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Abstract

SMT solvers are commonly used in software verification to formally
verify program properties. To express these program properties, unde-
cidable theories and quantifiers are often required. SMT solvers resort
to heuristic approaches such as e-matching to deal with quantified as-
sertions. There are various ways in which quantified assertions can lead
to poor performance and non-termination. In this project, tool support
for visualizing and understanding SMT solver runs is developed. This
project is based on an existing tool. The existing tool was redesigned
from scratch to be more performant and improve user-friendliness.
New features were designed to identify and analyze problems from a
commonly encountered class of problems referred to as matching loops.
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Chapter 1

Introduction

Program verification refers to a set of methods to formally verify software.
Its strong correctness guarantees make it a preferable alternative to software
testing in cases where software bugs are very costly. Program verifiers
such as Viper [21], Dafny [17], and Boogie [4] encode program properties
in terms of logical formulas and use SMT solvers to prove their validity.
For formulas only involving propositional logic, checking satisfiability is
decidable. However, propositional logic is not sufficiently expressive for
many problems in program verification. Therefore, predicate logic is often
needed, particularly formulas involving universal quantifiers. But since the
satisfiability of SMT assertions with quantifiers is undecidable in general,
SMT solvers such as Z3 [10] resort to heuristic approaches such as e-matching

[9].

During e-matching, SMT solvers repeatedly instantiate quantified formulas
by binding the quantified variables to some terms in order to gain new facts.
We will refer to this as a quantifier instantiation. There are various ways in
which quantifier instantiations can lead to poor performance. Understanding
the root cause of these issues can help the user adjust the input problem
passed as an input to the SMT solver and hence achieve better performance.

In this project, we developed the Axiom Profiler 2.0 (AP2). It is a tool loosely
based on the Axiom Profiler (AP1) [6] [22] for visualizing quantifier instantia-
tions made via e-matching. AP2 takes as input a log file generated during a
solver run of Z3 and generates a visual representation of the instantiations
and how they depend on each other. It can help the user identify and un-
derstand potential culprits of poor performance. It is implemented as an OS
agnostic web application. AP2 runs purely in a web browser and does not
have a backend.

In chapter 2, we will cover the necessary theoretical concepts to understand
this project. In chapter 3 we will cover in detail how AP2 was implemented.
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In chapter 4, we will evaluate AP2 and compare it qualitatively and quantita-
tively to AP1.
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Chapter 2

Background

2.1 SMT Solvers

The SMT problem is concerned with determining whether a logical formula
is satisfiable. The simplest case in this context is checking if a formula in
propositional logic is satisfiable. This is a decidable problem and SMT solvers
use methods such as DPLL [8] to efficiently find a model. DPLL involves
searching through models using backtracking until either a model is found
or all models are found to be unsatisfiable. To deal with formulas from
first-order logic that involve constraints between terms from some theory,
SMT solvers can use for instance an extended version of DPLL, often denoted
by DPLL(T) [13]. The first-order logic formula is abstracted into a formula in
propositional logic on which a DPLL-like model search is perfomed. During
this search, the SMT solver repeatedly generates candidate models and uses
a theory solver to check if these candidate models are consistent. Some
theories, such as quantifier-free linear arithmetic, are decidable and hence
the SMT solver will terminate reporting the satisfiability of the input formula
in such cases.

Program specifications often require quantifiers to express complex prop-
erties. For instance, the property that an array arr is sorted in ascending
order could be expressed with the formula 8i, j.0  i < j <len(arr) =) arr

[i] arr[j]. In general, proving the satisfiability of formulas is undecidable
and hence SMT solvers might not terminate or return that the formula is
either unsatisfiable or unknown. In the context of program verificiation, we are
interested in proving the validity of a formula P which encodes a program
specification. Therefore, it suffices to prove that ¬P is unsatisfiable. A com-
monly used approach used for dealing with quantifiers is e-matching which
will be described next.
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2.2. E-Matching

2.2 E-Matching

To understand in more detail how SMT solvers such as Z3 deal with quan-
tified assertions (we will refer to these as quantifiers), we are first going to
cover an example. Consider the example in figure 2.1. Lines 1 and 2 declare
constants a and b of type Int. Lines 3 and 4 declare functions f and g. Both
functions have a single argument of type Int and output type Int. On lines
6 and 7 two assertions are encoded. Line 8 encodes a quantifier with the
quantified variable x of type Int. The expression {g(f(x))} is a pattern or
trigger that is used during e-matching for pattern matching against a ground
term with structure g(f(t)) and bind the bound variable x to t. Triggers
have to contain all the quantified variables and at least one non-constant
function symbol. The SMT solver will use the trigger to find a ground term
with a matching term structure in the e-graph such that it can instantiate the
quantified formula and obtain a new fact.

1 (declare -const a Int)
2 (declare -const b Int)
3 (declare -fun f (Int) Int)
4 (declare -fun g (Int) Int)
5
6 (assert g(b) = 0)
7 (assert b = f(a))
8 (assert 8x:Int {g(f(x))} g(f(x)) = 1)
9 (check -sat)

Figure 2.1: A simple SMT-encoding of a problem. We use pseudocode roughly based on
SMT-LIB format with presentational liberties.

In such a case, Z3 will construct an e-graph to represent the equalities between
the various ground terms, i.e., terms without any quantified variables. In
this example, we can visualize the e-graph as shown in figure 2.2a. Each
component of the e-graph represents an equivalence class. Nodes with self-
loops represent roots of an equivalence class. Note that the terms a and b

are ground terms as they are declared as constants on lines 1 and 2. For this
reason, the terms f(a) and g(b) on lines 6 and 7 are also ground terms and
hence added to the initial e-graph. The nodes in the e-graph are often called
e-nodes. In figure 2.2 we represent an equality between two terms using an
arrow pointing from the former to the latter node.

In our example, the trigger matches against the ground term g(f(a)) which
the SMT solver can obtain by rewriting the ground term g(b) with the equality
b=f(a). Therefore, the SMT solver can bind the quantified variable x to a

and instantiate the quantifier, obtaining the new fact g(f(a))=1. This newly
obtained equality among ground terms is then added to the e-graph as shown
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2.3. Instantiation Graph

in figure 2.2b. At this point, the SMT solver has recorded in the e-graph
that g(b)=0 as well as g(b)=g(f(a))=1 which is a contradiction. Therefore, the
SMT solver will terminate this solver run returning unsat, meaning that the
assertions in the input problem in figure 2.1 are not satisfiable.

In the previous instantiation, the SMT solver

• used the equality b=f(a)

• to rewrite the ground term g(b)

• into g(f(a)) which matches against the trigger {g(f(x))}

• by binding the quantified variable x to a

• yielding the term g(f(a))=1.

We will refer to the term that is bound to the quantified variable in such an
instantiation as bound term (here a is the bound term). The term, possibly
rewritten using equalities, that the trigger was matched against we will refer
to as blame term. In our example g(b) is the blame term. Any equalities that
are used to rewrite the blame terms we will refer to as equality explanations.
We will refer to the body of the quantified formula, with all the bound
variables replaced by the corresponding bound terms, as the resulting term

(here g(f(a))=1). We will refer to all new ground terms that are subterms of
the resulting term as yield terms. In this example, the yield terms are g(f(a))

=1, g(f(a)), and 1. Note that the subterms f(a), and a are also ground terms
but, since they were already present in the e-graph in figure 2.2a, they are
not yield terms.

f(a)

b

a 0

g(b)

(a) Initial state of e-graph.

f(a)

b

a 0

g(b)

1

g(f(a))

(b) State of e-graph after instantiation.

Figure 2.2: Example of e-graph.

2.3 Instantiation Graph

Given a log generated by Z3, we can define the instantiation graph or blame

graph G = (V, E). The set of nodes V corresponds to all logged quantifier
instantiations. The set of edges E is defined by the blames relation between
instantiations. Instantiation i2 blames instantiation i1 either if any of the
blamed terms of i2 is a yield term of i1 or if any of the equality explanations
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of i2 involve an equality term that is a yield term of i1. We will refer to the
former kind of dependency as blame-term dependency and to the latter kind
of dependency as equality dependency. Note that the log implicitly defines a
total order < on the quantifier instantiations, i.e., if i1 is instantiated before
i2 then i1 < i2. If i1 < i2 then it is not possible that i1 blames i2 as i2’s yield
terms do not exist at the time when the SMT solver instantiates i1. Therefore,
this total order also defines a topological order on the instantiations that is
consistent with all edge directions, i.e., (i1, i2) 2 E =) i1 < i2. Therefore,
we can conclude that the instantiation graph is a directed acyclic graph.

2.4 Matching Loops

The performance of an SMT solver run heavily depends on the triggers
used for e-matching. These triggers are either chosen automatically [18] or
the user chooses them by annotating the quantified assertions in the input
problem with suitable triggers such as on line 8 in figure 2.1. If the triggers
are too restrictive then the solver might fail to instantiate the quantifiers and
hence not be able to prove unsatisfiability. On the other hand, if triggers
are too permissive then the SMT solver might perform many unnecessary
instantiations. A special case of this is if instantiating a quantifier Q with
trigger T generates a new yield term that matches against the trigger T hence
allowing Q to be instantiated again thus leading to a self-sustaining looping
behaviour that can in some cases continue indefinitely. Such self-sustaining,
repeated instantiations of the same quantifiers are called matching loops [6]
[22] [18] [11]. Note that matching loops may in general involve more than a
single quantifier. We will see various examples in this project, e.g, in section
3.3.

In theory, matching loops can continue indefinitely. In practice, however,
SMT solvers eventually stop after some limit is reached. Matching loops can
nevertheless have a major impact on the runtime of an SMT solver and hence
tool support for identifying, understanding, and avoiding such matching
loops is desirable.

2.5 Previous Work

To understand potential performance issues during a solver run of Z3, it
is possible to generate logs which contain, among other things, detailed
information about how quantifiers were instantiated during a solver run. To
obtain such log files, one can pass the options trace=true and proof=true on
the command line of Z3. Logs generated by Z3 can be very large and are
hard to analyze manually. This issue has lead to various efforts to develop
tool-support for analyzing these logs such as the Axiom Profiler (AP1) and
the z3tracer library [5] which will be described next.
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The z3tracer library takes as input a log generated during a solver run of Z3
and reconstructs which quantified formulas were instantiated and why. It
allows users to generate various plots that show the most frequently instanti-
ated quantifiers, conflicts and backtracking levels that are found during the
DPLL-like search as described in section 2.1. However, it only supports logs
generated by Z3 version 4.8.9 and does not provide an interactive graphical
user interface.

AP1 takes as input a Z3 log file and generates a graphical representation
of the instantiation graph (see figure 2.3). It offers functionality to select
specific nodes and display the information associated with the corresponding
instantiations, i.e., the blame terms, bound terms, equality explanations, yield
terms, and resulting terms. This feature was reimplemented in AP2. Addi-
tionally, we implemented functionality in AP2 to select specific dependencies
between instantiations which was not possible in AP1. Unlike in AP1, we
implemented different styles for the nodes and edges in AP2 to visually
convey more information about the dependencies and instantiations. A direct
comparison can be found in section 4.1.

To identify troublesome instantiations, AP1 offers various filtering operations
that can be applied to the instantiation graph. For instance, it offers a filter for
showing the n instantiations with the most children or the n most expensive
instantiations, where the cost is defined in terms of how many instantiations
it caused directly or indirectly. One of the issues with applying filtering
operations is that the resulting graph can contain many nodes or edges that
lead to slow rendering or to unintelligible graphs. Therefore, AP1 displays
a warning prompt in case the resulting graph applied after a filter contains
many nodes or edges. In such a case the user can decide to proceed despite
the warning or apply some filters to reduce the number of displayed nodes
and edges.

One drawback of this approach in AP1 is that it is not transparent to the user
which filters were applied in what order and undoing specific filters that
were applied is not possible. Furthermore, AP1 does not represent indirect
dependencies between instantiations, i.e., if there are dependencies (A, B) and
(B, C) in the instantiation graph and the node B is filtered out then the filtered
graph does not contain any indication that there is an indirect dependency
between A and C. In this project, we implemented a reconnecting algorithm
(see section 3.2.2) for displaying such indirect dependencies. Futhermore, we
introduced a filter chain feature that displays all the filters that the user has
applied and allows the user to remove any of them or reset it to the default
filter chain (see lower left corner in figure 2.4).

The left panel of AP2 contains all filters that the user can apply to the
instantiation graph and below it, the filter chain is shown. In addition to the
filtering operations available in AP1, we implemented some more filters that
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2.5. Previous Work

Figure 2.3: GUI of the Axiom Profiler (AP1).

Figure 2.4: GUI of the Axiom Profiler 2.0 (AP2).

were deemed useful during the development of this tool. These filters will be
discussed in more detail in section 3.2.3.

AP1 offers functionality to automatically select a path through the instantia-
tion graph that represents a likely matching loop, find a repeating sequence of
quantifier instantiations in that path and explain how this repeated sequence
sustains itself.

This approach can only deal with matching loops that are restricted to a path
and hence fails to explain matching loops with more complex structures.
Consider the instantiation graph in figure 2.5a. There are multiple paths with
repeated sequences such as A1B1D1A2B2D2A3B3D3 which has the repeating

8



2.5. Previous Work

sequence ABD or the path B1B2B3 with the repeating sequence B. But the
repeating pattern in this instantiation graph is not a sequence but rather the
subgraph shown in figure 2.5b. Motivated by this observation, we developed
an alternative approach in this project to analyze potential matching loops by
extracting the repeating pattern in a potential matching loop and to represent
the terms involved in such a repeating pattern using a matching loop graph.
This method is described in detail in section 3.3.

The AP1 does not offer functionality to search for all potential matching
loops in the instantiation graph. One of the key contributions in this project
is the automatic matching loop search that makes use of the reconnecting
algorithm. The basic idea is to project the instantiation graph onto each
quantifier and find long, repeated instantiations of the same quantifier. This
algorithm is discussed in more detail in section 3.3.1.

A1

B1

C1 D1

A2

B2

C2 D2

A3

B3

C3 D3

(a) Instantiation graph with repeating pat-
tern.

A

B

C D

(b) Repeating pattern in figure 2.5a.

