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Abstract

Satisfiability modulo theories (SMT) solvers can determine the satisfi-
ability of first-order formulas with respect to various theories, which
enable them to reason about different data types and data structures.
To be able to detect soundness issues related to the bit-vector theory
and array theory in the implementation of such solvers we adopt a tech-
nique which generates formulas which are satisfiable or unsatisfiable
by construction. We define two new transformations for the generation
of unsatisfiable formulas which allows us to test the solvers more rig-
orously. Additionally, we extend the technique to be able to generate
formulas which combine operations from multiple theories to test the
interaction between different theories.

To adapt the technique to the bit-vector theory and array theory we
implement an executable version of the SMT-LIB semantics. Using this
executable semantics we can also generate formulas which combine
multiple theories.

We use the extended technique to test widely used SMT solvers such as
Z3 and CVC4. Our evaluation shows that the technique is able to find
soundness issues in both of them.
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Chapter 1

Introduction

Satisfiability modulo theories (SMT) solvers have many different applications
including program verification, program synthesis, symbolic execution and
test case generation. These solvers (such as Z3 [27] and CVC4 [23]) can
determine the satisfiability of first-order formulas with respect to various
theories, which enable them to reason about different data types and data
structures. The SMT-LIB library [1] includes theories for Booleans, integers,
real numbers, floating point numbers, strings, arrays and bit vectors.

For a given input formula, an SMT solver may return one of the following
four results:

• sat: The SMT solver was able to find a model (i.e., a value for each
free variable and an interpretation for each uninterpreted function),
such that the input formula evaluates to true. The formula is said to be
satisfiable.

• unsat: The SMT solver has determined that the input formula is un-
satisfiable, no combination of values for the free variables or no inter-
pretation for the uninterpreted functions for which the input formula
evaluates to true exists. In addition, the SMT solver usually returns the
set of clauses which lead to a contradiction, called the unsat core.

• unknown: SMT solvers support undecidable theories. As a result, they
can sometimes not decide whether the input formula is sat or unsat. In
such cases, they return unknown.

• timeout: Sometimes the SMT solver cannot determine the satisfiability
of the input formula in the allocated timeframe and will time out.

An SMT solver can be affected by different problems including:

• Unsoundness: If an SMT solver returns sat for an unsat formula or
unsat for a sat formula then it returns an incorrect result and is unsound.
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1. Introduction

In addition, an SMT solver is also unsound if it correctly returns sat for
a sat formula but it returns an invalid model. Analogously, the solver
is unsound if it returns an incorrect core for an unsat formula.

• Incompleteness: An SMT solver is incomplete if it returns unknown for
a formula from a decidable theory which is known to be sat or unsat.

• Timeouts: If an SMT solver times out frequently, it could be an indica-
tion of underlying performance issues.

1.1 Motivation

If an SMT solver is affected by one of the aforementioned problems, its
usefulness will be severely impacted. Furthermore, all the applications which
rely on this SMT solver will also be impacted. Therefore, it is important to
ensure that the solvers are sound, complete and efficient. Yet as SMT solvers
are very complex programs, it is not only difficult to implement them but
also to verify them. Thus it comes at no surprise that bugs are regularly
found even in widely used SMT solvers.

For example, the following formula exposed a soundness bug in the Z3 solver
from June 2020 [2]:

store(const(Bool, true), false, false) = const(Bool, false)

On the right-hand side a constant array is created. This array takes Boolean
values as indices and has the constant value of false. Therefore it represents
the following array:

[true→ f alse, f alse→ f alse] (1)

On the left-hand side the term const(Bool, true) analogously creates the
following array:

[true→ true, f alse→ true] (2)

But then the array value at index false is replaced by false, returning the
following array:

[true→ true, f alse→ f alse] (3)

Trivially we see that the array on the right-hand side (1) is not equal to the
array on the left-hand side (3) and therefore the SMT solver should return
unsat. Yet, the Z3 solver unsoundly returned sat.
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1.2. This work

1.2 This work

Program verification tries to formally prove the correctness of a system while
testing seeks to find errors in the implementation of a system. This thesis will
focus on testing SMT solvers. The goal is to automatically generate formulas
which are satisfiable or unsatisfiable by construction. These formulas can
then be used as test cases and the known ground truth can be used as the
test oracle.

Bugariu and Müller introduced this idea in [26]. In their paper, they de-
scribe methods to generate satisfiable and unsatisfiable formulas with re-
spect to the SMT-LIB string theory [3]. Furthermore, they also introduce
satisfiability-preserving transformations to increase the complexity of the
generated formulas.

This thesis adapts the approach proposed by Bugariu and Müller for the
SMT-LIB bitvector and array theories ([4], [5]). Furthermore, we extend the
approach to be able to generate unsatisfiable formulas with constant values
such as the example given in Section 1.1. Finally, we adapt the proposed
methods to be able to combine multiple theories. This is important as many
reported issues with SMT solvers occur due to unexpected behaviour when
combining theories. Our main focus in this thesis is to automatically identify
soundness bugs in SMT solvers but completeness and efficiency issues might
be still exposed as a ”by-product”.

1.3 Contributions

This thesis makes the following contributions:

• We adapted the methods and transformations described in [26] to be
able to generate satisfiable and unsatisfiable formulas for bit-vectors
and arrays.

• We adapted the transformations described in [26] to combine multiple
theories and generate more complex formulas.

• We introduced two new transformations to be able to generate unsatis-
fiable formulas with constant values.

• We used the generated formulas to automatically test Z3 [27] and
CVC4 [23]. We detected soundness issues in both solvers, which were
confirmed and fixed by the developers.

1.4 Outline

The rest of this thesis is organized as follows: Chapter 2 gives an overview of
the methods and transformations described by Bugariu and Müller in [26]
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1. Introduction

as well as the methods introduced by this thesis to generate unsatisfiable
formulas with constant values. Chapter 3 gives in-depth explanations for
the methods and transformations presented in Chapter 2. In Chapter 4 we
discuss the implementation details. Chapter 5 presents and discusses our
experimental results. In Chapter 6 we discuss related work. Chapter 7 draws
a conclusion and discusses future work.
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Chapter 2

Overview of the technique

On a high-level, the technique used in this thesis, as first described in [26],
consists of two parts:

• first, generate simple formulas,

• then, use various satisfiability preserving transformation to increase
the complexity of the generated formulas.

We present and illustrate this technique in this chapter using the operations
from the fixed-sized bit-vector theory, which are summarized in Table 1.
Additionally, to be able to carry out the different steps of the technique
we use our implementation of the reference semantics of the individual
operations as they are defined in the SMT-LIB bit-vector theory [4].

Section 2.1 presents the methods used to generated satisfiable and unsatisfi-
able formulas described by Bugariu and Müller in [26]. Section 2.2 presents
the satisfiability preserving transformations described in [26]. Furthermore,
we defined new transformations which are presented in Section 2.3. Chap-
ter 3 discusses the technical details of the technique with respect to the
individual theories that we use in this thesis.

2.1 Generating formulas

[26] describes two different methods to generate formulas, one for satisfiable
and one for unsatisfiable formulas. They are presented in Section 2.1.1 and
in Section 2.1.2 respectively.

2.1.1 Satisfiable formulas

The generated satisfiable formulas have the following form:

le f t− hand side = right− hand side
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2. Overview of the technique

Table 1: Bit-vector operations, grouped by their return type

Return Type Operations
Bit-vector nat2bv(m, a), concat(s, t), extract(i, j, s), bvnot(s),

bvand(s, t), bvor(s, t), bvneg(s), bvadd(s, t), bv-
mul(s, t), bvudiv(s, t), bvurem(s, t), bvshl(s, t),
bvshr(s, t)

Integer bv2nat(s)
Boolean bvult(s, t)

s, t: Bit-vector of length m; a, i, j: Int; We use the nat2bv(m, a) notation, where the length of
the bitvector m is passed as the first argument to the nat2bv function, instead of the SMT-LIB
nat2bv[m](a) notation to avoid confusion with the array notation, which uses square brackets

to denote indexing.

Therefore they are satisfiable if there exists a model for which both sides
evaluate to the same result.

The initial satisfiable formulas involve a single operation from Table 1. By
leaving the arguments of the given operation as well as its result uncon-
strained, we ensure that the formula is satisfiable. This is due to the fact that
all operations from Table 1 are total functions. The generated formulas are
as simple as possible yet Bugariu and Müller show in [26] that even such
simple formulas can reveal bugs. Example 1 illustrates such a formula.

Example 1: A simple, satisfiable formula

bvadd(s, t) = res

where s, t and res are unconstrained bit-vectors of the same size.

2.1.2 Unsatisfiable formulas

To generate an unsatisfiable formula, we cannot use the same strategy as
for satisfiable formulas. This is due to the fact that, to prove that a formula
is satisfiable, one needs to find one combination of values for which the
formula evaluates to true. For unsatisfiable formulas on the other hand,
one needs to be sure that every combination evaluates to false. This is not
practical as many SMT-LIB theories support a very large or even infinite
number of values. To solve this issue, [26] proposes to generate formulas of
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2.1. Generating formulas

Table 2: Equivalent formulas for bit-vector operations.

