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Abstract

The goal of this master project is to extend an existing formalization of a translation from Java
bytecode to BoogiePL and to provide an implementation for that formalization. Possible improve-
ments to the existing translation thereby include the extension of the set of bytecode instructions
supported by the formalization as well as the the translation of various semantic properties of the
Java Virtual Machine to BoogiePL. In addition, the translation of BML specifications to BoogiePL
shall be formalized and implemented.
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Chapter 1

Introduction

1.1 The Java Virtual Machine

The Java Virtual Machine (JVM) is the execution environment of the Java platform and is de-
scribed in detail in the JVM specification [13]. The core part of the JVM consists of the bytecode
instruction set which defines the units of execution in a bytecode program. The JVM offers a
safe execution environment in that all the bytecode instructions which impose some semantic con-
straints on their operands and on the context in which they are executed will always check for those
constraints at runtime and throw an appropriate runtime exception if any of them is violated.

1.2 The Bytecode Modeling Language

The Bytecode Modeling Language (BML) is a specification language designed to be the coun-
terpart of the Java Modeling Language (JML) [12] at bytecode level. As such, BML allows to
specify the behavior of a Java bytecode program by annotating it using a subset of the JML
specifications. Currently, BML supports all the specifications defined as part of JML Level 0, the
subset of JML which should be understood and checked by all JML tools. In addition, it contains
several constructs drawn from JML Level 1, which were considered to be indispensable for writing
meaningful specifications. The latter include – but are not limited to – loop specifications and
history constraints.

Just as much of the popularity of JML stems from the fact that it uses a Java-like notation,
BML introduces a slightly modified syntax which better meets the requirements of a bytecode
environment. In particular, references to fields are represented as indices into the constant pool
and special, bytecode-specific expressions are introduced which for example allow to access values
on a method’s operand stack. For the actual storage of BML specifications in a class file, the
standard JVM mechanism for attaching meta-data to a class and its members is used, namely the
use of user-defined class file attributes.

1.3 The BoogiePL language

BoogiePL is an intermediate language for program verification. The language features a range of
built-in types as well as a set of basic arithmetic operators and provides several features which make
it particularly suitable for expressing the semantics of many of the modern programming languages
such as Java. The main flexibility of the language thereby stems from the fact that it provides
means for specifying a global theory based on the definition of mathematical functions and axioms
as well as an imperative part characterized by its support for procedures and implementations
which make it easy to model the semantics of many imperative programming languages.

7
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Chapter 2

Translation of Java bytecode

In this chapter, we present our main contributions to an already existing translation from Java
bytecode to BoogiePL [19]. For a better understanding, we first provide a short review of previous
work before proceeding to the elaboration of our own contributions.

2.1 Preliminaries and previous work

2.1.1 Sound verification of loops

During static program verification, an annotated input program is transformed into a logical
expression which represents the weakest precondition of that program with respect to its specifi-
cation. The generated expression is usually referred to as the program’s verification condition and
it consists of a first-order logical formula whose validity implies that the program meets its specifi-
cation. While constructing such a logical expression for an imperative program is straightforward,
the presence of loops tends to pose a major challenge for a sound verification of programs since
the generation of a verification condition requires the input program to be loop-free. The latter
implies that a transformation must be found which removes all the loops from a given program
while preserving the soundness of the verification process.

A straightforward way of removing a given loop in a program is to unroll it to a fixed depth
and to replace the remaining iterations by code that terminates without ever producing an error.
This is the approach taken by some static program verification systems such as ESC/Java21 [9]
which, however, is obviously unsound since only errors appearing in the explicitly represented loop
iterations will ever be detected.

In our work, we use a novel technique first introduced in [5] which is also used in the Spec#
[6] static program verifier and which allows for a sound verification of loops. As we will see
later in this document, loops and in particular the aforementioned loop verification methodology
employed in our translator are key components in the specification and verification of programs
which – interestingly enough – may even have an impact on other parts of the verification process
such as the verification of object invariants2. For that reason, we shall give a brief overview of
the mentioned loop verification technique at this point while also providing a simple example in
BoogiePL of the applied loop transformations in order to give a better understanding and intuition
to the reader as of how the technique works and what implications it may have on the verification
methodology as a whole.

The loop transformations applied as part of the here presented loop verification methodology
are probably best understood as a transformation from a reducible control flow graph to an acyclic
control flow graph. A control flow graph is said to be reducible if and only if it is possible to

1Actually, the latest version of ESC/Java2 optionally provides a sound verification for loops but, by default, it
still handles loops by unrolling them a fixed number of times.

2see Section 3.3 for more details
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10 2 Translation of Java bytecode

identify a unique loop header for each loop. A loop in turn is uniquely identified by a so-called
back edge which is defined as an edge in the control flow graph whose target node dominates its
source node. One node dominating another node thereby means that all paths to the latter pass
through the former. This implies that a back edge can be defined more intuitively as being an
edge from a node inside a loop to that loop’s header node. Since a loop header may have several
loops associated to it, we will always refer to a loop in terms of its unique back edge and we define
the set of nodes constituing that loop as the natural loop of the back edge, thus following standard
compiler terminology [3].

The core idea of the loop verification methodology is to transform every loop body in such a
way that it represents an arbitrary iteration of the loop which in turn allows for the loop being
safely eliminated from the program by removing its back edge. In order for a loop body to be
representative for any particular iteration of that loop, all the variables modified within the loop
– the so-called loop targets – must be given a value that they might hold on any iteration of the
loop. This can be done in BoogiePL by computing the set of loop targets for a given natural loop
and by introducing a havoc command for every such loop target at the beginning of the loop’s
header node. This ensures that every loop target is assigned an arbitrary value before entering the
loop meaning that any information which might be specific to a particular loop iteration is wiped
out. While this technique ensures that the loop can now be eliminated without compromising
the soundness of the verification process, it inevitably results in a gross overapproximation of the
original input program whose verification may now fail even if the program is correct. For that
reason, the verification methodology allows for the specification of a set of loop invariants for every
loop. Since a loop invariant expresses a condition which must hold at the beginning of every loop
iteration, it can be used in our context to recover part of the information previously lost on the
values of the loop targets.

In BoogiePL, we define the expressions of all the assert commands appearing within a prefix
of passive commands of a loop header node as consituting the set of loop invariants of the corre-
sponding loop. Such a definition of implicitly declared loop invariants is justified by the fact that
the reducibility property we are assuming on the input control flow graph guarantees us that the
sole entry point to a loop is its unique loop header node meaning that any property which can be
asserted at the beginning of that node is guaranteed to hold for any particular loop iteration, just
as the definition of a loop invariant requires. Unfortunately, the assert commands containing the
loop invariants will fail to be validated if they depend on the value of a loop target (what they
typically do) as the loop targets are havoc’ed right before the loop invariants are asserted. In order
to circumvent this problem, we perform a special transformation which moves the assertions of the
loop invariants from the loop header node to the end of all its immediate predecessor nodes in the
control flow graph. This in turn justifies that the very same set of invariants can now be assumed
to hold at the beginning of the loop header node since their validity is ensured along every path
leading to a new iteration of the loop. After this transformation, we can safely havoc all the loop
targets at the beginning of a loop since the loop’s invariants are now checked right before entering
the loop. In addition, the information contained in the loop invariants is preserved inside the loop
body by the introduced set of assumptions which is what we were aiming at.

An example

An example of the entire loop transformation as applied to an excerpt of the implementation of a
BoogiePL procedure is given in Figure 2.1.

In the example, a variable x is given the initial value 1 and it is then continuously incremented
inside a loop until its value becomes 100. After the loop has terminated, we would like to be able
to verify that the variable’s value indeed is 100 which we ensure by inserting an adequate assertion
inside the exit block. Since the variable’s value is less than 100 before we enter the loop and
since we always increase its value by one unit only at each loop iteration, we know that the value
of x will never be greater than 100. This information is added as a loop invariant to the code by
asserting it at the beginning of the loop block. The first step of our transformation now consists
in moving the loop invariant assertion from the loop header block to all its predecessors while
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entry:
x := 1;
goto loop;

loop:
assert x <= 100;
goto body, exit;

body:
assume x < 100;
x := x + 1;
goto loop;

exit :
assume !(x < 100);
assert x == 100;
return;

entry:
x := 1;
assert x <= 100;
goto loop;

loop:
assume x <= 100;
goto body, exit;

body:
assume x < 100;
x := x + 1;
assert x <= 100;
goto loop;

exit :
assume !(x < 100);
assert x == 100;
return;

entry:
x := 1;
assert x <= 100;
goto loop;

loop:
havoc x;
assume x <= 100;
goto body, exit;

body:
assume x < 100;
x := x + 1;
assert x <= 100;
assume false;
return;

exit :
assume !(x < 100);
assert x == 100;
return;

Figure 2.1: Consecutive stages (from left to right) in the sound elimination of a loop

turning the assertion at the loop block itself into an equivalent assumption. As we can see in the
middle column of the figure, the loop invariant is now checked right before entering the loop for
the first time as well as along the back edge which terminates the current loop iteration. As a next
step, we introduce a havoc command for the variable x at the beginning of the loop block since
the variable is modified inside the loop and, finally, we remove the loop’s back edge as illustrated
in the right column of the figure. The assume false; command introduced at the end of the loop
body indicates that the paths which do not leave the loop can be considered to have terminated
succesfully once the loop’s invariant has been re-established.

By looking at the final program as resulting from our transformation, one can easily see that
the original assertion inside the exit block can still be verified based on the combination of the
information provided by the loop guard condition and the loop invariant. If no invariant had been
specified for the loop, however, the validation of that assertion by the here presented verification
methodology would have failed.

2.1.2 Existing translation

Our work is largely based on the translation from Java bytecode to BoogiePL presented in [19].
Since in this document we will usually limit ourselves to the discussion of our own contributions to
the existing translation, it is sometimes inevitable that some basic knowledge about the previous
translation process and the corresponding heap model is assumed. For that reason, we encourage
the reader to study the relevant parts of the cited work which will certainly allow for a better
understanding of the here presented extensions.

2.2 Types and subtyping

In this section, we describe how types and the subtype relationships among them are translated
to BoogiePL. In addition, we define precisely what parts of the static type information contained
directly in a class file or obtained during the dataflow analysis of a bytecode method need to be
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explicitly translated to BoogiePL in order to provide enough information to the program verifier
about the types of values appearing in the program.

Throughout this section, we will often make use of two simple but important helper functions
which we frequently use to reason about the types of values in BoogiePL:

// Returns whether a value is of the given type, or else , it is the null value.
function isOfType(Value, name) returns (bool);
axiom (forall v: Value, t: name :: isOfType(v, t) <==> v == rval(null) || typ(v) <: t);

// Returns whether a value is not null and of the given type.
function isInstanceOf(Value, name) returns (bool);
axiom (forall v: Value, t: name :: isInstanceOf(v, t) <==> v != rval(null) && typ(v) <: t);

The isOfType predicate expresses whether a value is of a given type, or else, it is the null
value. This function will be used to translate much of the type information contained in a class
file. As we will see later, the explicit treatment of the null value is often crucial since it avoids
that any concrete type is ever associated to the null value by the second term typ(v) <: t in
the function’s axiomatization. This is important since, otherwise, the usual JVM semantics of
the null value being of any reference type would lead to a contradiction in conjunction with the
type axiomatization presented later in this section. For that reason, the use of this function
should always be favored over the direct application of the built-in operator <: when it comes to
expressing that a certain value, which may include the null value, is of a given type. Note also,
that the function can also be applied to integer values and value types what we will often do in
order to treat integer and reference values uniformly.

The isInstanceOf predicate expresses wheter a value is not null and of the given type. This
function will only ever be used on reference values and class types when it comes to reasoning
about instance objects which are of a given type.

2.2.1 Class types

As in [19], every class type referenced during the translation is represented by a name constant in
the BoogiePL program. The built-in semantics for constants in BoogiePL thereby automatically
ensures that the individual types are indeed distinct from each other.

In addition to the declaration of a constant representing the class type, every type reference
will result in a set of axioms being generated which define the core properties of the type such as
its supertype hierarchy. Throughout the following discussion, we will assume that the declaration
of the class type being referenced has the following generic form3:

class C extends D implements J, K, ...

For every such class type referenced during the translation, we generate a simple set of axioms
which express what its immediate supertypes are by using the built-in <: operator. Defining the
immediate supertypes only is enough since the partial order operator in BoogiePL is defined to be
transitive by its very nature:

axiom C <: D;
axiom C <: J;
axiom C <: K;

...

