
Adding Algebraic Data Types to a
Verification Language

Practical Work - Description

Alessandro Maissen

Tuesday 26th October, 2021

Advisors: Prof. Dr. Peter Müller, Dr. Malte Schwerhoff

Department of Computer Science, ETH Zürich





Introduction

Viper [2, 3] is an intermediate language and toolchain for program verification,
based on separation logic, an extension of Hoare logic that is well-suited for
verifying concurrent programs with mutable state. Program verification often
requires to prove properties over algebraic data types (ADTs). Unfortunately
Viper currently does not directly support ADTs, but they can be encoded [1].
However this results in a lot of boilerplate encoding. Therefore it would be
more convenient to have a direct support of ADTs in Viper, which this project
aims to provide, via a suitable Viper plugin.

Algebraic Data Types

Algebraic data types (ADTs), popularised by functional programming lan-
guages, are a language feature commonly used to implement composite
types, e.g. enums, and recursive data types, e.g. trees, as illustrated by the
following pseudocode snippet of a binary tree with integer values in their
leaves:
data Tree = Leaf(val: Int) | Node(left: Tree , right: Tree)

The arguably most well-known property of ADTs is enabling pattern match-
ing, but they also have other, less obvious properties: e.g. given two leaves
n := Leaf(x) and m := Leaf(y), the equality n == m implies the equality
x == y, and vice versa. Another less obvious property is that, if t is of type
Tree, then t must either be a Leaf or a Node.

Approach and Focus

A Viper source program is parsed into an extended Viper AST, which is
desugared into a Viper core AST before it is passed to a verifier. A Viper plu-
gin [4] can inject additional source syntax and corresponding AST extension
nodes, but if done, the plugin must also provide desugarings into Viper’s
core AST. This project can focus on the first steps — source syntax design,
AST extention nodes, plugin architecture — because for the final desugaring
step, we can most likely reuse code from the Gobra verifier [6], which already
contains substantial code for encoding ADTs using core Viper features.

Goals

The main goal of this project is to support ADTs in Viper as a build-in type
via a Viper plugin by:

• Designing a suitable source syntax, and implementing the necessary
parsing, typechecking etc. steps

1



• Designing and implementing an internal representation of ADTs (ex-
tened Viper AST)

• Designing and implementing a desugaring into core Viper (by using
code from Gobra, if possible)

• Designing and implementing a way of automatically deriving useful
functions (e.g. contains, map, fold) from ADT definitions

• Evaluating the results via suitable tests

A possible project extension could be to implement a direct translation from
extended Viper to SMT code, and to compare the performance of Viper
desugaring vs. direct SMT encoding. This extension would only target
Viper’s symbolic-execution-based verifier Silicon [5].

2



Bibliography

[1] Programming Methodology Group. Encoding ADTs. http://viper.

ethz.ch/examples/encoding-adts.html. Online; accessed 19 October
2021.

[2] Programming Methodology Group. Viper. http://viper.ethz.ch. On-
line; accessed 19 October 2021.

[3] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infras-
tructure for permission-based reasoning. In B. Jobstmann and K. R. M.
Leino, editors, Verification, Model Checking, and Abstract Interpretation (VM-
CAI), volume 9583 of LNCS, pages 41–62. Springer-Verlag, 2016.

[4] Benjamin Schmid. Abstract Read Permission Support for an Automatic Python
Verifier. Bachelor’s thesis, 2017.

[5] M. Schwerhoff. Advancing Automated, Permission-Based Program Verification
Using Symbolic Execution. PhD thesis, ETH Zurich, 2016.

[6] F. A. Wolf, L. Arquint, M. Clochard, W. Oortwijn, J. C. Pereira, and
P. Müller. Gobra: Modular specification and verification of go programs.
In Alexandra Silva and K. Rustan M. Leino, editors, Computer Aided
Verification (CAV), volume 12759 of LNCS, pages 367–379. Springer Inter-
national Publishing, 2021.

3

http://viper.ethz.ch/examples/encoding-adts.html
http://viper.ethz.ch/examples/encoding-adts.html
http://viper.ethz.ch

	Bibliography

