traits, we model it simply
as a method of IntoIter directly (see Fig. 5.9 at the bottom). In our case, where
T is never zero-sized, the method returns the distance from ptr to end, which
we obtain in our implementation of the function by using offset_from (the Rust
function that is modelled in Prusti by the address_from function we have seen
before).

Next, the IntoIter object’s invariant needs to be unpacked in order to allow the
fields to be overwritten and to get access to the permissions that are to be dropped.
This time, since self is behind a reference, we need the statements on lines 7-8
of Fig. 5.9 to open the reference before we can unpack the invariant.

Once the fields are overwritten, the own_range that was originally held by self gets
dropped. We modelled drop_in_place (Fig. 5.10) as an unimplemented, trusted
function taking the own_range of the first len elements starting from to_drop, and
returning the raw_range for the same memory area.

We end the forget_allocation_drop_remaining function by packing the invariant
of the (now completely overwritten) IntoIter and closing the reference again.
Then, we add a postcondition, giving back a raw_range for the whole length of
the original allocation, now that the initialised elements in the middle have been
dropped. Fig. 5.11 shows this postcondition: the raw_range permissions and
raw_dealloc condition (lines 6-15) that were taken out of old(self)’s invariant
are now handed back to from_iter on their own. Note that old() is used on all
mentions of fields in this postcondition, as it refers back to the state of self when
it entered the function, before all its fields were overwritten.

These returned permissions will be used by from_iter to build the new vector from,
using Vec::from_raw_parts. This vector should be initialised up to the length that

2In fact, this pointer and length are what are used to define the slice in the first place.
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had been returned by collect_in_place, meaning that we need to restore the
stashed permissions that we hid away before we built src from prep.

However, in order to be able to restore the own_range on src, there is a condition
that needs to hold: the elements of src in the stashed memory region must not
have changed. We can use bytes! to add this condition to the postcondition of
forget_allocation_drop_remaining; see lines 17-31 in Fig. 5.11.

The problem is that using bytes! does not work while the permissions of self
are defined in the invariant of IntoIter, due to a precondition of bytes! itself.
So instead, we have to move the IntoIter’s permissions from the invariant into
the precondition of forget_allocation_drop_remaining. Fig. 5.12 shows the
resulting precondition of forget_allocation_drop_remaining. At the same time,
we remove these lines from the invariant of IntoIter.

Function from iter ending after forget allocation drop remaining returns
After forget_allocation_drop_remaining returns, we restore the stashed permis-
sions via restore_stash_range! (line 25 in Fig. 5.7).

Once the permissions are unstashed again in from_iter_ending, we can finally
build the new vector by calling the function Vec::from_raw_parts, whose imple-
mentation and specifications are shown in Fig. 5.13. Its precondition requires all
the conditions of Vec’s invariant to hold (so that the function can build a Vec with
this invariant). The postconditions simply ensure that the length and capacity of
the returned Vec correspond to the values given as arguments.

5.2.2 Final verification specifications and results

Let us summarise how we modelled the relevant functions and their specifications
now. We have our version of the IntoIter struct and the final version of its
invariant in Fig. 5.14, which does not contain access permissions anymore as they
have been moved to the pre-condition of IntoIter::forget_allocation_drop_
remaining (see below).

Our special variant of this struct, IntoIterAfterCollect in Fig. 5.6, is used to
model the state of the iterator after collect_in_place has returned. It is used
as an input to from_iter_ending, where only the last few lines of the original
from_iter function are included. In comparison to IntoIter, this struct has an
additional field len, used for indicating its first range of initialised memory, as seen
in its invariant.

The implementation of IntoIter::forget_allocation_drop_remaining is shown
in Fig. 5.9, with Prusti annotations to unpack and re-pack the invariant. It returns
permissions to the old range of the IntoIter, but for from_iter to be able to
restore the stashed range it needs to also guarantee that the bytes in the stashed
region have not changed. Due to the use of bytes! in the postcondition of forget_
allocation_drop_remaining (Fig. 5.11), the access permissions to the IntoIter’s
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1 impl IntoIter {

2 #[no_panic_ensures_postcondition]

3 #[structural_ensures(

4 std::mem::size_of::<T>() != 0

5 && old(self.cap) != 0 ==> (true

6 && raw_range(

7 old(self.buf),

8 std::mem::size_of::<T>(),

9 0,

10 old(self.cap))

11

12 && raw_dealloc!(

13 *self.buf,

14 std::mem::size_of::<T>() * old(self.cap),

15 std::mem::align_of::<T>())

16

17 && forall(|index: Int|

18 (Int::new(0) <= index

19 && index < address_from(old(self.ptr),old(self.buf)))

20 ==>

21 old(bytes!(

22 *(address_offset(old(self.buf), index)),

23 std::mem::size_of::<T>()))

24 == bytes!(

25 *(address_offset(old(self.buf), index)),

26 std::mem::size_of::<T>()),

27 triggers=[

28 (bytes!(

29 *(address_offset(old(self.buf), index)),

30 std::mem::size_of::<T>()),),]

31 )

32

33 )

34 )]

35 unsafe fn forget_allocation_drop_remaining(&mut self) {

36 /* ... */

37 }

38 }

Figure 5.11: Postcondition of forget allocation drop remaining
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1 impl IntoIter {

2 #[no_panic_ensures_postcondition]

3 #[structural_requires(

4 self.cap != 0 ==> (true

5 && raw_range(

6 self.buf,

7 std::mem::size_of::<T>(),

8 0,

9 address_from(self.ptr,self.buf).to_usize())

10 && own_range!(

11 self.buf,

12 address_from(self.ptr,self.buf).to_usize(),

13 address_from(self.end,self.buf).to_usize())

14 && raw_range(

15 self.buf,

16 std::mem::size_of::<T>(),

17 address_from(self.end,self.buf).to_usize(),

18 self.cap)

19

20 && raw_dealloc!(

21 *self.buf,

22 std::mem::size_of::<T>() * self.cap,

23 std::mem::align_of::<T>())

24 )

25 )]

26 #[structural_ensures(

27 /* ... */

28 )]

29 unsafe fn forget_allocation_drop_remaining(&mut self) {

30 /* ... */

31 }

32 }

Figure 5.12: Precondition of forget_allocation_drop_remaining



5.2. Verification 61

1 impl Vec {

2 #[no_panic]

3 #[no_panic_ensures_postcondition]

4 #[structural_requires(

5 std::mem::size_of::<T>() * capacity <= (isize::MAX as usize)

6 && !ptr.is_null()

7 && length <= capacity

8 && (

9 if std::mem::size_of::<T>() != 0 {

10 (capacity != 0 ==> (

11 own_range!(

12 ptr, 0, length)

13 && raw_range(

14 ptr,

15 std::mem::size_of::<T>(),

16 length,

17 capacity)

18 && raw_dealloc!(

19 *ptr,

20 std::mem::size_of::<T>() * capacity,

21 std::mem::align_of::<T>())

22 ))

23 } else {

24 capacity == usize::MAX

25 && own_range!(

26 ptr, 0, length)

27 && raw_range(

28 ptr,

29 std::mem::size_of::<T>(),

30 length,

31 capacity)

32 }

33 )

34 )]

35 #[ensures(result.len() == length)]

36 #[ensures(result.capacity() == capacity)]

37 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize,

38 capacity: usize) -> Vec {

39 Vec {

40 ptr,

41 len: length,

42 cap: capacity,

43 }

44 }

45 }

Figure 5.13: Vec::from raw parts with its pre- and postconditions



62 5. Example 3: std::vec::Vec::from iter

1 #[structural_invariant(

2 Int::new_usize(std::mem::size_of::<T>())

3 * Int::new_usize(self.cap)

4 <= Int::new_usize(isize::MAX as usize)

5 && !self.buf.is_null()

6

7 && same_allocation(self.buf, self.ptr)

8 && same_allocation(self.buf, self.end)

9

10 && Int::new_isize(0) <= address_from(self.ptr, self.buf)

11 && address_from(self.ptr, self.buf)

12 <= address_from(self.end, self.buf)

13 && address_from(self.end, self.buf) <= Int::new_usize(self.cap)

14

15 && std::mem::size_of::<T>() != 0

16 )]

17 struct IntoIter {

18 buf: *const T,

19 cap: usize,

20 ptr: *const T,

21 end: *const T,

22 }

Figure 5.14: IntoIter and its invariant, final version without permission ranges

memory allocation had to be moved from its invariant to the precondition of
forget_allocation_drop_remaining (Fig. 5.12), and as a consequence forget_

allocation_drop_remaining had to be made an unsafe function.

Lastly, our function from_iter_ending in Fig. 5.7 models the last few lines of the
original Vec::from_iter. It takes an object of type IntoIterAfterCollect as an
input and constructs a normal IntoIter from it after stashing away the initialised
range of the first len elements that a normal IntoIter would not have. It then
proceeds by overwriting the fields of the input in order to make it forget about the
allocation now used by src.

The newly created IntoIter src is handed to forget_allocation_drop_remain-
ing, where the IntoIter forgets about the allocation as well and the middle
range of initialised memory is dropped. After forget_allocation_drop_remaining
returns, the stashed permissions are restored so that the new vector can be built
using Vec::from_raw_parts, and with len as its length. This vector is the return
value of the function.

Verification result Unfortunately, we have not been able to verify this exam-
ple so far. The raw_dealloc!-condition we defined in the invariant of IntoIter-
AfterCollect (Fig. 5.6, lines 37-40) caused a panic. Since it was not directly
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1 #[no_panic_ensures_postcondition]

2 #[ensures(result.0 == self.ptr as *mut T)]

3 #[ensures(result.1 == address_from(self.end, self.ptr).to_usize())]

4 unsafe fn as_raw_mut_slice(&mut self) -> (*mut T, usize) {

5 (self.ptr as *mut T, self.len())

6 }

Figure 5.15: Function as raw mut slice

clear from the error reported what the problem was, we temporarily removed the
raw_dealloc!-permissions not only from the invariant of IntoIterAfterCollect,
but also from the pre- and postcondition of forget_allocation_drop_remaining,
which relied on the permissions of the invariant.

With these altered specifications, we tried verifying the program again. Now, there
seems to be a problem with restoring the stashed range, as we get an internal
Prusti error on line 25. Nonetheless, we have been able to verify from_iter_

ending up to this point, i.e. up to line 24, with the rest of the code starting from
line 25 commented out.

Furthermore, remember that we replaced the call to method as_raw_mut_slice

in forget_allocation_drop_remaining by directly assigning a pair of pointer and
length (see Fig. 5.9). Initially, we wanted to use a function that would simply return
exactly this pair (Fig. 5.15). Unfortunately, Prusti was not able to prove in this case
that we have enough permissions to drop the remaining-range on line 22 despite
the postcondition we wrote for this function. Therefore, we decided to use the pair
directly instead.

Potentially our code should actually work the way we described it, but error
reporting in this case does not make for a good enough debugging experience yet
for us to have found out what is causing these errors, hence we have not been
able to make any further progress thus far.

5.3 Similar examples and verification patterns

In this example we have a type, IntoIter, that we need to model in two different
states, namely its normal state, and in the state it is in after collect_in_place. We
use the same trick as in Chapter 3 to work around the fact that we cannot define
multiple invariants on one struct: we define an extra struct IntoIterAfterCollect,
whose invariant describes the state after collect_in_place, while the invariant of
IntoIter specifies the normal state.