A s: (BitVec m), t: (BitVec n), res: (BitVec m+n) :: concat(s, t) = res
B nat2bv(m+n, bv2nat(s)*2m + bv2nat(t)) = res
A s: (BitVec m), i: Int ∈ {0, ..., m-1}, j: Int ∈ {0, ..., i}, res: (BitVec i-j+1) ::

extract(i, j, s) = res
B nat2bv(i-j+1, bv2nat(bvlshr(bvshl(s, nat2bv(m, m-1-i)), nat2bv(m, m -

(i-j+1))))) = res
A s, res: (BitVec m) :: bvnot(s) = res
B nat2bv(m, 2m-1-bv2nat(s)) = res
A s, res: (BitVec m) :: bvneg(s) = res
B nat2bv(m, 2m-bv2nat(s)) = res
A s, t, res: (BitVec m) :: bvadd(s, t) = res
B nat2bv(m, bv2nat(s) + bv2nat(t)) = res
A s, t, res: (BitVec m) :: bvmul(s, t) = res
B nat2bv(m, bv2nat(s) * bv2nat(t)) = res
A s, t, res: (BitVec m) :: bvudiv(s, t) = res
B (nat2bv(m, bv2nat(s) div bv2nat(t)) = res if bv2nat(t) > 0) ∧ (res =

nat2bv(m, 2m-1) otherwise)
A s, t, res: (BitVec m) :: bvurem(s, t) = res
B (nat2bv(m, bv2nat(s) mod bv2nat(t)) = res if bv2nat(t) > 0) ∧ (res = s

otherwise)
A s, t, res: (BitVec m) :: bvshl(s, t) = res
B (extract(m-1, 0, s) = res if bv2nat(t) = 0) ∨ (concat(extract(m-2, 0, s),

(BitVec 1) x#0) = res if (m ≥ 2 ∧ bv2nat(t) = 1)) ∨ ... ∨ (concat(extract(0,
0, s), (BitVec m-1) x#0) = res if bv2nat(t) = m-1) ∨ ((BitVec m) x#0 = res
if bv2nat(t) ≥ m)

A s, t, res: bvlshr(s, t) = res
B (extract(m-1, 0, s) = res if bv2nat(t) = 0) ∨ (concat((BitVec 1) x#0,

extract(m-1, 1, s)) = res if (m ≥ 2 ∧ bv2nat(t) = 1)) ∨ ... ∨ (con-
cat((BitVec m-1) x#0, extract(m-1, m-1, s)) = res if bv2nat(t) = m-1) ∨
((BitVec m) x#0 = res if bv2nat(t) ≥ m)

A s, t, res: bvult(s, t) = res
B bv2nat(s) < bv2nat(t) = res
A s, t, res: bvand(s,t) = res
B ∃r: (BitVec 1) :: (r = (BitVec 1) x#1 if extract(m-1, m-1, s) = (BitVec

1) x#1 ∧ extract(m-1, m-1, t) = (BitVec 1) x#1) ∧ (r = (BitVec 1) x#0
otherwise ) ∧ (concat(r, bvand(extract(m-1, 0, s), extract(m-1, 0, t))) =
res

A s, t, res: bvor(s,t) = res
B ∃r: (BitVec 1) :: (r = (BitVec 1) x#1 if extract(m-1, m-1, s) = (BitVec

1) x#1 ∨ extract(m-1, m-1, t) = (BitVec 1) x#1) ∧ (r = (BitVec 1) x#0
otherwise ) ∧ (concat(r, bvand(extract(m-1, 0, s), extract(m-1, 0, t))) =
res

A: bit-vector formula; B: equivalent formula; ’(BitVec m)’ denotes a bitvector of length m,
where m is a strictly positive integer, and ’div’ denotes the integer division. All equivalences

A⇔ B are implicitly universally quantified over all free variables.
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2. Overview of the technique

the following form:
¬A ∧ B

where A and B are equivalent formulas, making ¬A ∧ B trivially unsatisfiable.

To generate our initial unsatisfiable formulas, we first choose a formula A
from the generated formulas as described in Section 2.1.1. To obtain an
equivalent formula, we use equivalences between the different operations,
described in [33] and [4]. The equivalences are summarized in Table 2. Now
that we have formula A and its equivalent formula B, we finally generate ¬A
∧ B. This method is shown in Example 2.

Example 2: Generating an unsatisfiable formula

First, we choose as an initial formula A:

bvadd(s, t) = res

Then we choose the equivalent formula B from Table 2:

nat2bv(bv2nat(s) + bv2nat(t)) = res

Where bv2nat returns an integer by interpreting a bit-vector as a binary
representation of a number and nat2bv creates a bit-vector from an
integer. Finally, we can create the following unsatisfiable formula:

¬(bvadd(s, t) = res) ∧ (nat2bv(bv2nat(s) + bv2nat(t)) = res)

2.2 Satisfiablity preserving transformations

[26] describes multiple satisfiability preserving transformations, two for
satisfiable formulas, which are presented in Section 2.2.1, and four for unsat-
isfiable formulas, which are presented in Section 2.2.2.

2.2.1 Transformations for satisfiable formulas

Constant assignment transformation. To test the basic implementation of a
given operation of the SMT solver, [26] proposes to assign concrete values
to the arguments. These values are chosen from a list containing interesting
values and corner cases. This list, adapted for the bit-vector theory, is shown

8



2.2. Satisfiablity preserving transformations

Table 3: Initial values for the bit-vector theory.

Type Values
Bit-vector (of size m) x#0, x#1, x#2, x#2m-1
Integer 0, 1, 2, 2m-1
Boolean true, false

The bit-vectors in this table are represented using the hexadecimal representation. In this
representation, the bit-vectors are interpreted as binary numbers which are then represented

in their hexadecimal form.

in Table 3. Then using the reference semantics, we evaluate the operation
with these fixed values. We use the result of the evaluation as the right-hand
side in the formula that we generate. Thus, if the SMT solver implements the
operation correctly it will return satisfiable for the given formula. Example 3
showcases this method.

Example 3: Creating a satisfiable formula with constant values

To transform bvadd(s, t) = res into a formula with constant values, we
first select some values for s and t from Table 3, such as x#0 for both. x#0
denotes the hexadecimal notation of bit-vector of length 4 where all bits
are set to 0. We obtain the following operation:

bvadd(x#0, x#0)

Using our executable semantics we obtain that bvadd(x#0, x#0) evaluates
to x#0. Therefore, we generate the following formula, which is satisfiable
by construction:

bvadd(x#0, x#0) = x#0

[26] proposes to create further satisfiable formulas by leaving certain variables
unconstrained instead of assigning them the calculated value. In this case, the
constants that were calculated for the variables, that are left unconstrained,
form a model for the formula. Furthermore, [26] takes the power set of
the constants to be able to generate each possible combination. This step is
illustrated in Example 4.

9



2. Overview of the technique

Example 4: Creating all formulas from an operation with given
constants

From Example 3, we know that (s = x#0, t = x#0, res = x#0) is a model for
bvadd(s, t) = res. The power set of the variable set is: {{}, {s}, {t}, {res},
{s, t}, {s, res}, {t, res}, {s, t, res}}. For each set of the power set, we
leave the variables contained in the set unconstrained. In this case, we
generate the following formulas, which are satisfiable by construction:

bvadd(x#0, x#0) = x#0
bvadd(s, x#0) = x#0
bvadd(x#0, t) = x#0

bvadd(x#0, x#0) = res
bvadd(s, t) = x#0

bvadd(s, x#0) = res
bvadd(x#0, t) = res

bvadd(s, t) = res

Term synthesis transformation. To test the interactions between different
operations and increase the the complexity of the created formulas, [26]
proposes a transformation which they named term synthesis. To perform
term synthesis, we first evaluate each operation from Table 1 with each
possible combination of values from Table 3 to create a set of possible values
with operations that generate them. Then for a specific operation with fixed
values we perform the following steps:

1. We replace each constant variable of the operation with another term
that evaluates to the same constant from our result set.

2. We evaluate the new operation with our executable semantics to obtain
its result.

3. In the formula, we replace the result by an term from our result set that
evaluates to the same value.

4. We now replace each constant with an unconstrained variable to obtain
our final formula.

The resulting formula is satisfiable by construction and the constants that
we replaced in the last step from a model. Example 5 demonstrates this
transformation.

10



2.2. Satisfiablity preserving transformations

Example 5: Performing term synthesis

One of the possible operation obtained by combining the operations
from Table 1 with the values from Table 3 is:

bvadd(x#0, x#0)

From Example 3, we know that x#0 can be created by bvadd(x#0, x#0),
therefore bvadd(x#0, x#0) is part of the set of terms that can replace x#0.
Now replacing the constants, we obtain:

bvadd(bvadd(x#0, x#0), bvadd(x#0, x#0))

Using our executable semantics we see that this operation evaluates to
x#0. We replace the result and obtain the following formula:

bvadd(bvadd(x#0, x#0), bvadd(x#0, x#0)) = bvadd(x#0, x#0)

As a final step, we replace x#0 by a new unconstrained variable tmp bv
and obtain the following formula, which is satisfiable by construction:

bvadd(bvadd(tmp bv, tmp bv), bvadd(tmp bv, tmp bv)) = bvadd(tmp bv,
tmp bv)

2.2.2 Transformations for unsatisfiable formulas

Increasing the unsat core. To increase the complexity, Bugariu and Müller
propose in [26] to increase the unsat core of the formula as an SMT solver
then has to reason about more conditions to determine that a formula is
unsatisfiable. The current unsat core of the formula ¬A ∧ B contains A and
B. Both A and B contain at least one shared unconstrained variable x as they
are equivalent formulas. Therefore, one can rewrite the formula as: ¬A(x)
∧ B(x). To increase the unsat core, one introduces a new variable x f resh and
substitutes all occurrences of x in B by x f resh so that one obtains the following
formula:

¬A(x) ∧ B(x f resh/x)

Further, one introduces a new clause C(x, x f resh) which implies that x = x f resh.
A list of equalities, which can be used to construct such a clause, are listed in
Table 4. As a final step, one conjoins the formula in which one substituted x

11
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by x f resh and C(x, x f resh) to obtain:

¬A(x) ∧ B(x/x f resh) ∧ C(x, x f resh)

which is an unsatisfiable formula whose unsat core now not only contains
A and B but also C(x, x f resh) [26]. This transformation is illustrated in
Example 6.