The declaration of those axioms already suffices for successfully verifying that an existing
subtype relationship among two class types indeed holds. During our work, however, we have
often encountered the necessity for being able to also verify that a class type is not a subtype
of another class type. Having this kind of information turned out to be of particular importance
in conjunction with our translation of object invariants to BoogiePL4 and may also be beneficial

3Declarations of interfaces are translated analogously and, therefore, are not explicitly mentioned at this point.
4see Section 3.3.3 for more details
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in general for the performance of the verification process since non-existing subtype relationships
could then be ruled out from the very beginning, thus avoiding unnecessary case splits being
performed by the theorem prover. As will become immediately apparent, however, the above
axioms are not expressive enough to show that the class C indeed is not a subtype of any other
class type not explicitly mentioned by the axioms. This is because axioms on functions (and on
built-in operators as well, as in our case) in BoogiePL only partially define a function’s value.
This means that, as in our example, the mere absence of a subtype definition between the class C
and some other class does not automatically imply that this subtype relationship does not hold.
Therefore, the following additional axiom is generated for every translated class type reference C
as defined above:

axiom (forall t: name :: { C <: t } C <: t ==> t == C || D <: t || J <: t || K <: t || · · ·);

This axiom automatically rules out any unintended subtype relationship between the class
type C and any other class type by explicitly defining the set of possible supertypes (again, taking
advantage of the transitivity property of the partial order operator).

If the class type C is declared to be final, it additionally triggers the generation of the following
axiom:

axiom (forall t: name :: { t <: C } t <: C ==> t == C);

2.2.2 Array types

Unlike class types, array types do not give rise to the declaration of a BoogiePL constant rep-
resenting them but, instead, array types are explicitly constructed by applying the arrayType
function on a given element type of the array.

In the following, we define how the subtyping rules involving array types are translated to
BoogiePL. In a first step, we express which class types are defined by the JVM as being supertypes
of any array type:

// Define the class types which are supertypes of any array type.
axiom (forall t: name :: arrayType(t) <: $java.lang.Object);
axiom (forall t: name :: arrayType(t) <: $java.lang.Cloneable);
axiom (forall t: name :: arrayType(t) <: $java.io. Serializable );

By contrast, the subtyping among pairs of array types as defined by the JVM is given by the
following axioms:

// Constructing array subtypes from existing subtypes.
axiom (forall t1: name, t2: name :: t1 <: t2 ==> arrayType(t1) <: arrayType(t2));

// The subtypes of an array type T[] are the array types whose element types are subtypes of T.
axiom (forall t1: name, t2: name :: { t1 <: arrayType(t2) }

t1 <: arrayType(t2) ==> t1 == arrayType(elementType(t1)) && elementType(t1) <: t2);

In the second axiom above, the subexpression t1 == arrayType(elementType(t1)) is a con-
venient and effective way of expressing that the type t1 is an array type. Keeping this in mind,
that axiom simply states that any subtype of an array type is itself an array type and that the
corresponding element types of the two array types are themselves in a subtype relationship. A
concrete application of that axiom and how it interacts with other axioms presented earlier in this
section can be seen in the simple example the following listing.

public final class T {

public void foo(T[] array, T element) {
array [0] = element;

}
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}

Verifying this method requires ensuring that the type of element is a subtype of the element
type of array in order to rule out any possible ArrayStoreException occurring at runtime. More
formally, this means that we must be able to show that the expression

typ(rval(element)) <: elementType(typ(rval(array)))

can be derived from the static type information of the method parameters which can be expressed
as follows:

typ(rval(array)) <: arrayType(T)
typ(rval(element)) <: T

To that end, we first use the above term typ(rval(array)) <: arrayType(T) to trigger our
array-subtyping axiom which yields the following relevant information:

elementType(typ(rval(array))) <: T

Since the class T is declared to be final, this expression can be used to trigger our axiom for final
class types which in turn allows us to derive the following:

elementType(typ(rval(array))) == T

Finally, this equivalence on the type T can be combined with the above static type information
about the method parameter element, namely the expression typ(rval(element)) <: T, in order
to ultimately derive that the type of element indeed is a subtype of the element type of array,
meaning that the occurrence of an ArrayStoreException at runtime can be successfully ruled
out, as one would expect.

2.2.3 Primitive types

In [19], the support for the JVM’s primitive types is limited to the type int and no handling of
the value ranges of integer values is provided. In the following, we present a simple extension to
the translation which provides support for all the integral primitive types and their associated
value ranges. For representing the individual primitive types, we introduce appropriate constants
of type name in BoogiePL and define them as being the only primitive types.

// Define the set of value types.
const $long: name, $int: name, $short: name, $byte: name, $boolean: name, $char: name;
axiom (forall t: name :: isValueType(t) <==>

t == $long || t == $int || t == $short || t == $byte || t == $boolean || t == $char);

In order to add support for the value ranges of the individual primitive types, we introduce
a new predicate function isInRange which expresses whether a given number is within the value
range of a certain primitive type as defined by the JVM. Associating that value range information
to the actual type of an integer value finally allows for a seamless integration of our value range
support into the already existing heap axiomatization.

// Returns whether an integer constant lies within the range of a given value type.
function isInRange(int, name) returns (bool);

// Define the value ranges of the individual value types.
axiom (forall i: int :: isInRange(i, $long) <==> −922337· · · <= i && i <= 922337· · ·);
axiom (forall i: int :: isInRange(i, $int) <==> −2147483648 <= i && i <= 2147483647);
axiom (forall i: int :: isInRange(i, $short) <==> −32768 <= i && i <= 32767);
axiom (forall i: int :: isInRange(i, $byte) <==> −128 <= i && i <= 127);
axiom (forall i: int :: isInRange(i, $boolean) <==> 0 <= i && i <= 1);
axiom (forall i: int :: isInRange(i, $char) <==> 0 <= i && i <= 65535);
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// Associate the types of integer values to their corresponding value ranges.
axiom (forall i: int, t : name :: typ(ival(i )) <: t <==> isInRange(i, t));

2.2.4 Static type information

After having discussed how the JVM type system is axiomatized in BoogiePL, we would like to
describe which parts of the static type information directly contained in a class file or computed
during the dataflow analysis of the individual bytecode methods need to be translated to BoogiePL
in order to provide enough information about the types of values appearing in a program. Note
that for associating a type to a given value, we will always make use of the functions isOfType and
isInstanceOf as introduced in Section 2.2 instead of applying the built-in operator <: directly.
This ensures a proper handling of the null value as described in the aforementioned section.

Field and array element types

Whenever a value is retrieved from a given location in the heap, we must provide information
about the value’s type. We should thereby cover not only the types of fields but also of individual
array elements. In addition, if the value’s type is a primitive type, we should make sure that the
integer value is known to lie within the corresponding value range. Since fields and array elements
are handled uniformly in the heap axiomatization by the notion of a Location and since the value
ranges are immediately associated to the individual primitive types we have defined in BoogiePL,
all the above type information can be expressed very concisely by a single axiom:

// Get always returns either null or a value whose type is a subtype of the
// ( static ) location type.
axiom (forall h: Store, l : Location :: isOfType(get(h, l ), ltyp( l )));

Frame types

In addition to the types of values stored in the heap, we must also provide enough type information
about the types of values on the operand stack and in the local registers of a stack frame at specific
points in a method’s body. More precisely, the following static type information directly stored
in the class file or computed during the dataflow analysis is translated to BoogiePL for a given
method:

• At the beginning of every method, we assume the static type information of the individual
parameters of the method which are then used to initialize the local registers of the method’s
initial frame. The only reference parameter which is assumed to be non-null is the implicit
this parameter of instance methods. Note that the appropriate type information is also
assumed on primitive type parameters which in turn defines the corresponding value range
of the integer values.

• At every bytecode instruction invoking a non-void method, we assume the static type in-
formation of the method’s return type which is then pushed on the top of the operand
stack.

• At every bytecode instruction invoking a method which is declared to throw an exception
(or multiple exceptions), we assume that the exception object being thrown is non-null and
of the declared exception’s type.

• At every bytecode instruction which may implicitly throw a runtime exception, we assume
that the exception object representing that runtime exception is non-null and of the ap-
propriate type. Note that this point is only of relevance if runtime exceptions are explicitly
modeled by the translation as described in Section 2.6.
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• At the beginning of every loop, we assume the type information of all the local registers
initialized at that point as well as the type information of all the types on the operand stack.
This type information is added to the translation in order to preserve enough information on
the types of possible loop targets when it comes to applying the loop verification methodology
as described in Section 2.1.1.

2.3 Literals

Some of the JVM instructions take on literals as their parameters. In the case of integer numbers,
those literals are sometimes encoded as an inherent part of the instruction’s opcode but, in general,
they are indirectly referenced by an index into the constant pool where an appropriate entry
encoding the nature as well as the value of the literal can be found. In the following, we present
the kinds of literals which are supported by our translation and we briefly describe how they are
mapped to BoogiePL.

Integer literals

While the most natural and straightforward way of translating an integer literal to BoogiePL
consists in mapping it to the very same integer number, this approach may in some cases lead
to problems, as described in [11]. In particular, if the integer literal is of a large magnitude, one
may not always assume that the underlying theorem prover is capable of adequatly handling it.
In addition, having an explicit representation of large integers may lead to an important negative
impact on the performance of the verification process in conjunction with some theorem provers
such as Simplify.

In order to avoid these kinds of issues, integer literals whose magnitude is larger than a given
threshold are not explicitly represented by their actual value in BoogiePL but, instead, we intro-
duce a symbolic constant of type int for them and use that constant whenever the corresponding
integer literal is encountered. In addition, once the translation of the whole program has ter-
minated, we generate a set of axioms for all such symbolic constants which provide information
about the relative ordering of the individual integer values represented by the constants. By that
approach, the underlying theorem prover is able to reason about the equality of such large integer
constants and about their relative magnitude without, however, being able to reason about the
concrete value of the constant.

String literals

The ldc and ldc_w bytecode instructions can be used to extract a string literal from the constant
pool and push it on the operand stack of the current method frame. Once the string object is on
the stack, it can be operated on as one would do with any other kind of instance object.

In our translation, every string literal encountered in the program triggers the declaration of
a constant of type ref in BoogiePL which is used whenever the string literal is referenced. The
constant represents the string object itself whose properties are given by the following axiom which
is generated for every such constant representing a string:

axiom (forall h: Store ::
isInstanceOf(rval( $stringLiteral i ), $java.lang.String)
&& alive(rval( $stringLiteral i ), h));

Note that the above axiom and the fact that strings are represented by constants in BoogiePL
only ensures that the objects are known to be instances of type String, that they are always
alive and that different string constants are indeed distinct from each other. However, we can e.g.
not easily provide any information on the length of a string since a string’s length in the JVM is
always referred to by a normal method call and not by a special-purpose bytecode instruction as
is e.g. the case for retrieving the length of an array. This is different from other languages such
as C# where the length of a string is represented by a special length attribute.
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Class literals

As of J2SE 5.0, the bytecode instructions ldc and ldc_w can also be used to load class literals
of the form Integer.class from the constant pool and push them on the operand stack of the
current method frame. In prior versions of the Java platform, such class literals were instead
translated to bytecode by generating a synthetic method which loaded the appropriate class and
which returned the single object instance representing it.

In our translation, we support class literals in very much the same way strings are supported,
namely by introducing a BoogiePL constant of type ref for every class literal which is then given
the following properties:

axiom (forall h: Store ::
isInstanceOf(rval( $classLiteral i ), $java.lang.Class)
&& alive(rval( $classLiteral i ), h));

2.4 Constructors

At the beginning of every constructor, some implicit properties about the state of the this object
are guaranteed by the JVM. In the following, we present two such properties and how they are
handled by our translation.

Unique this reference

In the JVM, the allocation and subsequent initialization of a new object is not accomplished by
a single bytecode instruction but, instead, the two instructions new and invokespecial are used
for that purpose. The new instruction thereby performs the actual object allocation and returns
a reference to the new object which can then be used to invoke a constructor on it by using
the invokespecial instruction. While this implies that a reference to an uninitialized object
may be pushed on the JVM’s operand stack and that bytecode instructions may operate on such
uninitialized objects, the JVM’s static bytecode verifier will always ensure that no reference to an
uninitialized object is ever passed to the heap or used as a method parameter before a constructor
has been invoked on it. This in turn guarantees that whenever a constructor is invoked on a new
object, that object is not aliased.

This is something we can take advantage of inside a constructor by explicitly stating that the
only reference to the this object at the beginning of a constructor is given by the value of the
first local register of the constructor’s initial frame. Assuming the implicit this parameter to the
constructor is represented by the variable param0 in BoogiePL, this can easily be accomplished by
the following two steps:

• For every parameter parami other than the this parameter, we produce the assumption

assume param0 != parami;

• In addition, we state that the this object has no aliases in the heap:

assume (forall l: Location :: rval(param0) != get(heap, l));

Note that while having the above information explicitly available for the verification process
may seem to be of limited importance at first sight, we have found several important use cases
whose successful verification depends on the above information being available. A simple example
illustrating such a use case is given in the following listing.

public class ListHolder {

//@ invariant list != null;
protected List list ;
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//@ requires other != null;
public ListHolder(ListHolder other) {

this. list = other. list ;
}

}

In the example, a simple copy constructor is implemented which assigns the field list of a
given object to the same field of the this object. As we can see, the class’ invariant expresses
that the list field should always contain a non-null reference. The key point is that at the
beginning of a constructor, we may assume the invariants of all allocated objects but the this
object to hold. This implies that if a theorem prover is not given enough information to deduce
that the object other is indeed distinct from the this object, the former’s invariants cannot be
safely assumed in the constructor’s prestate, meaning that the object invariant of the this object
cannot be guaranteed to hold at the end of the above constructor. Passing the information about
the uniqueness of the this reference at the beginning of a constructor to the theorem prover, by
contrast, allows for a successful verification of the above example.