However, having two structs means that in order to switch from IntoIterAfter-
Collect to IntoIter, we need to make the IntoIterAfterCollect forget about
the allocation by overwriting all its fields (just as we did for Vec and BrokenVec
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in Chapter 3, and just like forget_allocation_drop_remaining forgets about the
allocation of src in the actual code of this example.

Another interesting aspect of this example is the fact that we need to hide some
of the permissions using Prusti’s stash_range! macro before we can call the
forget_allocation_drop_remaining method. Later, we need to restore them
using restore_stash_range!. The reason we need to hide the own_range at the
first len elements is because fadr only expects initialised elements between the
ptr and end pointers, but the first len elements are actually also initialised in this
case. Despite not expecting the front area of the vector to be initialised, forget
_allocation_drop_remaining preserves these elements in their original state,
making it possible to restore the hidden permissions after forget_allocation

_drop_remaining returns, and to continue the execution of from_iter with the
own_range! at the front of the vector.

This verification technique can therefore be applied for any code where a similar
situation occurs: whenever a function to be called expects uninitialised data in
some range where the data is actually initialised, permissions can be hidden using
stash_range! so as to make the data look like what the callee function expects.
If the data of the stashed range is preserved throughout the execution of this
function, then the permissions can be restored once it returns, allowing the caller
function to proceed with its execution knowing again that the data in this range is
initialised.

5.4 Suggestions for Prusti

As we already stated in Sec. 3.4, it would be very practical if Prusti allowed several
switchable invariants to be specified on one struct. Then we would not need to
define an extra struct and exchange one struct for the other, having to always
overwrite the fields of one of them.

Furthermore, if there was a way of making bytes! work with permissions de-
fined in the invariant of IntoIter, and not only if they are defined in the pre-
condition of forget_allocation_drop_remaining, then we would not have to turn
forget_allocation_drop_remaining into an unsafe function during our verifica-
tion. forget_allocation_drop_remaining remaining a safe function is desirable,
since functions that are safe in the program should remain so during the verifica-
tion.



Chapter 6

Example 4: std::vec::Vec::dedup by

Our final verification example is another one from the standard library: it is about
Vec::dedup_by. This function is not one of those where Rudra found a bug, but
we chose it because it was similar to another function on the Rudra list: the
String::retain method.

String::retain iterates through a String and retains only the characters specified
by a predicate that was given as an argument. During this computation, the type
invariant of String is broken temporarily, but it is restored again by the time the
end of the String is reached and the function returns. The bug that was found
in that function was that the programmers had forgotten to make sure that the
invariant is restored in the case of a panic as well.

std::string::String consists of a vector of bytes, and its type invariant states
that it must always be UTF-8 encoded. If we were to verify the String::retain

method, we would therefore have to prove that this UTF-8 property holds at the
end of the execution, as well as when the String is dropped due to a panic.
Proving that the UTF-8 property holds would be a complicated and tedious task,
but at the same time, UTF-8 is not the main point of this verification.

So instead of String::retain, we chose to verify Vec::dedup_by, which works in
a very similar way to how String::retain does and uses the same programming
concepts. However, in contrast to retain it operates on Vec, a struct with a much
simpler-to-prove type invariant than String.

In Sec. 6.1, we will present the original Rust code of the Vec::dedup_by method
and explain the drop guard concept used to guarantee memory safety in the case
of a panic during the execution of dedup_by. Since verifying this function with
Prusti was not straightforward in this case, we decided to model this example
in Viper instead, which will be shown in Sec. 6.2.1. Sec. 6.3 notes that there is
a widespread use of the drop guard concept, allowing ideas and techniques for
verifying this example to be applied to many similar examples as well. Finally, we

65
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conclude the chapter by discussing what Prusti features would be needed to verify
the dedup_by method in Prusti.

6.1 Context, features, and concepts

The Vec::dedup by method The dedup_by method takes a closure same_bucket

as an argument. This closure defines some equality relation on the element type
of the vector. Given the references to two vector elements it decides whether the
two elements are ‘equal’ with respect to this relation.

The dedup_by method iterates through the vector, compares elements, and re-
moves any consecutive duplicates according to this equality relation [23] [24]. In
the following we are going to present the original code of the function (Figures 6.1-
6.31) and explain how it works.

First of all, the code takes care of the special case: if the vector contains at most
one element, then there are no elements to compare. The function does not need
to do anything and can return immediately (see Fig. 6.2, lines 6-9).

In the general case, the function goes on to define a struct FillGapOnDrop

(Fig. 6.2), the so-called ‘drop guard’, which is used to ensure memory safety
even when there is a panic and all of the allocated objects of the function are
dropped. On line 10 in Fig. 6.1 an instance of FillGapOnDrop, gap, is defined. It
stores a mutable reference to the vector itself, as well as two indices, read and
write, both initialised to 1.

The main part of the computation takes place in the while-loop. In every iteration,
the same_bucket equality function is used to compare a new element with the most
recent ‘accepted’ element (Fig. 6.1, line 24). Here, read_ptr points to the new
element we read, at index gap.read, while prev_ptr points to one element before
index write. It is the last element of the ones we decided to keep in the vector so
far.

If the two compared elements are equal according to same_bucket’s definition,
then gap.read is incremented and the element at the read_ptr is dropped. If they
are not equal according to same_bucket, however, then we keep both elements
in the vector. Since there might be a gap between the element at prev_ptr and
the read_ptr due to elements that had to be dropped previously, we need to copy
the new element at read_ptr to the front at write_ptr (line 37) to make sure all
the retained elements are in one consecutive range. Because of this new element
being accepted and written at gap.write, not only gap.read, but also gap.write

has to be incremented in this case.

1We have moved the special case for l ≤ 1, as well as the definition of the drop guard struct
FillGapOnDrop and its drop handler into separate Figures 6.2 and 6.3, while the main part of the
function is shown in Fig. 6.1.
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1 impl<T, A: Allocator> Vec<T, A> {

2 pub fn dedup_by<F>(&mut self, mut same_bucket: F)

3 where

4 F: FnMut(&mut T, &mut T) -> bool,

5 {

6 /* ... (special case l <= 1) */

7 /* ... (struct FillGapOnDrop) */

8 /* ... (impl Drop for FillGapOnDrop) */

9

10 let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self };

11 let ptr = gap.vec.as_mut_ptr();

12

13 /* Drop items while going through Vec, it should be more

14 * efficient than doing slice partition_dedup + truncate */

15 /* SAFETY:

16 * Because of the invariant, read_ptr, prev_ptr and write_ptr

17 * are always in-bounds and read_ptr never aliases prev_ptr

18 */

19 unsafe {

20 while gap.read < len {

21 let read_ptr = ptr.add(gap.read);

22 let prev_ptr = ptr.add(gap.write.wrapping_sub(1));

23

24 if same_bucket(&mut *read_ptr, &mut *prev_ptr) {

25 // Increase `gap.read` now

26 // since the drop may panic.

27 gap.read += 1;

28 /* We have found duplicate, drop it in-place */

29 ptr::drop_in_place(read_ptr);

30 } else {

31 let write_ptr = ptr.add(gap.write);

32

33 /* Because `read_ptr` can be equal to

34 * `write_ptr`, we either have to use `copy`
35 * or conditional `copy_nonoverlapping`.
36 * Looks like the first option is faster. */

37 ptr::copy(read_ptr, write_ptr, 1);

38

39 /* We have filled that place, so go further */

40 gap.write += 1;

41 gap.read += 1;

42 }

43 }

Figure 6.1: The Vec::dedup by method [23]
(continued on the next page)
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45 /* Technically we could let `gap` clean up with its Drop,

46 * but when `same_bucket` is guaranteed to not panic,

47 * this bloats a little the codegen,

48 * so we just do it manually */

49 gap.vec.set_len(gap.write);

50 mem::forget(gap);

51 }

52 }

53 }

Figure 6.1: The Vec::dedup by method [23] (cont.)

1 impl<T, A: Allocator> Vec<T, A> {

2 pub fn dedup_by<F>(&mut self, mut same_bucket: F)

3 where

4 F: FnMut(&mut T, &mut T) -> bool,

5 {

6 let len = self.len();

7 if len <= 1 {

8 return;

9 }

10

11 /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */

12 struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {

13 /* Offset of the element we want to check

14 * if it is duplicate */

15 read: usize,

16

17 /* Offset of the place where we want to place

18 * the non-duplicate when we find it. */

19 write: usize,

20

21 /* The Vec that would need correction

22 * if `same_bucket` panicked */

23 vec: &'a mut Vec<T, A>,

24 }

25

26 /* impl Drop for FillGapOnDrop */

27 /* ... dedup_by computation ... */

28 }

29 }

Figure 6.2: The special case l ≤ 1 of dedup by and the drop guard FillGapOnDrop
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Consider the situation at this point with regard to initialisation: the first few ele-
ments, up to and including the one at prev_ptr, are the elements we decided to
keep in the vector. They are initialised, valid elements. The range starting from
read_ptr, i.e. [gap.read..gap.vec.len()] holds the elements that are still to be
read and compared, i.e. the ones for which it has not been decided yet whether
they are kept or dropped. They are still in the original state from when the function
was called, so they are also initialised, valid vector elements.

However, as soon as an element has to be dropped, a gap appears between
these two ranges of the vector, where the elements have either been dropped or
moved. Consequently, the elements in this gap range might not be initialised even
though according to the type invariant the whole range vec[0..gap.vec.len()] of
the vector should always be initialised. The vector’s invariant is therefore broken if
such a gap appears.

This broken invariant is not a problem if the while-loop is able to run panic-free to
completion, i.e. until the read index gap.read reaches the end of the vector. At
this point, all the elements have been checked, and the ones to retain are located
in the range [0..gap.write]. By setting the length of the vector to gap.write

with the set_len method on line 49, the vector’s invariant can be restored and the
function can therefore return with the invariant intact.

However, if a panic occurs during one of the iterations, there are additional
measures to be taken in order to ensure memory safety. Without the drop guard,
the vector would be dropped as the function is exited. Dropping the vector in its
broken state where some of the elements might not be initialised could result in
undefined behaviour.

The drop guard’s purpose is to prevent that the vector is dropped in its broken
state. It stores a mutable reference to the vector itself as well as the write and
read indices that indicate the start and end of the gap in the vector, respectively
(Fig. 6.2. When a panic occurs and all objects held by the function are freed, gap’s
drop method gets executed. The task of this function is to get the vector into a
state where it is safe to drop the vector, i.e. a state where the type invariant is no
longer violated.