Figure 2.5: Matching loop candidate with complex structure. Any single path does not explain
the self-sustaining behaviour. Nodes that have the same color correspond to instantiations of the
same quantifier and the same trigger used in the match.
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2.5. Previous Work

We have found that AP1 does not support all versions of Z3 logs. According
to the tool’s documentation it should support versions at least 4.8.5 of Z3.
However, we have found that for some logs generated by Z3 versions newer
than 4.8.9, the tool either explicitly notifies the user that the version is not
supported or simply crashes. Crashes were also found to occur in logs
generated by Z3 version 4.8.9, even though the tool does not explicitly notify
the user that the log version is not supported. Furthermore, AP1 does not
handle logs of version 4.8.7 that contain line cases with log lines that span
over multiple lines due to line breaks. In such cases, we have found that
AP1 crashes after some time. The parser used by AP2 was developed to
handle versions 4.8.5 until and including 4.12.6. AP2 can handle line breaks.
Unknown line cases or line cases that are not relevant for the construction of
the instantiation graph are skipped by AP2.

We have found that AP1 suffers from slow performance in processing logs.
In section 4.2 we show the results of a quantitative comparison between
processing speeds in AP1 and AP2 and have found that AP2 processes logs
roughly ten times faster.

For this project, we used as a starting point the parser [20] and GUI [19]
linked in the references. The tool linked in the references was built as a
web application with a frontend that allows the user to select a log file. The
selected log is sent to a server which parses the log and generates an SVG
using Graphviz. The generated SVG was sent back to the client-side and
rendered using a GUI built with the yew framework for Rust. The GUI did
not, however, offer any functionality other than displaying the generated
SVG graph. Furthermore, the parser was extended in this project to handle
more line cases and versions of Z3 logs.

In this project, we decided to build the AP2 as a pure frontend application
running in the browser by using a WebAssembly build of Graphviz [2].
Because our tool runs in the browser, it is OS agnostic. This is a convenient
improvement over AP1. As AP1 is written in C#, using the tool on operating
systems other than Windows either requires building the tool with Mono or
Docker.
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Chapter 3

Implementation

The goal of this project was to develop tool support for identifying and
understanding performance issues due to quantifier instantiations in SMT
solver runs. To this end, we developed a tool that takes as input a log file
generated by Z3 and visualizes the quantifier instantiations and the depen-
dencies between these instantiations such that the user can identify possible
culprits of slow performance, such as matching loops. The construction and
visualization of the instantiation graph are described in sections 3.1 and 3.2.

In general, the instantiation graph can be very large, and hence, displaying
all nodes and dependencies would make it cumbersome to extract any mean-
ingful information. Therefore, we implemented various filters that the user
can apply to the instantiation graph to identify troublesome instantiations.
These filters are described in section 3.2.3.

A common performance culprit in SMT solvers are matching loops, and
therefore, we implemented features to search for potential matching loops
and analyze them. This is described in section 3.3.

In section 3.4, we introduce an alternative way to represent equality depen-
dencies between instantiations. In some cases, this alternative representation
can significantly reduce the number of displayed edges and hence improve
readability and rendering speed.

3.1 Constructing the Instantiation Graph

To construct the instantiation graph from the log files generated by Z3, we
need to parse the log and generate a data structure that represents the depen-
dencies between the instantiations and allows us to easily generate a graph
representation. Therefore, we need to understand how these dependencies
are represented in the log files. To this end, we are going to consider the
example in figure 3.1.

11



3.1. Constructing the Instantiation Graph

1 (declare -sort Number)
2 (declare -const z Number)
3 (declare -fun inc (Number) Number)
4 (declare -fun f (Number) Number)
5
6 (assert 8x:Number {f(x)} f(x) = f(inc(x))) ; Q1
7
8 (assert f(z) = z)
9 (check -sat)

Figure 3.1: A simple SMT-encoding of a problem. We use pseudocode roughly based on
SMT-LIB format with presentational liberties (see appendix C for syntactically correct encoding).

[new -match] 0x1541b25a0 #29 #28 #30 ; #31

Figure 3.2: The [new-match] logs the possibility of an instantiation. In our example, #29
denotes the quantifier Q1, #28 denotes the trigger {f(x)}, #30 denotes the bound variable z,
and #31 denotes the term f(z) that was blamed for the match. See appendix A for a complete
documentation.

[instance] 0x1541b25a0 ; 1
[attach -enode] #459 1
[attach -enode] #460 1
[attach -enode] #461 1
[end -of -instance]

Figure 3.3: The lines within [instance] and [end-of-instance] show the updates to
the e-graph due to an instantiation. In our case #459 represents inc(z), #460 represents
f(inc(z)), and #461 represents f(z)=f(inc(z)).

Note that on line 8, we have the ground term f(z) since z is declared as a
constant. As the trigger {f(x)} of Q1 matches with this ground term, Q1 can
be instantiated with x bound to z to obtain the fact f(z)=f(inc(z)).
Through this instantiation, we have obtained the three new ground terms f(

z) = f(inc(z)), inc(z), and f(inc(z)). We will refer to this first instantiation
of Q1 as Q

0
1. As discussed in section 2.2, Z3 keeps track of ground terms

and equalities between ground terms in an e-graph. As this instantiation
generated new ground terms, they are added to the e-graph as e-nodes.

Such a quantifier instantiation is logged in two stages [26]: first, the possibility
for an instantiation due to a matching pattern is logged using [new-match] as
seen in figure 3.2 . After that, the updates to the e-graph are logged within
lines starting at [instance] and ending with [end-of-instance] as seen in
figure 3.3 .

Note that the newly obtained term f(inc(z)) again matches with the pattern
{f(x)} and hence Q1 can again be instantiated but this time with x bound to

12



3.1. Constructing the Instantiation Graph

inc(z). This is represented in the log with a [new-match] as shown in figure
3.4. We will refer to this second instantiation of Q1 as Q

1
1.

[new -match] 0x1541b2a38 #29 #28 #459 ; #460
[instance] 0x1541b2a38 ; 2

Figure 3.4: Second pattern match for Q1 followed by the start of the corresponding instantiation.
Note that the quantifier and trigger identifiers correspond to the ones in figure 3.2. The only
di↵erence is that now the bound term is #459 which represents inc(z) and that the blamed
term is #460 which corresponds to f(inc(z)).

Representing Blame-Term Dependencies

Our goal is to represent such a blame-term dependency from the first to the
second instantiation of Q1 with one node for each instantiation and a directed
edge from the node representing the first to the node representing the second
instantiation as depicted in figure 3.5. To do this, our parser needs to record
for each instantiation which terms caused the pattern match, i.e., the blame

terms, and which instantiations created the blame terms. In our example, we
would need to record that Q

1
1 was triggered by the term #460 which in turn

was created by Q
0
1.

Note that in general, not every [new-match] also has a corresponding
[instance]-block. In other words, not every possibility for a quantifier
instantiation also leads to an actual instantiation. Therefore, our parser
constructs two distinct vectors: one for the matches and one for the actual
instantiations, which are populated by elements representing the matches
and instantiations as seen in figure 3.6.

When the parser reaches a [new-match]-line, it creates an element of type
Match where it stores the blame terms’ indices. This element is then pushed
onto the Insts::matches vector such that we obtain a MatchIdx that we can
map the Fingerprint to. If the parser reaches an [instance] block with the
corresponding fingerprint, it can look up the MatchIdx corresponding to the

Q
0
1

Q
1
1

f(inc(z))

Figure 3.5: Pictorial representation of the blame-term dependency between the first and the
second instantiation of Q1. Node Q

0
1 corresponds to the match in figure 3.2 and node Q

1
1

corresponds to the match in figure 3.4.
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3.1. Constructing the Instantiation Graph

struct Insts {

fingerprint_to_match: FxHashMap<Fingerprint, (MatchIdx, Option

<InstIdx>)>,

matches: TiVec<MatchIdx, Match>,

insts: TiVec<InstIdx, Instantiation>,

}

struct Match {

blamed: Box<[BlameKind]>,

// other fields omitted

}

struct Instantiation {

match_: MatchIdx,

fingerprint: Fingerprint,

// other fields omitted

}

Figure 3.6: Data structures used for recording information about instantiations and their
corresponding matches.

Fingerprint in the Insts::fingerprint_to_match hash map and thus correctly
populate its Instantiation::match_ field.

This way, once we have parsed the log, we can iterate over Insts::insts

and create nodes for each Instantiation. Since we have stored a reference
to the match for each instantiation, which stores the blame terms’ indices,
we now only need some data structure to store for each blame term which
instantiation created it such that we know which instantiations to blame.

As we saw in the example at the beginning of section 3.1, the [attach-enode]

-lines within an [instance]-block are used to log which terms were attached
to the e-graph due to this instantiation. Therefore, our parser has a data
structure (see ENode in figure 3.7) representing the e-nodes where the term
indices of the created terms are stored (see ENode::owner) , as well as the
instantiation which created the e-node (see ENode::created_by). This way,
we have all the information we need to correctly represent dependencies
between instantiations A and B where B was triggered by a term generated
by A.

Representing Equality Dependencies

Consider the SMT problem in figure 3.8. It is identical to the problem in
figure 3.1 except that we have added a new quantified formula, Q2, and
changed the third assertion.

14



3.1. Constructing the Instantiation Graph

pub enum BlameKind {

Term { term: ENodeIdx },

// other fields omitted

}

pub struct EGraph {

enodes: TiVec<ENodeIdx, ENode>,

// other fields omitted

}

pub struct ENode {

pub created_by: Option<InstIdx>,

pub owner: TermIdx,

// other fields omitted

}

Figure 3.7: Data structures used for recording information about e-nodes. Note that in figure
3.6, Match::blamed stores elements of type BlameKind where the ENodeIdx of the created
term is stored.

1 (assert 8x:Number {f(x)} f(x) = f(inc(x))) ; Q1
2 (assert 8x:Number {sum(f(x),x)}

sum(f(x),inc(x)) = inc(sum(x,x))) ; Q2
3
4 (assert sum(f(z),z) = z)

Figure 3.8: The SMT-encoding of the same problem as in figure 3.1 but extended with Q2 and
di↵erent third assertion (see appendix C for syntactically correct encoding).

As the ground term sum(f(z),z) matches with the trigger {sum(f(x),x)} by
binding x to z, Z3 can instantiate Q2 and obtain the fact sum(f(z),inc(z))=
inc(sum(z,z)). By doing this, Z3 obtains the ground term sum(f(z),inc(z)).
We will refer to this first instantiation of Q2 as Q

0
2. At this point, there are no

more ground terms that match with the trigger of Q2. However, just as in sec-
tion 3.1 Z3 can instantiate Q1 and generate the equality term f(z)=f(inc(z)).
Z3 can then use this fact to rewrite the ground term sum(f(z),inc(z)) into sum

(f(inc(z)),inc(z)) which again matches Q2’s trigger by binding x to inc(z)

and therefore Z3 can once again instantiate Q2 to obtain the new fact sum(f(
inc(z)),inc(inc(z)))=inc(sum(inc(z),inc(z))) which contains the ground
term sum(f(inc(z)),inc(inc(z))). Table 3.9a gives an overview of the instan-
tiations and the corresponding blame and yield terms we have covered. We
will refer to this second instantiation of Q2 as Q

1
2.

Recall that in section 3.1, we had a blame-term dependency because the
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3.1. Constructing the Instantiation Graph

Inst. Matched term Binding Relevant yield terms
Q

0
2 sum(f(z),z) x=z sum(f(z),inc(z))

Q
0
1 f(z) x=z f(z)=f(inc(z))

Q
1
2 sum(f(inc(z)),inc(z)) x=inc(z) sum(f(inc(z)),inc(inc(z)))

Q
1
1 f(inc(z)) x=inc(z) f(inc(z))=f(inc(inc(z)))

(a) Q
i

2 represents the i
th instantiation of Q2 and Q

i

1 represents the i
th instantiation of Q1.

Q
0
1

Q
1
1

Q
0
2

Q
1
2

f(inc(z)) sum(f(z),inc(z))

f(z)=f(inc(z))

(b) Instantiation graph: The edges with filled arrowheads represent blame-term dependencies.
The edges with empty arrowheads represent equality dependencies.

Figure 3.9: Summary of considered instantiations.

blame term of Q
0
1 directly matched against the trigger of Q1. Here, however,

we are using the equality generated by Q
0
1 to rewrite a ground term generated

by Q
0
2 such that it matches with Q2’s trigger. Our goal is to also represent

such equality dependencies in the instantiation graph as depicted in figure
3.9b.

Implementing Equality Edges

If we inspect the log generated by Z3, we will find that the [new-match] of the
instantiation corresponding to Q

1
2 lists the equality f(z)=f(inc(z)) as shown

in figure 3.10.

[instance] 0x1541b25a0 ; 1
[attach -enode] #461 1
[end -of -instance]
...
[eq -expl] #31 lit #461 ; #460
[eq -expl] #460 root
[new -match] 0x1541b2a68 #38 #37 #459 ; #464 (#31 #460)

Figure 3.10: The [new-match] for instantiation Q
1
2. The term #31 represents f(z) and #460

represents f(inc(z)). The tuple (#31 #460) represents the equality between those two terms
(see appendix A for more details).

As we can see in figure 3.10, the [new-match] for Q
1
2 is preceded by lines

16



3.1. Constructing the Instantiation Graph

starting with [eq-expl], which are used to log the equality explanations (see
appendix A). In general, these equality explanations can be more complex,
but Z3 guarantees that each blamed equality in a [new-match] is preceded by
[eq-expl]-lines such that we can follow each equality until the root of the
union-find data structure representing the equivalence class of these terms
[26]. Therefore, we can design our parser such that it records these equality
explanations in a way that we can follow these steps until we reach the root
of the equivalence class. In this example, this would correspond to a graph
as depicted in figure 3.11.

#460

#31

li
t
#4
61

root

Figure 3.11: The parser’s internal representation of the equivalence class with root #460 after
parsing the [eq-expl]-lines in figure 3.10.

As discussed earlier, the parser stores for each created term logged by [attach

-enode] which instantiation created it (see ENode::created_by). Therefore,
when the parser encounters the [new-match] ... ; (#31 #460) in figure 3.10
it can follow the internal e-graph representation from both nodes until it
reaches the root, identify the blamed equalities along the way and add those
to the blame terms of the corresponding match (see Match::blamed in figure
3.6). In our example, the parser will find the path [#31, #460] from the node
#31 to the root of its equivalence class and the trivial path [#460] from the
node #460 to the root of its equivalence class and hence blame the equality
term [#461] as it is on former path (see figure 3.11). During the construction
of the instantiation graph, we hence have all the information we need to
blame the appropriate instantiations.