Initial values of variables

Another fact which is ensured by the JVM is that at the beginning of every constructor, all the
instance fields of the this object are initialized to their default value.

One possible way of translating this information to BoogiePL consists in producing an explicit
assumption for every single field of the this object (including the set of inherited fields) which
states that the field indeed holds the appropriate default value. This is the approach taken by
Spec#. What we do, instead, is defining a function which returns the initial value for a variable of
a given type and use that function to declare all the fields of the this object as being initialized
to that value at the beginning of every constructor which can be done by a single axiom. In order
to define what the initial value for a variable of a given type is, we use a slight variation of the
init function introduced in [19] which is now axiomatized as follows:

// Returns the initial value for a variable of the given type.
function init(name) returns (Value);

// Define the default values of value types, class types, and array types.
axiom (forall t: name :: isValueType(t) ==> init(t) == ival(0));
axiom (forall t: name :: isClassType(t) ==> init(t) == rval(null));
axiom (forall t: name :: init(arrayType(elementType(t))) == rval(null));

Note that the expression arrayType(elementType(t)) is an effective way we use for repre-
senting the set of array types.

Using that function, all the instance fields of the this object can be assumed to hold their
initial values by the following simple quantification:

assume (forall f: name :: get(heap, fieldLoc(param0, f)) == init(fieldType(f )));

2.5 Selected bytecode instructions

As part of our work, we have considerably extended the set of bytecode instructions supported
by the translation of Java bytecode. Since the translation of many of them is rather straightfor-
ward and similar to instructions supported in previous work [19], we only cover a selected set of
instructions at this point. An overview of all supported bytecode instructions can be found in
Appendix A.
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2.5.1 Value cast instructions

In the JVM, a set of instructions are provided for casting among different primitive types, where
those instructions are also used to simulate arithmetic operations on low-precision integer values
for which no dedicated bytecode instructions exist. If, for example, one wants to perform a short
arithmetic addition, this is simulated by first performing the addition using int arithmetic (iadd)
and then casting the result back to the value range of a short (i2s).

Based on our previous axiomatization of value ranges for different primitive types (see Sec-
tion 2.2.3), we can provide support for value cast instructions by introducing a special casting
function which casts a given integer number to the value range of a specified primitive type. The
definition and axiomatization of that function is given as follows:

// Casts an integer value to the value range of the given value type.
function icast(int, name) returns (int);

// A cast value always lies within the value range of the target type.
axiom (forall i: int, t : name :: isInRange(icast(i, t ), t ));

// Values which already are within the target value range are not affected by a cast .
axiom (forall i: int, t : name :: isInRange(i, t) ==> icast(i, t) == i);

Note that the axiomatization of the casting function does not cover all the aspects specified
by the JVM. In particular, if the value we are casting is not within the target value range, we do
not say anything about the result of the cast since, in that case, the properties of the cast value
are not easily expressible in BoogiePL. The above function is immediately used to translate any
value cast instruction encountered in a method.

Implicit value casts

A problem related to the translation of explicit value cast instructions is the handling of value
range casts which are specified implicitly by the JVM on the different arithmetic instructions. For
example, the JVM defines the instruction iadd to perform an int addition, i.e. the result is always
mapped back to a 32-bit value range. In our current translation, however, those implict casts are
not considered for practicability reasons since, otherwise, one would almost never know whether
an overflow has occurred, meaning that it is very difficult to verify anything based on the result
of arithmetic expressions. Note, however, that our decision to not model those implicit casts is a
possible source of unsoundness since we are always assuming that no overflow occurs unless the
value cast is made explicit. Nevertheless, we believe that the advantages in terms of practicability
outweigh the possible soundness issues, a claim which may be considered to be underlined by the
fact that other static program verification systems such as Spec# [6] and ESC/Java2 [9] follow
the same principle.

2.5.2 Instructions of type long

In [19], bytecode instructions operating on values of type long have not been included in the
translation, mainly due to some technical problems related to the representation of such values in
a method frame. In the following, we provide a brief description about the handling of values of
type long in the JVM, based on which we will see that support for longs can be easily added to
the translation what has been done as part of our work.

The only difference between values of type long and other integer values is that the former
are defined by the JVM specification as occupying two local registers as well as two slots on the
operand stack of a method frame. This, in turn, inevitably raises the question whether some
special handling is required to account for this subtlety. However, as one can read up in the JVM
specification [13], the bytecode verifier only ever allows that a value of type long stored in two
local registers is accessed by addressing the register with the lower index. In addition, long values
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on the stack are always treated as a single element. Only when it comes to computing the stack
height in a given frame, values of type long on the stack are considered to indeed consist of two
elements.

Based on these points, it should become apparent, that instructions operating on values of
type long can be easily supported in the translation.

2.5.3 Multidimensional array allocation

In the following, we will describe how the multianewarray instruction for allocating multidimen-
sional arrays is translated to BoogiePL. As we will see, the translation of this instruction is more
involved if we try to model all the semantic properties it entails.

The multianewarray instruction of the JVM is used to allocate multidimensional arrays. Its
direct operands are the array’s type and the number of dimensions of the array which should
be initialized by appropriate sub-arrays. In addition, the array lengths for the individual array
dimensions are given by an appropriate number of integer values on the stack.

Since in the existing heap formalization [19], the core abstraction for a newly created object is
an Allocation, we first of all define a new function in BoogiePL which defines an allocation for
multidimensional arrays.

// An allocation of a multidimensional array for a given array element type, a given
// array length, and a given allocation describing the element values of the new array.
function multiArrayAlloc(name, int, Allocation) returns (Allocation);

// The type of a multidimensional array allocation .
axiom (forall t: name, i: int, a: Allocation ::

allocType(multiArrayAlloc(t, i , a)) == arrayType(t));

// The array length of a multidimensional array allocation .
axiom (forall h: Store, t : name, i: int, a: Allocation ::

arrayLength(new(h, multiArrayAlloc(t, i, a))) == i);

Note that the multiArrayAlloc function is parameterized by the type of its elements and not
of the array itself. While this may be somewhat counter-intuitive, we found it more consistent with
the already existing allocation used for one-dimensional arrays given by the function arrayAlloc
which is also parameterized by the array’s element type. The more interesting aspect is that an
allocation for a multidimensional array is itself parameterized by an allocation which (recursively)
describes the properties of the next dimension of the array. Using the above function, an allocation
for the expression new C[3][4] could be expressed as follows in BoogiePL:

multiArrayAlloc(arrayType(C), 3, arrayAlloc(C, 4))

By the definition of the above allocation abstraction, it would already be possible to express the
allocation of a new multidimensional array in BoogiePL. However, this does not say anything about
the initialization of some dimensions of the array which is performed by the JVM by allocating
further sub-arrays. In particular, the actual array and all its sub-arrays allocated by the JVM
should be known to be (a) new, distinct objects (b) of the correct type, and (c) of the desired
length. The function which will be used to attach all those properties to the new arrays is defined
as follows:

// Returns whether the given value represents a multidimensional array newly created
// in the given heap and described by the given allocation .
function isNewMultiArray(Value, Store, Allocation) returns (bool);

// Associate the isNewMultiArray function to the new function which is then used
// in the actual translation of the bytecode instruction .
axiom (forall h: Store, t : name, i: int, a: Allocation ::
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isNewMultiArray(new(h, multiArrayAlloc(t, i, a)), h, multiArrayAlloc(t, i , a )));

Before we proceed to the actual axiomatization of the isNewMultiArray function, we must
first think about how we want to show that all the allocated sub-arrays are actually distinct from
each other, which is the more difficult part to express in BoogiePL. To that end, we notice that
every array allocated in the context of a multidimensional array allocation can be uniquely defined
by the conjunction of the parent array to which it belongs and its position inside that array. The
idea is that if we attach that information to every allocated array, BoogiePL will be able to derive
by contradiction that all the arrays are indeed pairwise different. For that purpose, we introduce
the following two functions:

// Defines the parent array of one of the arrays created during the allocation
// of a multidimensional array.
function multiArrayParent(Value) returns (Value);

// Defines the array element index of one of the arrays created during the allocation
// of a multidimensional array.
function multiArrayPosition(Value) returns (int);

Finally, we proceed to the axiomatization of the isNewMultiArray function. If the function
is applied to an arrayAlloc, the array it refers to must be one of the leaf arrays which are not
further initialized. In that case, the only properties we have to define on the array are that it is
a new array allocated in the given heap, and that its type and length are given by the specified
allocation.

// Define the properties of a leaf array which is created during the allocation
// of a multidimensional array but which, itself , is not further initialized .
axiom (forall v: Value, h: Store, t : name, i: int ::

isNewMultiArray(v, h, arrayAlloc(t, i ))
<==> !alive(v, h) && typ(v) == arrayType(t) && arrayLength(v) == i);

If, on the other hand, the function isNewMultiArray is applied to a multiArrayAlloc, the
array it refers to will itself be further initialized. In that case, again, we define that the array itself
is a new array allocated in the given heap, and that its type and length are given by the specified
allocation. In addition, we recurse on all the elements of the array and uniquely identify them by
their parent array (the current array) and their position inside the array. The latter will ensure
that all the allocated arrays are known to be pairwise distinct.

// Define the properties of an array which is created during the allocation
// of a multidimensional array and which, itself , is also further initialized .
axiom (forall v: Value, h: Store, t : name, i: int, a: Allocation ::

isNewMultiArray(v, h, multiArrayAlloc(t, i, a))
<==> !alive(v, h) && typ(v) == arrayType(t) && arrayLength(v) == i

&& (forall e: int ::
isNewMultiArray(get(h, arrayLoc(toref(v), e)), h, a)
&& multiArrayParent(get(h, arrayLoc(toref(v), e))) == v
&& multiArrayPosition(get(h, arrayLoc(toref(v), e))) == e));

2.6 Runtime exceptions

The JVM offers a safe execution environment in that all the bytecode instructions which impose
some semantic constraints on their operands and on the context in which they are executed will
always check for those constraints at runtime and throw an appropriate runtime exception if any
of them is violated. In addition, the execution of any bytecode instruction may give rise to an
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asynchronous JVM error which signals a more severe problem in the platform itself rather than
in the actual program being executed. Since JVM errors often indicate that an unrecoverable
failure has occurred, they are typically not caught and handled by an application but, instead,
lead to the termination of the running program. Therefore, they are only of little interest in our
context. Runtime exceptions, by contrast, are often modeled as part of the execution of a program
by explicitly catching and handling them or by declaring them in the throws clause of a method’s
signature.

In [19], runtime exceptions are handled by inserting an appropriate assertion before the trans-
lation of the bytecode instruction signaling the exception which rules out the possibility of the
runtime exception being thrown. If this assertion fails to be verified, the user can be informed
accordingly. While this is also the approach taken by default in our implementation, in what
follows, we present an extension to the existing translation which allows for an explicit modeling
of runtime exceptions and the program flow they cause.

In order to model the normal and exceptional outcome of the execution of a given bytecode
instruction which might throw a runtime exception, we create a synthetic BoogiePL block for each
of them whenever such an instruction is encountered in the input program. In case the execution
of the instruction triggers a runtime exception, the semantics of the instruction itself should not
have any impact on the program state since the instruction has not been successfully executed.
Therefore, a branch to the above synthetic blocks is inserted in the BoogiePL program before
translating the actual bytecode instruction. In the block representing the exceptional execution
path, we can then assume the condition under which the runtime exception occurs. This is depen-
dent on the concrete instruction and runtime exception and is defined in the JVM specification for
individual bytecode instructions5. In addition, we assume the information on the exception object
representing the runtime exception which is defined by the JVM specification as being the only
object left on the operand stack. Finally, a branch to the appropriate exception handler for the
exception is inserted. In the block representing the normal execution of the bytecode instruction,
on the other hand, we simply assume the condition under which the runtime exception does not
occur and proceed with the translation of the actual bytecode instruction, as usual. Note that if
the instruction may throw several runtime exceptions, the same translation process can simply be
repeated at this point for the next runtime exception.

An example of this translation scheme for an integer division instruction which might throw
an ArithmeticException is illustrated in Figure 2.2.

2.7 Exception handlers

The code attribute of every bytecode method contains a possibly empty exception table which lists
the set of exception handlers protecting specific code ranges of the method body. In the following,
we present a simple extension to the existing translation of Java bytecode [19] which makes the
type information inherently contained in every such exception handler available to the verification
process.