Fig. 6.3 shows the implementation of FillGapOnDrop’s drop method. It copies the
left-over elements (i.e. the ones that dedup_by could not read anymore before
the panic) from vec[read..] to vec[write..(write + items_left)] so that they
are located just after the ones that were accepted and collected at the front of
the vector during the regular execution. After this copy operation there is one
consecutive region of valid, initialised elements at the front of the vector, while the
rest is at the back. By subtracting the number of dropped elements from the length
of the vector and setting this new length of the vector using set_len, the vector’s
type invariant can be restored. Therefore, after gap’s drop handler completes its
execution, it is now safe to drop the vector itself, without the risk of any double
frees occurring.
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1 impl<T, A: Allocator> Vec<T, A> {

2 pub fn dedup_by<F>(&mut self, mut same_bucket: F)

3 where

4 F: FnMut(&mut T, &mut T) -> bool,

5 {

6 /* ... */

7

8 impl<'a, T, A: core::alloc::Allocator> Drop

9 for FillGapOnDrop<'a, T, A> {

10 fn drop(&mut self) {

11 /* This code gets executed when `same_bucket`
12 * panics */

13 /* SAFETY: invariant guarantees that `read - write`
14 * and `len - read` never overflow and that the copy

15 * is always in-bounds. */

16 unsafe {

17 let ptr = self.vec.as_mut_ptr();

18 let len = self.vec.len();

19

20 /* How many items were left when `same_bucket`
21 * panicked. Basically vec[read..].len() */

22 let items_left = len.wrapping_sub(self.read);

23

24 /* Pointer to first item in

25 * vec[write..write+items_left] slice */

26 let dropped_ptr = ptr.add(self.write);

27 /* Pointer to first item in vec[read..] slice */

28 let valid_ptr = ptr.add(self.read);

29

30 /* Copy `vec[read..]` to

31 * `vec[write..write+items_left]`.
32 * The slices can overlap,

33 * so `copy_nonoverlapping` cannot be used */

34 ptr::copy(valid_ptr, dropped_ptr, items_left);

35

36 /* How many items have been already dropped

37 * Basically vec[read..write].len() */

38 let dropped = self.read.wrapping_sub(self.write);

39

40 self.vec.set_len(len - dropped);

41 }

42 }

43 }

44 /* ... */

45 }

46 }

Figure 6.3: The drop handler of FillGapOnDrop
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Note that since we only need this drop handler to be executed in the case of
a panic, we call mem::forget at the end of the happy path (when the invariant
holds again). This function makes dedup_by forget about the gap object and thus
prevents gap from being dropped when it goes out of scope at the end of dedup_by.

6.2 Verification of Vec::dedup by in Viper

The next task now would be to verify Vec::dedup_by in Prusti. However, when
it comes to verification with Prusti, there are some uncertainties regarding what
Prusti specifications we would need to write in order to verify this code. For
example, it is unclear how to write specifications for the copy functions, especially
the ‘normal’ ptr::copy function where the source and destination ranges are
allowed to overlap. This potential overlap makes it more complicated and difficult
to handle the access permissions for these two ranges of the vector appropriately.
In order to get a better understanding of how to specify code like this and to see
what we would need in Prusti to verify this example, we decided to model and
verify the example in Viper instead.

In order to be able to implement and verify Vec::dedup_by in Viper, we needed
to find a way to represent all the necessary data structures (most importantly of
course the Vec itself). Further, we had to model memory and addresses, defining
the access permissions required to access locations in our model of memory.

In Sec. 6.2.1 we discuss our implementation of the dedup_by method in Viper, and
explain the important aspects of our surrounding Viper model as we make use of
it for our main implementation and verification. In some cases, we will refer to the
appendix for more detailed implementation and information. In Sec. 6.2.2 we will
compare the memory model we used for our Viper model in Sec. 6.2.1 with the
Rust memory model with regard to certain aspects. Then we will present some
ideas for alternative Viper models to better approximate Rust’s model.

6.2.1 Modelling dedup by in Viper

The dedup_by method operates on an instance of type Vec, whose type invariant
we have seen in previous chapters: the capacity is the number of elements
allocated, and the vector is initialised up to its length. In Sec. 6.1 we explained
how this invariant gets temporarily broken during the execution of the dedup_by

method – but we also saw that the invariant gets restored before the Vec instance
either returns (happy path) or is dropped (in case of a panic). We therefore have
to make sure in our Viper model that the method starts and ends with a vector
with an intact invariant.

Vec model Fig. 6.4 shows how we model the Vec type in Viper: we define three
fields, pointer, length, and capacity, as well as a predicate OwnVec, holding the
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1 /* * Vector Fields */

2 field pointer: Address

3 field length: Int

4 field capacity: Int

5

6 predicate OwnVec (self: Ref) {

7 /* Vec basics: */

8 Vec_basics(self) &&

9

10 /* Vec access ranges: */

11 (own_range(self.pointer, 0, self.length)) &&

12 (raw_range(self.pointer, self.length, self.capacity, size_of()))

13 }

14

15 define Vec_basics(self)

16 acc(self.pointer) &&

17 acc(self.length) &&

18 acc(self.capacity) &&

19

20 get_offset(self.pointer) == 0 &&

21 0 <= self.length &&

22 self.length <= self.capacity &&

23 self.capacity == alloc_size(get_allocation(self.pointer))

Figure 6.4: Model for the Vec struct

vector’s properties and permissions. For convenience, we use a macro, Vec_
basics, to hold the basic properties of the vector.

A Viper predicate like OwnVec is a way to name an assertion. It can have parameters
that are used in the assertion held in its body [25]. The parameter of OwnVec is
of the Viper built-in type Ref. Values of this type (except null) represent potential
receiver objects for field accesses. Permissions to a field f are denoted acc(x.f),
where x is a Ref value. Therefore, lines 16-18 in Fig. 6.5 denote that OwnVec holds
access permissions to all three vector fields. Furthermore, the usual size relations
hold for length and capacity, as shown on lines 21-22.

Viper domains allow users to define custom types [25]. The type of the pointer

field, Address, is such a custom type, that we defined in order to represent
addresses in our Viper model. Each address in our model is intended as the
location of one byte in memory. It consists of an allocation and an integer offset
from the base address of this allocation.

To model allocations, we defined another domain type, Allocation. An Allocation

has a size, which can be obtained through its domain function alloc_size.

The domain functions of Address are the constructor create_address, which takes
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1 predicate Raw_Byte(addr: Address)

2

3 predicate MemoryBlock(addr: Address, ty_sz: Int)

4 {

5 forall a: Address :: {Raw_Byte(a)}

6 get_allocation(a) == get_allocation(addr) &&

7 get_offset(addr) <= get_offset(a) &&

8 get_offset(a) < (get_offset(addr) + ty_sz)

9 ==> Raw_Byte(a)

10 }

11

12 function valid_element(address: Address, size: Int): Bool

13 requires acc(MemoryBlock(address, size), wildcard)

14

15 predicate Own(addr: Address)

16 {

17 MemoryBlock(addr, size_of()) &&

18 valid_element(addr,size_of())

19 }

Figure 6.5: Raw Byte, MemoryBlock, valid element, and Own

as input an Allocation and an Int and returns the corresponding Address, and
the two destructors, get_allocation, which returns the address’s allocation, and
get_offset, which returns the byte offset of the address within its allocation (i.e.
the address’s distance from the allocation’s base address, in number of bytes)2.

Since a vector corresponds to one allocation in memory, pointer must point to
the start of the allocation (i.e. the address with offset zero), while the capacity
corresponds to the size of the allocation pointed to by pointer. This property is
defined on lines 20 and 23.

On lines 11-12 we declare the access permissions held by the vector in a similar
way to how we did it in Prusti in previous chapters: the vector is initialised up to
self.length, thus holds the right to read the elements in this range, while it only
holds raw access rights to the rest of the allocation. The two macros own_range

and raw_range that we use here will be presented in the following paragraph.

Memory access permissions and ZSTs Since each address in our model is
intended to refer to one byte in memory, we start by defining a predicate that
gives access to a single byte at a given address: Raw_Byte, defined as a predicate
without a body, taking an Address as argument (see Fig. 6.5).

Vector elements can consist of several bytes (or of no bytes, in the case of a zero-
sized element type). It is therefore useful to define a predicate that gives access to

2For more detailed information about our address and allocation model, please refer to Sec. A.3
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1 function offset(addr: Address, idx: Int) : Address

2 {

3 create_addr(

4 get_allocation(addr),

5 (get_offset(addr) + mul(size_of(), idx))

6 )

7 }

Figure 6.6: Function offset

a range of several raw bytes, a MemoryBlock. As shown in Fig. 6.5, this predicate
takes an additional integer argument ty_sz and provides Raw_Byte-access to this
number ty_sz of bytes, starting from Address addr.

The Boolean function valid_element returns true if the contents of a given memory
block represent a valid element (of the vector element type). Combining access to
a memory block and the knowledge that the element at this place is valid, the Own

predicate is used to assert the right to not only write to this memory, but to also
read it. Different from the MemoryBlock predicate, Own does not get the size of the
block as an argument. Rather, it obtains it from the size_of function directly.

We use the size_of function to model obtaining the size of the vector’s element
type, similarly to how Rust’s std::mem::size_of<T> can be used to obtain the size
of an arbitrary type T. Here, we defined size_of as an abstract function with a
postcondition ensuring that the result is greater or equal to zero:

function size_of(): Int

ensures result >= 0

For convenience we would like to have a way of describing access permissions for
a whole range of a vector’s elements, similar to Prusti’s raw_range and own_range!.
We first define a helper function offset (Fig. 6.6) to calculate the offset from an
address (similar to what Rust’s pointer::offset does). Note that here, the offset
idx is given in units of the vector’s element type (not in bytes): given the address
addr of a vector element and an offset idx, it computes the address of the idxth
element after the element at addr.

Multiplication is undecidable, and as a consequence, the prover sometimes needs
manual guidance when multiplications are included in the code. Therefore, we
defined our own function mul, which allows us to help the verifier with manual
instructions (e.g. postconditions or lemmas).

Now we want to define our range access permissions in the style of Prusti’s
raw_range. Our first idea is to define a macro as follows:

define raw_range(ptr, from, to, ty_sz)

forall o: Int :: { offset(ptr, o) }

from <= o && o < to ==> MemoryBlock(offset(ptr, o), ty_sz)
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With this macro we can obtain access to a whole range of memory blocks. Un-
fortunately, this definition of the macro is not compatible with zero-sized types
(ZSTs), and we will explain why below.

Consider a vector of zero-sized-typed elements stored at an address a with an al-
location alloc and byte-offset x within this allocation. This vector’s elements do not
occupy any space, and as a consequence all of them are located at the same ad-
dress a, as illustrated by applying the offset function to a = create addr(alloc, x)
for any offset idx :

offset(a, idx) = offset(create addr(alloc, x), idx)

= create addr(alloc, x + idx ∗ 0)
= create addr(alloc, x)
= a

As a consequence, for all indices in the definition of the raw_range macro above,
we have that offset(a, idx) = a i.e. for each index the same address is handed
to MemoryBlock as an argument. This means that the receiver expression of the
quantified permissions, MemoryBlock(offset(ptr, o), ty_sz), is not injective,
which Viper does not allow.

In order to make the receiver expression injective even for zero-sized types, we
introduce a new predicate Idx_MemoryBlock as an additional ‘level’ between the
MemoryBlock predicate and the raw_range macro, and adapt the macro’s definition
accordingly (see Fig. 6.7). Analogously, we define a macro own_range for ranges
of initialised vector elements, and the predicate Idx_Own between the Own predicate
and this macro.

Pre- and postcondition of dedup by Fig. 6.8 shows our model of the dedup_by

method in Viper. The loop body, where the main part of the computation takes
place, will be discussed in detail shortly; for now, we omit it for brevity.