Example 6: Increasing the complexity of an unsatisfiable formula

From Example 2, we know that:

¬(bvadd(s, t) = res) ∧ (nat2bv(bv2nat(s) + bv2nat(t)) = res)

is an unsatisfiable formula of the form ¬A ∧ B. Furthermore, we see that
a is an unconstrained variable and occurs in both A and B. Therefore, we
introduce s f resh and replace all occurrences of s in B by s f resh, obtaining:

¬(bvadd(s, t) = res) ∧ (nat2bv(bv2nat(s f resh) + bv2nat(t)) = res)

In a final step, we conjoin a new clause C(s, s f resh), which implies s =
s f resh, to generate a formula with a larger unsat core:

¬(bvadd(s, t) = res) ∧ (nat2bv(bv2nat(s f resh) + bv2nat(t)) = res) ∧ C(s,
t f resh)

Variable replacement transformation. To further increase the complexity
as well as the number of conditions over which the solver needs to reason
[26] proposes to use equalities, which are derived from the used theory, to
transform C(x, x f resh) into a more complex term. For a variable of a given
type, one selects an appropriate equality from the corresponding list of
equalities. Then, one obtains the new expression for C(x, x f resh) by replacing
the unconstrained variable that occurs on both sides of the equality on the
left-hand side by x and on the right-hand side by x f resh. As a final step, one
replaces any other unconstrained variables that occur in the equality by fresh
variables [26]. The equalities for variables of type bit-vector are provided in
Table 4, NC1 - NC12. Example 7 shows this transformation.
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2.2. Satisfiablity preserving transformations

Example 7: Variable replacement

Suppose we have an unsatisfiable formula of the following form:

¬ A(x) ∧ B(x/x f resh) ∧ C(x, x f resh)

where x and x f resh are bit-vectors of the same size. From Table 4 we
choose equality NC2:

bvnot(bvnot(s)) = s

where s is a bit-vector of the same size as x and x f resh. The bvnot(s)
operation flips the values of each bit of s. We now replace s on the
left-hand side by x and on the right-hand side by x f resh. We obtain the
new expression for C(x, x f resh):

bvnot(bvnot(x)) = x f resh

With which we can construct the following unsatisfiable formula:

¬ A(x) ∧ B(x/x f resh) ∧ (bvnot(bvnot(x)) = x f resh)

Constant replacement transformation. [26] also describes that one can
increase the unsat core of the formula ¬ A ∧ B(c), where c is a constant that
occurs in B, by introducing a new variable z f resh and substituting c by z f resh
in B. Then one conjoins the term C(c, z f resh) that is created from equalities,
analogously to the variable replacement transformation, to the formula. The
equalities for bit-vector constants are provided in Table 4, C1 - C15. This
transformation is shown in Example 8.

Redundancy introduction transformation [26] proposes a transformation
that does not increase the unsat core, but introduces redundancy. Bugariu
and Müller describe redundancy as ”additional variables and terms that
may obfuscate the proof of unsatisfiability”. This transformation applies the
variable replacement transformation to a variable that is unconstrained in B
but not in A.

13



2. Overview of the technique

Table 4: Equalities between bit-vector operations and non-constant bit-vectors
(NC1 - NC12), constant bit-vectors (C1 - C14) and constant Booleans (C15).

ID Equality
NC1 s: (BitVec m) :: extract(m-1, 0, s) = s
NC2 s: (BitVec m) :: bvnot(bvnot(s)) = s
NC3 s, t: (BitVec m) :: bvadd(s, t) = s if t = 0m

NC4 s, t: (BitVec m) :: bvadd(s, t) = t if s = 0m

NC5 s, t: (BitVec m) :: bvmul(s, t) = s if t = 1m

NC6 s, t: (BitVec m) :: bvmul(s, t) = t if s = 1m

NC7 s, t: (BitVec m) :: bvudiv(s, t) = s if t = 1m

NC8 s, t: (BitVec m) :: bvurem(s, t) = s if t = 0m

NC9 s, t: (BitVec m) :: bvshl(s, t) = s if t = 0m

NC10 s, t: (BitVec m) :: bvlshr(s, t) = s if t = 0m

NC11 s, t: (BitVec m) :: bvand(s, s) = s
NC12 s, t: (BitVec m) :: bvor(s, s) = s
C1 bvadd(0m, 0m) = 0m

C2 bvadd(1m, 0m) = 1m

C3 bvadd(0m, 1m) = 1m

C4 bvmul(0m, 0m) = 0m

C5 s: (BitVec m) :: bvmul(s, 0m) = 0m

C6 s: (BitVec m) :: bvmul(0m, s) = 0m

C7 bvshl(0m, 0m) = 0m

C8 bvlshr(0m, 0m) = 0m

C9 bvand(0m, 0m) = 0m

C10 s: (BitVec m) :: bvand(s, 0m) = 0m

C11 s: (BitVec m) :: bvand(0m, s) = 0m

C12 bvor(0m, 0m) = 0m

C13 bvor(1m, 0m) = 1m

C14 bvor(0m, 1m) = 1m

C15 s: (BitVec m) :: bvult(s, s) = false

We use 0m as an abbreviation for (BitVec m) x#0 and 1m for (BitVec m) x#1
analogously. m is a strictly positive integer.
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2.3. Additional transformations

Example 8: Constant replacement

Suppose we have an unsatisfiable formula of the following form:

¬ A ∧ B(x#0)

where x#0 is a constant. From Table 4 we choose equality C1:

bvadd(x#0, x#0) = x#0

We now replace x#0 the right-hand side by z f resh and obtain:

bvadd(x#0, x#0) = z f resh

Which we use as new clause C(x, z f resh):

C(x#0, z f resh) := bvadd(x#0, x#0) = z f resh

Finally, we substitute x#0 by z f resh in B and conjoin C(x#0, z f resh) to obtain
the new formula:

¬ A ∧ B(z f resh/x#0) ∧ C(x#0, z f resh)

2.3 Additional transformations

Using the constant assignment transformation described in Section 2.2.1, we
can test the basic implementation of an operation by comparing the operation
with fixed values to the result returned by our executable semantics. However,
we can also test the basic implementation by comparing an operation with
fixed values to an unequal result. The resulting formulas will be unsatisfiable
by construction, yet multiple bugs, such as the one from Section 1.1, have
been reported where an SMT solver returned satisfiable for such formulas.
Furthermore, these formulas do not have the form ¬A∧B, thus they cannot
be generated by the unsatisfiability preserving transformations discussed so
far. We defined two new transformations which are presented in Section 2.3.1
and Section 2.3.2.

2.3.1 Unsatisfiable formulas with constant values

Analogously to the constant assignment transformation, we start with an
initially satisfiable formulas. We then assign concrete values from our list of
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values, shown in Table 3, to each variable of the given operation. Using our
executable semantics we can determine the result of the operation with the
fixed values. Finally, we create an unsatisfiable formula by assigning a value
,from our list of values, to the result of the operation that is unequal to the
actual result of operation. Example 9 presents this transformation.

Example 9: Creating an unsatisfiable formula with constant values

From Example 3, we know that bvadd(x#0, x#0) evaluates to x#0. We
simply choose a value that is not equivalent to x#0, from our list of values
from Table 3, such as x#1. x#1 denotes a bit-vector of length 4, where the
first bit is set to 1 and all others to 0. Assigning x#1 to the right-hand
side, we obtain the following unsatisfiable formula:

bvadd(x#0, x#0) = x#1

2.3.2 Unsatisfiable formulas with constant values and more complex
results

We can further extend our method to generate unsatisfiable formulas with
constant values by borrowing parts of the term synthesis transformation,
described in Section 2.2.1 and [26]. Similar to the term synthesis transfor-
mation, we first evaluate each operation from Table 1 with each possible
combination of values from Table 3 and create a set of possible result values
with operations that generate them. Now we generate our unsatisfiable
formulas analogously to the transformation described in Section 2.3.1. The
only difference is that instead of using the values from Table 3 as possible
unequal results, we use the values from our set of possible results. Finally,
we replace the value we use as result with the operation that generated it.
Example 10 illustrates this transformation.

Example 10: Creating an unsatisfiable formula with constant values
and a more complex result

Using our executable semantics, the bvadd() operation and the values
x#0 and x#1 from Table 3, we can determine that:
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bvadd(x#0, x#1) = x#1

We add x#1 to our set of possible results and keep track that it can
be created by bvadd(x#0, x#1). One of the possible operation/value
combinations which is used to generate our starting operations is:

bvadd(x#0, x#0)

Using our executable semantics we determine that bvadd(x#0, x#0) eval-
uates to x#0. Therefore, we want to assign a value from our set of values
that is not equal to x#0 such as x#1 to the right-hand side of our formula.
As a last step, we replace x#1 by the operation that generated it and
obtain the following unsatisfiable formula:

bvadd(x#0, x#0) = bvadd(x#0, x#1)
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Chapter 3

Technical details

In this chapter, we discuss the different theories for which we adapted the
technique presented in Chapter 2. We explain the different values and equal-
ities that are needed for the technique as well as the changes that are needed
to use the technique with a given theory. The bit-vector theory is discussed in
Section 3.1, the array theory in Section 3.2 and combining multiple theories
in Section 3.3. Further, we also apply our new transformations, defined in
Section 2.3, to the string theory, which is discussed in Section 3.7.