To that end, we include an additional level of indirection in the translation of every bytecode
instruction explicitly throwing an exception by performing the following simple steps:

• At every bytecode instruction explicitly throwing an exception, we generate a new BoogiePL
block for every exception handler reachable in the program flow.

• Every branch to an exception handler in the bytecode is translated to an equivalent branch
to the corresponding BoogiePL block representing that handler.

• Inside every handler block, we assume the exception object being an instance of the handler’s
type. In addition, we assume that the exception object is not an instance of the type of any
previous exception handler for the current instruction.

5The set of runtime exceptions modeled by our translation for the individual bytecode instructions can be found
in Appendix A.
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...
goto block pos N, block pos X;

block pos X:
assume stack(h)i = 0;
havoc stack0r;
assume alive(rval(stack0r), heap);
assume stack0r 6= null;
assume typ(rval(stack0r)) = java.lang.ArithmeticException;
goto block pos Handler;

block pos N:
assume stack(h)i 6= 0;
stack(h− 1)i := stack(h− 1)i / stack(h)i;

...

Figure 2.2: An example translation of runtime exceptions to BoogiePL

• For every handler block, the program flow is continued at the first instruction representing
the actual handler code in the bytecode method.

Note that the type information assumed inside every handler block is immediately justified by
the lookup process employed by the JVM for finding the matching exception handler for a given
exception object at runtime [13].
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Chapter 3

Translation of BML specifications

In this chapter, we present the translation of BML specifications to BoogiePL. We do this by first
precisely defining what the semantics of the individual specifications is and then describing how
this semantics is realized by the actual translation to BoogiePL.

3.1 Method specifications

While JML features a rich set of syntactic sugar constructs which are designed to make method
specifications more expressive [12], BML only supports a very limited subset of them. In essence,
a method specification in BML consists of a set of lightweight specification cases. A specification
case can be regarded as the unit of specification which describes what the behavior of a method
is for a given prestate of that method. More precisely, a specification case in BML is made up of
the following standard specification features:

• The method’s precondition for a specification case is defined by a requires clause. If the
precondition does not hold in the method’s prestate, the method’s implementation is not
required to satisfy any of the specifications contained in the corresponding specification
case.

• The method’s frame condition for a specification case is defined by a modifies clause and
it defines the set of heap locations the method’s implementation may assign to during its
execution. Apart from these explicitly specified locations, a method implementation is always
implicitly allowed to modify the state of objects which have been allocated during the current
execution of the method’s body. Note that the method’s frame condition must be satisfied
even if the method terminates by throwing an exception. The individual locations specified
in a modifies clause are usually referred to as store references in BML (and also in JML).

• The method’s normal postcondition for a specification case is defined by an ensures clause.
Such a normal postcondition is a two-state predicate which expresses a relationship between
the prestate and the poststate of the method which must hold whenever the method’s exe-
cution terminates normally (i.e. without throwing an exception).

• A method’s exceptional postcondition for a given exception type is defined by a signals
clause. As with a normal postcondition, an exceptional postcondition also represents a
two-state predicate which, however, expresses the relationship between the prestate and the
poststate of the method which must hold whenever the method’s execution terminates by
throwing an exception of a given type. Note that a method’s specification case may have
several signals clauses in order to specify different exceptional postconditions for individual
exception types.

25
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3.1.1 Desugaring

In the following, we briefly describe a simple desugaring process which transforms a method specifi-
cation consisting of several specification cases to an equivalent one defined by a single specification
case. This allows us to precisely capture the intended semantics of a BML method specification
by deriving a single predicate for each specification aspect of a method, namely for its precon-
dition, its postcondition, and its exceptional postcondition. Note that the resulting semantics is
equivalent to the semantics of a corresponding subset of a method specification in JML [18]. For
the actual notational purposes, we make use of the JML syntax [12].

Our starting point for the desugaring process is given by the following general form of a method
specification consisting of several specification cases:

/*@
@ requires P1;
@ modifies W1;
@ ensures Q1;
@ signals (E1 e) S1;
@ also · · · also
@ requires Pn;
@ modifies Wn;
@ ensures Qn;
@ signals (En e) Sn;
@*/

Note that we provide no explicit treatment for the parts of a method specification which a
method inherits from its set of overridden methods since inherited specification cases are simply
included by aggregation in the overriding method and, thus, are assumed to already be contained
in the above method specification. Note also that, for the sake of notational brevity, we assume
each specification case containing a single signals clause only. A generalization to multiple signals
clauses, however, is straightforward.

Before proceeding to the presentation of the desugared form of the above method specification,
we try to give a more intuitive explanation as of what its expected semantics is:

• A single specification case can be regarded as a single use case of the method which defines
the behavior of that method, given a method’s prestate satisfying the requires clause of
the specification case. In particular, a method’s implementation must satisfy its specifica-
tion for any such use case, meaning that the effective precondition of a method consists of
the disjunction of the requires clauses of the individual specification cases. Note that this
automatically ensures that a method’s effective precondition becomes only ever weaker when
its specification is extended by overriding methods in subclasses.

• Any postcondition or frame condition for a given specification case needs only be satisfied
in the method’s poststate if the corresponding precondition of the specification case holds in
the method’s prestate.

• A method’s frame condition must be satisfied whenever that method’s execution terminates,
irrespective of whether the method has terminated normally or by throwing an exception.
As a consequence, the frame condition of each specification case can be thought of as be-
ing conjoined to the postcondition of the corresponding specification case as well as to all
its exceptional postconditions. In JML, this can be done by wrapping the frame’s store
references in an \assigns_only expression which allows to incorporate frame conditions in
specification expressions.

• A method’s implementation must satisfy the normal and exceptional postconditions of every
specification case whose precondition is satisfied in the method’s prestate meaning that a
method’s effective postcondition is esentially the conjunction of the postconditions of the
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/*@
@ requires P1 ∨ · · · ∨ Pn;
@ modifies W1, · · · , Wn;
@ ensures (\old(P1) ⇒ Q1 ∧ \assigns only (W1)) ∧ · · · ∧ (\old(Pn) ⇒ Qn ∧ \assigns only (Wn));
@ signals (Exception e) (\old(P1) ∧ (e instanceof E1) ⇒ S1 ∧ \assigns only (W1))
@ ∧ · · · ∧
@ (\old(Pn) ∧ (e instanceof En) ⇒ Sn ∧ \assigns only (Wn));
@*/

Figure 3.1: Desugared form of the original method specification.

individual specification cases. Note that this automatically ensures that a method’s effective
postcondition becomes only ever stronger when its specification is extended by overriding
methods in subclasses.

• A method’s exceptional postcondition needs only be satisfied if the exception object being
thrown is of the type specified in the signals clause. In JML, this additional condition can
be specified directly in a specification expression by using the instanceof operator in order
to avoid requiring the use of signals clauses for different exception types.

All of this is subsumed and formalized by the desugared form of the original method specifica-
tion given in Figure 3.1. Note thereby that while the desugared method specification still contains
a modifies clause, this information is not required anymore since the actual frame conditions
of the individual specification cases have been directly integrated into the method’s normal and
exceptional postconditions.

3.1.2 Translation to BoogiePL

In [19], a translation of method implementations and method calls has been presented which also
models the program flow caused by exceptions which are thrown during a method’s execution.
That translation thereby allows for a seamless integration of our desugared form of a method
specification since it introduces a special BoogiePL block for the normal and all the exceptional
poststates of the method which can be used to assert or assume the corresponding postconditions,
as required. For that reason, we will not go into further detail in the translation of method
specifications as a whole but, instead, we briefly describe how individual frame conditions are
translated to BoogiePL.

As was already mentioned, a method is only allowed to modify a given heap location if it is
either specified in the method’s frame condition, or else, if the location is part of an object which
has been allocated during the current execution of the method’s body. Assuming that the heap in
the method’s prestate is denoted by oldHeap and the current heap by heap, this can be expressed
as follows in BoogiePL:

assert (forall l : Location ::
alive (rval(obj(l )), oldHeap) && l /∈ W ==> get(heap, l) == get(oldHeap, l));

Since fields and array elements are handled uniformly in the heap axiomatization by the notion
of a Location, the above expression can account for all kinds of store references which might be
specified in the modifies clause denoted by W.

3.2 Loop specifications

BML supports a very rich set of loop specifications which include some features which are partic-
ularly important for the static verification of programs. More precisely, the following aspects of a
loop’s behavior can be specified in BML:
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• A loop invariant specifies a predicate which must hold at the beginning of every loop itera-
tion.

• A loop variant function (or decreasing function) is used to help prove termination of a loop.
It specifies an expression of type int which must never be negative at the beginning of a loop
iteration and which must decrease by at least one unit between consecutive loop iterations.

• A loop frame condition specifies a set of store references which define the set of heap locations
the loop’s body may assign to during its execution. Apart from these explicitly specified
locations, a loop is always implicitly allowed to modify the state of objects which have been
allocated inside the loop. Note that loop frame conditions are not supported in JML.

3.2.1 Semantics

In order to provide a more precise definition of the semantics of loop specifications in BML, we
use a JML-like syntax to define how the dedicated loop specification features can be desugared to
a set of simple assertions, as illustrated in Figure 3.2.

//@ loop_invariant I;
//@ decreasing V;
//@ loop_modifies W;
while (G) {

S;
}

while (true) {
//@ assert I;
//@ assert 0 <= V;
//@ assert (* W *);
int loopVariant = V;
if (!G) {

break;
}
S;
//@ assert V < loopVariant;

}

Figure 3.2: Supported BML loop specifications (left) and the corresponding desugared form (right)

On the left hand side of the figure, we have a generic representation of a loop with the loop guard
condition G and the sequence of loop body statements S. The loop is annotated by an invariant
I, a variant function V, and a modifies clause providing the frame condition W. On the right hand
side, a transformed but equivalent loop is presented which is better suited to our purposes of
annotating it using simple assertions. As one can see, the loop invariant and the non-negativity
of the loop variant function are ensured to hold at the beginning of every loop iteration by an
appropriate assertion. In addition, the loop variant function is checked to have decreased at least
by one at the end of a loop iteration by comparing the current value of the function to the one
at the beginning of the current iteration which has been previously stored in a dedicated variable
when starting the running loop iteration. The semantics imposed for the loop frame condition is
that it must be satisfied at each loop iteration. Note that an alternative – and probably equally
valid – semantics would be to only require that the loop frame condition is satisfied when we break
out of the loop. However, for our purposes of static program verification, the former approach
seems far more adequate since it results in the frame condition being semantically equivalent to a
loop invariant which allows to retain precious information about the heap’s state in conjunction
with the loop verification methodology employed in our translation (see Section 2.1.1).

An example

In order to illustrate a typical application of the loop specifications supported in BML, we would
like to briefly discuss the simple example in the following listing.
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public class ArrayShift {

//@ requires array != null && array.length > 1;
public static void shift(int [] array) {
//@ loop_modifies array[0 .. i - 1];
//@ loop_invariant 0 <= i;
//@ loop_invariant (\forall int l; 0 <= l && l < i;
//@ array[l] == \old(array[l + 1]));
//@ decreasing (array.length - 1) - i;
for (int i = 0; i < array.length − 1; i++) {

array[ i ] = array[i + 1];
}

}
}

In the example, we shift all the elements of an array – except the first one – one position to
the left, a fact which is expressed as part of the loop’s invariant. We believe that the following
specification aspects of the example are noteworthy:

• Beside the invariant expressing the actual semantics of the loop body, we also need to
explicitly specify the more boring invariant 0 <= i since the variable i is used as an array
index which must not be negative. The need for this invariant comes from the fact that the
variable i is modified inside the loop, meaning that by our loop verification methodology,
we are forced to wipe out all the information about the variable’s value. This implies that
any information which might be required for the verification process must be recovered by
the specification of adequate loop invariants. Note that an interesting alternative to the
explicit specification of such semantically poor invariants is a process known as abstract
interpretation [7] which allows for an automatic inference of many of those more repetitive
loop invariants. This is a technique employed by the Boogie [4] static program verifier which,
however, is beyond the scope of our work.

• The specified loop variant function is very simple and rather common for loops that use
a running variable which is incremented up to a given upper bound. Note that the non-
negativity of a loop variant function always implicitly defines a loop invariant which we
might take advantage of during the verification process. In our particular example, the loop
variant function implies that (array.length - 1) - i >= 0 which, in turn, tells us what
the upper bound of the running variable is.

• A rather subtle but notedly important aspect of the loop’s specification lies in the defini-
tion of the frame condition. The interesting point is that we reference the variable i inside
the frame condition which, however, has not a constant value during the loop’s execution.
Intuitively, such a frame condition expresses that at any particular loop iteration, only ar-
ray elements to the left of the of the current running variable will ever have changed. In
particular, this ultimately ensures that for every subsequent loop iteration, the value of the
array element array[i + 1] is the same as in the method’s prestate which is a key require-
ment for the successful verification of the whole loop. In fact, if we replace the above frame
condition by loop_modifies array[0 .. array.length - 2], the loop’s verification fails
while, otherwise, it succeeds. The definition of such dynamic frame conditions as in the
above example is an interesting feature we have often taken advantage of such as for the
verification of the insertion sort algorithm.