We put the OwnVec predicate in both the pre- and the postcondition of the method
to model how the invariant of Vec holds both at the start and at the end of dedup-by.
A Viper predicate instance is not equivalent to its body, therefore holding OwnVec is
not enough to access the permissions and assertions held inside its body [25]. In
order to be able to make use of them inside our dedup_by method, we use unfold

to exchange the OwnVec instance for its body. This unfolding operation is similar to
the unpack! operation in Prusti that we have used in the previous examples. At
the end of the method we need to perform the inverse operation, folding OwnVec’s
body back into the OwnVec predicate. This fold operation is thus similar to Prusti’s
pack!.

Special case l ≤ 1 In the special case where the length of the vector is smaller
than or equal to one, there are no elements to compare, meaning we do not need
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1 predicate Idx_MemoryBlock(addr: Address, idx: Int, ty_sz: Int)

2 {

3 MemoryBlock(offset(addr,idx),ty_sz)

4 }

5

6 predicate Idx_Own(addr: Address, idx: Int)

7 {

8 Own(offset(addr,idx))

9 }

10

11 define own_range(ptr,from,to)

12 forall o: Int :: { Idx_Own(ptr,o) }

13 from <= o && o < to ==> Idx_Own(ptr,o)

14

15 define raw_range(ptr,from,to,ty_sz)

16 forall o: Int :: { Idx_MemoryBlock(ptr,o,ty_sz) }

17 from <= o && o < to ==> Idx_MemoryBlock(ptr,o,ty_sz)

Figure 6.7: Predicates Idx MemoryBlock and Idx Own, and macros raw range and own range

to do anything in this if-clause and can directly continue on to the fold statement
at the very end of the method.

The general case and the while-loop invariant The else-clause in Fig. 6.8
contains the general case (i.e. l > 1), with the while-loop. In case of a panic, the
execution will jump directly out of the loop to the exit_with_panic label (more
about this later), so the set_len instruction is only executed if the while-loop was
able to successfully execute until the end. By setting the correct new length, the
vector’s invariant is restored, allowing us to fold the OwnVec predicate.

In order to verify our while-loop we need to define an invariant for it. Lines 20-22
hold the access permissions for all of the three vector fields, and ensure that they
remain unchanged throughout the execution of the loop.

The chain of inequalities on line 23 corresponds to the invariant described in
the comments for the struct FillGapOnDrop in the original code (see Fig. 6.2,
line 11). However, we had to tweak the first of the conditions slightly because
Viper invariants are not only required to hold when going from one iteration to the
next, but also at the end of a loop, when the invariant’s knowledge is transferred
back to the enclosing context. Since l == r is possible when the loop exits, we
need to put l >= r in the invariant instead of l > r. Note that l == r is only
possible upon exiting the loop after the whole loop was able to run completely to
the end, without any panic occurring.

Finally, lines 24-26 describe the access permissions within the range [0..l] of
the vector during the execution of the loop. As we can see, these permissions
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1 method dedup_by(self: Ref)

2 requires OwnVec(self)

3 ensures OwnVec(self)

4 {

5 unfold OwnVec(self)

6

7 var vec_ptr: Address := self.pointer

8 var cap: Int := self.capacity

9 var l : Int := self.length

10

11 if (l <= 1) {

12 /* Do Nothing */

13 } else {

14 var r : Int := 1

15 var w : Int := 1

16

17 /* Lemmas for offset fn */

18

19 while(r < l)

20 invariant acc(self.pointer) && self.pointer == vec_ptr

21 invariant acc(self.length) && self.length == l

22 invariant acc(self.capacity) && self.capacity == cap

23 invariant l >= r && r >= w && w > w - 1 && w - 1 >= 0

24 invariant own_range(self.pointer,0,w)

25 invariant raw_range(self.pointer,w,r,size_of())

26 invariant own_range(self.pointer,r,l)

27 {

28 /* LOOP BODY */

29 }

30 set_len(self,w)

31 label exit_with_panic

32 }

33 fold OwnVec(self)

34 }

Figure 6.8: Method dedup by
Loop body omitted
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1 method same_bucket(a: Address, b: Address)

2 returns (same: Bool, panic: Bool)

3 requires acc(Own(a), 1/2) && acc(Own(b), 1/2)

4 ensures acc(Own(a), 1/2) && acc(Own(b), 1/2)

Figure 6.9: Abstract method same bucket

correspond exactly to the broken state of the vector invariant during the execution
of the while loop: if the invariant was intact, we would have own-permissions for
this whole range; here, however, there is a gap in the range [w..r], where we only
hold raw permissions. This gap needs to be closed before the function returns,
which is enforced by the fold statement at the end of the method: as long as the
permissions stated in the predicate’s body are not restored, this folding operation
fails.

Starting the loop iteration At the start of each iteration of this while-loop, the
same_bucket function compares a new element (placed at ‘read’ index r) with the
latest accepted element (located at index prev, one before ‘write’ index w).

Fig. 6.9 shows our Viper implementation of same_bucket. In the original Rust code,
same_bucket is a closure given to dedup_by as an argument, but since there are
no closures in Viper we turn same_bucket into its own, separate method. As the
exact behaviour of the closure is unknown, we define same_bucket as an abstract
method (i.e. a method with no body) and only describe the access permissions it
takes and returns.

Our same_bucket method requires the Own predicate for both its arguments (i.e. it
has the permission to read (and write) the vector elements at addresses a and b),
and fully returns these permissions to the caller afterwards.

The own_range in the loop invariant consists of Idx_Own predicates. We need
to unfold the Idx_Own predicates at the addresses of the two elements to be
compared, so as to obtain Own predicates instead (see lines 7-8 in Fig. 6.10).
Only then do we have the right permissions to be able to call same_bucket. After
same_bucket returns, the Own predicates have to be folded into Idx_Own predicates
again (lines 14-15).

In order to be able to model a panic occurring in same_bucket, we let the method
return a second Boolean, panic, to indicate whether or not a panic occurred. This
Boolean return value allows us to handle the panicking and non-panicking cases
of the execution via control flow in dedup_by. Fig. 6.11 shows the framework of the
control flow in the while-loop in order to illustrate the various paths the execution
can take.

If a panic ‘occurs’ in same_bucket, then the ‘panic-path’ is taken, where first the
gap in the vector’s permissions needs to be fixed, before execution breaks out of
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1 while(r < l)

2 /* INVARIANT */

3 {

4 var prev: Int := w - 1

5 var same: Bool; var panic: Bool

6

7 unfold Idx_Own(self.pointer, r)

8 unfold Idx_Own(self.pointer, prev)

9

10 /* vec(idx) returns (start) address

11 of element of vec at index idx */

12 same, panic := same_bucket(vec(r), vec(prev))

13

14 fold Idx_Own(self.pointer, r)

15 fold Idx_Own(self.pointer, prev)

16

17 /* ... */

18 }

19 /* ... */

Figure 6.10: Call site of same bucket

1 while(r < l)

2 {

3 /* same_bucket */

4

5 if (panic) {

6 /* PANIC-PATH */

7 goto exit_with_panic

8

9 } else {

10 /* HAPPY PATH */

11

12 if (same) {

13 /* SAME-PATH */

14

15 } else {

16 /* DIFFERENT-PATH */

17

18 }

19 }

20 }

21 /* ... */

22 label exit_with_panic; /* Panic & Happy Paths join */

Figure 6.11: Skeleton of the while-loop
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1 /* HAPPY PATH */

2 if (same) {

3 r := r + 1

4 unfold Idx_Own(self.pointer, r - 1)

5 drop_in_place(vec(r-1))

6 fold Idx_MemoryBlock(self.pointer, r - 1,size_of())

7 } else {

8 /* DIFFERENT-PATH */

9 }

Figure 6.12: Dropping the duplicate element

1 method drop_in_place(addr: Address)

2 requires Own(addr)

3 ensures MemoryBlock(addr,size_of())

Figure 6.13: Method drop in place

the loop early and goes directly to the exit_with_panic label, where it joins the
happy path again.

The ‘happy path’ is split depending on the result of comparing the two elements in
same_bucket. If the two vector elements are ‘the same’, the one at index r needs
to be dropped. If the elements are not ‘the same’, the element at r is accepted
and copied to the right spot at index w (if it was not already there).

Dropping the duplicate Fig. 6.12 shows what we do when duplicate elements
are detected and we need to drop the element at index r. First, the index is
incremented, then we call the drop_in_place method, which is shown in Fig. 6.13.
It is an abstract method that takes an instance of the Own predicate for the element
at address addr, but only returns a MemoryBlock predicate instance instead, thus
modelling that this element has been dropped. Just as for same_bucket, we
need to unfold the Idx_Own instance at the address of the element that we have
to drop in order to obtain the corresponding Own instance needed to call the
drop_in_place method. Afterwards, we fold the MemoryBlock we obtain from the
method’s postcondition into an Idx_MemoryBlock instead, then continue with the
next iteration of the loop.

Copying the retained element to the right place Remember that if the vector
element at index r is not a duplicate of the one at index prev, it is kept in the
vector. If none of the previously checked elements had to be dropped (r == w),
then the element is already at the right place (see the else-clause on lines 32-34
of Fig. 6.14).



6.2. Verification of Vec::dedup by in Viper 81

1 /* HAPPY PATH */

2 if (same) {

3 /* SAME-PATH */

4 /* ... */

5 } else {

6 /* DIFFERENT-PATH */

7 if (r != w) {

8 assert w < r

9

10 /* * Stash point */

11 /* own(src-range) --> raw(src-range) */

12 exhale own_range(self.pointer,r,r+1)

13 inhale raw_range(self.pointer,r,r+1,size_of())

14 label stash_point

15

16 /* `MemoryBlock`s --> `Raw_Byte`s */

17 range_unfold(self.pointer,r,r+1,size_of())

18 range_unfold(self.pointer,w,w+1,size_of())

19

20 copy_nonoverlapping(vec(r), vec(w), 1)

21

22 /* `Raw_Byte`s --> `MemoryBlock`s */

23 range_fold(self.pointer,r,r+1,size_of())

24 range_fold(self.pointer,w,w+1,size_of())

25

26 /* restore_stash */

27 exhale raw_range(self.pointer,w,w+1,size_of()) &&

28 bytes(vec(w),mul(1,size_of()))

29 == old[stash_point](bytes(vec(r),mul(1,size_of())))

30 inhale own_range(self.pointer,w,w+1)

31

32 } else {

33 assert r == w /* already in right place */

34 }

35 w := w + 1

36 r := r + 1

37 }

Figure 6.14: Retaining the read element
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1 method copy_byte(src: Address, dst: Address)

2 requires Raw_Byte(src) && Raw_Byte(dst)

3 ensures Raw_Byte(src) && Raw_Byte(dst)

4 ensures bytes(dst,1) == old(bytes(src,1))

Figure 6.15: Method copy byte

However, if there is a gap in the vector due to previously dropped elements (r !=

w), then the element at r needs to be copied to its new spot at index w, which is
done in the if-clause in Fig. 6.14.

Unlike in the original code, we make the distinction between these two cases (r
== w and r != w), because doing so allows us to use copy_nonoverlapping for
copying the element instead of the more general copy, where the source and
destination ranges may overlap and where therefore writing specifications is more
complicated.