3.1 Bit-vector theory

The SMT-LIB theory for fixed-sized bit-vectors is defined in [4]. Bit-vectors
can have any positive size.

3.1.1 Representing bit-vector values

In the SMT-LIB standard [1] bit-vector values are represented as follows:
( bvX m). X represents the value of the bit-vector in decimal form and m
designates the size. As an example, ( bv0 4) represents the bit-vector 0000.
Z3 and CVC4 use different notations to represent the values for bit-vectors
in their produced models. Z3 either represents them using the hexadecimal
representation, designated by x#(hex value) or the binary representation,
designated by b#(binary value). The representation of ( bv0 4) would be
x#0 and b#0000 respectively. Additionally to the hexadecimal and binary
representation, CVC4 also uses the SMT-LIB representation in its models. In
this thesis, we chose to work with the hexadecimal representation as it is the
most common representation used by Z3 and our executable semantics is
implemented using the Z3 Java API [6].
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3.1.2 Operations

The operations defined in the bit-vector theory are listed in Table 1. Most
operations that take multiple bit-vector arguments only accept bit-vectors of
the same size. The notable exception is the concat operation which accepts
bit-vectors of varying sizes. The concat and extract operation are also the
only two operations that can, and will in the case of concat, return bit-vectors
of a different size than the bit-vectors that were passed as arguments.

The operations nat2bv and bv2nat. In [4], nat2bv and bv2nat are not defined
as operations but as semantic abbreviations used in the definitions of other
operations. We included them in Table 1 as both Z3 and CVC4 support
interpreted versions of nat2bv and bv2nat [7]. Z3 calls these operations
int2bv and bv2int while CVC4 names them int2bv and bv2nat. An important
difference between the operation int2bv, implemented by Z3 and CVC4, and
the definition of nat2bv in [4] is that int2bv is a total function defined on all
integers, whereas nat2bv is only defined on non-negative integers. As a result,
for the formula int2bv(tmp int) = tmp bv, where tmp int is an unconstrained
integer and tmp bv an unconstrained bit-vector, Z3 and CVC4 might return
a negative integer for tmp int in their produced model. Adding the clause
tmp int ≥ 0 to the formula often resulted in Z3 (version 4.7.1) returning very
large integers. To comply with the SMT-LIB definition of nat2bv and avoid
very large integers, we chose to omit int2bv from generating terms for the
term synthesis transformation.

3.1.3 Initial values

The set of initial values used in the technique with the bit-vector theory are
provided in Table 3. For our evaluation, we fixed the bit-vector length to 4,
thus the values for bit-vectors are x#0, x#1, x#2 and x#15. We chose these
values as we want to represent all corner cases that are possible. x#0 is the
smallest value possible for a bit-vector of size 4, as well as the neutral element
for the bvor, bvadd, bvshl and bvlshr operations. x#1 is the neutral element
for the bvmul, bvudiv and bvurem operations. x#2 represents a general value
for a bit-vector of size 4. x#15 is the largest value possible for a bit-vector of
size 4 and the neutral element for the bvand operation.

The integers are used as arguments for nat2bv and results for bv2nat. There-
fore, we chose the integers that correspond to the bit-vector values that we
chose. Additionally, we have a special set of integers that is used only for the
arguments of the extract operation. In our case we used {0, 1, 3}. 0 is again
the smallest possible value that can be passed to the extract operation and
3 the largest as we set the bit-vector size to 4. 1 is again used as a general
value.
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3.2. Array theory

Table 5: Array operations, grouped by their return type.

Return Type Operations
Type Y select(array(X,Y), i)
Array(X, Y) store(array(X,Y), i, e)

X: index type; Y: element type; i: type X; e: type Y;
array(X,Y): array with index type X and element type Y;

3.1.4 Adapting the technique

Each method for generating satisfiable and unsatisfiable formulas, described
in Section 2 can be used with the values from Table 3 and the operations from
Table 1 without modification. To generate the unsatisfiable formulas, we
use the equivalent formulas from Table 2. To perfrom variable and constant
replacement, as described in Section 2.2.2, we use the equalities defined in
Table 4.

As the concat and extract operations can generate bit-vectors of different sizes,
we need to slightly adapt the satisfiability preserving transformations. Each
operation, that in a first step generates values by exhaustively combining the
operations from Table 1 with the values from Table 3, needs to check the size
of the bit-vector variables before replacing them. If a bit-vector variable gets
replaced by a term with a different bit-vector size then the formula does not
type check and is therefore invalid.

3.2 Array theory

The SMT-LIB theory for arrays is defined in [5]. Contrary to arrays in many
programming languages, the SMT-LIB arrays can not only be indexed by
integer but by any type. In this thesis, we use the following types: strings,
boolean, integers and bit-vectors. We can create arrays using any type as
index type and any type as element type. As a result, we have 16 different
types of arrays.

3.2.1 Representing array values

As Z3 and CVC4 can return values for arrays in their model, we have to
consider how an array is represented as a value, which is non-trivial. Both
SMT solvers support the as-const constructor to create arrays with constant
values. As an example, (as const (Array Int Int) 0) creates an array, which is
indexed by integers and whose elements are also integers, with the value 0
initialized at each index. Z3 and CVC4 use this smt2 expression to represent
array values in their models. To represent more complex arrays the SMT
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Table 6: Initial values for the array theory.

Type Values
Bit-vector (of size m) x#0, x#1
Integer -1, 0, 1
Boolean true, false
String ””, ”a”, ”-1”

solvers start from a constant array as described above and use nested store
operations, shown in Table 5, to store the desired values to their indices.
Z3 also rarely uses lambda functions to represent the value of an array,
which is further discussed in Section 3.2.4. In this thesis, we use the same
representation to describe array values as it allows to even describe infinite
arrays, such as arrays indexed by integers or strings.

3.2.2 Operations

The array operations are summarized in Table 5. Although there are only two
operations defined in the SMT-LIB array theory [5], we consider each of the
16 different array types. As a result, more combinations to create formulas
are possible than one might think at a first glance.

Example 11: Creating a satisfiable array formula with constant values

To transform select(array(Int, Int), i) = res into a formula with constant
values, we first generate an initial value for an array of type array(Int, Int)
by selecting a constant value from Table 6 such as 1. Thus, we generate
the constant array (as const (Array Int Int) 1). Now we select a value
for i, which is of type integer, from Table 6, such as -1. We obtain the
following operation:

select((as const (Array Int Int) 1), -1)

Using our executable semantics we see that select((as const (Array Int
Int) 1), -1) evaluates to 1. Therefore, we generate the following formula,
which is satisfiable by construction:

select((as const (Array Int Int) 1), -1) = 1
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3.2. Array theory

Table 7: Common lambda functions and the corresponding smt2 expression for
arrays.

lambda function (lambda ((tmp bool Bool)) tmp bool)
smt2 expression store(((as const (Array Bool Bool)) true), false, false)
lambda function (lambda ((tmp bool Bool)) ( not tmp bool))
smt2 expression store(((as const (Array Bool Bool)) true), true, false)
lambda function (lambda ((tmp bv ( BitVec m))) ( = some bv tmp bv))
smt2 expression store(((as const (Array ( BitVec m) Bool)) false), some bv, true)
lambda function (lambda ((tmp str String)) ( = some str tmp str))
smt2 expression store(((as const (Array String Bool)) false), some str, true)

tmp bool: Boolean; tmp bv, some bv : Bit-vector of length m; tmp str, some str: String; m: strictly
positive Integer;

3.2.3 Initial values

The values for bit-vectors, integers and Boolean are taken from Table 3. We
include -1 as a value for integers to have a negative index, which is allowed
in the SMT-LIB array theory. The values for strings are taken from [26]
and represent corner cases in the string theory. Unfortunately, due to the
exhaustive nature of the technique and memory limitations (further explained
in Section 5.4), we need to reduce the number of values and therefore consider
only the values listed in Table 6. We use these values to generate our initial
array values by creating each constant array that can be generated by using
the values from Table 6 as constant elements.

3.2.4 Lambda functions

Additionally to the representation presented in Section 3.2.1, Z3 uses lambda
functions to represent arrays. The returned lambda functions map an index
value to the same value that is stored in the array at the given index. Our
executable semantics does not support lambda functions as values for arrays.
Therefore, we provide a mapping between most common lambda functions,
returned in our test cases, and the corresponding array represented by an
smt2 expression in Table 7.

3.2.5 Adapting the technique

As for the bit-vector theory, we can use the method for generating satisfiable
formulas as well as the transformations for satisfiable formulas without
major changes for the array theory. Generating a satisfiable array formula is
illustrated in Example 11. Contrary to the bit-vector theory, the method for
generating unsatisfiable formulas of the form ¬A ∧ B cannot be applied to
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the array theory. This is due to the fact that we cannot represent the select
operation as a function of the store operation and vice versa. As a result, we
do not have equivalent formulas for the array operations. Further, this means
that no transformations from Section 2.2.2 is applicable to the array theory.
The only transformations that can be used to generate unsatisfiable formulas
using the array theory are the transformations described in Section 2.3 as
they do not rely on formulas of the form ¬A ∧ B. Although we are limited
only to two transformations, we are able to detect soundness issues as shown
in Example 12.