• As the attentive reader might already have noticed, the fact that the variable i is modified
inside the loop is not reflected in the loop’s frame condition. As a general rule, we do not
expect the user to explicitly express his intent of modifying any local variable as part of a
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loop’s frame condition since there is no direct benefit from such specifications, neither for
the verification process nor for the user.

3.2.2 Translation to BoogiePL

Based on the desugared form of loop specifications in BML as given in Figure 3.2, their translation
to BoogiePL is rather straightforward. In essence, the translation can be summarized by the
following individual steps:

• For every loop, we introduce a fresh heap variable loopHeapi in BoogiePL which is used to
store a copy of the heap before initiating the loop’s execution. This variable is set to the
current heap at the end of every predecessor block of the loop header block which itself is
not inside the loop.

• For every loop, we introduce a fresh variable loopVarianti in BoogiePL which is used to
store the value of the loop’s variant function at the beginning of a loop iteration.

• At the beginning of every loop header block, we insert an assertion for the loop invariant,
for the non-negativity of the loop variant function, and for the loop’s frame condition, just
as suggested by our desugared loop specification.

• At the end of a loop’s body, we check that the loop variant function has decreased at
least by one by comparing its current value to the value previously stored in the variable
loopVarianti which holds the function’s value as evaluated at the beginning of the current
loop iteration.

...
loopHeapi := heap;
goto loop header;

loop header:
assert I;
assert 0 ≤ V;
assert (∀ l: Location • alive(rval(obj (l)), loopHeapi) ∧ l /∈ W

⇒ get(heap, l) = get(loopHeapi, l));
loopVarianti := V;
goto loop body, loop exit;

loop body:
assume G;
S;
assert V < loopVarianti;
goto loop header;

loop exit:
assume ¬G;

...

Figure 3.3: Translating BML loop specifications to BoogiePL

The whole translation is illustrated in Figure 3.3 where we assume a loop with a body repre-
sented by S and whose guard condition is G. In addition, the translation of the loop’s invariant
(I), its variant function (V), and its frame condition (W) is illustrated.
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3.3 Object invariants

In this section, we describe a verification methodology for object invariants as provided by BML.
We will thereby mainly concentrate on the actual proof technique for invariants and also discuss
how it relates to other parts of the verification process such as the verification of loops. To
conclude, we describe how invariants are translated to BoogiePL.

3.3.1 Verification methodology

According to [15], a technique for specifying and reasoning about invariants should address the
following fundamental points:

• Encapsulation: What parts of a program may assign to the variables used in an invariant?

• Admissibility: What variables may an invariant depend on?

• Semantics: When do invariants have to hold?

• Modular proof techniques: How can one show that objects satisfy their invariants, with-
out examining the entire program?

In the following, we will answer the individual questions above in the context of object invariants
as provided by BML. Note, however, that the aspects related to the encapsulation of objects and
the admissibility of invariants as described below are currently not explicitly enforced by our
translator. Instead, our proof technique is applied to the specified object invariants while leaving
it up to the user to satisfy the encapsulation and admissiblity properties, if desired. While enforcing
those properties directly in the translator is certainly desirable, this could not be done as part of
our work in the given time frame.

Object encapsulation

For a sound and modular verification of invariants, one usually needs to provide some kind of object
encapsulation which ensures that the fields on which an invariant may depend are protected from
unwanted modifications. A basic requirement on the encapsulation policy thereby is that whenever
we allow for an object field to be assigned in a given context, the invariants which may depend
on that field’s value must be ensured to be re-established within the same context in case they
had been broken by the field assignment. Some encapsulation properties might be guaranteed by
the concrete programming language at hand and its type system, or else, they may be explicitly
enforced by only allowing field assignments which satisfy a set of criteria.

In Java, the encapsulation properties guaranteed by the type system itself are very poor or
even inexistent, depending on whether we look at the problem from the point of view of a class
as a whole, or, of a single object. In fact, the strongest protection on the accessibility of a field
which the Java programming language provides is the private access modifier which guarantees
that a field which is declared to be private can only ever be referenced within a method declared
in the same class as the field1. This fact can be regarded as a class-level encapsulation prop-
erty guaranteed by the Java language itself which has been exploited for defining a verification
methodology for invariants in which invariants are only allowed to depend on private fields of the
invariant’s declaring class [14]. What the Java programming language lacks, however, is a notion
of encapsulation on an object-level which is what ownership type systems [16] provide.

Since in our verification methodology we always check the invariants of all objects of a method’s
receiver type, our encapsulation policy can be regarded as a class-level encapsulation which we
define as follows: A location o.f for an object o of type C and a field f is said to be encapsulated
if the only assignments to o.f occur in methods declared in the class C.

Note that this can be seen as an extension to the classical encapsulation discipline [15] which
allows for the assignment of the same set of class fields while also permitting that those fields are

1Note that we do not consider inner classes in Java at this point for which this statement is not totally true.
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modified on objects other than the this object. Note also that we do not impose any kind of
restrictions on the access modifiers of the field f nor on whether that field is declared in the class
C itself or in any of its superclasses, just as is the case for the classical encapsulation technique.

Admissible invariants

In order for an invariant to be admissible in the context of a sound verification methodology, one
must ensure that no location on which the invariant depends is subject to uncontrolled modifica-
tions, where the latter largely depends on the encapsulation discipline imposed.

For our verification methodology, we define an invariant declared in a class C as being admis-
sible if each of the access expressions it contains has one of the following forms:

• The access expression represents a field which is declared in the class C.

• The access expression represents some constant expression such as an array length expression
or a constant field.

Note that dependencies on fields whose value is constant can be safely permitted since if a
newly allocated object is able to once establish its invariant containing such a constant field, the
field’s value will never change and, thus, it can never lead to the invariant being broken.

A notable restriction of the above admissibility rules is that an invariant may not depend on the
elements of an array since arrays in Java are not directly incorporated in an object but, instead,
are represented by separate references into the heap. In order to overcome this kind of restriction
(and other, similar restrictions), one would require to have some kind of aliasing control which is
provided by typical ownership type systems [16]. Unfortunately, BML does not offer any support
for aliasing control as is e.g. the case in JML.

Invariant semantics

An invariant’s semantics defines the points in the program flow at which an object’s invariant
must hold. For our verification methodology, we use a visible state semantics [17] which essentially
defines every pre- and post-state of a method as a visible state, except the pre-state of a constructor
which is assumed to be no visible state for the object being initialized.

Based on this notion of a visible state, we define the invariant semantics for our verification
methodology as the requirement that all objects must satisfy their invariants in all their visible
states.

Proof technique

In the following, we describe the actual verification of invariants by explicitly stating when the
invariants of individual objects are checked to hold and at which points in the program we may
in turn assume that the invariants of certain objects hold. Note that while most aspects of the
verification are rather standard, there is an interesting point in the verification of invariants which
is immediately related to the loop verification methodology employed in our translation. This will
be described below in more detail.

For the subsequent discussion, we assume that the class we are verifying is C and that inv(C)
denotes the conjunction of the invariants declared in C and its supertypes. In addition, we will
restrict ourselves to the discussion of methods while omitting constructors.

For each method m declared in C, one must show the following:

• In the poststate of each execution of m, inv(C) is checked to hold for all objects of type C.

• In the prestate of every method call appearing in m, inv(C) is checked to hold for all objects
of type C.

• At the beginning of every iteration of a loop appearing in m, inv(C) is checked to hold for
all objects which have been allocated inside that loop.
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For each method m declared in C, one may in turn assume the following:

• In m’s prestate, the invariants of all allocated objects are assumed to hold.

• In the poststate of every method call appearing in m, the invariants of all allocated objects
are assumed to hold.

The probably more interesting and less obvious aspect of the above proof technique is that
we require that objects allocated inside a loop satisfy their invariants when initiating the next
loop iteration. The need for these additional proof obligations comes from the loop verification
methodology (see Section 2.1.1) employed in our translation and is best illustrated by looking at
the example in the following listing.

public class T {

//@ invariant x >= 0;
private int x;

public void foo() {
for (int i = 0; i < 100; i++) {

T t = new T();
t .x = −1;

}
}

}

In the above example, a new object is allocated inside a loop whose invariant is then broken by
an assignment to its field x. Since our loop verification methodology requires that all the values
modified within a loop are assigned an arbitrary value, however, we will loose all the information
about the concrete value of the field t.x. This, in turn, implies that we will not be able to reason
about that field’s value once we break out of the loop, meaning that it is also not possible to
check whether such objects allocated and modified inside the loop indeed satisfy their invariants
when the method terminates. The key difference between objects allocated inside the loop and
objects which were already allocated before entering the loop thereby is that for the latter, the
information lost during the application of our loop verification methodology can be recovered by
using invariants while this is obviously not possible for objects which were not allocated when
entering the loop. For that reason, we enforce that objects allocated inside a loop satisfy their
invariants at the beginning of every loop iteration, which, technically, results in the declaration of
an implicit loop invariant which could otherwise not be explicitly declared by the programmer.

3.3.2 Invariants and constructors

In the following, we would like to briefly discuss an example related to the verification of invariants
inside a constructor which needs some special handling to be verifiable by our translator. The
example is illustrated in Figure 3.4.

On the left hand side of the example, we see a simple class with a constructor which correctly
establishes the class’ invariant by assigning a new instance of an ArrayList to its field list.
However, the problem is that the constructor call new ArrayList() is executed before the as-
signment is performed and, thus, before the invariant has been established. By our verification
methodology, however, the invariant of the this object should already hold in the prestate of the
constructor call for the verification to succeed. Note thereby that, in general, it would be unsound
to allow for any such method call without enforcing that the invariant of the this object holds
since at the beginning of every method body, we always assume that the invariants of all objects
are satisfied. In our particular example, however, the latter is no real issue since we know that the
implementation of the ArrayList() constructor cannot have a reference to the freshly allocated
this object, so the latter’s invariant need not be enforced in our case. A simple way to provide
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public class PriorityQueue {

//@ invariant list != null;
protected List list ;

//@ modifies this.list;
public PriorityQueue() {

super();
// invariant assertion fails !
this. list = new ArrayList();

}
}

public class PriorityQueue {

//@ invariant list != null;
protected List list ;

//@ modifies this.list;
public PriorityQueue() {

this(new ArrayList());
}

//@ requires inputList != null;
//@ modifies this.list;
//@ ensures this.list == inputList;
protected PriorityQueue(List inputList) {

super();
this. list = inputList;

}
}

Figure 3.4: Establishing an object invariant by method calls.

enough information to our translator for the example to be verifiable is thereby illustrated on the
right hand side of the figure. There, we see that the initialization of the this object is now split
over two constructors while the problematic constructor call new ArrayList() is now invoked
before the this object has been initialized. Since the JVM guarantees us that no reference to the
this object will ever be passed out to the heap before the this object has been initialized by
a super-constructor call, we can exploit this information to avoid enforcing the invariant on the
this object before invoking the constructor new ArrayList(). This is a special feature we have
implemented in our translator since we believe that an example as the one presented at this point
is frequently used in practice.

3.3.3 Translation to BoogiePL

What follows, is the more technical description of the translation of BML invariants and their
associated proof technique to BoogiePL.

Translation of invariant declarations

For the representation of the actual invariant declarations, a special BoogiePL predicate function
is introduced whose signature reads as follows:

function inv(C: name, o: ref, h: Store) returns (bool);

The parameters to the function represent a class C, an object o, and a heap h and the function’s
intended semantics is that it returns true whenever the invariant of the class C is satisfied by the
object o in the given heap h. Using this function, every class C referenced during the translation
results in the generation of the following axiom in BoogiePL:

axiom (forall o: ref, h: Store ::
inv(C, o, h) <==> isInstanceOf(rval(o), C) ==> Tr[inv(C)]);

In the above axiom, C is used as a place holder for the BoogiePL name constant representing
the type C and Tr[inv(C)] stands for the translation of C’s invariant from BML to BoogiePL.
Note that inv(C) thereby represents the invariants declared not only in C itself but also in all
its supertypes. As we can see, such an axiom essentially associates the value of the function
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inv(C, o, h) to the expression of C’s invariant. In addition, if inv(C, o, h) is applied to an
object o which is either null or not an instance of type C, the function simply returns true. The
latter is particularly important for ensuring that we never make any assumption on the state of
an object which might be null since this could be a possible source of unsoundness.

Translation of the proof technique

Using the above function and its axiomatization, it is straightforward to translate the proof tech-
nique for invariants presented earlier in this section to BoogiePL. In particular, for ensuring that
the invariants of all objects of type C hold in the poststate of every method and in the prestate
of every method call, we generate the following proof obligation at the appropriate points in the
program during the translation process:

assert (forall o: ref :: inv(C, o, heap));

Likewise, in the prestate of every method as well as in the poststate of every method call, we
may assume that the invariants of all objects hold which can be expressed in BoogiePL as follows:

assume (forall t: name, o: ref :: inv(t , o, heap));

In this case, we quantify not only over all objects but also over all types in order to assume
the invariants of all types on all their instances.