Consider the example in figure 3.12. In general, whenever the parser explains
an equality a = c, it will first find the path from the root of a to a (here
[ f (i),b,a]) and the path from the root of c to c (here [ f (i),b,c]) and then
drop the shared part of the path before concatenating them into a single
path. (here it would only keep [a] and [c] and concatenate them into [a,c]).
This way, the parser only blames the equalities eq1 and eq2 but not eq3. The
intuition behind this is that the equality a = c is explained by applying
transitivity to a = b (eq1) and b = c (eq2), and the equality b = f (i) does not
help explain this equality.

If some congruences are used to explain an equality, we recursively explain
the pairwise equalities between the arguments. In the example of figure 3.13

17



3.1. Constructing the Instantiation Graph

f (i)

b

ca

li
t

eq
1 lit

eq2

l
i
t

e
q

3

root

Figure 3.12: Example for an e-graph.

1 [eq -expl] #e cg (#g #h) ; #d
2 [eq -expl] #d lit #g ; #b
3 [eq -expl] #a root
4 [eq -expl] #b lit #f ; #c
5 [eq -expl] #c cg (#b #e) ; #a
6 [new -match] ... ; (#a #b)

(a) Example for equality explanations using congruence closure property.

#e

#d

#b

#c

#a

cg
(#g

#h) lit #g lit
#f

cg (#b #e)
root

(b) Partial e-graph corresponding to the equality explanations in figure 3.13a.

Figure 3.13: Example of equality explanations with cg.

when explaining the equality [new-match] ... (#a #b) the parser would find
that the path from #a to #b involves a lit-equality due to equality term #f

and hence blame the instantiation that created said equality term. But the
path also involves a cg with pairwise argument-equality (#b #e) and hence
also recursively explain said equality. In this example, the parser would find
that the path from #e to #b involves a lit-equality due to equality term #g

and hence also blame the instantiation that created that equality term. But
since the path also contains a cg-equality, it would recursively explain the
equality (#g #h).

Note that in order to represent equality and blame-term dependencies in
distinct ways, the Match-struct from figure 3.6 contains a boxed slice of
elements of type BlameKind which is defined in figure 3.14 such that we can
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3.2. Visualizing the Instantiation Graph

pub enum BlameKind {

Term { term: ENodeIdx },

Equality { eq: ENodeIdx },

}

Figure 3.14: Definition of BlameKind such that we can use di↵erent styles for blame-term and
equality dependencies in the instantiation graph.

make the style of the edges dependent on this field.

3.2 Visualizing the Instantiation Graph

After parsing the log and constructing the instantiation graph, our goal is to
display the graph to the user in practical ways. Like AP1, we opt to use a
layered graph drawing (also known as Sugiyama-style graph drawing) [23] for the
graph layout as it is well-suited for hierarchical structures and because there
are established libraries to generate such graph layouts such as Graphviz
[12].

We use the petgraph-library [1] as the data structure for the instantiation
graph as it provides various graph algorithms as well as methods to generate
dot file format output from which Graphviz can generate a layered graph
drawing. As we have a web application, we use a WebAssembly build
of Graphviz called Viz.js [2] such that we can run Graphviz directly in the
browser and generate SVG code from the dot file that the browser can display

In general, displaying the entire instantiation graph is not a viable option as
it can contain arbitrarily many nodes and edges. Therefore, we implemented
various filters that the user can apply to the graph to make it more intelligible.
Whenever the user applies a filter, it is appended to what we call filter chain.
The filter chain represents the concatenation of all applied filters. The user
can remove individual filters from the filter chain or reset it to the default.
These filtering features are described in section 3.2.3.

Whenever nodes are filtered out, we still want to reflect the indirect depen-
dencies between instantiations to the user. More concretely, if there is a path
from node A to B in the original instantiation graph, but the nodes along
that path have been filtered out, then there should still be an indication of
the indirect dependency between instantiations the represented by node A

and B. Therefore, we implemented a reconnecting algorithm to reconnect a
filtered graph in a way that reflects these indirect dependencies. This method
is described in section 3.2.2, and the corresponding code is implemented in
InstGraph::retain_visible_nodes_and_reconnect.
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3.2. Visualizing the Instantiation Graph

z3 log

InstGraph::orig_graph

FilterChain

InstGraph::visible_graph

dot

SVG

smt-log-parser

reconnect algorithm

petgraph::dot

Graphviz

user updates

Figure 3.15: Toolchain for converting the log generated by Z3 into SVG format that the browser
can display. The smt-log-parser library was developed in this project.

At any point in time, there are two instantiation graphs stored in memory;
the original instantiation graph which contains all information obtained during
parsing (InstGraph::orig_graph) and the currently visible instantiation graph

that the user sees in the GUI which represents the filtered original instan-
tiation graph. Each time the user updates the filter chain, we recompute
the visible instantiation graph and compute a new SVG for the updated
graph. Note that the Z3 log only needs to be parsed once. This toolchain is
visualized in figure 3.15.

The filters do not directly change the graph structure of the original instantia-
tion graph, i.e., the filters do not change the set of nodes or edges. Rather, the
filters just modify the the NodeData::visible: bool field of the nodes. Only
right before rendering, a new visible instantiation graph is constructed by
removing all the nodes marked as invisible from the original instantiation
graph and applying the reconnecting algorithm. This procedure is visualized
in figure 3.17. As the reconnecting algorithm may add indirect edges, which
do not represent blame-term or equality dependencies, we need different
types for the edges of InstGraph::orig_graph and InstGraph::visible_graph.
In the original graph, we only have blame-term or equality dependencies,
and therefore we can just use BlameKind (see figure 3.14) whereas in the
visible graph we distinguish between direct (EdgeType::Direct) and indirect
(EdgeType::Indirect) dependencies where the former is a wrapper-struct for
BlameKind.
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3.2. Visualizing the Instantiation Graph

pub struct InstGraph {

orig_graph: Graph<NodeData, BlameKind>,

pub visible_graph: Graph<NodeData, EdgeType>,

// other fields omitted

}

pub struct NodeData {

pub is_theory_inst: bool,

cost: f32,

pub inst_idx: InstIdx,

pub mkind: MatchKind,

visible: bool,

child_count: usize,

parent_count: usize,

pub orig_graph_idx: NodeIndex,

pub min_depth: Option<usize>,

max_depth: usize,

topo_ord: usize,

}

pub enum EdgeType {

Direct {

kind: BlameKind,

orig_graph_idx: EdgeIndex,

},

Indirect,

}

Figure 3.16: Definition of InstGraph used to represent the instantiation graph.

3.2.1 Displaying Node and Edge Information

In addition to displaying the instantiation graph to the user, we also want
to allow the user to select nodes and display additional information about
the instantiation the selected node represents. The basic idea is to add event
listeners to the HTML elements representing the nodes such that when they
are clicked, the browser sends a message containing the index of the selected
node. It can then use the instantiation-graph data structure InstGraph to
look up the index of the instantiation corresponding to the clicked node (see
NodeData::inst_idx in figure 3.16) and retrieve the information associated
with the instantiation from the parser by indexing into Insts::insts with the
instantiation index (see figure 3.6). An analogous approach can be used for
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3.2. Visualizing the Instantiation Graph

t t

t

t

t

t

t

t

(a) Original instantiation graph before apply-
ing any filters. Note that t is used to indicate
that the NodeData::visible-field is set
to true.

t t

f

f

t

t

f

t

(b) Original instantiation graph after ap-
plying some filters. Note that f is used
to indicate that the NodeData::visible
-field is set to false. Note how the filters
do not remove any nodes or edges.

t t

t

t t

(c) Visible instantiation graph after storing
in it the subgraph of original instantiation
graph defined by the nodes marked as visible
in figure 3.17b.

t t

t

t t

(d) Visible instantiation graph after apply-
ing the reconnecting algorithm. Note how
indirect edges were added between nodes
with indirect dependencies in the original
graph of figure 3.17a.

Figure 3.17: Illustration of the procedure used to construct the visible instantiation graph for
display after applying some filters and right before rendering. Note that the graph that gets
rendered is the graph in figure 3.17d. In other words, the graph for which we create the dot-file
in figure 3.15 is the visible instantiation graph after applying the reconnect algorithm.

the edges. An example of how this information is displayed in the tool can
be found in figure 3.18.

Node Shapes

As there are filters for displaying the children of a node as well as for
displaying the parents of a node, we want to indicate to the user whether or
not these filters are applicable to a displayed node by using the node shapes
illustrated in figure 3.20.
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3.2. Visualizing the Instantiation Graph

Figure 3.18: Information displayed about a selected node.

Figure 3.19: Information displayed about a selected edge.

Figure 3.20: The shapes from left to right are used if all parents and children are displayed, some
parents are not displayed, some children are not displayed, and some parents and some children
are not displayed.

Node Coloring

We use different colors for different nodes based on the quantifier that they
represent. If we have n different quantifiers, then a naive approach would
be to divide the range of hues into n � 1 intervals of equal length such that
the hues are as distinct as possible and assign to the i

th quantifier where
0  i < n the hue located at the left border of the i

th interval. If we have
a dependency between instantiations of adjacent quantifiers and n is large,
the distance between two successive hues that the adjacent quantifiers are
mapped to may not be large enough to be visually distinguishable (see figure
3.21a). Therefore, we introduce a permutation on the indices such that any
two adjacent quantifiers are mapped to more distinct hues.
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3.2. Visualizing the Instantiation Graph

If we have n quantifiers we need to find a permutation for the set Zn :=
{0, 1, ..., n � 1}. A commonly used algorithm for generating a pseudo-
randomized sequence (Xk)

n�1
k=0 of numbers is with a mixed congruential genera-

tor [16] which is defined by the recurrence relation

Xk+1 = (aXk + c) mod n

where c 6= 0, 0 < n, 0 < a < n, 0  c < n, 0  X0 < n. Note that since all
indices satisfy the last condition, we may choose any of them as the seed
value X0, but we will choose X0 = 0 for simplicity. To obtain a permutation
of Zn, we have to ensure that this sequence’s period is n. According to the
Hull-Dobell theorem [15], this occurs if and only if

• n and c are relatively prime

• a � 1 is divisible by all prime factors of n

• a � 1 is divisible by 4 if n is divisible by 4.

By choosing a = 1, we can satisfy the second and third conditions and reduce
the sequence to

Xk+1 = (Xk + c) mod n

which, by solving the recurrence and using X0 = 0, can be simplified to

Xk = kc mod n.

This defines our permutation p : Zn ! Zn

p : k 7! kc mod n.

Recall that our goal was to construct a permutation such that two successive
indices k, k + 1 are mapped to values that have a sufficiently large difference
|p(k + 1)� p(k)|. By satisfying the conditions of the Hull-Dobell theorem,
we ensure that the period of the sequence (Xk)

n�1
k=0 is n. This allows us to

prove that p is indeed a permutation by showing that all elements of the
sequence (Xk)

n�1
k=0 must be unique. Suppose there were two indices i, j 2 Zn

such that i < j and Xi = Xj then the period of the sequence would be at most
j � i  n � 1 as our sequence is obtained by repeatedly adding c modulo n

and hence 8k 2 Zn.Xi+k ⌘n Xj+k. This contradicts the fact that the period of
the sequence (Xk)

n�1
k=0 is n.
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3.2. Visualizing the Instantiation Graph

Therefore, we are interested in finding a 0  c < n satisfying gcd(n, c) = 1 (to
satisfy the first condition in the Hull-Dobell theorem) which also maximizes
|p(k + 1)� p(k)|. To find a c satisfying gcd(n, c) = 1, we can choose a prime
number that is not a divisor of n. Such a prime can always be found since
any prime larger than n/2 is coprime to n.

In theory, the optimal value for maximizing the difference |p(k + 1)� p(k)|
is bn/2c (see appendix B). Therefore, we are interested in finding a prime
as close as possible to this theoretically optimal value. To find the prime
closest to bn/2c we can use the prime number theorem [14] to approximate
the number of primes smaller than n/2 by

�
n/2

ln(n/2)

⌫

and skip this number of primes for choosing c and take the first such prime
which is not a divisor of n. To avoid a division by 0 when n = 2, we can just
take the first prime a = 2.

An example to illustrate the effect of our permutation can be found in figure
3.21.

3.2.2 Reconnecting Algorithm

Given the instantiation graph G = (V, E) and some subgraph G
0 = (V 0, E

0)
with V

0 ✓ V, E
0 ✓ E. See figure 3.22a and 3.22b for an example. Consider two

nodes u, v 2 V
0 such that (u, v) 2 E

+ \ IdV (irreflexive transitive closure of
the blames relation). If (u, v) 2 E

0, then the (direct) dependency between the
instantiations represented by u and v is also represented in the subgraph G

0.
On the other hand, if (u, v) /2 E

0, we would still like to somehow represent
the indirect dependency between u and v as v is reachable from u via the
blames relation.

For instance, nodes 1 and 5 in figure 3.22b indirectly depend on each other as
there is a path from node 1 to 5 in the original instantiation graph G shown
in figure 3.22a and therefore, it would be misleading not to represent this
information to the user.

We opt to represent such indirect dependencies as dashed edges to distinguish
them from the direct dependencies (see section 3.1), which are represented
as non-dashed edges (see figure 3.22d). Note that only nodes in V

0 that
have filtered out children with respect to G should have outgoing dashed
edges; otherwise, all the dependencies are already represented. Likewise,
only nodes in V

0 that have filtered out parents with respect to G should
have incoming dashed edges. Therefore we define the sets OUT = {v 2
V

0|deg+
G0(v) < deg+

G
(v)} and IN = {v 2 V

0|deg�
G0(v) < deg�

G
(v)} where
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3.2. Visualizing the Instantiation Graph

(a) Colors without index permutation. (b) Colors with index permutation.

Figure 3.21: Note how on the left the colors of node 6684 and the other nodes are not visibly
distinguishable as the corresponding quantifier indices are 763 and 765, and therefore the naive
approach assigns very similar hues to both indices. On the right, we have permuted the indices
as described in section 3.2.1.

deg�
G
(v) and deg+

G
(v) denote the in- and outdegree of node v with respect to

graph G.

This explains the need for the NodeData::parent_count: usize and NodeData

::child_count: usize fields in figure 3.16. By storing the number of chil-
dren and parents of each node during the construction of the InstGraph::

orig_graph we can easily check if the in- or outdegree of a node is smaller
with respect to InstGraph::visible_graph than with respect to InstGraph::

orig_graph.