Copying the element with copy nonoverlapping In our model we implement
copy_nonoverlapping as a method calling a recursive method copy_rec_non-
overlapping, which ultimately uses the (abstract) method copy_byte shown in
Fig. 6.15.

The copy_byte method operates on individual raw bytes, taking Raw_Byte ac-
cess permissions to both the source and destination addresses. Afterwards, the
permissions are returned to the caller.

The function bytes appearing in the postcondition is a function that takes as
arguments an Address and an integer size, and returns the sequence of size
bytes starting at the given address3. Here it is used to ensure that the byte from
src was copied to dst by copy_byte.

Just like copy_byte copies single raw bytes from the source to the destination,
we modelled all the copy methods to operate on raw bytes, defining their pre-
and postconditions via the Raw_Byte predicate. The implementation of copy_
nonoverlapping, for example, is shown in Fig. 6.164.

It takes as arguments the starting addresses of both the source and the destination
ranges, as well as size, an integer indicating the number of vector elements to be
copied. Multiplying this number by the size of an element (returned by size_of)
yields the number of bytes to be copied5. If size is zero, the method simply

3For the detailed implementation of the bytes function, refer to Sec. A.3
4For the implementation of the byte_offset function used in copy_nonoverlapping,

please refer to Sec. A.3, Fig. A.4
5The lemma lemma_mul_by_zero ensures that function mul returns zero if either of its

arguments is zero.
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1 method copy_nonoverlapping(src: Address, dst: Address, size: Int)

2 requires 0 <= size

3 requires size == 0 || size_of() == 0

4 || (mul(size, size_of()) >= size

5 && mul(size, size_of()) >= size_of())

6 requires size_of() == 0 ? true :

7 forall k: Int :: {byte_offset(src, k)} {byte_offset(dst, k)}

8 0 <= k && k < mul(size, size_of()) ==>

9 Raw_Byte(byte_offset(src, k)) && Raw_Byte(byte_offset(dst, k))

10 ensures size_of() == 0 ? true :

11 forall k: Int :: {byte_offset(src, k)} {byte_offset(dst, k)}

12 0 <= k && k < mul(size, size_of()) ==>

13 Raw_Byte(byte_offset(src, k)) && Raw_Byte(byte_offset(dst, k))

14 ensures bytes(dst, mul(size, size_of()))

15 == old(bytes(src, mul(size, size_of())))

16 {

17 lemma_mul_by_zero()

18

19 if (size == 0) {

20 /* SPECIAL CASE: nothing to copy. */

21 } else {

22 assert size > 0

23 copy_rec_nonoverlapping(src, dst, mul(size, size_of()))

24 }

25 }

Figure 6.16: Method copy nonoverlapping

returns; otherwise, the recursive method is called6. It gets both addresses as
arguments, as well as the (already calculated) number of total bytes to be copied.

The precondition on lines 6-9 requires Raw_Byte permissions for both the source
and destination ranges, while the postcondition on lines 10-13 returns these
permissions back to the caller after the function. The second postcondition, on
lines 14-15, states that copy_nonoverlapping copies the bytes from the source
range over to the destination range.

Obtaining the permissions to copy nonoverlapping from the loop invariant As
we have just seen, the permissions of the copy methods are defined on the level
of the Raw_Byte predicate. In order to be able to call copy_nonoverlapping, we
need to get from the Idx_Own and Idx_MemoryBlock predicates that are held by
the invariant down to the Raw_Byte-level.

First, on lines 12-14 of Fig. 6.14, we stash away the own-permissions we hold
for element at index r. To stash away the Idx_Own predicate instances of our

6For the implementation of the recursive function copy_rec_nonoverlapping, see Sec. A.3
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own_range, we use Viper’s exhale statement (line 12, meaning that we give up
these permissions. Instead, we inhale the corresponding raw_range (line 13,
meaning that the Idx_MemoryBlocks of this range are added to the program state
(i.e. we basically ‘assume’ that we have these permissions). We mark this point of
the execution with the label stash_point (on line 14) so that we can refer back to it
when we want to restore the stashed permissions again later. After completing this
stashing operation we have now a raw_range for both the source and destination
ranges.

Since it is not that easy to unfold a whole range of Idx_MemoryBlock predicates
at once, we defined a lemma range_unfold. It is defined as an abstract method
requiring a raw_range in its precondition and ensuring all the Raw_Byte predicates
for the corresponding range in its postcondition7. We apply this lemma for both
our source and destination ranges (lines 17-18 of Fig. 6.14).

After copy_nonoverlapping returns, we fold the two ranges back again on lines 23-
24 with a reverse lemma range_fold8 defined to take a range of Raw_Byte predi-
cates and return a raw_range again.

On lines 27-30 we want to restore the stashed own-permissions, but on the
destination range instead of the source range. In order to be allowed to take up
own-permissions for the destination range we need to prove that the contents of
that range are valid elements. We do this by exhaling the condition on lines 28-29,
which states that the bytes in the destination range now correspond to the bytes in
the source range at the time the permissions were stashed (i.e. at the stash_point

label). As this condition is guaranteed by copy_nonoverlapping’s postcondition,
we are able to exhale it, together with the raw_range. Then we can inhale the
own_range for the destination range instead.

After successfully copying the element at index r to its new spot at index w, we
increment both indices r and w and continue on with the next iteration of the loop.

Panicking and repairing the gap Now that we have explained the execution of
the happy path, we now explain what happens in the panic case. In the original
Rust code, when a panic occurs in closure same_bucket, the function is exited and
all object instances are dropped, including the drop guard FillGapOnDrop. The
drop method of FillGapOnDrop is executed and makes sure that the Vec’s invariant
is intact (i.e. there is no gap in the own_range anymore) before the vector itself is
dropped as well.

In our code, panicking executions are modelled in dedup_by itself, in the if-clause
that gets executed when same_bucket returns the second Boolean return value
panic as true (see Fig. 6.17). First, we call a method drop_FillGapOnDrop which
takes the responsibility of repairing the gap that in the original code was held by

7For the definition of the lemma range_unfold, refer to Sec. A.3, Fig. A.6
8For the definition of the lemma range_fold, refer to Sec. A.3, Fig. A.7
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1 /* WHILE-LOOP BODY */

2 /* ... */

3 if (panic) {

4 /* PANIC! */

5 drop_FillGapOnDrop(self, r, w)

6 /* EXIT while-loop */

7 goto exit_with_panic

8

9 } else {

10 /* HAPPY PATH */

11 }

Figure 6.17: The panic path

1 method drop_FillGapOnDrop(self: Ref, r: Int, w: Int)

2 requires Vec_basics(self)

3 requires self.length > r && r >= w && w > w-1 && w-1 >= 0

4 requires own_range(self.pointer, 0, w)

5 requires raw_range(self.pointer, w, r, size_of())

6 requires own_range(self.pointer, r, self.length)

7 ensures Vec_basics(self)

8 ensures self.length == old(self.length) - (r-w) &&

9 self.capacity == old(self.capacity) &&

10 self.pointer == old(self.pointer)

11 ensures own_range(self.pointer, 0, self.length)

12 ensures raw_range(

13 self.pointer,

14 self.length,

15 old(self.length),

16 size_of())

17 {

18 /* METHOD BODY */

19 }

Figure 6.18: Pre- and postconditions of drop FillGapOnDrop

the drop handler of FillGapOnDrop. Once this method has repaired the broken
vector invariant, we break out of the loop directly and continue the execution at
the label exit_with_panic.

The drop FillGapOnDrop method As we just mentioned, the drop_FillGap-
OnDrop method models the functionality of FillGapOnDrop’s drop handler. We
show the preconditions it takes, as well as the postconditions we want it to ensure
in Fig. 6.18.

First of all, the basic properties defined in the Vec_basics macro hold. Remember
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that these are all the properties held in OwnVec apart from the permission ranges.
Next, the inequalities in the second precondition correspond to the invariant of the
FillGapOnDrop struct, annotated as a comment in the original code. Finally, the
permissions defined on lines 4-6 describe the permissions of the broken invariant,
i.e. with the gap at [w..r]. Note that these preconditions correspond to the
invariant of the while-loop in dedup_by9.

For the postcondition, the Vec_basics should of course hold again. Also, self
.pointer and self.capacity should be unchanged, while self.length should
have the correct new length, namely the length of the gap subtracted from the
original length, as the method should keep all elements that are still valid in the
vector. As for the permissions, they should correspond to the ones of the usual
vector type invariant, i.e. the vector should now be initialised exactly up to its (new)
length.

We can regard this postcondition as the ‘target’ we need to reach in order to repair
the vector’s broken type invariant. Fig. 6.19 shows what we do in the method’s
body in order to reach this target.

The task of this method is to copy the elements at source range [r..(r + items_

left)] to the destination range at [w..(w + items_left)]. The variable items_

left denotes the number of elements for which dedup_by did not have the chance
to decide whether they should be kept or dropped, i.e. the elements at [r..l].
Unfortunately, the source range and destination range might overlap this time,
meaning we cannot use copy_nonoverlapping but instead need to use the normal
copy method, whose pre- and postconditions are more complicated to define due
to the possible overlap.

Fig. 6.20 shows how we specify these pre- and postconditions for copy. This time,
a Raw_Byte permission in the destination can only be given if this byte is not already
contained in the source range. We therefore define a helper function contains

_byte (shown in Fig. 6.21) to determine whether a specific byte is contained in
a certain range of memory. The function takes an address a and integer size to
describe the byte range, as well as a second address other. It checks whether
other corresponds to any address that is located at a byte distance between zero
and size from address a, i.e. whether other is contained in the range of size
bytes starting from a.