Finally, the requirement imposed by the proof technique which states that, at the beginning of
every loop, the invariants of all the objects allocated inside that loop must satisfy their invariants,
can be expressed by inserting the following assertion at the beginning of every loop header block
of the resulting BoogiePL program:

assert (forall o: ref :: ! alive (rval(o), loopHeap) ==> inv(C, o, heap));

Thereby, the above variable loopHeap represents the state of the heap as encountered right
before entering the execution of the loop.

3.4 Ghost fields

A ghost field [8] is a specification-only field whose value can be explicitly set by a special set
specification statement which is similar to a normal field assignment. Thus, ghost fields provide
a convenient mechanism for carrying and manipulating some state which is only relevant for
specification purposes and to do that in a way which is similar to the handling of normal fields
declared in a class.

Since ghost fields can be handled like any other field in our translation and since set statements
are easily translated by a normal heap update, we will not go into more detail at this point but,
instead, we refer the interested reader to some standard work [8, 12] which covers some use cases
and applications of ghost fields.

3.5 Translation example

To better illustrate the translation of BML specifications to BoogiePL, we present an example
translation of an annotated class which contains many of the features presented in this chapter.
To that end, we first briefly introduce the actual class in Java and annotate it using a JML-like
syntax. Subsequently, we present the bytecode for the individual methods which we will translate
before finally discussing the resulting BoogiePL code as generated by our translator.

The annotated Java class used for the translation example is given in Listing 3.1.

Listing 3.1: Account class used as the translation example

public class Account {
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//@ invariant balance >= 0;
private int balance;

//@ requires initial >= 0;
//@ modifies balance;
//@ ensures balance == initial;
public Account(int initial) {

this.balance = initial ;
}

//@ requires amount > 0;
//@ modifies balance;
//@ ensures balance == \old(balance) + amount;
public void deposit(int amount) {
//@ loop_modifies balance;
//@ loop_invariant 0 <= i;
//@ loop_invariant balance == \old(balance) + i;
//@ decreasing amount - i;
for (int i = 0; i < amount; i++) {

balance++;
}

}
}

3.5.1 Translating the invariant declaration

The translation of the invariant declaration of the Account class leads to the generation of a global
axiom which defines the invariant in terms of our inv function, as illustrated in the following listing:

// invariant balance >= 0;
axiom (forall o: ref, h: Store :: inv($Account, o, h) <==>

isInstanceOf(rval(o), $Account) ==> toint(get(h, fieldLoc(o, Account.balance))) >= 0);

3.5.2 Translating .init

First of all, we will have a look at the translation of the constructor of the class. The constructor
is particularly interesting in terms of the verification of invariants since there are many subtleties
behind the correct handling of the verification of invariants in conjunction with the prestate of a
constructor and also in conjunction with the invocation of superconstructors. Since those details
have been partially omitted during the discussion of the verification methodology for invariants, we
want to look at them in more detail at this point. Before that, however, we present the bytecode
for the constructor as resulting from the compilation with the Sun Java compiler:

public Account(int);
Code:
0: aload 0
1: invokespecial java.lang.Object.<init>()
4: aload 0
5: iload 1
6: putfield Account.balance
9: return

Below, the BoogiePL code as generated by our translator is presented. As already mentioned,
the more interesting aspects of this part of the code are related to the verification of the invariants
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on the this object at the beginning of the constructor. The more interesting aspects are thereby
mentioned by appropriate comments in the BoogiePL code and will therefore not be further
discussed at this point.

procedure Account..init.int(param0: ref, param1: int)
{

var reg0r: ref , reg0i : int;
var reg1r: ref , reg1i : int;
var stack0r: ref , stack0i : int;
var stack1r: ref , stack1i : int;
var callResultr : ref , callResulti : int;
var swapr: ref, swapi: int;
var heap: Store, oldHeap: Store, preHeap: Store;

init :
// Keep a copy of the old heap to refer to the method’s prestate.
oldHeap := heap;
// Assume the parameter type information and set up the initial method frame.
assume param0 != null;
assume alive(rval(param0), heap);
assume isOfType(rval(param0), $Account);
reg0r := param0;
assume isOfType(ival(param1), $int);
reg1i := param1;
// Assume the this object is not aliased .
assume (forall l: Location :: rval(param0) != get(heap, l));
// Assume the instance fields of the this objects have their default values .
assume (forall f: name :: get(heap, fieldLoc(param0, f)) == init(fieldType(f )));
goto pre;

pre:
// Assume the invariants on all objects but the this object.
assume (forall t: name, o: ref :: o != param0 ==> inv(t, o, heap));
// Assume the method’s precondition.
assume param1 >= 0;
goto block 2;

block 2:
stack0r := reg0r;
// super();
assert stack0r != null;
// The this object is not initialized yet, so its invariant need not hold.
assert (forall o: ref :: o != param0 ==> inv($Account, o, heap));
assert true; // precondition of the superconstructor
preHeap := heap;
havoc heap;
assume (forall v: Value :: alive (v, preHeap) ==> alive(v, heap));
// the frame condition of the superconstructor
assume true ==>

(forall l : Location :: alive (rval(obj(l )), preHeap)
&& true ==> get(heap, l) == get(preHeap, l));

// On the this object, we may only assume the invariant of
// the supertype after a superconstructor call .
assume (forall t: name, o: ref :: o != param0 ==> inv(t, o, heap));
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assume inv($java.lang.Object, param0, heap);
assume true ==> true; // postcondition of the superconstructor
stack0r := reg0r;
stack1i := reg1i ;
// this .balance = initial ;
assert stack0r != null;
heap := update(heap, fieldLoc(stack0r, Account.balance), ival (stack1i ));
goto post;

post:
// Assert the postcondition.
assert param1 >= 0 ==> toint(get(heap, fieldLoc(param0, Account.balance))) == param1;
goto exit;

exit :
// Check the invariants on all instances of the class Account.
assert (forall o: ref :: inv($Account, o, heap));
// Assert the frame condition.
assert param1 >= 0 ==>

(forall l : Location :: alive (rval(obj(l )), oldHeap)
&& l != fieldLoc(param0, Account.balance) ==> get(heap, l) == get(oldHeap, l));

return;
}

3.5.3 Translating deposit

In what follows, we present the translation of the deposit method of our example. Again, we
wirst of all provide a listing containing the corresponding Java bytecode before proceeding to the
discussion of the actual BoogiePL code.

public void deposit( int );
Code:
0: iconst 0
1: istore 2
2: goto 18
5: aload 0
6: dup
7: getfield Account.balance
10: iconst 1
11: iadd
12: putfield Account.balance
15: iinc 2, 1
18: iload 2
19: iload 1
20: if icmplt 5
23: return

In the code below, we mainly see how loop specifications are translated to BoogiePL. Again,
the relevant parts are commented inline in the code and, thus, will not be discussed in further
detail at this point.

procedure Account.deposit.int(param0: ref, param1: int)
{

var reg0r: ref , reg0i : int;
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var reg1r: ref , reg1i : int;
var reg2r: ref , reg2i : int;
var stack0r: ref , stack0i : int;
var stack1r: ref , stack1i : int;
var stack2r: ref , stack2i : int;
var callResultr : ref , callResulti : int;
var swapr: ref, swapi: int;
var heap: Store, oldHeap: Store, preHeap: Store;
var loopHeap0: Store;
var loopVariant0: int;

init :
// Keep a copy of the old heap to refer to the method’s prestate.
oldHeap := heap;
// Assume the appropriate parameter type information and set up the
// initial method frame.
assume param0 != null;
assume alive(rval(param0), heap);
assume isOfType(rval(param0), $Account);
reg0r := param0;
assume isOfType(ival(param1), $int);
reg1i := param1;
goto pre;

pre:
// Assume the invariants of all objects .
assume (forall t: name, o: ref :: inv(t , o, heap));
// Assume the method’s precondition.
assume param1 > 0;
goto block 2;

block 2:
stack0i := 0;
reg2i := stack0i ;
// Make a copy of the heap before entering the loop.
loopHeap0 := heap;
goto block 4 Loop;

block 3:
stack0r := reg0r;
stack1r := stack0r;
assert stack1r != null;
stack1i := toint(get(heap, fieldLoc(stack1r, Account.balance)));
stack2i := 1;
stack1i := stack1i + stack2i;
assert stack0r != null;
heap := update(heap, fieldLoc(stack0r, Account.balance), ival (stack1i ));
reg2i := reg2i + 1;
// Check that the value of the loop variant function has decreased at least
// by 1 during the current loop iteration .
assert reg1i − reg2i < loopVariant0;
goto block 4 Loop;

// Here, the loop starts .
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block 4 Loop:
// Assume the type information of the current method frame at the beginning
// of the loop.
assume isOfType(rval(reg0r), $Account);
assume isOfType(ival(reg1i), $int);
assume isOfType(ival(reg2i), $int);
// Assume that objects remain alive inside the loop.
assume (forall v: Value :: alive (v, loopHeap0) ==> alive(v, heap));
// Ensure that the objects allocated inside the loop satisfy their invariants
// at each loop iteration .
assert (forall o: ref :: ! alive (rval(o), loopHeap0) ==> inv($Account, o, heap));
// Check the actual loop invariant as specified in the source class .
assert 0 <= reg2i

&& toint(get(heap, fieldLoc(param0, Account.balance)))
== toint(get(oldHeap, fieldLoc(param0, Account.balance))) + reg2i;

// Check for the non−negativity of the loop variant function.
assert 0 <= reg1i − reg2i;
// Check the loop’s frame condition.
assert (forall l : Location :: alive (rval(obj(l )), loopHeap0)

&& l != fieldLoc(param0, Account.balance) ==> get(heap, l) == get(loopHeap0, l));
// Keep a copy of the value of the loop variant function at the beginning of
// a loop iteration .
loopVariant0 := reg1i − reg2i;
stack0i := reg2i ;
stack1i := reg1i ;
goto block 4 Loop True, block 4 Loop False;

block 4 Loop True:
assume stack0i < stack1i;
goto block 3;

block 4 Loop False:
// Break out of the loop.
assume stack0i >= stack1i;
goto block 5;

block 5:
goto post;

post:
// Assert the method’s postcondition.
assert param1 > 0 ==>

toint(get(heap, fieldLoc(param0, Account.balance)))
== toint(get(oldHeap, fieldLoc(param0, Account.balance))) + param1;

goto exit;

exit :
// Check that the appropriate invariants hold.
assert (forall o: ref :: inv($Account, o, heap));
// Check that the method frame condition holds.
assert param1 > 0 ==>

(forall l : Location :: alive (rval(obj(l )), oldHeap)
&& l != fieldLoc(param0, Account.balance) ==> get(heap, l) == get(oldHeap, l));

return;
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}
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Chapter 4

Implementation

In this chapter, we present the implementation of a new tool for translating BML annotated Java
bytecode to BoogiePL, which features the translation on which this work builds [19] as well as all
the contributions and extensions presented in the previous chapters of this document.

Note that apart from the here provided description of the implementation, we also provide an
extensive JavaDoc which accompanies the code itself and which is thought to be the main source
of information when a detailed understanding of the implementation is required.

4.1 Bytecode classes and BML specifications

In this section, we describe the parts of the translator which are responsible for reading and
representing bytecode classes. In particular, we will first present the bytecode library which we
are using for the more low-level aspects of bytecode handling while also clearly specifying to which
extent our own code depends on the library. Other aspects such as the dataflow analysis performed
on the bytecode will also be covered.

4.1.1 The ASM bytecode library

For the actual parsing of a class file, we use the ASM bytecode library [1]. While other popular
libraries such as BCEL [2] are also available, we have opted for ASM, mainly based on the following
criteria:

• ASM has a simple, well designed and modular API which is intuitive to use. This mainly
comes from the fact that, unlike other bytecode libraries such BCEL, ASM provides an API
which abstracts away the constant pool of a class file. This is achieved by only ever passing
the content of the constant pool to the user instead of the corresponding constant pool index
which must then be painfully maintained by the user to retrieve the actual data.

• The core API of the ASM bytecode library is based on a clean, visitor-like API which requires
no in-memory representation of a class file. As we will see later, we use our own abstract
syntax tree representation of a class file and, thus, we found it beneficial to avoid building
up different in-memory representations of the same class file.

• ASM features a dataflow analysis framework which we use for computing the method frames
for the individual bytecode instructions which are then used for the actual translation process.

• Unlike BCEL, ASM is actively maintained and it provides support for the latest Java version,
Java 6. Furthermore, it is open source and released under the liberal BSD license.
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4.1.2 BML class file attributes

ASM provides a simple mechanism for accessing the contents of custom class file attributes by
declaring the class Attribute which should be extended by every class representing a custom
class file attribute provided by the user. A prototype instance of the extending class can then be
passed to the class reader of ASM which will be used to read the attribute’s raw bytecode data
when an appropriate attribute is encountered in the class file being parsed. The newly generated
attribute is then passed to the user through the usual event based API.