Example 12: Creating an unsatisfiable arrray formula with constant
values

Using our executable semantics, the store() operation, the constant arrays,
generated with constant values from Table 6, (as const (Array Bool Bool)
true) and (as const (Array Bool Bool) false) as well as the value false for
Booleans, we determine that:

store((as const (Array Bool Bool) true), false, false) =

[true→ f alse, f alse→ f alse]

Using our executable semantics we determine that store((as const (Array
Bool Bool) true), false, false) is not equivalent to (as const (Array Bool
Bool) false). Therefore, we assign (as const (Array Bool Bool) false) as
the result of the store operation and obtain the following unsatisfiable
formula:

store((as const (Array Bool Bool) true), false, false) = (as const (Array
Bool Bool) false)

This formula is the example formula that we provided in Section 1.1 and
exposed a soundness issue in Z3 from June 2020 [2].

3.3 Combining theories

In Section 3.1 and Section 3.2 we have shown that the technique can test
each theory in isolation. Yet, we can also generate formulas which combine
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Table 8: Operations and their respective return type.

Return Type Operations
String at(s, off), concat(s, t), intToStr(n), replace(s, t, u),

substr(s, off, len)
Boolean contains(s, t), prefixOf(s, t), suffixOf(s, t), equals(s, t),

bvult(v, w)
Integer indexOf(s, t, off), length(s), strToInt(s), bv2nat(v)
Bit-vector concat(v, w), extract(a, b, v), bvnot(v), bvand(v, w), bvor(v,

w), bvadd(v, w), bvmul(v, w), bvudiv(v, w), bvurem(v, w),
bvshl(v, w), bvlshr(v, w)

Array store(array((any Type), (any Type)), i, e)
any Type select(array((any Type), (any Type)), i)

s, t, u: String; a, b, n, off, len: Int; v, w: Bit-vector of length m, where m is a strictly positive
integer; a: (Array (any Type) (any Type)); i, e: (any Type)

multiple theories using the technique. This allows us to identify soundness
issues which are caused by the interaction between different theories. We use
the string theory [3], bit-vector theory [4] and array theory [5] to generate
formulas that contain multiple theories. One can also consider the integer
theory and Boolean theory to be part of the theories that are combined, as
multiple formulas from Table 2 use integer and Boolean operations.

3.3.1 Operations

The string operations are taken from [26], the bit-vector operations from
Table 3 and the array operations from Table 5. All used operations are
summarized in Table 8.

3.3.2 Initial values

For the combination of theories we use the same initial values from Table 6
as described in Section 3.2.3. The initial values for arrays are also generated
as shown in Section 3.2.3. Due to the exhaustive nature of the technique, we
have to limit the string values to ”” and ”-1” as well as the integer values to
0 and -1 for unsatisfiable formulas.

3.3.3 Adapting the technique

The applicability of the individual methods and transformations, from Section
2, when combining multiple theories highly depends on the theory to which
the initial operation belongs. Operations from the string theory work with
each method and transformation, shown in [26] and Section 3.7. All methods
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Table 9: Equalities between array operations and non-constant variables.

ID Equality
NC1 i: Int :: select(i, (as const (Array Int (any Type)) s)) = s
NC2 i: String :: select(i, (as const (Array String (any Type)) s)) = s
NC3 i: Bool :: select(i, (as const (Array Bool (any Type)) s)) = s
NC4 i: (BitVec m) :: select(i, (as const (Array (BitVec m) (any Type)) s)) = s

s: (any Type)

and transformations are also applicable to the operations from the bit-vector
theory, shown in Section 3.1. If the initial operation belongs to the array
theory, then not all methods and transformations to generate unsatisfiable
formulas are available, as discussed in Section 3.2.5.

Although the method to generate satisfiable formulas (Section 2.1.1) and
the constant assignment transformation (Section 2.2.1) are applicable to all
operations from Table 8, they do not replace any variables by more complex
terms. This means that they do not introduce a second operation apart
from the initial operation from which the formula is built. They do not
generate any new formula that has not already been generated by applying
the technique to a given theory in isolation. Therefore, we omit generating
these formulas. The term synthesis transformation, on the other hand,
replaces values with more complex terms which are precomputed from the
operations from Table 8. Therefore, the term synthesis transformation is the
only transformation that generates satisfiable formulas involving multiple
theories.

To generate unsatisfiable formulas of the form ¬A ∧ B, we need equivalent
formulas, provided for string operations in [26], for bit-vector operations
in Table 2 and not applicable for array operations. To increase the unsat
core of these formulas, described in Section 2.2.2, we perform variable and
constant replacement using equalities shown for string operations in [26]
and for bit-vector operations in Table 4. In addition, we derived equalities
from the array operations, shown in Table 9, which can be used with both
the string and bit-vector theory. From the newly defined transformations in
Section 2.3, only the transformation from Section 2.3.2, which replaces the
result with a more complex term, can generate formulas using operations
from different theories. Therefore, we do not use the transformation that
does not replace the result as these formulas have already been created
while testing the theories in isolation. Again, we only generate test cases
for formulas that contain operations from at least two different theories. An
example of generating an unsatisfiable formula with multiple theories is
given in Example 13.
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Example 13: Creating an unsatisfiable formula with constant values
and a more complex result which combines the bit-vector and string

theories

Using our executable semantics, the bv2nat and strToInt operations, the
bit-vector value x#0 and the string ”-1”, we determine that:

bv2nat(x#0) = 0,
strToInt(”-1”) = -1

Using our executable semantics we also determine that 0 is not equivalent
to -1. By replacing the result of the bv2nat() operation by -1, we obtain
the following unsatisfiable formula:

bv2nat(x#0) = -1

To increase the complexity of the formula and combine multiple theories,
we now replace -1 by an operation that evaluates to -1 from another
theory, such as the strToInt operation. Finally, we obtain the follow-
ing unsatisfiable formula which combines the bit-vector and the string
theories:

bv2nat(x#0) = strToInt(”-1”)

3.4 Checking the correctness of a model

To check the correctness of a model for a given formula, we first replace
the unconstrained variables in the formula with the values from the model.
Then, we use our executable semantics to evaluate the left-hand side and the
right-hand side of the formula, which now only contains constant values. If
both sides are equivalent then the model is sound, otherwise it is unsound.

3.5 Checking the correctness of the unsat core

We cannot check the correctness of an unsat core using the executable se-
mantics as for a model. However, the unsat cores of the initial unsatisfiable
formulas, described in Section 2.1.2, are known by construction. Further,
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we known which of the transformations, which are applied to unsatisfiable
formulas, increase the unsat core as well as which clause they add to the
unsat core. Therefore, we can simply compare the unsat core generated by
the solver with the expected unsat core, which is known by construction.

3.6 Patterns for quantifiers in unsatisfiable formulas

Bugariu and Müller describe in [26] the use of patterns to to guide the
instantiations of universal quantifiers. The same patterns are used in this
work for string operations used in the generation of formulas which combine
multiple theories.

3.7 Applying the new transformations to strings

We apply the new transformations to create unsatisfiable formulas, proposed
in Section 2.3 to the string theory. Thus, we extend [26] and we use the same
string operations tested by Bugariu and Müller but, in our experiments, we
restrict the initial values for strings to ”” and ”a”. This is done because of the
high number of possible combinations generated by exhaustively applying
the technique and we reach the memory limits of our machine by using more
values.
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Chapter 4

Implementation

In this chapter, we discuss our implementation of the technique described
in Chapter 2 with respect to the bit-vector and array theories as well as the
combination of theories. We extended the original implementation from [25].
The implementation was built using Java JDK 10.0.2 [22] and uses the Z3
(4.7.1) Java API [8, 6].

Figure 1: Structure of the implementation

4.1 General structure

The implementation is divided in two main parts: the generator and the runner.
The generator uses the methods and transformations described in Chapter 2
to generate satisfiable and unsatisfiable formulas. The generator then creates
test case files containing the generated formulas and additional information
on the satisfiability of the formula as well as a model for satisfiable formulas
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and the unsat core for unsatisfiable formulas. The runner takes the generated
test cases and runs them on the SMT solver under test. The runner then
checks if the result returned by the solver is correct or incorrect. The general
structure is shown in Figure 1, the generator is discussed in more detail in
Section 4.3 and the runner in Section 4.4.

4.2 SMT-LIB reference semantics

Both the generator and the runner rely on an executable version of the SMT-
LIB semantics to correctly evaluate the operations defined in the SMT-LIB
standard [1]. [25] implements the executable semantics for string operations
and provides the necessary Java classes to extend the executable semantics to
the bit-vector and array operations.

New classes for SMT types are created by extending the abstract class SMT-
ConstructedObject. A new SMT type class inherits multiple fields from the
SMTConstructedObject class, shown in Listing 1. The name field represents
the name of the modelled SMT variable. The value of the variable is repre-
sented by the value field. If the variable is the result of an operation then a
reference to that operation is stored in the history field. This is important as
certain transformations modify the operation from which the variable results.
The isConstant field determines if a variable is currently unconstrained or if
the concrete value is used. The witness field stores the last concrete value
that was assigned to the variable. If the variable is unconstrained in the final
formula then the witness is used as value in the generated model.

Listing 1: Fragment of SMTConstructedObject.java

public abstract class SMTConstructedObject extends SMTElement {

protected String name;

protected String value;

protected String witness;

protected Operation history;

protected boolean isConstant;

}

New operations extend the abstract class Operation, shown in Listing 2. The
arguments of the operation are stored in the arguments field. Subclasses
of the Operation class implement the apply() function. For a specific oper-
ation the apply() function models the SMT-LIB semantics and returns the
corresponding SMTConstructedObject.