Once we have computed the nodes with filtered-out children, OUT, and
the nodes with filtered-out parents, IN, we need to decide for each pair
(u, v) 2 OUT ⇥ IN whether v is reachable from u in the original graph
G = (V, E). This is equivalent to deciding if (u, v) is in the irreflexive
transitive closure of the blames relation, i.e., if (u, v) 2 E

+ \ IdV .

If we do this with the example in figure 3.22b we end up with a graph that
looks like the one in figure 3.22c. Even though the reachability information
is complete, it also contains a lot of redundant information that we prefer
not to display. For instance, there is a dashed edge (1, 8) as well as dashed
edges (1, 5) and (5, 8). We compute the transitive reduction [3] to avoid such

26



3.2. Visualizing the Instantiation Graph

1.t 2.t

3. f

4. f

5.t

6.t

7. f

8.t

(a) Original instantiation graph G = (V, E)
after applying some filters that modify the
NodeData::visible-fields of the nodes.
The notation n.t and n. f should be un-
derstood as node n having NodeData::
visible set to true and false, respec-
tively.

OUT

IN

1 2

5

6 8

(b) Subgraph G
0 = (V0, E

0) of G from figure
3.22a after removing the nodes marked as
invisible. Notice that OUT contains those
nodes that have filtered out child nodes,
and IN contains those that have filtered
out parent nodes.

1 2

5

6 8

(c) Instantiation graph from figure 3.22b
after recovering reachability information by
adding edges in (OUT ⇥ IN) \ (E

+ \ IdV).

1 2

5

6 8

(d) Instantiation graph from figure 3.22c af-
ter computing the transitive reduction. Note
that the direct edge (1, 6) is not removed
as it represents a direct dependency.

Figure 3.22: Example to illustrate the reconnecting algorithm.

redundant edges and declutter the graph. Strictly speaking, the transitive
reduction displayed in figure 3.22d should not contain the edge (1, 6) as by
removing it, we would obtain a graph with fewer edges, and there would
still be a path from (1, 6) (via node 5). We choose to keep these direct
dependencies as; otherwise, it would indicate to the user that there is only an
indirect dependency between nodes 1 and 6, which is false. The reconnected
graph should represent all direct dependencies (u, v) 2 E as well as indirect
dependencies (u, v) 2 E

+ \ IdV . We use different edge styles to represent
these different kinds of dependencies (see figure 3.23).
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3.2. Visualizing the Instantiation Graph

(a) Edge style for blame-term
dependency

(b) Edge style for equality de-
pendency

(c) Edge style for indirect de-
pendency

Figure 3.23: Summary of edge styles.

Implementation Details

Note that computing the transitive closure is an expensive operation in
general, and storing this information can also be highly memory inefficient
if not done carefully. For memory efficiency, we opt to store the transitive
closure information for each node in highly optimized Roaring bitmaps [7]
which use a binary encoding to store for each node which nodes are reachable
from it.

For runtime efficiency, we exploit the fact that our instantiation graph is
a directed acyclic graph by traversing the instantiation graph in reverse
topological order. The key idea is that for a node without any children, the
only reachable node is itself, and therefore, we can just set the corresponding
bit in the bitmap. If a node u has children, then we know that all the nodes
that can be reached from each child v can also be reached from u. Therefore,
we can do a bitwise OR of all the bitsets of the children of node u and set the
bit of node u to obtain the reachable nodes of u and hence the correct bitmap.
As we traverse the graph in reverse topological order, by the time we reach
node u, all the bitsets of u’s children have been computed.

By storing the bitmaps in the topological order of the nodes and storing
in each node of the instantiation graph the associated topological order
(see NodeData::topo_ord in figure 3.16), we can efficiently look up whether
node v is reachable from node u by indexing into the vector of bitmaps (see
InstGraph::tr_closure in figure 3.24) using the topological order of u and
looking up whether the bit stored for node v is set.

3.2.3 Filtering Operations

As discussed at the beginning of section 3.1, the instantiation graph can
consist of many nodes and edges, so displaying the graph in its entirety is
not a viable option. Therefore, we will implement various filters that the user
can apply to the graph.

The basic idea is that the GUI provides a set of filters that the user can
concatenate. We will call the concatenation of the applied filters a filter chain.
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pub struct InstGraph {

// omitted fields

tr_closure: Vec<RoaringBitmap>,

// omitted fields

}

Figure 3.24: The InstGraph data structure also has a field for storing the bitmaps encoding
the reachability information of each node. The bitmaps are ordered by the topological order of
the nodes such that we can index into this vector using the topological order stored in each node.

As discussed in the beginning of section 3.2, each node of the instantiation
graph has a field NodeData::visible: bool and each time the user applies a
filter, the filter does not directly alter the structure of the instantiation graph
but rather updates this field such that right before rendering the graph, we
can apply the reconnecting algorithm described in section 3.2.2.

The advantage of applying the reconnecting algorithm right before rendering
as opposed to each time a filter is applied is that if the user wishes to remove
any arbitrary filter Fi from a chain of filters [F1, . . . , Fi, . . . , Fn ] we can just
update the filter chain and reapply the updated chain of filters updating the
NodeData::visible-field.

1.t 2.t

3.t

4.t

5.t

6.t

7.t

8.t

1.t 2.t

3. f

4. f

5.t

6.t

7. f

8.t

1.t 2.t

3. f

4.t

5.t

6.t

7. f

8.t

F1 F2

Figure 3.25: Note how filter F1 hides nodes 3, 4 and 7 by marking them as invisible whereas filter
F2 adds nodes to the graph by marking node 4 as visible.

Note that the filtering operators do not necessarily remove nodes, as the
name might suggest. For instance, we will implement a filter for displaying
the parent nodes of a selected node. In a nutshell, this filter will just set the
NodeData::visible-field of the selected node’s parents to true such that the
next time the graph is rendered, the parents are displayed. See figure 3.25
for an illustration.

Furthermore, we have empirically found that if the graph contains many
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3.2. Visualizing the Instantiation Graph

edges, it can take a long time for Graphviz to generate the SVG output.
Therefore, we also implement a warning prompt that is displayed to the user
after applying a filter Fn but before rendering the filtered graph, which warns
the user that based on the number of nodes and edges in the filtered graph
G
0 = Fn � Fn�1 � · · · � F1G it might take a long time to render the graph. The

user then has the option to

• render the filtered graph despite the warning,

• apply the filter without rendering the graph (such that the user can
apply more filters until the node and edge count become more reason-
able),

• or undo the applied filter, returning to the previous filter chain [

F1, . . . , Fn�1 ].

Figure 3.26 shows the GUI of the filter chain and the filters the user can
append to the filter chain. Note that the user can remove individual filters
from the filter chain and reset the whole filter chain to a sensible default,
which filters out all theory-solving instantiations and only shows the 125
most expensive instantiations. These filters will be explained in more detail
in the remainder of this section.

Showing a longest path through a selected instantiation

For this filter, we want to show the longest path through a user-selected
node u. The key idea for this filter is that if we know the maximal depth
of each node with respect to the entire graph, then we can compute the
maximal depths with respect to the subgraph rooted at the selected node u

and backtrack the longest path from the node that is furthest away from u in
said subgraph until we reach a root of the entire instantiation graph.

Therefore, we compute during the construction of the instantiation graph the
maximal depth of each node with respect to the roots of the instantiation
graph and store it in each node (see NodeData::max_depth: usize in figure
3.16). The root nodes get assigned a maximal depth of 0. A non-root node
gets assigned the maximal depth of its parents plus one. We traverse the
graph in topological order to ensure all the parent nodes’ maximal depths
have been computed once we reach a node.

When the user applies this filter to a selected node u, we make a temporary
copy of the graph rooted at node u and compute the maximal depths analo-
gously to how we compute them during the construction with the difference
that only node u is the root, which gets assigned maximal depth 0.

All the nodes that are visited during the backtracking are marked as visible.
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3.2. Visualizing the Instantiation Graph

Figure 3.26: GUI of the axiom profiler. The left panel shows the filters that can be applied and
the filter chain, which lists all the filters that have been applied so far in the order in which they
were applied.

Hiding theory-solving instantiations

Instantiations involved in theory-solving are often not of particular interest
in identifying troublesome instantiations such as matching loops and hence
we implement this filter just as in the AP1.

To implement this filter, each node of the instantiation graph has a field
NodeData::is_theory_inst: bool (see figure 3.16) which is populated during
the construction of the instantiation graph. When the user applies this filter,
all the nodes that have this field set to true are marked as invisible.

Showing expensive and high-branching instantiations

Recall that each node stores in its NodeData::child_count: usize field (see
figure 3.16) how many children it has in the original instantiation graph.
Therefore, we can just initially sort the node indices of the original instan-
tiation graph in descending order of the child count and store this sorted
vector of indices in the InstGraph::branching_ranked_node_indices field of
the instantiation graph (see figure 3.27). When the user wants to show the n
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3.2. Visualizing the Instantiation Graph

pub struct InstGraph {

// other fields omitted

cost_ranked_node_indices: Vec<NodeIndex>,

branching_ranked_node_indices: Vec<NodeIndex>,

// other fields omitted

}

Figure 3.27: Definition of InstGraph used to represent the instantiation graph.

instantiations with the most children (where n is a user-defined parameter) a
function is called which iterates over this vector and marks the first n nodes
as visible and the remaining nodes as invisible.

An analogous idea can be used to show the n most expensive instantiations.
We define the cost of an instantiation u to be 1 if it does not cause any other
instantiations, i.e., if deg+(u) = 0. Otherwise, we recursively define the cost
as follows (as in [22]). Let u 2 V be a node in the instantiation graph. We
define

cost(u) =

8
<

:

1 if deg+(u) = 0,
1 + Â

(u,v)2E

1
deg�(v)

cost(v) else.

Note that the cost of a node v is evenly distributed onto its parent nodes
by only adding the fraction 1

deg�(v)
of cost(v) to each parent. Figure 3.28

illustrates why this is a sensible design choice as opposed to adding the
whole cost of node v to all its parents.

The cost of each instantiation is initialized to 1. Once the parser has processed
the entire log file; we traverse the instantiations in reverse order (which
coincides with their reverse topological order) and update the costs. When
processing node v with cost cost(v) we read how many instantiations it
blames, deg�(v), and increment the cost of each parent by cost(v)/ deg�(v).

Showing children and parents of a selected node

If the user wants to show the parents of a selected node, then a function is
called, which marks the parent nodes of the selected nodes as visible. The
filter for showing the children of a selected node works analogously.
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(a) Instantiation costs with
distributing costs
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(c) Instantiation costs in a
long chain

Figure 3.28: Examples of costs associated with nodes. We want to associate the same cost to
the root node in figures 3.28a and 3.28c as they are both responsible for seven instantiations in
total (including themselves). This example illustrates why distributing the cost evenly among the
parents is a sensible choice.

Showing and hiding ancestors or descendants of a selected node

If the user wants to show the descendants of a selected node, a function is
called, which does a DFS traversal of the original graph starting from the
selected node and marks the visited nodes as visible or invisible depending
on whether the user wants to show or hide the descendants. The filters for
the descendants work analogously, with the only difference that we do a
reverse DFS traversal.

Ignoring or showing only specific quantifiers

Each node has a field mkind: MatchKind (see figure 3.16), which stores infor-
mation that is logged when the parser encounters a [new-match]-line. For
instance, the index of the instantiated quantifier is stored, and therefore, we
can easily look up the quantifier that corresponds to a node in the instantia-
tion graph. When the user selects a node, buttons appear, which allows the
user to either show all nodes corresponding to the quantifier of the selected
node or to hide all nodes except the ones corresponding to said quantifier.
Depending on which one the user clicks, a function is called, which retrieves
the quantifier index of the selected node and marks all nodes with the same
quantifier index as visible and all others as invisible for the former button
and vice versa for the latter button.
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3.3. Matching Loop Analysis

3.3 Matching Loop Analysis

In section 3.1, we introduced an example of an SMT-encoding for a problem
involving quantified formulas (see figure 3.8). We noticed that Q1 can be
instantiated as the ground term f(z) matches against the pattern {f(x)} by
binding x to z. One of the newly obtained terms from this instantiation is
f(inc(z)), which again matches with the pattern {f(x)} and hence Q1 can
again be instantiated, but this time with x bound to inc(z). This instantiation
generates the new ground term f(inc2(z)) and therefore Q1 can be instanti-
ated yet again. We have a scenario where the instantiations of Q1 yield terms
that directly match with Q1’s pattern, hence causing a self-sustaining loop-
ing behavior that can continue indefinitely. Such self-sustaining, repeated
instantiations of the same quantifiers are called matching loops as described
in section 2.4.

In section 3.1, we analyzed how the first few instantiations of Q1 and Q2
happen. These instantiations are summarized in figure 3.29. Note that Z3
can use the equality f(inc(z))=f(inc2(z)) (generated by Q

1
1) to rewrite the

ground term sum(f(inc(z)),inc2(z)) (generated by Q
1
2) into sum(f(inc2(z)

),inc2(z)). This term again matches against Q2’s trigger {sum(f(x),x)} by
binding x to inc2(z) hence allowing Q2 to be instantiated yet again (see Q

2
2

in figure 3.29). Here, we have a scenario where the equalities generated
by the matching loop involving only Q1 allow Z3 to repeatedly rewrite the
yield terms generated by the instantiations of Q2 such that Q2 can also be
instantiated indefinitely.

We can argue that in this example, we have two matching loops. One which
only involves quantifier Q1 and the other, which involves both Q1 and Q2.
We can see in figure 3.29 that the instantiations of Q1 blame and yield the
terms f(inc(z)), f(inc2(z)), f(inc3(z)), . . . which have the common term
structure f(inc(_)) (note that we use f(inc2(z)) as an abbreviated notation
for f(inc(inc(z)))). A graphical way to represent this matching loop is
shown in figure 3.30 where we have a node for f(inc(_)) and a self-edge
labelled Q1 indicating that Q1’s pattern directly matches with this term
structure and hence can be directly instantiated, yielding a term with the
same term structure, hence allowing repeated instantiations of Q1.