Based on this mechanism, we define a separate class for each of the BML class file attributes
recognized by our translator. Every such class thereby contains the code specific to the actual
format of the class file attribute which is responsible for decoding the attribute stored in the
class file and creating a new instance of the attribute class representing it. All the code which
is independent of a concrete BML attribute is shared in the BMLAttributeReader class. All the
classes representing the individual BML attributes or otherwise related to the parsing of those
attributes can be found in the b2bpl.bytecode.attributes package.

4.1.3 Class file loading

Our translator uses its own representation for a class file and its members. A class file itself is
thereby represented by the class JClassType. For actually creating an instance of that class in the
context of our translator, the API of the TypeLoader class should always be used which internally
maintains a repository of such class file objects in order to avoid that referenced classes are loaded
multiple times. In addition to maintaining such a repository, the TypeLoader provides several
high-level mechanisms which allow for an effective optimization of the class file loading process:

• The TypeLoader has a notion of so-called application types which are assumed to represent
the set of types which will be translated to BoogiePL and not just referenced by other class
types. This information can be used to heavily optimize the process of loading a class file
by skipping the actual bytecode instructions in class files which will never be translated
to BoogiePL. For the latter, only the interface including the BML specifications will ever
be loaded. Note that this optimization not only considerably reduces the amount of time
required to load a class file which is not part of the set of application types but it also has
an important impact on the set of classes which are ever referenced and, thus, eventually
loaded.

• The TypeLoader offers the possibility to not directly load a class when it is first referenced
but only when some information on that class is accessed which indeed requires the class
file data to be loaded. This lazy loading mechanism is implemented by requiring that the
JClassType itself checks whether the data which is queried on it is already available and, if
not, it requests it from the TypeLoader. This mechanism is thereby totally transparent to
classes other than the TypeLoader and JClassType classes themselves.

Since the lazy loading mechanism implemented by the TypeLoader class makes it impossible
to cleanly separate the phase of class file loading from any semantic analysis and from the actual
translation, we require that every class type returned by the type loader should have passed
the semantic analysis in order to ensure that no unexpected errors occur during the translation
process due to some inconsistency in the class file. Therefore, the TypeLoader class is immediately
responsible for performing the semantic analysis on every loaded class type by delegating the actual
analysis to the SemanticAnalyzer class.

4.1.4 Flow analysis of bytecode methods

The actual dataflow analysis on bytecode methods is performed by the FlowAnalyzer class which
in turn delegates part of its work to the dataflow analysis framework provided by the ASM byte-
code library. As a result of the dataflow analysis, every bytecode instruction will have a valid
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StackFrame associated to it which represents the method frame containing the types of the local
registers and elements of the operand stack at the given instruction.

4.2 Translation to BoogiePL

The actual translation from Java bytecode to BoogiePL is split over different classes for better
modularity. In the following, we will describe which classes are involved in the generation of the
resulting BoogiePL program and how they interact with each other.

4.2.1 Classes

The main entry point to the translation of a set of bytecode classes to BoogiePL is the Translator
class. Some aspects of the translation process can be configured by passing an appropriate instance
of the class Project containing the desired translation settings upon creating the Translator.
The Translator class is immediately responsible for generating the following parts of the resulting
BoogiePL program:

• The part of the background predicate which is the same for every translation. This mainly
includes the heap and core type system axiomatization.

• The global theory part which depends on the concrete set of bytecode classes being translated.
Among others, this includes the set of axioms which are for example generated when a given
class type is refernce and which define the type’s subtyping relationships.

By contrast, the following aspects of the translation are not handled directly by the Translator
class but, instead, are delegated to other classes:

• The BML specifications coming from the declaration of invariants are translated by an
instance of the class SpecificationTranslator.

• The individual bytecode methods are translated by a MethodTranslator.

Since BML specifications and bytecode methods may contain type references and other ref-
erences which may require global axioms to be generated, we introduce the special interface
TranslationContext which declares methods for translating special references which cannot be
resolved locally. Such a context interface can then be used to delegate the translation of those
reference to the Translator which is responsible for the global section of the BoogiePL program
being generated.

4.2.2 Methods

The main entry point to the translation of a bytecode method to a BoogiePL procedure is the
MethodTranslator class. The MethodTranslator is responsible for the following aspects of the
translation process:

• The translation of the individual bytecode instructions and the method’s program flow.

• The translation of local BML annotations such as assertions, assumptions, and loop specifi-
cations.

• The translation of method specifications and invariants.

The actual translation of BML specification expressions and store references is thereby not per-
formed directly by the MethodTranslator but, instead, is delegated to the SpecificationTranslator
and ModifiesFilter classes, respectively.
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4.2.3 BML specifications

The SpecificationTranslator class is responsible for translating BML specification expressions
to expressions in BoogiePL. Internally, it is realized as an implementation of the BMLExpression
interface. Likewise, the ModifiesFilter class is responsible for translating BML store references
contained inside modifies clauses to a predicate expression in BoogiePL which is true if and only
if a given location does not refer to any of the specified store references.



Chapter 5

Conclusion and future work

5.1 Conclusion

In this report, we have presented several extensions to an already existing translation of Java
bytecode to BoogiePL, the input language of the Boogie program verifier. Notable contributions
include the extension of the set of bytecode instructions supported by the translation and an ax-
iomatization for the JVM type system. In addition, the translation to BoogiePL now also supports
a set of BML specifications such as object invariants as well as method and loop specifications.
Furthermore, an implementation of the existing translation and all our contributions has been
provided as part of this work.

5.2 Future work

5.2.1 History constraints

History constraints represent an interesting specification feature which allows to relate the current
state of an object to a state as observed earlier in the program flow and, thus, are an interesting
generalization of invariants. Since BML already provides support for history constraints, we regard
it as a natural future step to support them in our translation, too.

5.2.2 Loop invariant inference

Abstract interpretation [7] allows for an automatic inference of many loop invariants which are
required for the program being successfully verified without. For that reason, it would be interest-
ing to see how an abstract interpretation framework could be integrated into our translator and
how the two components would interact with each other.
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Appendix A

Supported bytecode instructions

In the following, we shall define the set of bytecode instructions supported by the current trans-
lation. For every instruction, we specify the set of runtime exceptions which are modeled in the
translation as well as the Java class by which the instruction is represented in the actual imple-
mentation. The opcode notation employed as well as the below categorization of the instruction
set into groups of instructions follows the conventions of the JVM specification [13].

Load and store instructions

Opcodes Runtime exceptions Java class
iload, iload_<n> - ILoadInstruction

lload, lload_<n> - LLoadInstruction

aload, aload_<n> - ALoadInstruction

istore, istore_<n> - IStoreInstruction

lstore, lstore_<n> - LStoreInstruction

astore, astore_<n> - AStoreInstruction

bipush, sipush, iconst_m1,

iconst_<i>, lconst_<l>

- VConstantInstruction

ldc, ldc_w, ldc2_w - LdcInstruction

aconst_null - AConstNullInstruction

wide - -1

Arithmetic instructions

Opcodes Runtime exceptions Java class
iadd, isub, imul, idiv, irem ArithmeticException2 IBinArithInstruction

ladd, lsub, lmul, ldiv, lrem ArithmeticException2 LBinArithInstruction

ineg - INegInstruction

lneg - LNegInstruction

ishl, ishr, iushr, iand,

ior, ixor

- IBitwiseInstruction

lshl, lshr, lushr, land,

lor, lxor

- LBitwiseInstruction

iinc - IIncInstruction

lcmp - LCmpInstruction

1The wide instruction only serves as a modifier for other instructions and, as such, has no explicit representation.
2for the division and remainder operations only
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Type conversion instructions

Opcodes Runtime exceptions Java class
i2s, i2b, i2c, i2l, l2i - VCastInstruction

Object creation and manipulation

Opcodes Runtime exceptions Java class
new - NewInstruction

newarray NegativeArraySizeException NewArrayInstruction

anewarray NegativeArraySizeException ANewArrayInstruction

multianewarray NegativeArraySizeException MultiANewArrayInstruction

getfield NullPointerException GetFieldInstruction

putfield NullPointerException PutFieldInstruction

getstatic - GetStaticInstruction

putstatic - PutStaticInstruction

baload, caload, saload,

iaload, laload

NullPointerException, Ar-

rayIndexOutOfBoundsException

VALoadInstruction

aaload NullPointerException, Ar-

rayIndexOutOfBoundsException

AALoadInstruction

bastore, castore, sastore,

iastore, lastore

NullPointerException, Ar-

rayIndexOutOfBoundsException

VAStoreInstruction

aastore NullPointerException, Ar-

rayIndexOutOfBoundsExcep-

tion, ArrayStoreException

AAStoreInstruction

arraylength NullPointerException ArrayLengthInstruction

instanceof - InstanceOfInstruction

checkcast ClassCastException CheckCastInstruction

Operand stack management instructions

Opcodes Runtime exceptions Java class
pop - PopInstruction

pop2 - Pop2Instruction

dup - DupInstruction

dup2 - Dup2Instruction

dup_x1 - DupX1Instruction

dup2_x1 - Dup2X1Instruction

dup_x2 - DupX2Instruction

dup2_x2 - Dup2X2Instruction

swap - SwapInstruction

Control transfer instructions

Opcodes Runtime exceptions Java class
ifeq, iflt, ifle, ifne,

ifgt, ifge

- IfInstruction

ifnull - IfNullInstruction

ifnonnull - IfNonNullInstruction

if_icmpeq, if_icmpne,

if_icmplt, if_icmpgt,

if_icmple, if_icmpge

- IfICmpInstruction

if_acmpeq, if_acmpne - IfACmpInstruction

tableswitch - TableSwitchInstruction

lookupswitch - LookupSwitchInstruction

goto, goto_w - GotoInstruction
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Method invocation and return instructions

Opcodes Runtime exceptions Java class
invokevirtual NullPointerException InvokeVirtualInstruction

invokeinterface NullPointerException InvokeInterfaceInstruction

invokespecial NullPointerException InvokeSpecialInstruction

invokestatic - InvokeStaticInstruction

invokestatic - InvokeStaticInstruction

ireturn - IReturnInstruction

lreturn - LReturnInstruction

areturn - AReturnInstruction

return - ReturnInstruction

Throwing exceptions

Opcodes Runtime exceptions Java class
athrow NullPointerException AThrowInstruction
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Appendix B

BML Abstract Syntax Tree

In the following, we specify a BNF-like grammar definition which describes the abstract syntax
tree for BML specifications as implemented as part of our work. The grammar definition shall
thereby serve as a precise and compact description of the concrete implementation of the abstract
syntax tree without referring to the actual code. This is achieved since every non-terminal symbol
used in the grammar directly corresponds to an equally-named1 class in the actual implementation.
More precisely, the grammar is to be interpreted as follows:

• We use the meta-level symbols ∗, +, and ? to denote a sequence, a non-empty sequence,
and an optional element, respectively. The angle brackets 〈·〉 are used for grouping and the
standard operator | separates different alternatives in a single production.

• All the terminal symbols denoting either keywords in BML or punctuation symbols are
written in a bold font.

• Non-terminal symbols denoting abstract classes in the implementation of the abstract syntax
tree are written in an italic font. Every production for such an abstract class consists of a
set of alternatives representing all the subclasses of the abstract class.

• Non-terminal symbols denoting concrete classes in the implementation of the AST are written
in a normal font. Every production for such a concrete class may consist of a set of terminal
and non-terminal symbols, where the latter fully describe the corresponding concrete class.