In order to be able to use the copy method in drop_FillGapOnDrop, we need to
reach the Raw_Byte level needed for copy, starting from the permissions defined
in the precondition, just like we had to when we used copy_nonoverlapping in the
happy path. Like then, we start by stashing away the own_range of the source (see

9The only small difference: here, it is self.length > r, when in the invariant it was l >=
r. However, l == r is only possible when the execution leaves the while-loop after successfully
completing its execution for the whole length of the vector, i.e. drop_FillGapOnDrop is never
called in a state where l == r but only when l > r, so its precondition really does match the
invariant.
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1 method drop_FillGapOnDrop(self: Ref, r: Int, w: Int)

2 /* PRECONDITIONS & POSTCONDITIONS */

3 {

4 /* Lemmas for offset fn */

5

6 var l: Int := self.length

7 var items_left: Int := l - r

8 var dropped_ptr: Address := offset(self.pointer, w)

9 var valid_ptr: Address := offset(self.pointer, r)

10

11 /* Stash Point */

12 exhale own_range(self.pointer, r, l)

13 inhale raw_range(self.pointer, r, l, size_of())

14 label stash_point

15

16 range_unfold(self.pointer, r, l, size_of())

17 range_unfold_rest(

18 self.pointer, w, w + items_left, size_of(),

19 self.pointer, r, l)

20

21 copy(valid_ptr, dropped_ptr, items_left)

22

23 range_fold(self.pointer, w, w + items_left, size_of())

24 range_fold_rest(

25 self.pointer, r, l, size_of(),

26 self.pointer, w, w + items_left)

27

28 /* Stash restore */

29 exhale raw_range(self.pointer, w, w + items_left, size_of()) &&

30 bytes(dropped_ptr, mul(items_left, size_of()))

31 == old[stash_point](

32 bytes(valid_ptr, mul(items_left, size_of())))

33 inhale own_range(self.pointer, w, w + items_left)

34

35 set_len(self, w + items_left)

36 }

Figure 6.19: Method body of drop FillGapOnDrop
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1 method copy(src: Address, dst: Address, size: Int)

2 requires 0 <= size

3 requires size_of() == 0 ? true :

4 forall k: Int :: {byte_offset(src, k)} {byte_offset(dst, k)}

5 0 <= k && k < mul(size, size_of()) ==>

6 Raw_Byte(byte_offset(src, k)) && (

7 !contains_byte(

8 src,

9 mul(size, size_of()),

10 byte_offset(dst, k))

11 ==> Raw_Byte(byte_offset(dst, k))

12 )

13 ensures size_of() == 0 ? true :

14 forall k: Int :: {byte_offset(src, k)} {byte_offset(dst, k)}

15 0 <= k && k < mul(size, size_of()) ==>

16 Raw_Byte(byte_offset(src, k)) && (

17 !contains_byte(

18 src,

19 mul(size, size_of()),

20 byte_offset(dst, k))

21 ==> Raw_Byte(byte_offset(dst, k))

22 )

23 ensures bytes(dst, mul(size, size_of()))

24 == old(bytes(src, mul(size, size_of())))

Figure 6.20: Method copy

1 function contains_byte(

2 a: Address, size: Int, other: Address): Bool

3 {

4 exists k: Int :: {byte_offset(a,k)}

5 0 <= k && k < size && byte_offset(a,k) == other

6 }

Figure 6.21: Function contains byte
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1 function contains(

2 a: Address, start: Int, end: Int, other: Address): Bool

3 {

4 exists idx: Int :: { offset(a, idx) }

5 idx >= start && idx < end && offset(a, idx) == other

6 }

Figure 6.22: Function contains

lines 12-14 in Fig. 6.19). At the end, we restore it on the destination range instead
of the source range (lines 29-33), again using the bytes-condition ensured by the
copy method just like for copy_nonoverlapping.

When it comes to unfolding the range, the potential overlap causes this to be more
complicated than in the case of copy_nonoverlapping. While the source range can
be unfolded just as before (line 16), the destination range must only be unfolded
in the areas where it does not overlap with the (already unfolded) source range.
We define a new lemma range_unfold_rest10 to complement range_unfold, and
use it to unfold any elements of the destination range that have not been unfolded
with the source range already (lines 17-19). This lemma uses a helper function
contains, shown in Fig. 6.22. It works in a similar way to the contains_byte

function that we used for copy itself, but checks the overlap of whole elements
instead of individual bytes. To fold the Raw_Bytes up into Idx_MemoryBlock-ranges
again after the copy operation, we define a reverse lemma, range_fold_rest11

just like we did for range_unfold.

After copying the left-over elements to the right place, there is no gap in the
permissions of the vector anymore. The only thing left to do is setting the length
of the vector to its new value, namely the index up to where the vector is now
initialised. With this, the invariant is finally restored. The vector is returned to the
dedup_by method, where execution jumps immediately out of the loop to exit_

with_panic. There, the vector predicate OwnVec is folded and dedup_by returns
with the vector’s invariant intact.

6.2.2 Discussing different memory models

In the following, we discuss the memory we have used so far and compare how
certain aspects are handled in comparison to the Rust memory model. Then we
present two alternatives for our memory model, which we have come up with in
the pursuit of better approximating the Rust model.

10For the definition of the lemma range_unfold_rest, refer to Sec. A.3, Fig. A.8
11For the definition of the lemma range_fold_rest, refer to Sec. A.3, Fig. A.9
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The status quo In our Viper model we have modelled a type Address for the
values of pointers. So far, addresses in our model are constructed from an
Allocation instance and an Int offset via domain function create_addr, with
get_allocation and get_offset building an inverse to it together:

create addr : Allocation × Int → Address

get allocation : Address → Allocation

get offset : Address → Int

For simplicity, we will abstract this in the following and regard addresses as a tuple
of an Allocation and an Int,

Address := Allocation × Int

so we will shorten the representation of an address A = create addr(alloc ,x) to A
= (alloc, x). The associated offset function looks as follows:

offset : (Allocation × Int) × Int → (Allocation × Int),

offset((alloc, x), y) = (alloc, x + y ∗ size of()),

where size of() returns the size of one of the elements of the allocated object.

Consider the following Rust code snippet:

1 a1 := alloc()

2 a2 := realloc(a1)

3 assert!(a1 != a2)

In our current model, this would correspond to the following:

a1 is a pointer to an allocated object at address A1 = (alloc1, 0)
a2 is a pointer to an allocated object at address A2 = (alloc2, 0)

In the Rust model, the assert statement may fail since a2 is obtained via realloca-
tion of a1 and therefore both locations may point to the same location in memory.
However, in our model it is impossible to show that two addresses constructed
from different allocations refer to the same memory location.

The reason why a1 == a2 is impossible in our model is that create addr is an
injective function: there cannot be any two addresses A1 = (alloc1, x), A2 =
(alloc2, y) such that (alloc1, x) ̸= (alloc2, y) but A1 = A2, even though the two
addresses might actually refer to the same location in memory. In other words:
every address in our model belongs to exactly one allocation, and its offset is
always defined relative to the base address of that allocation. Consequently, the
assert statement in the example above is guaranteed to always succeed in our
model. The goal is to resolve this discrepancy between our model and the model
used by Rust.
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However, seeing as we have defined quantified permissions over addresses in our
model (such as the ones used in MemoryBlock, raw_range and own_range), Viper
in fact requires this injectivity of the create_addr function, and thus we cannot
resolve our problem by simply making the function non-injective. Instead, we need
to find an alternative implementation that allows us to compare pointers belonging
to different allocations properly like in the Rust model while also still upholding the
fulfilment of Viper’s requirements for quantified permissions.

Using Integers as Addresses In this alternative we model memory as a single
contiguous array of locations and simply use integers as addresses:

Address := Int

The offset function in this model would look as follows:

offset : Int × Int → Int

offset(a, x) = a + x ∗ size of()

Since all Addresses will now be in the same contiguous space of memory, com-
paring them can be done simply via integer comparison. In our above example,
this would mean:

a1 is a pointer to an allocated object at some address x1 : Int,

a2 is a pointer to an allocated object at some address x2 : Int,

and it may happen that x1 == x2, in which case the assert statement fails.

Since each Address is a different integer value in this model, the injectivity require-
ment for quantified permissions is also fulfilled. Therefore, this model is now able
to handle the assert statement in our previous example in the same way as Rust.

On the other hand, however, this model ignores a different aspect of the Rust
pointer model. Consider the following Rust code snippet:

1 a1 := alloc()

2 a2 := realloc(a1)

3 if (a1 == a2) {

4 unsafe{ *a1 = 3; }

5 }

This is not allowed in Rust since even if a1 == a2, a1 is a pointer belonging to
an allocation which has been deallocated, which means it is not allowed to be
used anymore. However, since our new alternative model only uses integers as
addresses and does not keep track of which allocation a pointer belongs to, using
a1 after its allocation has been deallocated cannot be prevented in this model. We
therefore need a way to still be able to keep track of the allocation our pointers
belong to and the status of these allocations.
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Adding a non-injective function to int to our model For this alternative we
combine the two previous ideas: we keep our original definition of Address, but we
add a non-injective function to_int that maps each Address to the integer space:

to int : Address → Int

It is defined such that it returns the same result if applied to addresses which refer
to the same location in memory (regardless of which allocation they are apart of),
but returns different results if the addresses refer to different memory locations. It
fulfils the following property:

Let

b = (alloc, 0),
a = (alloc, y) = offset(b, x),

where b is the base pointer of allocation alloc, and y = x ∗ size of(). Then:

to int(a) = to int(b) + y = to int(b) + x ∗ size of()

This new model is able to tell when two pointers point to the same memory
location, namely by applying to_int to both of the addresses and then comparing
the results. Thanks to to_int’s non-injectivity, the returned integers may be the
same even if the allocations the addresses belong to are not, in which case the
assert statement in the example above will fail (as it should). Contrary to our
integer memory model, however, this, model is still able to tell which allocation
each of the addresses belong to. Therefore, in the second Rust code snipped we
showed above, this model recognises that a1 belongs to a deallocated allocation
and is no longer allowed to be used. Furthermore, the injectivity of create_
addr is also retained in this model so that no problems arise with the quantified
permissions in our model.

6.3 Similar examples

Using unsafe Rust code, it is possible to perform computations that temporarily
break data structures and their invariants, while restoring them to be whole again at
the end of the execution. Drop guards are a very useful technique used to ensure
memory safety even in the face of a panic occurring during such a computation,
when the data structure is in a broken state. Furthermore, drop guards can also
come in handy when it comes to preventing memory leakage. Therefore, drop
guards are used quite often for these purposes.

Even in the implementation of Rust’s Vec type alone, dedup_by is only one of four
functions that use this technique. In the collection of bug examples we analysed for
this project, we also encountered several bugs that received a fix involving a drop
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guard. Therefore, many aspects of remodelling the code and writing specifications
for verifying it are not exclusive to the example of dedup_by, but can be applied to
other Rust functions using the drop guard technique as well.

6.4 Suggestions for Prusti

In order to verify this example with Prusti, we would need to model the vector in two
different states again, namely in the state where the vector’s type invariant is intact,
and in the state where there is a gap of potentially uninitialised memory within
the vector. For this purpose it would once again be useful to have the possibility
of defining multiple invariants on the vector struct and switching back and forth
between them, like what we would already have found useful for examples 1 and
3 and we have described in detail in Sec. 3.4.

As long as this feature of switchable invariants is not available in Prusti, we can
use a similar approach as we already used in these two examples, namely defining
two versions of the vector struct, e.g. Vec and GapVec, each with the corresponding
invariant. Then we can again change from Vec to GapVec by first creating a new
instance of GapVec from the Vec instance, then overwriting the fields of the Vec,
and the other way around.

Additionally, for writing specifications for the std::ptr::copy function we would
need a function to check the overlap between the source and destination ranges.
Then, we would also need a way to specify permissions to memory locations
dependent on the outcome of this function, so that permissions are given wherever
the is no overlap, but no permissions are given in the areas where the ranges
overlap.





Chapter 7

Discussion of Findings

In this chapter we summarise our findings while analysing examples of mem-
ory safety bugs in Rust, as well as the outcome of our assessment of Prusti’s
capabilities in verifying unsafe Rust code. In Sec. 7.1 we present common bug
patterns we encountered while choosing the examples to verify. In Sec. 7.2, we
recapitulate Prusti features and verification techniques we used successfully for
verifying our examples, while in Sec. 7.3 we present some ideas of what additional
Prusti features would be useful to have in the future. Sec. 7.4 concludes with
an evaluation of Prusti’s design and capabilities with regard to verifying memory
safety of unsafe Rust code.