Listing 2: Fragment of Operation.java

public abstract class Operation extends SMTElement {
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protected List<SMTConstructedObject> arguments;

public abstract SMTConstructedObject apply();

}

4.2.1 Bit-vectors

Bit-vectors are modelled by our SMTBitVector class, shown in Listing 3.
Additionally to the fields defined in its superclass, SMTConstructedObject,
the SMTBitVector class has a length field. This field is used to determine the
length of the given bit-vector as the SMT-LIB standard defines fixed-sized
bit-vectors. To represent the value of bit-vectors we use the hexadecimal
encoding as described in Section 3.1.1.

Listing 3: Fragment of SMTBitVector.java

public class SMTBitVector extends SMTConstructedObject {

protected int length;

public SMTBitVector(String value, Operation history, boolean

isConstant, int length) {

super(value, history, isConstant);

this.length = length;

}

public int bvLength() {

return length;

}

}

4.2.2 Bit-vector operations

We use two different approaches to implement the apply() function for the
different bit-vector operations:

• Directly compute the result using the value field.

• Using Java BitSets from the java.util.BitSet package [9].

For bit-vector operations which are defined in the SMT-LIB bit-vector stan-
dard [4] using mathematical operations, we take the values from the ar-
guments, interpret them as decimal integers and apply the corresponding
mathematical operation. In a final step, we re-encode the result of the math-
ematical operation as bit-vector and create a new SMTBitVector instance
which has the encoded value and whose history is this operation. The bvadd
operation is an example operation for which we use this method and is
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shown in Listing 4. The other operations for which we use this method are:
bv2nat, bvlshr, bvmul, bvneg, bvshl, bvudiv, bvurem, bvult and nat2bv.

Listing 4: Fragment of BVAdd.java

// This is a simplified version of the actual implementation

public class BVAdd extends BitVectorOperation {

/* SMT-LIB definition: bvadd(s, t) := nat2bv(m, bv2nat(s) +

bv2nat(t)) */

@Override

public SMTConstructedObject apply() {

String firstArgValue = arguments[0].getValue();

String secondArgValue = arguments[1].getValue();

int firstValue = hexEncondigToInteger(firstArgValue);

int secondValue = hexEncondigToInteger(secondArgValue);

String result = integerToHexEncoding(firstValue + secondValue);

return new SMTBitVector(result, this, true,

arguments[0].bvLength());

}

}

The BitSet class [9] implements non fixed-sized bit-vectors in Java. Further-
more, the BitSet class implements the and, or and flip operations. Therefore,
we use BitSets to implement the apply() function of the bit-wise operations.
We first construct BitSets that are equivalent to the arguments of the operation.
Then we apply the BitSet version of the operation to the constructed BitSets.
As a last step, we construct a new SMTBitVector from the resulting BitSet,
ensuring the correct size for the bit-vector as BitSets have a non-fixed size.
We implemented a wrapper function for the bvnot() operation as the flip(int
bitIndex) function for BitSets only flips the bit at a given index. The wrapper
function flips the bits for all positions [0, bvLength()-1]. Furthermore, we also
implemented the concat and extract operations using BitSets. BVOr shows
how BitSets are used in Listing 5.

Listing 5: Fragment of BVOr.java

// This is a simplified version of the actual implementation

public class BVOr extends BitVectorOperation {

/* SMT-LIB definition: bvor(s, t) := lambda x:[0, m). if s[x] = 1

then 1 else t[x] */

@Override

public SMTConstructedObject apply() {
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int resultLength = arguments[0].bvLength();

String firstArgValue = arguments[0].getValue();

String secondArgValue = arguments[1].getValue();

BitSet firstBitSet = valueToBitSet(firstArgValue);

BitSet seconfBitSet = valueToBitSet(secondArgValue);

String result = bitSetToValue(firstBitSet.or(secondBitSet),

resultLength);

return new SMTBitVector(result, this, true, resultLength);

}

}

4.2.3 Arrays

To model arrays, we defined the SMTArray class, shown in Listing 6. As SMT-
LIB arrays can have any type as index type and value type, the SMTArray
class has two fields, keyClass and valueClass, to be able to determine the
type of the array. The constant arrays in the smt2 language are build using
the as const constructor. To be able to use this constructor, the SMTArray
class has the constantValue field as well as the hasConstantValue field which
determines if no value, other from the constant value, has been stored in the
array. The valueMap is used to record any elements that are stored in the
array that differ from the constant element. This field is implemented as a
HashMap<SMTConstructedObject, SMTConstructedObject>, which allows
one to represent keys and values of arbitrary types.

Listing 6: Fragment of SMTArray.java

public class SMTArray extends SMTConstructedObject {

protected HashMap<SMTConstructedObject, SMTConstructedObject>

valueMap;

protected String keyClass;

protected String valueClass;

protected SMTConstructedObject constantValue;

protected boolean hasConstantValue;

}

4.2.4 Array operations

To implement the apply() functions for the select and store operation we
use the get() and put() functions for HashMaps. To select from an array, we
first check if the index is in the valueMap.keySet() of the array. If so we
return valueMap.get(index), otherwise we return the constant value of the
array. To store in an array, we check if the element that we want to store is
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equal to the constant element of the array. If that is the case then we return
a new SMTArray instance that is equivalent to the original SMTArray that
we wanted to store to. Otherwise, we copy the valueMap of the original
SMTArray, use valueMap.put(index, value) to perform the store operation.
Finally, we return an SMTArray with the same constant value as the original
SMTArray and the new valueMap.

4.3 Generator

The generator uses the executable semantics, described in Section 4.2, to
generate the formulas that will be used in the test cases. The generator can
be subdivided depending on the satisfiability of the formulas it generates as
well as the theory that is used in the formulas.

4.3.1 Sat generators

We implemented 3 different generators that can generate satisfiable formulas.
BVSatExpressionsGenerator implements a generator for satisfiable formulas
with the bit-vector theory, ArraySatExpressionsGenerator uses the array the-
ory and CombinedSatExpressionsGenerator combines multiple theories. These
generators work similar as the SatExpressionsGenerator implemented in [25].
The only difference to the SatExpressionsGenerator is that the BVSatExpres-
sionsGenerator uses SMTBitVectors and bit-vector operations instead of SMT-
Strings and string operations. Analogously, ArraySatExpressionsGenerator
uses SMTArrays and array operations. CombinedSatExpressionsGenerator
uses all types and operations from the three other sat generators.

4.3.2 Unsat generators

Analogously to the sat generators, we implemented three generators that
generate unsatisfiable formulas: BVUnsatExpressionsGenerator, ArrayUnsat-
ExpressionsGenerator and CombinedUnsatExpressionsGenerator. They use the
respective types and operations of their theory as well as the equivalent
formulas, described in Table 2, and constant/variable equalities, shown in
Table 4, that are needed for the construction of unsatisfiable formulas. Fur-
thermore, we implemented the unsatisfiability-preserving transformations
presented in Section 2.3. The transformation that generates unsatisfiable
formulas with constant values is shown in Listing 7. For a specific opera-
tion, we first exhaustively generate all possible combinations with the initial
values. Then, we check which initial values are unequal to the result and
generate the unsatisfiable formula by setting the result of the operation to
these values. To generate formulas with constant values and more complex
results, we perform the same steps. The only difference is that we generate
more complex values using the different operations and the initial values.
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We then use these more complex values to replace the result of the original
operation. Our implementation for the transformation with more complex
results is shown in Listing 8. ArrayUnsatExpressionsGenerator only contains
the new transformations as the original transformations are not applicable.

Listing 7: Our implementation of the transformation generating unsatisfiable
formulas with constant values

// This is a simplified version of the actual implementation

testWithConstants() {

initialValues = initializeValues();

for(Operation op : operationList) {

satOperationss = createOperations(initialValues, op);

for(Operation satOp : satOperations) {

result = satOp.apply();

for (SMTConstructedObject value : initialValues) {

if(!value.equals(result)) {

satOp.setResult(value);

createTestCaseFile(satOp);

}

}

}

}

}

4.4 Runner

The runner was implemented in TestRunner in [25]. It uses the test cases
created by the generator and runs them on the SMT solver under test. As
the test cases also encode the satisfiability of the formulas, the runner knows
what the expected output is. If the solver returns the correct satisfiability
then the runner checks if a correct model, using the executable semantics, or
a correct unsat core was returned. If a test case passes both checks then it is
marked as passing. If a test case fails any of the checks then it is recorded as
failing and the runner records the cause of the failure as well as any possible
error messages.

Listing 8: Our implementation of the transformation generating unsatisfiable
formulas with constant values and more complex results

// This is a simplified version of the actual implementation

testWithConstantsAndComplexResult() {

initialValues = initializeValues();

complexValues = createComplexValues(initialValues, operationList);

for(Operation op : operationList) {

satOperationss = createOperations(initialValues, op);

for(Operation satOp : satOperations) {
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result = satOp.apply();

for (SMTConstructedObject value : complexValues) {

if(!value.equals(result)) {

satOp.setResult(value);

createTestCaseFile(satOp);

}

}

}

}

}
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Chapter 5

Evaluation

In this chapter, we discuss the evaluation of the technique on known issues
of older versions of Z3 and CVC4 (Section 5.2). We also present the results of
our tests on the latest versions of the SMT solvers (Section 5.3) and discuss
the limitations of the technique and of our implementation (Section 5.4).