Type specifications

Invariant ::= invariant Predicate ;

Method specifications

MethodSpecification ::= RequiresClause SpecificationCase∗

SpecificationCase ::= RequiresClause ModifiesClause EnsuresClause ExsuresClause∗

RequiresClause ::= requires Predicate ;
ModifiesClause ::= modifies StoreRef ∗ ;
EnsuresClause ::= ensures Predicate ;
ExsuresClause ::= exsures (JType e) Predicate ;

Loop specifications

1up to the prefix BML which is prepended to every node class of the abstract syntax tree in the actual imple-
mentation while omitted in the grammar and in the following discussion
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LoopSpecification ::= LoopModifiesClause LoopInvariant LoopVariant
LoopModifiesClause ::= loop modifies StoreRef ∗ ;

LoopInvariant ::= loop invariant Predicate ;
LoopVariant ::= decreasing Expression ;

Assertions and assumptions

AssertStatement ::= assert Predicate ;
AssumeStatement ::= assume Predicate ;

Specification expressions

Expression ::= BinaryExpression
| UnaryExpression
| ArrayAccessExpression
| ArrayLengthExpression
| BoundVariableExpression
| CastExpression
| ElemTypeExpression
| FieldAccessExpression
| FieldExpression
| FreshExpression
| InstanceOfExpression
| Literal
| LocalVariableExpression
| OldExpression
| Predicate
| QuantifierExpression
| ResultExpression
| StackCounterExpression
| StackElementExpression
| ThisExpression
| TypeOfExpression

BinaryExpression ::= BinaryArithmeticExpression
| BinaryBitwiseExpression
| BinaryLogicalExpression
| EqualityExpression
| RelationalExpression

Literal ::= BooleanLiteral
| IntLiteral
| NullLiteral

UnaryExpression ::= LogicalNotExpression
| UnaryMinusExpression

BinaryArithmeticExpression ::= Expression 〈 + | − | ∗ | / | % 〉 Expression
BinaryBitwiseExpression ::= Expression 〈 << | >> | >>> | & | | | ^ 〉 Expression
BinaryLogicalExpression ::= Expression 〈 ∧ | ∨ | ⇒ | ⇔ 〉 Expression

EqualityExpression ::= Expression 〈 = | 6= 〉 Expression
RelationalExpression ::= Expression 〈 < | > | ≤ | ≥ 〉 Expression
LogicalNotExpression ::= ¬ Expression

UnaryMinusExpression ::= − Expression
QuantifierExpression ::= (〈 ∀ | ∃ 〉 JType∗ • Expression)
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Store references

StoreRef ::= EverythingStoreRef
| NothingStoreRef
| StoreRefExpression

EverythingStoreRef ::= \everything
NothingStoreRef ::= \nothing

StoreRefExpression ::= ArrayAllStoreRef
| ArrayElementStoreRef
| ArrayRangeStoreRef
| FieldStoreRef
| FieldAccessStoreRef
| LocalVariableStoreRef
| ThisStoreRef
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Appendix C

BoogiePL Abstract Syntax Tree

In the following, we will give a brief description of the abstract syntax tree used to represent
a BoogiePL program. To that end, we use a BNF-like grammar definition which describes the
abstract syntax of a BoogiePL program. Note that while similar grammars are also given elsewhere
[10, 4], the main purpose of the definition provided here is to clearly specify the features of
BoogiePL supported by our implementation. In addition, the grammar definition shall serve as
a precise and compact description of the concrete implementation of the abstract syntax tree
without referring to the actual code. This is achieved since every non-terminal symbol used in
the grammar directly corresponds to an equally-named1 class in the actual implementation. More
precisely, the grammar is to be interpreted as follows:

• We use the meta-level symbols ∗, +, and ? to denote a sequence, a non-empty sequence,
and an optional element, respectively. The angle brackets 〈·〉 are used for grouping and the
standard operator | separates different alternatives in a single production.

• All the terminal symbols denoting either keywords of the BoogiePL language or punctuation
symbols are written in a bold font.

• Non-terminal symbols denoting abstract classes in the implementation of the abstract syntax
tree are written in an italic font. Every production for such an abstract class consists of a
set of alternatives representing all the subclasses of the abstract class.

• Non-terminal symbols denoting concrete classes in the implementation of the abstract syntax
tree are written in a normal font. Every production for such a concrete class may consist of a
set of terminal and non-terminal symbols, where the latter fully describe the corresponding
concrete class.

Programs and declarations

A BoogiePL program consists of a set of declarations:

Program ::= Declaration∗

Declaration ::= VariableDeclaration
| ConstantDeclaration
| TypeDeclaration
| Function
| Axiom
| Procedure
| Implementation

1up to the prefix BPL which is prepended to every node class of the abstract syntax tree in the actual imple-
mentation while omitted in the grammar and in the following discussion
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Variable and constant declarations are treated uniformally in that they both introduce a set
of Variables:

VariableDeclaration ::= var Variable+ ;
ConstantDeclaration ::= const Variable+ ;

A type declaration can be used in BoogiePL to declare a set of user-defined types:

TypeDeclaration ::= type String+ ;

Since such a declaration merely defines the names of the introduced types but does not contain any
further information, we represent the individual types as normal Strings instead of introducing a
special purpose class for them.

Every function declaration defines exactly one function symbol (which, however, may have
several names associated to it). Therefore, we do not make any special distinction between the
declaration and the actual function symbol which can then be referenced in expressions:

Function ::= function String+(FunctionParameter∗)
returns (FunctionParameter)

FunctionParameter ::= 〈String :〉? Type

In- and out-parameters to a function are represented by the special class FunctionParameter
which simply represents an optionally named type.

An axiom is fully defined by an expression of type bool which specifies a constraint on the
symbolic constants and functions:

Axiom ::= axiom Expression ;

Procedures and implementations mainly differ from each other in that a procedure may have
a specification attached to it:

Procedure ::= procedure String(Variable∗) 〈returns (Variable∗)〉?
Specification? ImplementationBody?

Implementation ::= implementation String(Variable∗) 〈returns (Variable∗)〉?
ImplementationBody

The in- and out-parameters are in both cases represented by a set of Variables. A procedure’s
specification consists of a number of requires, modifies, and ensures clauses, where a new
feature recently added to BoogiePL allows requires and ensures clauses to be marked as free in
which case the corresponding conditions need not be verified by Boogie but instead can just be
assumed. A modifies clause is defined by an optional set of VariableExpressions (discussed later)
which represent identifiers referencing variables:

Specification ::= SpecificationClause+

SpecificationClause ::= RequiresClause
| ModifiesClause
| EnsuresClause

RequiresClause ::= free? requires Expression ;
ModifiesClause ::= modifies VariableExpression∗ ;
EnsuresClause ::= free? ensures Expression ;

Finally, the implementation body belonging to a procedure or an implementation consists of
an optional set of variable declarations followed by a number of basic blocks:

ImplementationBody ::= VariableDeclaration∗ BasicBlock+
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Types

Types are mainly used in the declarations of variables and function parameters but also in cast
expressions. Currently, four kinds of types are supported in BoogiePL:

Type ::= BuiltInType
| TypeName
| ArrayType
| ParameterizedType

The built-in types are represented by the single class BuiltInType. In the actual implemen-
tation, we use a typesafe enumeration pattern to represent the individual types:

BuiltInType ::= bool | int | ref | name | any

User-defined types are represented by the TypeName class and are fully determined by their
name which corresponds to a BoogiePL identifier:

TypeName ::= String

Array types are defined by a set of index types used to access the array together with the
actual element type:

ArrayType ::= [Type+] Type

Note that even though our grammar allows array types to have an arbitrary number of index
types, BoogiePL only supports up to two-dimensional arrays.

A new feature recently added to BoogiePL is the support for what we call parameterized types
which allows to parameterize some type by another type:

ParameterizedType ::= <Type> Type

In order to see what parameterized types can be used for, let us assume we want to model a
heap in BoogiePL by using a two-dimensional array which is indexed by a ref type denoting an
object and a name type representing an object’s field (as is e.g. done in Spec#). Since the heap
may contain objects of different types, the array’s element type must be declared to be of type
any. Therefore, whenever we extract an element from such an array, we must usually insert an
appropriate cast to the actual type of the field. This is illustrated on the left hand side of the
following listing:

var Heap: [ref, name]any;
const C.f: name;
var o: ref , i : int;
Heap[o, C.f] := 3;
i := cast(Heap[o, C.f ], int);

var Heap: [ref, <t>name]t;
const C.f: <int>name;
var o: ref , i : int;
Heap[o, C.f] := 3;
i := Heap[o, C.f ];

On the right hand side, by contrast, we see how one might achieve the same result by taking
advantage of parameterized types: we see that the name type used to index the heap array is now
parameterized by a type parameter t which is also used as the array’s element type. As can be
seen in the declaration of the constant C.f denoting the field being accessed, the actual type to
be inserted for the type parameter t can then be specified individually for every name constant.
If we now use the constant C.f to access an element of the array, the type int is automatically
substituted for the type parameter t and no explicit cast is required anymore, thus improving
the readability of the code. In addition – and more importantly – the fact that the field modeled
by the constant C.f is of type int can be made explicit in the constant’s declaration by using
parameterized types.
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Variables

We use the single class Variable to represent variables and constants, in- and out-parameters of
procedures and implementations, as well as expression bound variables introduced by quantifica-
tion expressions (discussed later). Therefore, a Variable covers exactly those elements which may
be referenced by a BoogiePL identifier in expressions and procedure specifications. Our grammar
defines a variable as follows:

Variable ::= String : Type 〈where Expression〉?

As we can see, a variable can have a so-called where clause associated to it. The expression of
such a where clause must be of type bool and it specifies a unary constraint on the variable’s
value. Where clauses are a convenience construct which allows to specify some properties of a
variable’s value along with its declaration instead of scattering that information over different
points in the program. In addition, whenever such a variable is havoc’ed, its value becomes not
totally arbitrary but is still constrained by the expression provided in the where clause. However,
note that where clauses may only be used in variable declarations and for parameters of procedures
and implementations but not in constant declarations or for expression bound variables. Note also
that the concept of a variable as used in our context does not completely correspond to the notion
of variables described in [10] where constant symbols are not considered to be variables.

Basic blocks and commands

The body of a procedure or implementation contains a set of basic blocks, where each of them
consists of a label and a sequence of commands, followed by a single transfer command:

BasicBlock ::= String: Command∗ TransferCommand

The set of commands and transfer commands should be self-explanatory and, thus, they are
not discussed further at this point:

Command ::= AssertCommand
| AssertCommand
| HavocCommand
| AssignmentCommand
| CallCommand

AssertCommand ::= assert Expression ;
AssumeCommand ::= assume Expression ;

HavocCommand ::= havoc VariableExpression+ ;
AssignmentCommand ::= Expression := Expression ;

CallCommand ::= call 〈VariableExpression+ :=〉? String(Expression∗) ;
TransferCommand ::= GotoCommand

| ReturnCommand
GotoCommand ::= goto String+ ;

ReturnCommand ::= return;

Expressions

All the classes used to represent the different kinds of expressions are given in the following
grammar productions:

Expression ::= VariableExpression
| BinaryExpression
| UnaryExpression
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| QuantifierExpression
| Literal
| ArrayExpression
| CastExpression
| FunctionApplication
| OldExpression

BinaryExpression ::= BinaryArithmeticExpression
| BinaryLogicalExpression
| EqualityExpression
| PartialOrderExpression
| RelationalExpression

Literal ::= BoolLiteral
| NullLiteral
| IntLiteral

UnaryExpression ::= LogicalNotExpression
| UnaryMinusExpression

A VariableExpression is the most common expression and simply represents a BoogiePL
identifier referencing a variable (as modeled by the already discussed Variable class):

VariableExpression ::= String

The set of arithmetic and first-order logical expressions supported by BoogiePL are defined by
the following grammar productions:

BinaryArithmeticExpression ::= Expression 〈 + | − | ∗ | / | % 〉 Expression
BinaryLogicalExpression ::= Expression 〈 ∧ | ∨ | ⇒ | ⇔ 〉 Expression

EqualityExpression ::= Expression 〈 = | 6= 〉 Expression
PartialOrderExpression ::= Expression <: Expression

RelationalExpression ::= Expression 〈 < | > | ≤ | ≥ 〉 Expression
LogicalNotExpression ::= ¬ Expression

UnaryMinusExpression ::= − Expression
QuantifierExpression ::= (〈 ∀ | ∃ 〉 Variable∗ Trigger∗ • Expression)

As we can see, in order to reduce the number of nodes in the abstract syntax tree, not every
expression is represented by its own class but, instead, we group operations according to their
operands and types. In the actual implementation, a special enumeration type denoting the
individual operators is introduced for every group of operations in order to distinguish among
them.

Triggers are a special feature recently added to BoogiePL which allows to pass information to
an underlying theorem prover as of how to instantiate universal quantifiers, as described in [4].
As specified above, triggers can be used in quantification expressions and consist of a non-empty
sequence of expressions:

Trigger ::= { Expression+ }

The boolean, reference, and integer literals supported by BoogiePL are represented as follows:

BoolLiteral ::= true | false
NullLiteral ::= null
IntLiteral ::= · · · | -1 | 0 | 1 | · · ·

The remaining expressions, which should be self-explanatory and, thus, are not further dis-
cussed at this point, are the following:

ArrayExpression ::= Expression[Expression+]
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CastExpression ::= cast(Expression, Type)
FunctionApplication ::= String(Expression∗)

OldExpression ::= old(Expression)

Implementation notes

The actual implementation of the abstract syntax tree is fully described by the above discussed
grammar. The individual nodes of the tree are implemented as simple classes which do not contain
any specific functionality. Instead, operations on the abstract syntax tree are implemented using
the visitor pattern. In particular, the implementation of the abstract syntax tree is completely
self-contained in that the individual nodes of the tree only reference other nodes and the abstract
visitor provided for the tree.

Decorating the abstract syntax tree

As a convenience, we provide the ability to decorate some of the nodes with node-specific data.
As an example, the Variable referenced by a VariableExpression can be directly stored in the
latter and the types to which expressions evaluate can be set on the corresponding Expression
object. This allows to conveniently store information which might be used frequently in the nodes
themselves. Note, however, that even though this information is kept in the nodes, the information
itself is never computed by the nodes but is always set from the outside (e.g. by an appropriate
visitor performing a semantic analysis on the tree).
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