7.1 Common bug patterns

In this section we describe our observations of bug patterns that appeared fre-
quently in the collection of bugs we chose our examples from. Keep in mind that
this is a very specific subset of Rust bugs, as they are all memory safety bugs
found by the Rudra ‘Unsafe Dataflow (UD)’ analyser. Most of them either have to
do with panic safety, or with the exposure of uninitialised memory to outside code.
Therefore, the validity of the following observations is limited to this specific subset
and not generalisable to the set of all Rust bugs.

What we noticed is that often programmers forgot to take care of certain cases
that could come up in the execution of their program. Most often, the programmers
expected the code to behave in a certain way. Some of these expectations were
about their own code while others were assumptions about user-provided code,
e.g. in closures or trait functions. These expectations often led them to overlook
‘special’ cases that were not covered by their program.

In Chapter 4, for example, we had a function with a safety check to make sure the
result of a subtraction would not be too large. The ‘normal’ way the value could be
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too large was checked, but they did not realise that the subtraction could overflow,
which is another way to end up with a too large result.

A problem we found frequently in the examples we analysed was that of temporarily
broken invariants. There were many examples, like Vec::dedup_by in Chapter 6 or
String::retain in Chapter 2, where a type invariant was broken for the duration
of a computation, but is restored at the end before the function returns. However,
often the programmers forgot to think of what happens when a panic occurs and
the function is exited during the computation, when the data structure is still in a
broken state. These examples could usually be solved by adding a drop guard,
like it was the case for the String::retain example in Chapter 2.

Furthermore, as previously mentioned in Sections 2.3 and 3.3, there were another
large number of bugs that were due to programmers assuming a certain behaviour
from a trait function, even when it could be user-implemented. This was especially
often the case in relation to the Read trait, where most programmers assume that
a read function reads some data into the reader without reading the previous con-
tents of the reader itself. Despite this being the conventional way of implementing
a reader, this behaviour is not guaranteed by the traits documentation. Therefore,
the programmers’ assumption is incorrect and it is unsafe to call a read function
on an uninitialised buffer.

In general, we can learn from our examining all these bugs that reasoning about
panic safety is hard. The unwinding paths in the case of a panic, but also the
normal drops at the end of a function are invisible to the programmer as they are
automatically inserted by the compiler. As a consequence, problems regarding
panic safety are easily overlooked. For this reason it is advantageous to have
tools like Prusti to aid the programmer in this task of checking panic safety.

7.2 Prusti patterns

In this section we present some patterns and Prusti features we used successfully
in verifying our examples, some of which we used frequently.

Unimplemented and trusted One pattern that we used quite often when veri-
fying our examples is the ‘unimplemented/trusted’-pattern, where we replaced a
function’s body with the unimplemented! macro and annotated the function itself
as #[trusted] to make Prusti ignore the unimplemented body. There were several
types of situations where this was helpful. One reason to use this pattern is to
simplify functions where it suffices to know the signature of the function, or even
only the return type, but the exact implementation of its body is irrelevant for the
verification. These functions are often ‘side’ functions that get called by the main
function we want to verify. We used this pattern for example in Chapter 4 for
analyze_extra_fields (see Fig. 4.14), as well as in Chapter 5 for new_raw_vec
(see Fig. 5.8).
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Furthermore, this pattern is also useful to apply to functions where the body is
actually not known, which is the case for closures as well as trait functions, as we
explain below.

Closures are not supported by Prusti but can easily be replaced by a separate
function outside of the main function that takes the closure as an argument. How-
ever, being a function argument, the closure’s body implementation is unknown,
only its signature is known. Applying the ‘unimplemented/trusted’ pattern allows
us to model a closure as a separate function, otherwise this would not be possible.
We used this technique for example for the closure in Sec. 3.2.1.

Trait functions are similar: Assume the function we want to verify takes as an
argument a, which is an instance of a type that implements some trait T. When
a function from T gets called on a, we again only know the signature of this trait
function, but not its implementation. Since traits are not fully supported by Prusti
yet, we need to model trait functions separately as well, just as we did for the
closure above, and again this is possible thanks to ‘unimplemented/trusted’. We
made use of this in Chapter 4 when we modelled the call to a reader’s read_exact

method as a separate function instead (see Fig. 4.15).

Using Ghost fields to detach struct fields from the invariant Another thing
we used several times for our verifications are Ghost types. Every time we used
them for these examples was for a very specific purpose, namely in order to detach
(some) of the struct’s fields from the invariant’s definition.

We used this method both for our type BrokenVec in Chapter 3 (see Fig. 3.4) and for
Vecu8 in Chapter 4 (see Fig. 4.7) to change an invariant that would usually define
permissions dependent on all three fields, ptr, len, and cap, into an invariant
where the Ghost field is used in len’s stead to define permissions that do not
depend on the len field anymore.

Permissions between pointers In most cases, the permissions we needed
to define lay between two integer offsets from a pointer, so the types expected
by own_range! and raw_range were fitting: they both work by taking a pointer to
memory and two usize integers indicating the start and end of the region given
access to, as offsets from the pointer.

However, in one of our examples, namely the one about Vec::from_iter in Chap-
ter 5, the permission ranges had to be defined between several pointers instead of
between indices. In order to obtain the integer offsets we needed to define these
permissions, we had to use the address_from function, a Prusti version of Rust’s
offset_from function calculating the distance between two pointers (see Fig. 5.6
and Figures 5.11-5.12).
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7.3 Wish list

In this section we present some ideas for potential Prusti features that we would
have found useful for verifying our examples. If they were added to Prusti in the
future, we think they could facilitate verifying unsafe Rust code.

Multiple invariants In several of our examples we would have liked an easy way
to model a struct in several different states.

In Chapter 3 a struct’s invariant was temporarily broken, so we needed to model it
both in this broken state, as well as in the normal state, where its type invariant
was intact. In Chapter 5 we wanted to model a struct’s special state after returning
from a certain function call, as well as its ‘normal’ state that it should have when
methods are called on it.

Unfortunately, Prusti does not allow multiple invariants defined on a single struct.
Our workaround was to define new structs for each of the different invariants that
we wanted to model. However, the transformation from a struct A to a struct B is
rather cumbersome. To make an instance b of type B out of some object a of type
A, we have to proceed as follows: the first step is to build an instance b of type B

that is an equivalent of a by using a’s field values as well as the properties stated
in its invariant for the definition of b. Once b was defined like this, a has to forget
about the allocation and permissions they now both share. This can be achieved
only by overwriting the fields of a with new values. Only then can b be used for
proceeding with the rest of the program.

We could therefore save a lot of work if Prusti allowed several invariants to be
defined on a single struct, and provided a way making it swap the invariant used
on an instance of the struct, e.g. with a swap command. Then an object could be
defined as an instance of a type with one invariant, but during the computation we
can tell Prusti to swap to another invariant if the state of the object changes.

For this feature, it would also be good to allow users to define a ‘default invariant’ if
they want to. This could be used in cases like the one in the example in Chapter 3,
where one of the invariants represent the struct’s actual type invariant, while the
second one represents a broken version of this invariant. In cases like this, the
type invariant holds when the instance is created, and it also has to hold again
before the instance is returned by the function and exposed to the outside, since
all outside code will expect its type invariant to be intact. Therefore, we could use
such a ‘default invariant’ as the invariant used when a new instance of the struct
is created, as well as require this invariant to be in use whenever the instance is
exposed to outside code that expects this specific invariant to hold.

Specialised specifications In Chapter 4 we saw an example where a type
taking a generic type parameter was used (Vec<T>), but only with one specific type
inserted for the type parameter (Vec<u8>). The program was only able to work
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because it leveraged certain properties of type u8. As a consequence, we also had
to take into account these special properties while writing our Prusti specifications.
The resulting specifications were therefore only valid for this specific version of the
vector type, but would be wrong if applied to the general type Vec<T>.

It would be helpful if Prusti allowed us to write specifications both for the general
case, where it is unknown what type the parameter T takes or what properties
this type exhibits, as well as for specialised cases, where additional information
is available about the properties exhibited by T. During verification, Prusti would
then choose between the general and ‘specialised’ specifications based on, for
example, the traits implemented by a certain type parameter.

7.4 Prusti’s design and capabilities

As mentioned in a previous chapter, Prusti is designed so that it verifies memory
safety separately from general correctness and absence of panics. This allows
us to isolate the verification of unsafe code from the verification of safe code, just
how the unsafe keyword isolates unsafe code itself from safe code.

This isolation helps Prusti prevent us from writing nonsensical specifications.
For example, Prusti does not allow us to specify memory safety requirements
as preconditions for safe functions (i.e., using structural_requires on a safe
function is not allowed, as it would be a contradiction to the function being safe).

Prusti also prohibits the use of the result keyword in structural postconditions.
However, if the postcondition about the result is nevertheless needed for the
proof of memory safety, then the function can be annotated with #[no_panic_

ensures_postcondition] in order to enable Prusti to assume the result in the
non-panic-situation at least, as we did in several of our examples.

So far, there is little documentation available on how to use Prusti for verifying
unsafe code. There is no overview in one place of all the available features, and
therefore no possibility to look up how they can be used, and what for.

As for error reports, some of them are already quite informative, making it easy
to correct faulty usages of specifications (such as the ones described above),
whereas others still leave it rather unclear what the problem is.

When it comes to Prusti’s performance, we did not encounter any particular
problems, but since measuring the performance was not the aim of this project and
the number of examples we verified was not large enough to get any meaningful
results, we leave this task for future work.

Once error reporting is further developed and more resources like a detailed
documentation become available, Prusti will become much more user-friendly and
verifying Rust programs with it will be much more efficient. Especially in regard
to cleanup code that gets inserted automatically by the compiler (either in case
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of a panic, or whenever a value goes out of scope), Prusti can be of great help.
As discussed in Sec. 7.1, these invisible parts of the computation are particularly
tricky for programmers to reason about when it comes to memory safety. Having
Prusti as a tool to assist in this challenging task will certainly facilitate guaranteeing
the memory safety of unsafe code.
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Related Work

Several studies have been conducted about the usage of unsafe code in Rust
programs [26][27]. They have analysed where, when, and for what purposes
unsafe code is used by programmers. Although Rust’s unsafe keyword is meant
to be used sparingly, they have come to the conclusion that unsafe code is rather
used a lot more often than expected (especially when it comes to enabling inter-
operability with other programming languages) [26]. Cui et al. [27] studied safety
requirements across unsafe boundaries and defined typical safety properties, then
categorised existing Rust CVEs according to the properties they defined.

Such an analysis of existing bug reports has also been done by Xu et al. [28].
Based on their analysis they defined patterns of Rust safety bugs, which they
used to give recommendations for both the avoidance of new safety bugs, and the
detection of already existing safety bugs.

As mentioned in Chapter 2, the Rudra project [1] went one step further: after
also defining memory safety bug patterns, they used them for their large-scale
automatic analysis of the complete Rust crate directory, as well as the standard
library and the Rust compiler, rustc. Their approach to ensuring memory safety is
therefore to find as many memory bugs as possible and eliminate them.

Rather than bug detection, the goal of our project was to verify Rust code with our
Rust verifier Prusti. In contrast to projects like Rudra, which try to achieve memory
safety through the detection and elimination of as many bugs as possible, Prusti’s
aim is to ensure memory safety by proving the complete absence of such memory
safety bugs.