The matching loop involving both Q1 and Q2 is more complex as they involve
equalities to rewrite terms such that they match with Q2’s pattern. In figure
3.29b we can see that all the instantiations of Q2 have blamed terms sum(f(z)

,inc(z)), sum(f(inc(z)),inc2(z)), sum(f(inc2(z)),inc3(z)), . . . which have
the common term structure sum(f(_),inc(_)). But as discussed previously,
Z3 uses equalities with common term structure f(_)=f(inc(_)) to rewrite
them into a term which matches against Q2’s pattern {sum(f(x),x)}, i.e., into
terms with common term structure {sum(f(_),_)}. This matching loop is
represented in figure 3.30 by having a node for the blamed term sum(f(_),
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Inst. Matched term Binding Relevant yield terms
Q

0
2 sum(f(z),z) x=z sum(f(z),inc(z))

Q
0
1 f(z) x=z f(z)=f(inc(z))

Q
1
2 sum(f(inc(z)),inc(z)) x=inc(z) sum(f(inc(z)),inc2(z))

Q
1
1 f(inc(z)) x=inc(z) f(inc(z))=f(inc2(z))

Q
2
2 sum(f(inc2(z)),inc2(z)) x=inc2(z) sum(f(inc2(z)),inc3(z))

Q
2
1 f(inc2(z)) x=inc2(z) f(inc2(z))=f(inc3(z))

(a) Q
i

2 represents the i
th instantiation of Q2 and Q

i

1 represents the i
th instantiation of Q1.

Q
0
1

Q
1
1

Q
2
1

...

Q
0
2

Q
1
2

Q
2
2

...

f(inc(z))

f(inc2(z))

f(inc3(z))

sum(f(z),inc(z))

sum(f(inc(z)),inc2(z))

sum(f(inc2(z)),inc3(z))

f(z)=f(inc(z))

f(inc(z))=f(inc 2
(z))

f(inc 2
(z))=f(inc 3

(z))

(b) Instantiation graph: The edges with filled arrowheads represent blame-term dependencies.
The edges with empty arrowheads represent equality dependencies.

Figure 3.29: Summary of considered instantiations.

inc(_)) with edges to the equality and then to the pattern indicating that the
blamed term is rewritten using the equality into a term that matches against
Q2’s pattern. Furthermore, we have an edge labeled with Q2 indicating that
the rewritten term can again be instantiated to yield a term with structure
sum(f(_),inc(_)) hence closing the loop.

We call this kind of graphical representation of the terms involved in a
matching loop a matching loop graph. It is an attempt to explain how the
different terms are involved in a matching loop.

AP1 offered a feature to automatically select a path through the instantiation
graph that, due to its length represents a likely matching loop and to abstract
the instantiations on such a path to a string. Such a string representing
the path is then analyzed by searching for a repeated substring to find the
matching loop.
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f(inc(_)) sum(f(_),inc(_))

f(_)=f(inc(_))

{sum(f(_),_)}

Q1

Q1

Q2

Figure 3.30: Example for a matching loop graph corresponding to the matching loop in figure
3.29b.

We have found that this is a somewhat restrictive approach to finding match-
ing loops. It would be somewhat misleading to call the long path of in-
stantiations of Q2 in the previous example a matching loop as the repeated
instantiations can only be sustained with the equalities generated by the
instantiations of Q1.

Our approach will be to implement an automated search for matching loop
candidates by looking for long chains of repeated instantiations of the same
quantifier and then automatically generate a matching loop graph such that
the user can analyze these matching loop candidates to determine whether
they indeed constitute a matching loop or not. The automated search is
described in section 3.3.1 and the algorithm for generating the matching loop
graph is described in section 3.3.2.

3.3.1 Matching Loop Search

Given an instantiation graph, we aim to find subgraphs that constitute
potential matching loops. The key observation we will use to this end is that
in a matching loop, we have instantiations of a quantifier that directly or
indirectly cause an instantiation of the same quantifier. This leads to long
chains of instantiations of the same quantifier. We have seen an example of a
matching loop in figure 3.29.

Our approach works as follows:

1. For each quantifier Qi

• Filter out all nodes of the instantiation graph except those corre-
sponding to an instantiation of Qi. We will refer to this subgraph
as G[Qi].

• Compute the longest distances of all nodes with respect to the
roots in G[Qi], i.e. the maximum depths.
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• Find the nodes without any children (as these represent end-nodes
of potential matching loops) with maximum depth at least 2 (as
we want to rule out short matching loops with fewer than three
instantiations of Qi). We will refer to this set of nodes as ENDi.

2. Mark all nodes of the original instantiation graph as invisible.

3. For all nodes v 2 S
i ENDi

• Mark all ancestors of v as visible.

4. Retain all visible nodes and reconnect the graph (see section 3.2.2). We
will refer to this subgraph as matching loop subgraph.

5. Find the nodes without any children with respect to the matching loop
subgraph. We will refer to this set of nodes as matching loop end nodes.

6. Compute the longest depths of the nodes with respect to the matching
loop subgraph and sort the matching loop end nodes with respect to
this maximum depth in descending order.

Figure 3.31 gives an example to illustrate this algorithm.

Note that in this approach, we are marking all the ancestors of the matching
loop end nodes as visible. Therefore, the found matching loop candidates
may contain some ”setup nodes” before the actual matching loop starts. We
leave it up to the user to detect the repeating pattern and filter out any setup
nodes using the filters described in section 3.2.3.

Implementation Details

The GUI of the axiom profiler has a feature called ”Search matching loops”
(see figure 3.32a ), which will execute the steps outlined above to find the
potential matching loops. After that, the GUI allows the user to either click
through all the found matching loops or display the entire matching loop
subgraph by clicking on ”Show all matching loops” (see figure 3.32b).

The data structure for the instantiation graph InstGraph has a field
matching_loop_end_nodes such that when the user wants to display the n

th

longest matching loop, a function can be called which marks all nodes
as invisible and then does a reverse DFS traversal starting from the node
stored at the (n � 1)th index of InstGraph::matching_loop_end_nodes. This
works because, during the matching loop search, we sort the nodes in
matching_loop_end_nodes in descending order of the maximum depth with
respect to the matching loop subgraph (see steps 4-6 in section 3.3.1). After
displaying the entire matching loop subgraph using ”Show all matching
loops”, the user might want to analyze a specific matching loop candidate
ending in some node. To this end, we have implemented a feature that allows
the user to select a specific end node and then click ”Analyze matching loop
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i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

i12

(a) Original instantiation graph G. We will
refer to the red nodes as instantiations of
Q1 and to the green nodes as instantiations
of Q2.
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0

1
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0

0

1

(b) G[Q1] on the left and G[Q2] on the right.
The nodes are labeled with their maximum
depth with respect to the roots. Note that
END1 = {i5} and END2 = {i9} as both i5
and i9 have no children and have maximum
depth at least 2.

S
i ENDi
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t

t

t
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f

f

(c) Instantiation graph from figure 3.31a
after marking the ancestors of the nodes
in END1 and END2 as visible. Note that t

means the node is marked as visible, and f

means the node is marked as invisible.

matching loop
end nodes

i1

i2

i3

i4

i5

i6

i7

i8

i9

(d) Matching loop subgraph after filtering
out the nodes marked as invisible in figure
3.31c.

Figure 3.31: Example to illustrate the matching loop search algorithm.

with end node being the last selected node” to only display the potential
matching loop that ends in the selected node and generate the matching loop
graph associated with it.

3.3.2 Construction of Matching Loop Graphs

This section will cover how to construct the matching loop graph given a
subgraph of the instantiation graph that represents a potential matching loop.
First, we show how to automatically generate the matching loop graph in
figure 3.30 from the matching loop in 3.29b. The key idea here is to generalize
the instantiations and the dependencies between them. Instantiations of the
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(a) GUI for searching matching loops in the
instantiation graph.

(b) GUI for clicking through the found poten-
tial matching loops one by one and for show-
ing all matching loops at once (displayed after
clicking on ”Search matching loops”).

Figure 3.32: GUI for searching and displaying potential matching loops.

pub struct InstGraph {

// other fields omitted

matching_loop_end_nodes: Vec<NodeIndex>,

// other fields omitted

}

Figure 3.33: Data structures used for recording information about instantiations and their
corresponding matches.

same quantifier that use the same trigger are reduced into a single abstract

instantiation. Dependencies (A, B) and (C, D) are reduced if and only if A and
C are reduced to the same abstract instantiation and B and D are reduced to
the same abstract instantiation, and both have the same dependency type, i.e.
either both are blame-term dependencies, or both are equality dependencies.
This way, we obtain an intermediate representation, which we will call abstract

instantiation graph. The abstract instantiation graph of the instantiation graph
in 3.29b is depicted in figure 3.34.

From this intermediate representation, we can construct the matching loop
graph. The idea is to iterate over all abstract instantiations and generate
nodes from the abstract blame and yield terms. In the case of abstract
instantiation Q1 in figure 3.34 the only abstract blame term is f(inc(_)) (as
it is the term associated with the only incoming blame dependency), and the
abstract yield terms are f(inc(_)) and f(_)=f(inc(_)) as they correspond
to the terms associated with outgoing edges. After processing the abstract
instantiation Q1 we obtain the matching loop graph in figure 3.35a.

Processing abstract instantiation Q2 in figure 3.34 is different because there is
an incoming equality dependency indicating that some equalities are involved
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Q1 Q2f(inc(_)) sum(f(_),inc(_))
f(_)=f(inc(_))

Figure 3.34: Abstract instantiation graph constructed from the instantiation graph in figure
3.29b. Note how the dependency types are still preserved. The dependencies with filled arrow-
heads represent blame-term dependencies and those with empty arrowheads represent equality
dependencies, just as in the normal instantiation graph.

in rewriting the blame terms into a term that matches with Q2’s trigger,
allowing it to be instantiated. Therefore, in case an abstract instantiation
has incoming equality edges, we create a node for the abstract pattern {sum

(f(_),_)} and add edges from the blame terms to the incoming equalities
and from the incoming equalities to the abstract pattern. The nodes and
edges created during the processing of this abstract instantiation are shown
in figure 3.35b. After processing the abstract instantiation graph, we obtain a
matching loop graph like the one depicted in figure 3.30.

f(inc(_))

f(_)=f(inc(_))

Q1

Q1

(a) Created nodes and edges after processing
Q1 of the abstract instantiation graph in figure
3.34.

sum(f(_),inc(_))

f(_)=f(inc(_))

{sum(f(_),_)}

Q2

(b) Created nodes and edges after processing
abstract instantiation Q2 of the abstract in-
stantiation graph in figure 3.34.

Figure 3.35: Intermediate states of matching loop graph during processing of abstract instantiation
graph. Combining these gives us the graph in 3.30.

The general principle for computing matching loop graphs from an instantia-
tion graph is as follows:

1. Given an instantiation graph (representing a potential matching loop),
compute the abstract instantiation graph by reducing the instantiations
and dependencies as follows:
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• Two instantiations Q1 and Q2 are reduced to the same abstract
instantiation if and only if they are instantiations of the same
quantifier and use the same trigger.

• Two dependencies (A, B) and (C, D) are reduced to the same
abstract dependency if and only if A and C are reduced to the
same abstract instantiation and B and D are reduced to the same
instantiation, and both have the same dependency type (blame-
term or equality dependency).

2. Given the abstract instantiation graph from the previous step, compute
the matching loop graph by processing each abstract instantiation as
illustrated in figure 3.36.

Q

b1 b2 . . .

y1 y2 . . .

b1 b2 . . .

y1 y2 . . .

(a) Illustration of how an abstract instantiation Q without incoming abstract equality dependencies
is processed to generate the matching loop graph.

Q

b1 b2 . . .e1 e2 . . .

y1 y2 . . .

b1 b2 . . .

e1 e2 . . .

y1 y2 . . .

{T}

(b) Illustration of how an abstract instantiation Q with incoming abstract equality dependencies
e1, e2, . . . is processed to generate the matching loop graph.

Figure 3.36: Illustration of how abstract instantiations are processed in the construction of
the matching loop graph. The left graphs represent a node in the abstract instantiation graph,
and the right graphs represent the nodes and edges generated when processing said abstract
instantiation.
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Quantifiers with multiple triggers

Note that the reason an abstract instantiation is defined by the quantifier and

the used pattern is because quantifiers can have multiple, alternative triggers.
For instance, suppose we have a matching loop as shown in figure 3.37a
where quantifier Q is repeatedly instantiated but with two alternative triggers
{f(x),g(x)} and {h(x)}. If we chose to reduce all these instantiations into
a single abstract instantiation we would generalize all the blame terms fi,
gi, and hi into the generalized term _ as it is the common term structure of
f(_), g(_), and h(_). This example shows that defining abstract instantiations
only via the instantiated quantifier does not make sense and that we should
also define it via the used trigger. Figure 3.37b illustrates how the abstract
instantiation graph looks if we define the abstract instantiation in this way.

Q{f(x),g(x)}

Q {h(x)}

Q{f(x),g(x)}

Q {h(x)}

Q{f(x),g(x)}

f1

f2

h1

g1

h2

g2

(a) Example of instantiation graph with
repeated instantiations of Q that use
di↵erent triggers.

Q

{f(x),g(x)}

Q

{h(x)}

f h

g

(b) Abstract instantiation graph corresponding
to the instantiation graph in figure 3.37a. Note
that f, g, h are obtained by generalizing f1 with
f2, g1 with g2, and h1 with h2, respectively.

Figure 3.37: Example illustrating why abstract instantiations are defined per quantifier and
trigger as opposed to just per quantifier.

Limitations

Recall that during the construction of the abstract instantiation graph, depen-
dencies (A, B) and (C, D) are reduced if and only if A and C are reduced to
the same abstract instantiation and B and D are reduced to the same abstract
instantiation, and both have the same dependency type, i.e. either both are
blame-term dependencies, or both are equality dependencies.

One case where this is problematic is if we have multiple dependencies of the

same kind between two abstract instantiations A and B. With our proposed
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algorithm, these dependencies would be reduced to the same abstract depen-
dency, which does not make sense as they might have completely different
term structures.

In this sense, this approach can only correctly handle a subset of all matching
loops, namely those where there is either at most one blame-term dependency
between any two abstract instantiations or at most one equality dependency
between any two abstract instantiations, but it might be possible to deal with
this case as well to obtain a complete solution.

