Supporting Alternative SMT Solvers in Viper

Practical Work Description

Lasse F. Wolff Anthony
laanthony@student.ethz.ch
Supervised by Dr. Malte Schwerhoff
Department of Computer Science
ETH Zurich
Switzerland

1 Introduction

Viperp_l or Verification Infrastructure for Permission-based Reasoning, is a tool chain and infrastruc-
ture for program verification [[1]. It consists of the Viper intermediate language, based on separation
logic to encode verification problems, automatic verifiers for the language, and several example
front-end tools for languages such as Python or Rust. Viper is developed by the Programming
Methodology group at ETH Zurich, Switzerland.

Viper includes two automated verification backends: (1) Silicon El, a verifier based on symbolic
execution (SE), and (2) Carbon[ﬂ a verifier based on verification-condition generation (VCG). Both
of these ultimately rely on an SMT solver to discharge resulting proof obligations. Silicon interacts
directly with an SMT solver, currently Z3 ﬂ Carbon instead uses the intermediate verification
language Boogie|to abstract over the underlying SMT solver.

Most SMT solvers support the SMT-LIB E] language as input, but use different combinations of
subsolvers, strategies, and heuristics to solve different tasks, which affects their completeness and
efficiency. As such, supporting different SMT solvers in Viper may result in improved performance
for certain classes of inputs.

2 Project Goal

The goal of this project is to enable backend support for multiple SMT solvers in Viper, with a focus
on supporting cvc5|’l and additionally Yices 2 |°|for the SE-based Silicon verifier. Reaching this goal
requires (1) ensuring that the produced encodings are compatible with Z3, cvc5, and ideally Yices 2,
and (2) generalizing the codebase to support the different solvers.

3 Tasks

The core tasks to achieve this goal are as follows:

* Identify Z3-specific extensions of SMT-LIB that the Silicon uses

'http://viper.ethz.ch
“https://github.com/viperproject/silicon
*https://github.com/viperproject/carbon
*https://github.com/Z3Prover/z3
Shttps://github.com/boogie-org/boogie
*http://smtlib.cs.uiowa.edu/
"https://cvch.github.io/
Shttps://yices.csl.sri.com/

Practical work, fall semester 2021.

http://viper.ethz.ch
https://github.com/viperproject/silicon
https://github.com/viperproject/carbon
https://github.com/Z3Prover/z3
https://github.com/boogie-org/boogie
http://smtlib.cs.uiowa.edu/
https://cvc5.github.io/
https://yices.csl.sri.com/

Modify Silicon to only produce encodings that follow the SMT-LIB standard (or a variation
that Z3, cvc5, and ideally Yices 2 support)

* Compare the runtime of original vs. changed Silicon, to see if any of the Z3-specific
SMT-LIB extensions (if any) are crucial for performance

* Introduce support for cve5 and Yices 2 to the codebase
* Benchmark performance of Viper when using the Z3, cvcS5, and Yices 2
The project could be extended to achieve similar goals for the VCG-based verifier, Carbon. This

would involve similar core tasks, but the changes would need to be done on Boogie rather than
Carbon, since Boogie communicates with the SMT solver.

References

[1] Peter Miiller, Malte Schwerhoff, and Alexander J Summers. Viper: A verification infrastructure
for permission-based reasoning. In International conference on verification, model checking, and
abstract interpretation, pages 41-62. Springer, 2016.

	Introduction
	Project Goal
	Tasks