5.1 Experimental setup

Our tests are performed in a virtual machine running Ubuntu 20.04.3 with
10 GB memory. Otherwise, we use the same solver settings as in [26]. The
random seed is fixed for all test cases and the timeout limit is set to 15
seconds. The options produce-models and produce-unsat-cores are enabled
for all solvers. CVC4 is run with the strings-exp and full-saturate-quant
options. Additionally, Z3 is run with smt.core.minimize option enabled. Due
to memory limitations, the different transformations were only applied once
in the test cases that we generated.

5.2 Evaluating the technique

To evaluate the effectiveness of the technique, we looked at known soundness
issues for Z3 4.7.1 and CVC4 1.6. Afterwards, we ran the technique on both
solvers and manually matched failing test cases with the known bugs.

5.2.1 Identifying known issues

To determine the known issues we looked at the issue trackers of Z3 [10]
and CVC4 [11]. We looked at the issues reported from 23rd May 2018, the
release date of Z3 4.7.1, until 1st January 2021 for Z3 4.7.1. For CVC4 1.6,
we looked at issues reported from 26th June 2018, the release date of CVC4
1.6, until 1st January 2021. We only counted soundness issues which we
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Table 10: Overview of known soundness issues from Z3 4.7.1

Theory Known Issues In Scope Found
Bit-vector 5 0 0
Array 5 3 2
Combined 2 1 0

We consider issues caused by other theories, different configurations, user-defined sorts,
user-defined functions and operations not defined in SMT-LIB out of scope.

could reproduce with Z3 4.7.1 and CVC4 1.6 respectively. We consider issues
caused by other theories, different configurations, user-defined sorts, user-
defined functions and operations not defined in SMT-LIB out of the scope
of this work. The issues, summarized in Table 10 and Table 11, are grouped
by theory. For the combination of theories, we considered issues that use
any combination of the string, Boolean, bit-vector, integer or array theory.
The list of known soundness issues that we identified on the issue tracker is
provided in Appendix A.1 for Z3 4.7.1 and in Appendix A.2 for CVC4 1.6.

Table 11: Overview of known soundness issues from CVC4 1.6

Theory Known Issues In Scope Found
Bit-vector 1 0 0
Array 2 2 0
Combined 3 2 0

We consider issues caused by other theories, different configurations, user-defined sorts,
user-defined functions and operations not defined in SMT-LIB out of scope.

5.2.2 Performance of the technique

We manually investigated the failing test cases from our technique and
matched them to known soundness issues. The results of our test cases
for Z3 4.7.1 are shown in Table 12 and for CVC4 1.6 in Table 13. The first
column shows the current theory under test. The second column denotes the
satisfiability of the generated formulas. [p] in the second column indicates the
use of patterns to instantiate the quantifiers used in the equivalent formulas.
The third column indicates the total number of test cases generated. The
remaining columns represent the individual reasons due to which a test case
could fail. To match failing test cases to known soundness bugs, we looked
at the highlighted columns of these tables as they represent soundness issues.
The comparison for Z3 4.7.1 is presented in Table 10 and for CVC4 1.6 in
Table 11. The number of soundness bugs we found is shown in the last
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Table 12: Overview of the results for Z3 4.7.1

Theory Expected #Tests Passed IS IM IC U T E
Bit-vector SAT 9211 9211 0 0 0 0 0 0
Bit-vector UNSAT 6109 6088 0 0 21 0 0 0
Bit-vector UNSAT[p] 595 575 0 0 20 0 0 0
Array SAT 8342 8310 0 0 0 32 0 0
Array UNSAT 6920 5584 1336 0 0 0 0 0
Combined SAT 8222 6824 0 82 0 1209 107 0
Combined UNSAT 5013 4773 3 0 0 29 218 0
Combined UNSAT[p] 696 454 4 0 0 29 209 0

IS = incorrect satisfiability; IM = incorrect model; IC = incorrect unsat core; U = unknown;
T = timeout; E = error; [p] = patterns for quantified variables

column. The technique was able to find 40% of the array issues and none of
the issues resulting from the combination of theories that we consider to be
in scope. There were no bit-vector issues that we considered to be in scope.
Generally, there are two main reasons why our test cases did not reveal more
known issues:

• The formula exposing the issue can be generated by applying some
transformations from the technique multiple times.

• The formula contains operations from the integer or Boolean theory
which are not used to generate formulas in our current implementation.

Note that the results of our test cases on Z3 4.7.1 show incorrect unsat cores
for bit-vector formulas (Table 12, column IC). These unsat cores are not
minimal but correct. As such, we consider them to be imprecise rather than
unsound. Furthermore, the soundness issues for the combination of theories
are caused by string operations and are not rooted in the combination of
theories. The incorrect models in Table 13 (column IM) are rooted in an
soundness issue in CVC4 that was not reported before CVC4 version 1.8.

5.3 Testing latest versions of SMT solvers

We used the technique to detect soundness issues on the latest versions of Z3
and CVC4.

5.3.1 Z3 4.8.12

The results of our tests for the latest version of Z3, version 4.8.12, are provided
in Table 14. The most interesting result is highlighted in red. We generated
32 test cases which exposed a previously-unknown soundness issue in Z3.
Z3 returned SAT for an unsatisfiable formula which compares two arrays
which are indexed by bit-vectors. An example of such a formula is provided

39



5. Evaluation

Table 13: Overview of the results for CVC4 1.6

Theory Expected #Tests Passed IS IM IC U T E
Bit-vector SAT 9211 9203 0 0 0 0 0 8
Bit-vector UNSAT 6109 6109 0 0 0 0 0 0
Bit-vector UNSAT[p] 595 595 0 0 0 0 0 0
Array SAT 8342 6798 0 0 0 0 0 1544
Array UNSAT 6920 5252 0 0 0 0 0 1668
Combined SAT 8222 7607 0 18 0 0 0 597
Combined UNSAT 5013 4230 0 0 0 0 189 594
Combined UNSAT[p] 696 131 0 0 0 0 189 376

IS = incorrect satisfiability; IM = incorrect model; IC = incorrect unsat core; U = unknown;
T = timeout; E = error; [p] = patterns for quantified variables

in Example 14. We reported this soundness issue to the Z3 developers who
confirmed and fixed the issue.

Note that again the 15 test cases that result in an incorrect unsat core are in
fact correct unsat cores which are just not minimal.

Example 14: An unsatisfiable formula exposing a soundness issue in
Z3 4.8.12

The following formula is an example of the generated formulas which
exposed an soundness issue in Z3 4.8.12:

store((as const (Array (BitVec 4) Int) 0), x#0, 1) =
store((as const (Array (BitVec 4) Int) 1), x#0, 0)

Z3 returned SAT for this unsatisfiable formula.

5.3.2 CVC4 1.8

We tested CVC4 version 1.8, which is the last version of CVC4, afterwards
the developers switched to CVC5. The results are shown in Table 15. As
before, the most interesting results are highlighted in red. Our technique
was able to generate test cases for which CVC4 returned an incorrect model.
These test cases combine the array, string and bit-vector theory. An example
of such a formula is given in Example 15.

Furthermore, the issue seems to be already present in CVC4 1.6. On the other
hand, the issue is no longer present in the current version of CVC5. As such
we consider this issue known and fixed.
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Table 14: Overview of the results for Z3 4.8.12

Theory Expected #Tests Passed IS IM IC U T E
Bit-vector SAT 9211 9211 0 0 0 0 0 0
Bit-vector UNSAT 6109 6097 0 0 0 0 12 0
Bit-vector UNSAT[p] 595 582 0 0 0 0 13 0
Array SAT 8342 8342 0 0 0 0 0 0
Array UNSAT 6920 6888 32 0 0 0 0 0
Combined SAT 8222 8200 0 0 0 5 17 0
Combined UNSAT 5013 4747 0 0 8 0 258 0
Combined UNSAT[p] 696 438 0 0 7 0 251 0

IS = incorrect satisfiability; IM = incorrect model; IC = incorrect unsat core; U = unknown;
T = timeout; E = error; [p] = patterns for quantified variables

Note that the high number of test cases that report an error for CVC4 (Table
15, column E) are due to the fact that CVC4 does not support certain features
that Z3 supports. For instance, CVC4 does not support write chains with
constant arrays nor a non-constant argument for the as const array constructor.
Furthermore, CVC4 1.8 renamed str.to.int and int.to.str and does not support
the old names any more. We did not have the time to implement a solver
based rewrite of these two methods for CVC4 1.8.

5.3.3 Evaluation for the string theory

As we implemented the two new transformations for unsatisfiable formulas
(Section 2.3) for the string theory, we tested both Z3 4.8.12 and CVC4 1.8 on
the generated test cases. Both solvers returned the correct result for all 11.036
test cases.

Table 15: Overview of the results for CVC4 1.8

Theory Expected #Tests Passed IS IM IC U T E
Bit-vector SAT 9211 9211 0 0 0 0 0 0
Bit-vector UNSAT 6109 6109 0 0 0 0 0 0
Bit-vector UNSAT[p] 595 595 0 0 0 0 0 0
Array SAT 8342 7116 0 0 0 0 0 1126
Array UNSAT 6920 5252 0 0 0 0 0 1668
Combined SAT 8222 6993 0 16 0 0 0 1213
Combined UNSAT 5013 4114 0 0 0 0 25 874
Combined UNSAT[p] 696 136 0 0 0 0 25 535

IS = incorrect satisfiability; IM = incorrect model; IC = incorrect unsat core; U = unknown;
T = timeout; E = error; [p] = patterns for quantified variables
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Example 15: A satisfiable formula exposing a soundness issue in
CVC4 1.8

The following formula is an example of the generated formulas which
exposed an soundness issue in CVC4 1.8:

select(store(a, bv, b), bvnot(bv)) = contains(s, s)

with a: (Array (BitVec 4) Bool), bv: (BitVec 4), b: Bool, s: String. CVC4
returned the following model for this formula:

a = store((as const (Array (BitVec 4) Bool) false), x#1, true),
bv = x#0,

s = ””,
b = false

which is unsound because, with these values, the left-hand side evaluates
to false, while the right-hand side evaluates to true.