Term Generalization

During the construction of the abstract instantiation graph, we need a way to
generalize two terms t1 and t2 to extract the common term structure. We use
a similar approach as in AP1. We use a basic recursive function, traversing
the abstract syntax tree starting from the roots of both terms and constructing
the generalized term. In case two nodes do not have the same meaning or
kind, we replace the node with a generalized primitive term, which represents
a ‘wild card’ (see _ in figure 3.39).

fn generalize(t1: TermIdx, t2: TermIdx) -> TermIdx {

if t1 == t2 {

t1

} else if t1 is a generalized primitive term {

t1

} else if t2 is a generalized primitive term {

t2

} else t1 and t2 have same meaning {

generalize the children of t1 and t2

create a synthetic term with these generalized

children as its children

return this synthetic term

} else {

create generalized primitive term and return it

}

}

Figure 3.38: Pseudocode for generalizing two terms to extract the common term structure.

3.4 Improving Equality Dependency Representation

In section 3.1, we saw how we can represent equality dependencies between
instantiations. We will now consider a slightly modified version of the SMT
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sum

f

z

z
T

sum

f

inc

z

inc

inc

z

=

sum

f

_

_

Figure 3.39: Exampe illustrating the e↵ect of generalizing term sum(f(z),z) with sum(f(
inc(z), inc(inc(z)))) yielding the synthetic term sum(f(_),_).

problem in figure 3.8 where we replace the equation sum(f(x),inc(x))=inc(

sum(x,x)) in quantifier Q2 by sum(f(z),inc(x))=inc(sum(x,x)) such that we
get the encoding shown in figure 3.40.

1 (assert 8x:Number {f(x)} f(x) = f(inc(x))) ; Q1
2 (assert 8x:Number {sum(f(x),x)}

sum(f(z),inc(x)) = inc(sum(x,x))) ; Q2
3
4 (assert sum(f(z),z) = z)

Figure 3.40: The SMT-encoding of the same problem as in figure 3.8 but we have changed the
left-hand side of the equation in Q2 (see appendix C for syntactically correct encoding).

If we use the method described in this project to construct the instantiation
graph, we will obtain the instantiation graph depicted in figure 3.41.

Observe that node 9 (which is an instantiation of Q2) blames the term sum(f(

z),inc4(z)) and the equalities

• f(z)=f(inc(z)) created by node 0,

• f(inc(z))=f(inc2(z)) created by node 2,

• f(inc2(z))=f(inc3(z)) created by node 4,

• and f(inc3(z))=f(inc4(z)) created by node 6.

This is because Q2’s pattern is {sum(f(x),x)} and therefore these equalities
are required to rewrite the blame term sum(f(z),inc4(z)) into sum(f(inc4(

z)),inc4(z)) which matches against the pattern by binding x to inc4(z),
allowing Q2 to be instantiated.

However, if we inspect the corresponding Z3 log file, we will see that the [new

-match]-line corresponding to instantiation 9 only blames a single equality
(#33 #524) which corresponds to f(z)=f(inc4(z)) (see figure 3.42).

The reason why node 9 blames so many equalities in the instantiation graph
but only a single equality in the log file can be understood by studying the
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Figure 3.41: Instantiation graph corresponding to the log generated by Z3 when running the
problem in 3.40. The right panel shows the information associated with the selected node 9.

[new -match] 0x134243 fd0 #40 #39 #534 ; #539 (#33 #524)

Figure 3.42: The [new-match]-line corresponding to node 9 in figure 3.41.

state of the e-graph when the parser processes the [new-match]-line of the
instantiation corresponding to node 9. The state of the e-graph is depicted in
figure 3.43.

f(inc(z))

f(inc2(z))f(z)

f(inc3(z))

f(inc4(z))

lit e1

root

lit e2

lit e3

lit e4

Figure 3.43: The parser’s internal representation of the equivalence class with root f(inc(z))
when parsing the [new-match] in figure 3.42.
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As discussed in section 3.1, the parser will find the path from the node
corresponding to f(z) to the node corresponding to f(inc4(z)) in the e-
graph and blame all the instantiations that created the equality terms on that
path, i.e., here e1, e2 e3, and e4 which were created by instantiations 0, 2, 4,
and 6, respectively.

Ideally, we want node 9 in the instantiation graph to only have a single incom-
ing equality edge as this reflects the fact that in the Z3 log the corresponding
[new-match]-line only blames the equality f(z)=f(inc4(z)). One approach is
to add equality nodes into the instantiation graph, which represent equalities
that are blamed or created by instantiations like in figure 3.44.

0

2

4

6

1

3

5

7

9

f(z)=f(inc(z))

f(z)=f(inc2(z))

f(z)=f(inc3(z))

f(z)=f(inc4(z))

f(inc(z))=f(inc2(z))

f(inc2(z))=f(inc3(z))

f(inc3(z))=f(inc4(z))

Figure 3.44: Instantiation graph corresponding to the one in figure 3.41 but augmented with
equality nodes.

Implementing Equality Nodes

The simplest equality dependency between two instantiations A and B is if
an equality generated by A is directly used to rewrite the blame term of B.
This is the case for instantiations 0 and 3 in figure 3.44. A simple solution
to deal with such equality dependencies is to store for each instantiation
which equalities it yields and which equalities it blames, as shown in figure
3.45. When generating the instantiation graph, we can create nodes for the
yield and blame equalities, adding edges to and from the instantiations,
respectively. For instantiation 3 in figure 3.44, the [new-match] and the
relevant [eq-expl]-lines are depicted in figure 3.46.
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3.4. Improving Equality Dependency Representation

pub struct Match {

// other fields omitted

pub blamed_eqs: Vec<NodeEquality>,

}

pub struct Instantiation {

// other fields omitted

pub yields_equalities: Vec<(ENodeIdx, ENodeIdx)>,

}

Figure 3.45: Data structures used for recording information about blamed and generated
equalities.

[eq -expl] #31 lit #461 ; #460
[eq -expl] #460 root
[new -match] 0x1541b2a68 #38 #37 #459 ; #464 (#31 #460)

Figure 3.46: The [new-match] and corresponding [eq-expl]-lines of instantiation 3 in figure
3.44. The tuple (#31 #460) represents the equality f(z)=f(inc(z)).

When the parser processes [eq-expl] #31 lit #461 ; #460 it knows that the
equality between term #31 and #460 is at some point involved in an equality
explanation and hence stores this equality in the yields_equalities-field of
the Instantiation corresponding to the instantiation that created the equality
term #461 (in our example instantiation 0). Recall that the parser has a data
structure which stores for each e-node, which instantiation created it (see
figure 3.7). When the parser processes the [new-match]-line in figure 3.46 it
can just store in the blamed_eqs-field of the Match representing the match of
instantiation 3 that it blames the equality between term #31 and #460. During
the construction of the instantiation graph, when processing instantiation
0, we can add an edge from 0 to the equality node representing #31 = #460.
When we process instantiation 3, we can add an edge from said equality node
to node 3. If we proceed as described, we will end up with an instantiation
graph as in figure 3.47.

Synthetic Equalities

Consider again instantiation 9 in figure 3.47 that we already covered at the
beginning of section 3.4. Note that when the parser processes the [new-match]

of instantiation 9, it has already processed the [new-match] of instantiation
7 which blames the equality f(z)=f(inc3(z)) and hence this equality has
already been explained, and it would be redundant to explain it again when
explaining f(z)=f(inc4(z)). Therefore, one idea is to keep track of synthetic

equalities that represent equalities that have already been explained before.
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0
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4
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1

3

5

7

9

f(z)=f(inc(z))

f(z)=f(inc2(z))

f(z)=f(inc3(z))

f(z)=f(inc4(z))

f(inc(z))=f(inc2(z))

f(inc2(z))=f(inc3(z))

f(inc3(z))=f(inc4(z))

Figure 3.47: Instantiation graph corresponding to the one in figure 3.41 but augmented with
equality nodes. Note how there is still missing information compared to the complete instantiation
graph with equality nodes in figure 3.44.

This way, when we explain an equality, these can be taken into account to
avoid blaming redundant instantiations.

More concretely, the parser will keep track of synthetic equalities in an equality

graph which is similar to the e-graph but where the edges are undirected.
The synthetic equalities are added to this equality graph after the parser
has processed a [new-match] which blames equalities. When explaining an
equality such as f(z)=f(inc4(z)) the parser will, just as before, find the
path from f(z) to f(inc4(z)) in the e-graph and add the edges along that
path to the equality graph. When the parser processes the [new-match] of
instantiation 9 (see figure 3.42), the parser would construct the equality
graph shown in figure 3.48. Note that for the equality f(z)=f(inc(z)) there
is already a synthetic equality in the equality graph, and therefore, we do
not add another edge between the two nodes. Then, the parser can find
the shortest path from f(z) to f(inc4(z)) in the equality graph using any
standard algorithm (in our case Dijkstra) and store the blamed equalities on
that path. In our example, the shortest path would only involve the synthetic
equality f(z)=f(inc3(z)) and the equality f(inc3(z))=f(inc4(z)) due to the
equality term e4.

As the structure of the e-graph might change during the solver run, the
non-synthetic edges that were added to the equality graph during an equality
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3.4. Improving Equality Dependency Representation

explanation are removed after processing a [new-match]-line such that the
equality graph always reflects the current structure of the e-graph. This way,
the synthetic equality edges added to the equality graph do not need to be
removed. Each time an equality a = b is explained, the parser will first add
the path from a to b in the e-graph to the equality graph and then find the
shortest path from a to b in the equality graph. Therefore, the shortest path
from a to b in the equality graph will consist of edges that are also present in
the e-graph or of synthetic edges.

f(inc(z))

f(inc2(z))f(z)

f(inc3(z))

f(inc4(z))

lit e2

lit e3

lit e4

syn

syn

sy
n

Figure 3.48: Equality graph corresponding to the e-graph in figure 3.43 but with synthetic
equalities representing equalities that have been previously explained. Note that these synthetic
equalities correspond to the equalities explained when processing the [new-match] of instantia-
tions 3, 5, and 7 in figure 3.47.

Data Structure for Equality Explanations

The shortest path from f(z) to f(inc4(z)) only involved lit equalities and
synthetic equalities syn. But as we saw in section 3.1, we can also have
equalities explained by congruences.

Consider the equality a = d in figure 3.50a. The shortest path from a to
d in the equaltiy graph in figure 3.50b is a direct edge of type cg (b1 b2)

(c1 c2). Whenever the shortest path contains such a cg-equality, we will
recursively explain the equalities between the arguments and construct an
equality explanation tree which is a recursively defined data structure shown
in figure 3.49.

Figure 3.50 shows an example of how the equality between a and d is con-
verted into an equality explanation tree. Since not all possibilities for quan-
tifier instantiations logged with [new-match] are actually instantiated, we
have a separate data structure in the parser that stores all these equality
explanations created while processing the [new-match]-lines in the log. To
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pub struct LeafEquality(pub ENodeIdx, pub ENodeIdx);

pub enum NodeEquality {

Leaf(LeafEquality),

Node(ENodeIdx, ENodeIdx, Vec<NodeEquality>),

}

Figure 3.49: Data structure used for representing equality explanations. Equality explanations of
type cg are mapped to NodeEquality::Node, where the inner vector of equalities explains the
equalities between the arguments. All other equalities are mapped to NodeEquality::Leaf.

make sure all the relevant equalities can be explained, we recursively process
all these NodeEquality creating equality nodes for them in the instantiation
graph before adding nodes for the instantiations that blame these equality
nodes (see figure 3.50).

[eq-expl] e1 lit e ; e2
[eq-expl] c1 cg (e1 e2) ; c2
[eq-expl] b1 lit b ; b2
[eq-expl] a cg (b1 b2) (c1 c2) ; d
[new -match] ... ; (a d)

(a) Example of equality explanation involving cg.

e1 e2 c1 c2

b1 b2 a d

lit e cg (e1 e2)

lit b cg (b1 b2)(c1 c2)

(b) State of the equality graph when processing the [new-match] in figure 3.50a.

Node(a, d, [
Leaf(LeafEquality(b1, b2)),
Node(c1, c2, [

LeafEquality(e1, e2)
]),

])

(c) Computed NodeEquality after processing the equality
a = d in the [new-match] of figure 3.50a.

a=d

b1=b2 c1=c2

e1=e2

(d) Visual representation of
the equality explanation tree
in figure 3.50c.

Figure 3.50: Example illustrating how equality explanation trees are constructed from equality
explanations in the Z3 log.
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#a

#b

#c

#d

#e#f

#g

Figure 3.51: Example of an equality graph after adding the path from #c to #e from the e-graph.
Nodes of the same color indicate that they belong to the same equivalence class as defined by
the root of the equivalence class.

Dealing with Invalidated Synthetic Equalities

Note that due to the updates to the e-graph, the equality explanation that
explains a synthetic equality might eventually become invalid. Blaming such
an invalid synthetic equality would thus be misleading in the instantiation
graph. For instance, we might encounter a situation where #a, #b, . . . , #

e are part of the same equivalence class and #f, #g are part of another
equivalence class. But at some earlier point during the solver run, Z3 might
have recorded that #c, #e, and #f belonged to the same equivalence class,
which is no longer valid. If we did not remove any synthetic equalities from
the equality graph, the synthetic equalities #c=#f and #e=#f would still be in
the equality graph. This situation is illustrated in 3.51. Note that nodes of the
same color correspond to terms that belong to the same current equivalence
class, and the dashed edges represent synthetic equalities.

In such a situation, finding the shortest path from #c to #e would erroneously
yield the path [#c, #f, #e] even though the equalities #c=#f and #f=#e are
no longer valid. To solve this problem, we can store in each node of the
equality graph the root of the most recent equivalence class that it belongs
to and only find the shortest path in the equality graph with respect to the
nodes that have the same equivalence class root. This information is updated
whenever we add the path from the e-graph explaining the equality between
two terms into the equality graph.

Pruning Filter for Equality Nodes

For convenience, a pruning filter was implemented such that we can only
retain those equality nodes that have both a visible ancestor and a visible
descendant that corresponds to an instantiation node. To this end, each
node in the instantiation graph has two fields has_inst_ancestor: bool and
has_inst_descendant: bool which are set to true if a node has a visible ances-
tor, which is an instantiation, and if a node has a visible descendant which is
an instantiation, respectively. We do two passes through the currently visible
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nodes of the graph, once in topological order and once in reverse topological
order. During the traversal in topological order, we perform the following
operations on each node:

• If an instantiation node is encountered, has_inst_ancestor is set to true
since the node itself is an instantiation and hence its ancestor.

• If an equality node is encountered, has_inst_ancestor is set to true if
any of its parents has it set.