Apart from verifying our examples of Rust code with Prusti, another goal of
our project was to evaluate Prusti’s capabilities with regard to verifying unsafe
Rust code, as previous work on Prusti has primarily focused on verifying safe
Rust [2][29]. The above analyses of the collection of past bug reports [1][28] as
well as on the usage of unsafe code in general [26][28] could serve as sources of
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examples for further evaluating Prusti’s usefulness in verifying unsafe code in the
future.



Chapter 9

Conclusion

The aim of this project was to assess Prusti’s capabilities to verify unsafe Rust
code. To achieve this goal we selected several examples of Rust code where
memory bugs have been found in the past but which have been fixed since. If
verifying the fixed code with Prusti was successful, this choice of examples allowed
us to subsequently make sure that the unfixed code, by contrast, fails to verify
while using the same specifications.

To enable the verification, a considerable amount of remodelling the code was
necessary. For example, we generally defined our own custom structs to model
Rust data structures, and often replaced functions with a simplified version of
themselves. There are some very useful Prusti features and specification patterns
that we used frequently throughout this process, for example the ‘unimplement-
ed/trusted’ pattern to simplify functions whose body was not relevant to the veri-
fication, Ghost types, which we used for detaching certain struct fields from the
invariant if necessary, and finally some annotations to bridge the gap between
memory safety verification and correctness verification.

Nevertheless, our remodelling efforts have revealed the absence of some function-
alities that we would have liked. These observations resulted in some suggestions
for potential future Prusti features: switchable invariants (allowing us to switch back
and forth between multiple invariants defined on a single struct), and specialised
specifications (which are defined next to general ones, and which are used by
Prusti depending on traits implemented by some type in order to leverage addi-
tional knowledge provided by these traits). These features would in our opinion
facilitate writing Prusti specifications for verifying unsafe Rust code.
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Appendix

A.1 Prusti configuration flags

The following table lists the Prusti configuration flags we used for verifying exam-
ples.

Flag Value

unsafe core proof true
enable type invariants true
create missing storage live true
smt qi eager threshold 20
purify with symbolic execution true
trace with symbolic execution true
symbolic execution single method true
panic on failed exhale materialization false

Only used for ex. 3:
merge consecutive statements false
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A.2 Additional Code for Chapter 3:
Example 1: glium::buffer::Content::read

Fig. A.1 shows the getter functions for the length and capacity fields of Vec from
Fig. 3.2. They are both annotated as pure methods that terminate, allowing them
to be used in Prusti specifications elsewhere. They cannot panic (#[no_panic] )
and therefore their result can be assumed for the proof of memory safety (#[no
_panic_ensures_postcondition] ), not only for the proof of general correctness.
non_verified_pure tells Prusti that it does not need to verify these functions but
can assume its postconditions nevertheless.

1 impl Vec {

2 #[non_verified_pure]

3 #[pure]

4 #[terminates]

5 #[no_panic]

6 #[no_panic_ensures_postcondition]

7 pub fn len(&self) -> usize {

8 self.len

9 }

10

11 #[non_verified_pure]

12 #[pure]

13 #[terminates]

14 #[no_panic]

15 #[no_panic_ensures_postcondition]

16 pub fn capacity(&self) -> usize {

17 self.cap

18 }

19 }

Figure A.1: Getter methods len and capacity of struct Vec
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1 domain Allocation {

2 function alloc_size(a: Allocation) : Int

3 }

4

5 domain Address {

6 function create_addr (alloc: Allocation, n: Int) : Address

7 function get_allocation (addr: Address) : Allocation

8 function get_offset (addr: Address) : Int

9

10 axiom addr_inverse {

11 forall alloc: Allocation, i: Int :: {create_addr(alloc, i)}

12 get_allocation(create_addr(alloc, i)) == alloc &&

13 get_offset(create_addr(alloc, i)) == i

14 }

15

16 axiom offs_range {

17 forall addr: Address :: {get_offset(addr)}

18 get_offset(addr) >= 0

19 && get_offset(addr) < alloc_size(get_allocation(addr))

20 }

21

22 axiom diff_addr {

23 forall a1: Address, a2: Address ::

24 a1 != a2 ==>

25 get_offset(a1) != get_offset(a2)

26 || get_allocation(a1) != get_allocation(a2)

27 }

28

29 }

Figure A.2: Allocation and Address

A.3 Additional Code for Chapter 6:
Example 4: std::vec::Vec::dedup by

Modelling memory and addresses Fig. A.2 shows our address model. Each
address refers to one byte within an allocation, at some integer offset from the start
of the allocation. The constructor create_addr takes an allocation and an offset
and creates the corresponding address, while the destructors get_allocation

and get_offset can be used to obtain either one of these two components of an
address; the axiom addr_inverse ensures that these functions actually work as
inverses to create_addr. Meanwhile, the offs_range axiom restricts the offset
of the address to the range of the allocation. Finally, diff_addr makes sure that
each allocation-integer pair maps to exactly one instance of Address.
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The bytes function The bytes function in Fig. A.3 takes an address and an
integer size as arguments and returns the sequence of size bytes starting from
the given address.

1 domain Byte{}

2

3 function bytes(addr: Address, size: Int): Seq[Byte]

4 ensures |result| == size

5 ensures forall a: Address

6 :: {bytes(a, 0)}

7 bytes(a, 0) == Seq[Byte]()

8 ensures forall a: Address, sz: Int, x: Int, y: Int

9 :: {bytes(a, sz)[x..y]}

10 0 <= x && x <= y && y <= sz ==>

11 bytes(a, sz)[x..y] == bytes(byte_offset(a, x), y - x)

12 ensures forall a: Address, d: Int, sz: Int

13 :: {bytes(byte_offset(a, d), sz)}

14 bytes(byte_offset(a, d), sz) == bytes(a, d + sz)[d..(d + sz)]

Figure A.3: Domain Byte and the bytes function

The byte offset function The byte_offset function is a helper function used by
copy_nonoverlapping (see Fig. 6.16) and copy_rec_nonoverlapping (see Fig. A.5).

1 function byte_offset(addr: Address, offs: Int): Address

2 ensures forall a: Address :: {byte_offset(a,0)}

3 byte_offset(a,0) == a

4 {

5 create_addr(get_allocation(addr), (get_offset(addr) + offs))

6 }

Figure A.4: Function byte offset

Method copy rec nonoverlapping The method copy_rec_nonoverlapping is
used by copy_nonoverlapping (see Fig. 6.16) for recursive calls. In the base case
it returns without doing anything; otherwise, it uses the method copy_byte to copy
one single byte (the last of the range), then calls itself recursively. Its code is
shown in Fig. A.5.
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1 /* num_bytes: size in BYTES, not in type-sized elements */

2 /* if size_of() == 0 ==> num_bytes == 0 */

3 method copy_rec_nonoverlapping(

4 src: Address, dst: Address, num_bytes: Int)

5 requires num_bytes >= 0

6 requires forall k: Int :: {byte_offset(src,k)} {byte_offset(dst,k)}

7 0 <= k && k < num_bytes ==>

8 Raw_Byte(byte_offset(src, k)) && Raw_Byte(byte_offset(dst, k))

9 ensures forall k: Int :: {byte_offset(src,k)} {byte_offset(dst,k)}

10 0 <= k && k < num_bytes ==>

11 Raw_Byte(byte_offset(src, k)) && Raw_Byte(byte_offset(dst, k))

12 ensures bytes(dst, num_bytes) == old(bytes(src, num_bytes))

13 {

14 if (num_bytes == 0) {

15 /* DONE (Base Case) */

16 } else {

17 var from: Address := byte_offset(src, num_bytes - 1)

18 var to: Address := byte_offset(dst, num_bytes - 1)

19

20 /* copy the last byte */

21 copy_byte(from,to)

22

23 /* recursively copy the first num_bytes-1 bytes */

24 copy_rec_nonoverlapping(src, dst, num_bytes - 1)

25

26 assert bytes(dst,num_bytes)[0..(num_bytes - 1)]

27 == old(bytes(src,num_bytes)[0..(num_bytes - 1)]) /* trigger! */

28 }

29 }

Figure A.5: Method copy rec nonoverlapping

Unfolding and folding ranges The following lemmas are used to unfold and
fold whole memory ranges, i.e. to obtain Raw_Byte predicate instances for the
bytes within a raw_range, or vice-versa.

range_unfold and range_fold are used for both the source and destination range
in dedup_by (Fig. 6.14) before and after copy_nonoverlapping, respectively.

In drop_FillGapOnDrop (Fig. 6.19) they are used in combination with range_unfold

_rest and range_fold_rest before and after copy, respectively.
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1 method range_unfold(ptr: Address, start: Int, end: Int, el_size: Int)

2 requires start >= 0 && end >= 0 && el_size >= 0

3 requires raw_range(ptr,start,end,el_size)

4 ensures el_size == 0 ? true :

5 forall k: Int :: { byte_offset(offset(ptr,start),k) }

6 0 <= k && k < mul(end-start, el_size) ==>

7 Raw_Byte(byte_offset(offset(ptr,start),k))

Figure A.6: Lemma range unfold

1 method range_fold(ptr: Address, start: Int, end: Int, el_size: Int)

2 requires start >= 0 && end >= 0 && el_size >= 0

3 requires el_size == 0 ? true :

4 forall k: Int :: {byte_offset(offset(ptr,start),k)}

5 0 <= k && k < mul(end - start,el_size) ==>

6 Raw_Byte(byte_offset(offset(ptr,start),k))

7 ensures raw_range(ptr,start,end,el_size)

Figure A.7: Lemma range fold

1 method range_unfold_rest(

2 ptr: Address, start: Int, end: Int, el_size: Int,

3 other: Address, other_start: Int, other_end: Int)

4 requires start >= 0 && end >= 0 && el_size >= 0

5 requires forall o: Int :: { Idx_MemoryBlock(ptr, o, el_size) }

6 start <= o && o < end &&

7 !contains(other, other_start, other_end, offset(ptr, o))

8 ==> Idx_MemoryBlock(ptr, o, el_size)

9 ensures el_size == 0 ? true :

10 forall k: Int :: { byte_offset(offset(ptr, start), k) }

11 0 <= k && k < mul(end - start,el_size) &&

12 !contains_byte(

13 offset(other, other_start),

14 mul(end-start, el_size),

15 byte_offset(offset(ptr, start), k)

16 )

17 ==> Raw_Byte(byte_offset(offset(ptr, start), k))

Figure A.8: Lemma range unfold rest
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1 method range_fold_rest(

2 ptr: Address, start: Int, end: Int, el_size: Int,

3 other: Address, other_start: Int, other_end: Int)

4 requires start >= 0 && end >= 0 && el_size >= 0

5 requires el_size == 0 ? true :

6 forall k: Int :: { byte_offset(offset(ptr, start), k) }

7 0 <= k && k < mul(end - start, el_size) &&

8 !contains_byte(

9 offset(other, other_start),

10 mul(end - start, el_size),

11 byte_offset(offset(ptr, start), k)

12 )

13 ==> Raw_Byte(byte_offset(offset(ptr, start), k))

14 ensures forall o: Int :: { Idx_MemoryBlock(ptr, o, el_size) }

15 start <= o && o < end &&

16 !contains(other, other_start, other_end, offset(ptr, o))

17 ==> Idx_MemoryBlock(ptr, o, el_size)

Figure A.9: Lemma range fold rest
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