5.3.4 Other issues

Out tests also revealed other issues such as completeness issues in Z3 4.8.12
(Table 14, column U) and performance issues in both Z3 4.8.12 and CVC4
1.8 (Table 14 and Table 15, column T). Furthermore, CVC4 1.8 threw a
”non-constant used as constant element” exception for the as const array
constructor using the constant value (- 1) (Table 15, column E). This issue
was already reported to the CVC4 issue tracker [12].

5.4 Limitations

We discovered limitations of both the technique and our implementation
throughout the process of evaluating our technique on known issues as well
as testing current verions of Z3 and CVC4.

5.4.1 Limitations of the technique

The transformations to generate satisfiable formulas can be applied to all
theories, as only the set of operations and initial values need to be defined.
However, the transformations to generate unsatisfiable formulas cannot be
completely applied to every theory. The original transformations for unsatis-
fiable formulas from [26] require equivalent formulas which are not always
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possible to construct. In this case, the technique can only generate unsatis-
fiable formulas with constant values, while there might exist unsatisfiable
formulas with unconstrained variables. The array theory is an example of
such a theory.

5.4.2 Limitations of the implementation

The main limitation of the implementation is its memory management. Due
to the exhaustive nature of the technique, the implementation often runs out
of memory. As a result, for certain theories, the set of initial values has to be
limited and one might have to exclude interesting corner cases. Additionally,
the memory limitation allows the implementation to only generate formulas
where the transformations are applied once. Yet many formulas that are
reported on the issue trackers have multiple nested operations. Furthermore,
the current implementation only uses a limited set of operations from the
integer and Boolean theory. As a result some soundness issues cannot be
detected, as shown in Section 5.2.2.
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Related work

In this chapter we discuss work related to this thesis.

Existing benchmarks. The SMT-LIB Initiative maintains a list of existing SMT
benchmarks [13] which can be used for testing. Furthermore, the developers
of SMT solver created their own benchmarks, including tests which are
derived from reported issues [14, 15]. Often, these tests have to be written
by hand which is very time-consuming. This work facilitates the benchmark
generation by automatically generating test cases with known ground truth,
i.e., which are satisfiable or unsatisfiable by construction.

Differential testing. Differential testing [31] is a widely used method to
test software. To test SMT solvers with this approach, one runs the same
benchmark on two different SMT solvers and compares the result. If the
solvers return different results, then an issue was found. Yet to determine
which solver is affected needs further investigation. Furthermore, an issue
might stay undetected when both solvers return the same incorrect result.
The technique used in this work does not need a second solver to compare
the result to, as the result of the benchmark is known by construction.
Additionally, the technique can find soundness issues caused by incorrect
models due to our executable semantics as well as incorrect unsat cores.
Differential testing cannot expose such issues.

Fuzzing. Brummayer et al. apply blackbox fuzzing for the bit-vector theory
[24]. Scott et al. apply fuzzing to all SMT-LIB theories as well as their
combinations [35]. Yao et al. fuzz SMT solvers via a 2-dimensional input
space exploration [38]. Mansur et al. apply blackbox mutational fuzzing to
all Z3-supported logics [30]. Generally, these works are the closest related to
this work as they can generate test cases for the bit-vector and array theory.
Benchmarks generated by fuzzing cannot reliably detect soundness issues,
as they do not posses a test oracle, and rely on differential testing to do so.
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The test cases, that fuzzing generates, are often not minimal and require
additional techniques such as delta debugging [39] to reduce their size. The
technique used in this work, on the other hand, does not rely on differential
testing. Furthermore, the technique gradually increases the complexity of the
test cases and therefore does not need delta debugging.

Semantic fusion. Winterer et al. [37, 36] proposed a novel approach to create
new test cases called semantic fusion. This approach fuses two test cases
into a new test case with known result. Semantic fusion requires a set of
seed formulas with known results from which it starts to generate new test
cases. Our work does not need such a set of initial formulas as it generates
them itself. Further, Winterer et al. focused on testing the core and string
theories, while our work focuses on the bit-vector and array theory as well as
the combinations of string, bit-vector, array and integer therories.

Generative type-aware mutation. Park et al. [34] proposed a hybrid tech-
nique which combines type-aware operator mutation, first proposed by
Winterer et al. in [37, 36] with grammar-based fuzzing. This approach has an
infinite mutation space, overcoming the main limitation of semantic fusion
which is its finite mutation space. In their work Park et al. focused on the
integer, real, reals ints and string theories. Our work is able to generate
formulas for the bit-vector and array theory as well as the combinations of
string, bit-vector, array and integer therories.
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Conclusion

The main focus of this thesis was to automatically detect soundness issues
in SMT solvers with respect to the bit-vector and array theory. To do so, we
adopted the technique proposed by Bugariu and Müller which generates
formulas that are satisfiable or unsatisfiable by construction. The technique
then uses satisfiability preserving transformations to increase the complexity
of the generated formulas. We defined two new transformations for the
creation of unsatisfiable formulas which allows us to test SMT solvers more
rigorously. Further, we also adapted the technique to be able to generate
formulas which combine operations from the string, bit-vector, array and
integer theory. To achieve this, we implemented an executable version of the
SMT-LIB semantics for the bit-vector and array theory. We then used the
technique to test the latest versions of two widely used SMT solver, Z3 4.8.12
and CVC4 1.8. Our experimental evaluation shows that the technique is able
to find soundness issues in both, which have been confirmed (for Z3) and
fixed (for Z3 and CVC4) by the developers.

7.1 Future work

Extend the technique to other theories. Currently, the technique allows the
generation of formulas with operations from the string, bit-vector and array
theory. The integer and core theory, which defines the Boolean operations,
are only used in a limited manner. They are mostly used in the equivalent
formulas of the aforementioned theories. As some of the operations for the
integer [16] and core theory [17] are already implemented, one can extend the
technique to fully support the generation of formulas with operations from
these two theories. Furthermore, SMT-LIB defines three additional theories:
the reals theory [18], the floating point theory [19] and the reals ints theory
[20]. The technique can be extended to also include the operations from these
theories. Although, for some theories, one might not be able create equivalent
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formulas, limiting the technique to the new transformations for unsatisfiable
formulas. However, even in that case, one is able to generate satisfiable and
unsatisfiable formulas. Generally, to extend the technique to a new theory,
one needs to extend the executable SMT-LIB semantics with the operations
from the theory. One also needs to define the equivalent formulas, if possible,
to generate unsatisfiable formulas. Further, one needs to define initial values
for the variables as well as variable equalities to increase the unsat core.
The variable equalities, even if the theory does not support the original
transformations for unsatisfiable formulas, are used for the combination of
theories.

Test other provers. There exist more provers, other than Z3 and CVC4, which
can reason about SMT-LIB formulas. One could use the technique to test
these provers and detect soundness issues in their implementations. The list
of possible provers includes: CVC5 [21], the successor of CVC4, the Vampire
theorem prover [29], Boolector [32] and STP [28].

Improve the memory efficiency of the implementation. Our current im-
plementation tends to run out of memory due to the exhaustive nature of
the technique, as described in Section 5.4.2. As a result, we are only able to
generate formulas for which the transformations were applied at most once.
Thus, if the memory efficiency of the implementation is improved, one could
generate more complex formulas.
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Appendix A

Known soundness issues in Z3 4.7.1
and CVC4 1.6

A.1 Known soundness issues in Z3 4.7.1

List of bit-vector soundness issues considered out of scope:

• https://github.com/Z3Prover/z3/issues/2136

• https://github.com/Z3Prover/z3/issues/2173

• https://github.com/Z3Prover/z3/issues/2933

• https://github.com/Z3Prover/z3/issues/2965

• https://github.com/Z3Prover/z3/issues/4048

List of array soundness issues considered out of scope:

• https://github.com/Z3Prover/z3/issues/1847

• https://github.com/Z3Prover/z3/issues/4181

List of array soundness issues considered in scope:

• https://github.com/Z3Prover/z3/issues/2549

• https://github.com/Z3Prover/z3/issues/4515

• https://github.com/Z3Prover/z3/issues/4778

List of combined soundness issues considered in scope:

• https://github.com/Z3Prover/z3/issues/4808

List of combined soundness issues considered in scope:

• https://github.com/Z3Prover/z3/issues/4923
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A. Known soundness issues in Z3 4.7.1 and CVC4 1.6

A.2 Known soundness issues in CVC4 1.6

List of bit-vector soundness issues considered out of scope:

• https://github.com/cvc5/cvc5/issues/4437

List of array soundness issues considered in scope:

• https://github.com/cvc5/cvc5/issues/4414

• https://github.com/cvc5/cvc5/issues/4758

List of combined soundness issues considered in scope:

• https://github.com/cvc5/cvc5/issues/4780

List of combined soundness issues considered in scope:

• https://github.com/cvc5/cvc5/issues/4546

• https://github.com/cvc5/cvc5/issues/4771
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