During the traversal in reverse topological order, we perform the following
operations on each node:

• If an instantiation node is encountered, has_inst_descendant is set to
true since the node itself is an instantiation and hence its descendant.

• If an equality node is encountered, has_inst_descendant is set to true if
any of its children has it set.

After both passes, the visible-fields of only those nodes are set to true where
both fields, has_inst_descendant and has_inst_ancestor, are set. Figure 3.53
shows the same graph as in figure 3.41 but with pruned equality nodes.
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(a) Instantiation graph before applying prun-
ing filter.

(b) Instantiation graph after applying prun-
ing filter.

Figure 3.52: Note how the pruning filter only keeps the equality nodes 0 and 1 since they are
the only nodes that have a descendant and an ancestor corresponding to an instantiation node as
opposed to an equality node.
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Figure 3.53: Instantiation graph corresponding to the log generated by Z3 when running the
problem in 3.40 but with equality nodes. The right panel shows the information associated with
the selected node 208 which corresponds to node 9 in figure 3.41. Note how node 208 only
blames the equality f(z)=f(inc4(z)) whereas in figure 3.41 the corresponding node blames 4
equalities.
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Chapter 4

Evaluation

In this chapter, we will qualitatively and quantitatively compare AP2 to AP1.
In section 4.1 we will compare and evaluate the differences in the visual
design of the instantiation graph in both tools. In section 4.2 we will evaluate
the processing speed in AP2 and compare it with processings speeds in AP1.
Finally, in section 4.3 we will compare our approach for analyzing matchings
loops with the approach used in AP1.

The main questions that we want to address to evaluate our tool are the
following:

• How fast does AP2 process logs in comparison to the AP1?

• How does the processing speed scale with log size?

• What are the performance bottlenecks in processing the log?

• How does using equality nodes impact the processing speed?

• Can the AP2 efficiently find potential matching loops?

4.1 Instantiation Graph Design

We can compare the instantiation graph design of AP1 with the design used
in AP2. Figure 4.1a shows the same graph as in 4.2a but the former figure
corresonds to AP2 and the latter to AP1. Likewise, 4.1b shows the same
graph as in 4.2b.

Notice that in our tool, the node styles depend on whether or not there are
filtered children, parents or both (see figure 3.20) whereas in AP1, all nodes
have the same shape. For instance node 115 in figure 4.1a has a different
shape than in 4.1b because in the latter it has a filtered-out parent. This
difference is not evident in the original Axiom Profiler (see figure 4.2). Our
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intuitive node shapes help the user in identifying nodes to which the filters
for displaying the children or parents are applicable.

Furthermore, we use different edge styles indicating whether they represent
a blame-term dependency (filled arrowhead) or whether they represent an
equality dependency (empty arrowhead). Unlike in AP1, in our tool the
edges are clickable such that the user can directly understand how any two
instantiations depend on each other. Furthermore, AP1 does not implement
a reconnecting algorithm for representing indirect dependencies. Consider
the example in figure 4.2. There is a path from the third lowest to the lowest
blue node in figure 4.2a but this indirect dependency is not represented in
the filtered graph in figure 4.2b. In our tool, this indirect dependency is
represented via a dashed edge between nodes 70 and 115 as shown in figure
4.1b.

In our tool, the colors between nodes of different instantiations are chosen
such that they are clearly visually distinguishable. This effect can be seen
in figure 4.1 as the two nodes almost have complementary colors hence
optimizing the contrast. Compare this to the colors used in AP1 shown in
figure 4.2 where the contrast is not as stark.

Furthermore, the original Axiom Profiler does not implement equality nodes.
This can be a problem in situations where there are many equality dependen-
cies between nodes as discussed in section 3.4.

4.2 Performance Analysis

There are various processing stages that happen in the time between when a
user selects a file until the instantiation graph filtered with the default filters
is displayed:

1. Parse the log file (see section 3.1 and 3.1 on page 14).

2. Construct the instantiation graph (see section 3.1).

• This involves precomputing various data structures (transitive clo-
sure for reconnecting algorithm, number of parents and children
for nodes for filtering operations, etc.).

3. Apply the default filters (see section 3.2.3).

a) Filter out theory-solving instantiations.

b) Filter out all but the 125 most expensive instantiations.

4. Remove the nodes marked as invisible and reconnect the nodes (see
section 3.2.2).

5. Convert the filtered petgraph into dot format (see section 3.2).
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(a) Instantiation graph de-
sign from Axiom Profiler 2.0.
Figure 4.2a shows the same
graph but in the original Ax-
iom Profiler.

(b) The same instantiation
graph as in figure 4.1a but
with filtered out node 91.
Figure 4.2b shows the same
graph but in the original Ax-
iom Profiler.

(c) The same instantiation
graph as in figure 4.1b but
with equality nodes. The orig-
inal Axiom Profiler does not
implement equality nodes.

Figure 4.1: Instantiation graph design in Axiom Profiler 2.0. The green nodes in these graphs
correspond to the purple nodes in figure 4.2. Note that there is a dashed edge from node 70 to
node 115 in 4.1b (corresponding to the dashed edge from 75 to 122 in figure 4.1c) as in figure
4.1a there is a path which directly connects them.

6. Convert the computed dot file into SVG format such that it can be
displayed in the browser (see section 3.2).

An important criterion to evaluate our tool is to measure how long it takes to
display an instantiation graph. For this, we conducted a detailed performance
analysis measuring how long the previously listed processing stages take.
Figure 4.3 and 4.4 show the results. Note that we conducted this analysis
both with the code that uses equality nodes introduced in section 3.4 and
with the code that does not use equality nodes. More details concerning
reproducibility of our analysis can be found in appendix D.

In sequences-20, the total time to process the log (without equality nodes)
from selecting the file until it is displayed is 45.78 seconds of which almost
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(a) Instantiation graph in the original Axiom
Profiler [6].

(b) Same instantiation graph as in figure
4.2a but where the second lowest blue in-
stantiation has been filtered out.

Figure 4.2: Instantiation graph design in original Axiom Profiler. Note how the indirect
dependency between the third lowest and lowest blue node is not represented.

90% are spent converting the dot format into an SVG. In this step, Graphviz
computes the Sugiyama layout for the graph specified in dot format. This
step can take a long time if there are for instance many edges. To understand
how this can happen we can study the example in figure 3.41. Each node
which is an instantiation of Q2 blames all previous instantiations of Q1 and
therefore the total number of edges grows quadratically in the total number of
instantiations of Q2. As explained in section 3.4 our improved representation
with equality nodes ensures that instead of blaming all equalities that are
found on the path to the root of the equivalence class we make more economic
use of computed equality explanations by creating nodes for them that can
be blamed (see figure 3.53). This reduction in total edge count can in some
cases significantly reduce the time to process the log, in this case by 99.4% to
0.28 seconds.

Precisely because of such cases where a filtered graph can contain many
nodes and edges hence slowing down the computation of the SVG of the
filtered graph, we have implemented a warning prompt (see section 3.2.3)
that gets displayed whenever the current filter chain leads to a graph with
an excessive amount of edges and nodes. Importantly, this prompt gets
displayed before the computation of the SVG to ensure responsiveness.

In sequences-18, the total time to process the log is 36.22 seconds of which
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0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total time

sequences-20
5.5 MB

heaps-simpler
7.9 MB

sequences-18
17.6 MB

arraylist-quant
64.3 MB

arrays-quicksel
126.9 MB

z3
172 MB

heaps2
468.2 MB

foo
875.4 MB

45.78 s
0.28 s

0.21 s
0.23 s

36.22 s
0.50 s

1.38 s
1.59 s

3.05 s
3.32 s

2.71 s
2.96 s

8.66 s
8.28 s

15.33 s
16.07 s

Time to process logs with and without equality nodes

(a) The left labels indicate the name of the processed log along with its size. The right labels
indicate the time it takes to process the log from selecting the log to displaying it to the user.
Each log was once processed with the code that uses equality nodes and once with the code that
does not. The upper number denotes the time without equality nodes and the lower number the
time with equality nodes.

Parse

Construct instantiation graph

Filter out theory-solving instantiations

Show 125 most expensive instantiations

Reconnect algorithm

petgraph to dot

dot to SVG

(b) Legend for figure 4.3a.

Figure 4.3: Plots illustrating what fraction the various stages take when processing logs of various
size. See appendix D for the raw data.

almost 99% are spent constructing the instantiation graph. After a more
detailed analysis, we found that almost 99% of the time constructing the
instantiation graph was spent computing the transitive closure as described in
section 3.2.2. Using equality nodes, the total time to process the log decreased
by 98.6%. A more detailed analysis of the structure of the corresponding
instantiation graph reveals that there are many nodes with many children due
to equality dependencies. As described in section 3.2.2 the computation of
the transitive closure involves doing a bitwise OR of all children of each node.
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0 2 4 6 8 10 12 14 16
Time [seconds]

sequences-20
5.5 MB

heaps-simpler
7.9 MB

sequences-18
17.6 MB

arraylist-quant
64.3 MB

arrays-quicksel
126.9 MB

z3
172 MB

heaps2
468.2 MB

foo
875.4 MB

0.28 s

0.23 s

0.50 s

1.59 s

3.32 s

2.96 s

8.28 s

16.07 s

Time to process logs with equality nodes

Figure 4.4: Comparison of processing times for logs of di↵erent size when using equality nodes.
See appendix D for the raw data.

In cases such as this one, this can take a long time. Using equality nodes
generally decreases the degrees of nodes as we reuse equality explanations.
This significantly improves the structure of the graph hence speeding up
the computation of the transitive closure. In this case, using equality nodes
reduces the total time processing the log to 0.50 seconds.

Apart from the special cases sequences-18 and sequences-20, processing the
log with equality nodes takes on average 7.4% longer than without equality
nodes. Such an increase is expected because as discussed in section 3.4 we
repeatedly use a shortest path algorithm to find the minimal number of
nodes to blame.

In the common case, the total time to process the log is dominated by parsing,
constructing the instantiation graph, and converting the dot file to SVG by
Graphviz. Note that parsing a log and constructing the instantiation graph
only have to be done once at the beginning. As parsing constitutes the
largest fraction (see figure 4.3), the total time to process the log scales roughly
linearly with log size. A more detailed analysis of the parsing speed can be
found in figure 4.5.

In order to assess whether the processing times in AP2 are better than in
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Figure 4.5: Computed parse speed with and without equality nodes. The parse speed decreased
on average by 13.9% when using equality nodes. See appendix D for the raw data.

Name and size of log AP2 AP1
running-example-fix-inj (55.3 MB) 1.3 s 10.1 s
running-example-fix-nxt (50.0 MB) 1.3 s 11.4 s

running-example-orig (50.9 MB) 1.3 s 12 s
z3 (172 MB) 4.3 s crash after 105 s

file1 (16.1 MB) 2.2 s crash after 22 s

Figure 4.6: Approximate times for opening log files on both the Axiom Profiler 2.0 (AP2) and
on the previous Axiom Profiler (AP1) measured in seconds. For AP2 we used the Firefox browser
v121.0. AP1 was compiled from source code (see [24]). All measurements in this figure were
done on the same system: Ubuntu 22.04.3 LTS running on an Intel® Core™ i5-5250U CPU @
1.60GHz ⇥ 4 with 4 GiB RAM.

AP1, we have also done approximate measurements by hand opening the
same logs with AP2 and with AP1 both running on the same hardware and
OS. The results are shown in figure 4.6. In some cases, AP1 crashed. In the
cases where it did not crash processing the tool was roughly 10 times slower.
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4.3 Matching Loop Analysis

AP1 does not provide a feature to search the entire instantiation graph for all
matching loops. Instead, the authors devised a way to automatically select a
path through the instantiation graph that represents a likely matching loop.
Furthermore, by selecting a node the user could influence the choice of the
path. To find a matching loop on the selected path, the path was reduced to
a string such it can be analyzed to find a repeating substring representing
the matching loop along with a path explanation as seen in figure 4.7a.

In AP2, we implemented an automatic search for the matching loops as
discussed in section 3.3.1 and a way to reduce potential matching loops to
matching loop graphs to better understand the terms involved in a matching
loop as discussed in section 3.3.2.

In the example of figure 4.7b, the generated matching loop graph can help the
user understand that the instantiations of quantifier q6 repeatedly generate
terms of the form slot(a, _+j) which again matches with q6’s trigger. This
can give the user the idea that using a more restrictive trigger can avoid this
matching loop.

Furthermore, we have implemented functionality that allows the user to
view all found matching loops and manually select and anaylze suspicious
matching loops (see section 3.3.1).

An important evaluation criterion in this context is how long it takes to search
matching loops. The measurement results can be found in figure 4.8. More
details for reproducibility can be found in appendix D. No clear dependency
of matching loop search time on the log size was found as the search time in
sequences-20 (5.5 MB) was measured to be 0.0594 seconds which is longer
than in foo (875.4 MB) where the search took only 0.0177 seconds. This seems
to indicate that the matching loop search time mainly depends on the graph
structure rather than the overall size.

4.4 Summary

We have shown that processing times in AP2 are roughly ten times faster than
in AP1. We have found that the time to process logs in AP2 scales roughly
linearly with the log size. Parsing the log and constructing the instantiation
graph were found to be the main performance bottlenecks. Fortunately,
parsing and constructing the instantiation graph only occur once. After
that, the main performance bottleneck was identified to be the conversion
of the dot files to SVG done with the Graphviz library. This illustrates the
significance of the warning prompt that is displayed after a user applies a
filter before rendering in ensuring responsiveness.
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(a) Matching loop explanation of previous Axiom Profiler [6]

(b) Matching loop explanation of Axiom Profiler 2.0

Figure 4.7: Comparison of the same matching loop in the previous and the current tool. The
green nodes in figure 4.7b correspond to the purple nodes in figure 4.7a.

We have found that using equality nodes slows down parsing speed by
roughly 13.9%. However, in some cases we have found that using equality
nodes can reduce the total time to process a log by up to 99.4%. Therefore,
using the equality nodes seems to be worth the slight reduction in parsing
speed in the common case.
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4.4. Summary

Name and size of log Search time
sequences-20 (5.5 MB) 0.0594 s
heaps-simpler (7.9 MB) 0.0091 s
sequences-18 (17.6 MB) 0.2411 s

arraylist-quant (64.3 MB) 0.7678 s
arrays-quicksel (126.9 MB) 0.8983 s

z3 (172 MB) 0.4195 s
heaps2 (468.2 MB) 0.0589 s

foo (875.4 MB) 0.0176 s

Figure 4.8: Measured times for matching loop search for various log files. See appendix D for
the raw data.

The algorithm for finding matching loops in AP2 was found to be fast
regardless of the log size. No clear dependency on the log size was found.

All the available filters in AP1 were reimplemented in AP2 and some addi-
tional filters that were deemed useful during the development of the AP2
(see figure 4.10). Unlike the AP1, however, AP2 does not offer functionality
for customizing printing rules of terms. AP1 and AP2 have very different
approaches and hence very different features for analyzing matching loops.
The approach used in AP1 is to find repeated sequences of the same quan-
tifiers in long paths representing potential matching loops. This approach
has the benefit that AP1 can distinguish between path prefixes that do not
exhibit repeating behaviour from the actual start of the matching loop. In
AP2, the user has to manually remove nodes that are not deemed to be part
of the repeating pattern before generating a matching loop graph to analyze
the terms involved in a potential matching loop.

Both tools, however, suffer from false positives in detecting matching loops.
A major improvement over AP1 is that AP2 allows for a fast search of all
matching loops. Furthermore, the approach used in AP2 can find matching
loops that are not restricted to paths.

One of the features in AP2 that contributes to a major improvement in
usability over AP1 is the filter chain that allows the user to view all applied
filters and undo any of them or reset all filters to the default filter chain.
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4.4. Summary

Feature AP2 AP1
Display selected node information 3 3

Display arith theory solver inst. 3 3
Optional pretty printing of terms 3 3

Customizable pretty printing rules 7 3
Filter for showing equality expls. 7 3
Automated explanation of paths 7 3

Display selected edge information 3 7
Warning prompt before rendering graph 3 7

Option to undo applied filters 3 7
Overview of applied filters 3 7

Indirect edges for indirect dependencies 3 7
Alternative edge-styles 3 7
Alternative node-styles 3 7

Automatic matching loop search 3 7
Matching loop graph generation 3 7

Equality nodes 3 7

Figure 4.9: Comparison of available features in AP2 and AP1.
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4.4. Summary

Filter AP2 AP1
Show longest path through selected node 3 3

Show ancestors of selected node 3 3
Show children of selected node 3 3

Only show up to maximum depth d 3 3
Hide subtree rooted at selected node 3 3

Show n first instantiations in log 3 3
Show n last instantiations in log 3 3

Show n most expensive instantiations 3 3
Show n least expensive instantiations 3 3

Show n insts. with most children 3 3
Show n deepest insts. 3 3

Show n least deep insts. 3 3
Show roots of n longest paths 3 3

Show subtree rooted at selected node 3 7
Hide ancestors of selected node 3 7

Show descendants of selected node 3 7
Hide descendants of selected node 3 7

Only show nodes with same quant. as sel. node 3 7
Hide all nodes with same quant. as sel. node 3 7

Show parents of selected node 3 7
Only show up to node index n 3 7

Show all potential matching loops 3 7
Display ML ending at selected node 3 7

Only show nodes with index at least n 3 7
Ignore equality nodes 3 7
Prune equality nodes 3 7

Ignore chain equality nodes 3 7

Figure 4.10: Comparison of available filters in AP2 and AP1.
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Chapter 5

Conclusion

In this project, AP2 was developed as an OS agnostic web application. It
allows users to generate a graph representing the dependencies between
instantiations. AP2 was measured to offer better performance for processing
log files generated by Z3 compared to AP1 and supports versions 4.8.5 up
to and including 4.12.6 whereas for AP1, we have found that some logs
generated by Z3 versions newer than 4.8.9 are not supported.

We have improved the design of the instantiation graph to visually convey
more information about dependencies and nodes. In addition to the filters
present in AP1, various new filters were implemented. As an improvement
to AP1, we implemented a reconnecting algorithm to also visualize indirect
dependencies between instantiations.

One particular issue in the context of SMT solvers such as Z3 are matching
loops. Our tool can efficiently search for potential matching loops that the
user can then analyze further by computing a matching loop graph, which
is an attempt to visually represent how the various terms are involved in a
matching loop. Unlike AP1 which was limited to analyze matching loops
restricted to a path, AP2 can find and analyze matching loops that exhibit a
more complex structure.

We have furthermore identified classes of log files where due to the large
number of equality dependencies processing the log was unacceptably slow.
To address this issue, we introduced the concept of equality nodes which
economically reuse computed equality explanations. Even though this comes
at the cost of slightly slower parsing in the common case (parsing speed
decreases by roughly 13.9%), there are cases where the overall time to process
a log reduces by up to 99.4%.
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5.1. Future work

5.1 Future work

There are various ways in which AP2 can still be improved. As discussed in
section 3.3.2 the matching loop graphs are not yet well-behaved for all kinds
of matching loop graphs. More specifically, if there are multiple dependencies
of the same type between two abstract instantiations, the resulting matching
loop graph erroneously generalizes these even though they might have very
different roles.

Generally, the way abstract instantiations that depend on equalities are
represented in the matching loop graph could be improved by implementing
a more detailed reconstruction of how equalities are used to rewrite blamed
terms in an instantiation.

The matching loop graph construction feature was only implemented for the
instantiation graphs without equality nodes hence one could try to extend
the ideas introduced in section 3.3.2 to instantiation graphs with equality
nodes.

Furthermore, the displayed matching loops reach all the way to the root of
the instantiation graph. We have implemented filters for hiding all ancestors
of a node such that the user can first manually filter out any instantiations
that are deemed not to be part of a matching loop and then generate the
matching loop graph for the filtered graph. To improve this, one could try
to implement similar ideas as in AP1 to automatically detect the repeating
pattern in a potential matching loop.

Another useful feature to implement would be a false positive detector for
matching loops. In simple cases, this could be achieved by checking if the
yield term of the last instantiation in a matching loop matches against the
trigger of the repeated instantiation.

Like in the AP1, it might be useful to implement customizable pretty printing
of terms to make large terms more legible.

Finally, the parser used in this project could be extended to handle more line
cases of Z3 logs.
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Appendix A

Z3 Log Documentation

A.1 Quantifier Instantiations

[new -match] fingerprint quant pattern bound_term+ ;
{term_id | (lhs_id rhs_id)}+

• fingerprint is a 16-digit hexadecimal number

• quant denotes the identifier of the quantifier whose pattern was matched

• pattern denotes the identifier of the pattern used for this match

• bound_term+ is a regular expression denoting the identifiers of the terms
that were bound to the quantified variables

• {term_id | (lhs_id rhs_id)}+ is a regular expression

– term_id is a single term identifier indicating a blame term that
either directly matches against the pattern or is rewritten with
equalities to match against the pattern

– (lhs_id rhs_id) indicates an equality between two terms that is
used to rewrite blame terms to match against the pattern

[eq -expl] from (root |[lit eq;|cg arg_eqn; |th theory ; |ax] to)

• from is a term identifier

• root indicates that from is the root of its equivalence class

• lit eq indicates that from is equal to to due to the equality term eq

• cg arg_eqn indicates that from is equal to to due to some n-ary function
and the pairwise equalities between the arguments arg_eq

• th theory indicates that from is equal to to due to an equality obtained
from the theory solver theory
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Appendix B

Maximal di↵erence

In section 3.2.1 we defined a permutation p : Zn ! Zn and were interested
in finding the parameter that maximizes the minimal distance between two
permuted adjacent indices k, k + 1 given by min{|p(k + 1)� p(k)| : k 2 Zn}.
This value can be derived as follows:

argmax
c

min{|p(k + 1)� p(k)| : k 2 Zn}

= argmax
c

min{p(k + 1)� p(k) : k 2 Zn ^ p(k + 1) > p(k)}[

{p(k)� p(k + 1) : k 2 Zn ^ p(k + 1) < p(k)}
= argmax

c

min{(k + 1)c � kc mod n : k 2 Zn}[

{kc � (k + 1)c mod n : k 2 Zn}
= argmax

c

min{c mod n} [ {�c mod n}

= argmax
c

min{c mod n, (n � c) mod n}

= {
j

n

2

k
l : l 2 Z}

(B.1)
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Appendix C

Syntactically correct SMT2 problems

; some z3 options
(set -option :print -success false)
(set -info :smt -lib -version 2.0)
(set -option :smt.MBQI false)
(set -option :smt.QI.EAGER_THRESHOLD 100)
(set -option :smt.refine_inj_axioms false)
(set -option :trace true)
(set -option :trace_file_name cg_sort.log)

(declare -sort Number)

(declare -const z Number)
(declare -fun add_one (Number) Number)
(declare -fun f (Number) Number)

(assert (forall ((x Number)) (!(= (f x) (f (add_one x)))
:pattern ((f x)) :qid loop)))

(assert (= (f z) z))
(check -sat)

Figure C.1: Syntactically correct encoding of the problem in figure 3.1.
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; some z3 options
(set -option :print -success false)
(set -info :smt -lib -version 2.0)
(set -option :smt.MBQI false)
(set -option :smt.QI.EAGER_THRESHOLD 100)
(set -option :smt.refine_inj_axioms false)
(set -option :trace true)
(set -option :trace_file_name cg_sort1.log)

(declare -sort Number)

(declare -const z Number)
(declare -fun add_one (Number) Number)
(declare -fun f (Number) Number)
(declare -fun sum (Number Number) Number)

(assert (forall ((x Number)) (!(= (f x) (f (add_one x)))
:pattern ((f x)) :qid loop)))

(assert (forall ((x Number)) (!(= (sum (f x) (add_one x)
) (add_one (sum x x))) :pattern ((sum (f x) x)) :qid
loop)))

(assert (= (sum (f z) z) z))
(check -sat)

Figure C.2: Syntactically correct encoding of the problem in figure 3.8.
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; some z3 options
(set -option :print -success false)
(set -info :smt -lib -version 2.0)
(set -option :smt.MBQI false)
(set -option :smt.QI.EAGER_THRESHOLD 100)
(set -option :smt.refine_inj_axioms false)
(set -option :trace true)
(set -option :trace_file_name cg_sort2.log)

(declare -sort Number)

(declare -const z Number)
(declare -fun add_one (Number) Number)
(declare -fun f (Number) Number)
(declare -fun sum (Number Number) Number)

(assert (forall ((x Number)) (!(= (f x) (f (add_one x)))
:pattern ((f x)) :qid loop)))

(assert (forall ((x Number)) (!(= (sum (f z) (add_one x)
) (add_one (sum x x))) :pattern ((sum (f x) x)) :qid
loop)))

(assert (= (sum (f z) z) z))
(check -sat)

Figure C.3: Syntactically correct encoding of the problem in figure 3.40.
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Appendix D

Raw data of performance analysis

There are two kinds of measurements listed below. In the cells with a/b, a

stands for the time measured with the code without equality nodes and b

stands for the time measured with the code with equality nodes (in seconds).
The code without equality nodes that was used has commit hash da02a07
in the linked repository [25]. The code with equality nodes that was used
has commit hash 9649885 in said repository. In either case, the code was
compiled with trunk serve --release to enable the highest level of compiler
optimizations. The system specifications are given below:

• Browser: Google Chrome v121.0.6167.184

• OS: macOS Sonoma v14.2.1

• Chip: Apple M1

• RAM: 8 GB

Name heaps-simpler heaps2 foo sequences-18
Size 7.9 MB 468.2 MB 875.4 MB 17.6 MB

a 0.1574/0.1849 7.4918/7.1797 14.3791/15.0879 0.3489/0.4283
b 0.0231/0.0239 1.1379/1.0652 0.9216/0.94 35.6563/0.0337
c 0/0.0002 0.0005/0.0004 0.0003/0.0004 0.0001/0.0001
d 0/0.0004 0.0003/0.0014 0.0005/0.0008 0/0013
e 0.0008/0.0005 0.0019/0.0029 0.0013/0.0016 0.006/0.0019
f 0.0005/0.0005 0.0002/0.0004 0.0003/0.0003 0.0027/0.0005
g 0.0242/0.0181 0.0258/0.0269 0.0244/0.0384 0.2091/0.0304
h 0.2833/0.2497 8.6857/8.3225 15.353/16.127 36.2604/0.5346
i 0.0091/na 0.0589/na 0.0176/na 0.2411/na

Figure D.1: Measured times for various processing stages in the Axiom Profiler 2.0. In each cell,
the left value is for the code without equality nodes and the right column is with equality nodes.

74



Name arraylist-
quantified-
permissions

arrays-
quickselect-
rec-index-
shifting

z3 sequences-20

Size 64.3 MB 126.9 MB 172 MB 5.5 MB
a 1.0993/1.3064 2.2669/2.4914 2.0434/2.262 0.1324/0.2313
b 0.2565/0.2501 0.7539/0.7959 0.6444/0.6625 4.4239/0.0107
c 0.0001/0.0002 0.0003/0.0004 0.0003/0.0004 0/0
d 0.0002/0.0052 0.0003/0.0084 0.0003/0.0127 0/0.0004
e 0.0022/0.0027 0.0041/0.0048 0.0045/0.0047 0.0014/0.0017
f 0.0006/0.0007 0.0011/0.001 0.0009/0.0007 0.0045/0.0003
g 0.022/0.0224 0.0206/0.0211 0.0183/0.018 41.2201/0.0333
h 1.4058/1.6284 3.0717/3.3506 2.7431/2.9861 45.8374/0.296
i 0.7678/na 0.8983/na 0.4195/na 0.0594/na

Figure D.2: Summary of considered instantiations.

• a: Time to parse in seconds

• b: Time to construct instantiation graph in seconds

• c: Time to apply filter ”Ignore theory solving instantiations” in seconds

• d: Time to apply filter ”Render 125 most expensive instantiations” in
seconds

• e: Time to filter out invisible nodes and reconnect in seconds

• f: Time to compute dot-String from petgraph in seconds

• g: Time to convert dot-String to SVG-element in seconds

• h: Approximate total time from selecting file to displaying graph in
seconds

• i: Time for searching potential matching loops in seconds

Figure D.3: Measured times for various stages in Axiom Profiler 2.0. In each cell, the left value
is for the code without equality nodes and the right column is with equality nodes.
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[23] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for
visual understanding of hierarchical system structures. IEEE Transactions

on Systems, Man, and Cybernetics, 11(2):109–125, 1981.

[24] Programming Methodology Group (ETH Zürich). Axiom profiler. URL:
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