
Automatically Generating Memory Safety
Certificates for Rust Programs

Master Thesis Project Description

Pascal Huber
Supervised by Prof. Dr. Peter Müller, Vytautas Astrauskas

Department of Computer Science
ETH Zürich

Zürich, Switzerland

I. Introduction
To this day, C and C++ are still the most widely used

systems programming languages. While they are an excel-
lent choice when it comes to resource usage, their memory
accesses are not well defined which makes them prone
to memory-related bugs. An investigation by Microsoft
revealed that approximately 70% of their security vulner-
abilities are caused by memory-safety issues [1]. Rust is
a relatively new programming language which attempts
to fix this problem by being both memory-efficient and
memory-safe [2] .

Even though the Rust compiler guarantees memory
safety, its guarantees can not be trusted because it is
itself a non-trivial program with a large codebase and
provides no formal correctness proofs [3]. From this, we
have to conclude that using Rust is still not optimal to
solve safety-critical problems. Having a certificate that
ensures the correctness of a program’s memory accesses
would be preferable.

RustBelt [4] is a project in which a formal tool was cre-
ated with which we believe we can create such certificates.
The proofs of the RustBelt logic are mechanized using
the Coq proof assistant which has a small codebase [3].
However, creating the correctness proofs for programs still
has to be done manually. It would be more desirable to
use the logic of RustBelt in a tool such as Viper, which is
already able to check many properties of Rust programs
automated through its front-end Prusti.

The main goal of this project is to find out if its feasible
to automatically generate memory-safety certificates by
modelling the RustBelt rules in Viper.

II. Approach
In this section we explain how we intend to implement

a prototype to create certificates followed by a small
example to illustrate how such a Viper program looks like.
We then explain how the prototype will be evaluated and
elaborate what kind of limitations and problems we are
expecting.

To create memory-safety certificates with Viper, we
require information about the program under compilation,

most notably the reference creations (called “borrows in
Rust), the lifetimes during which the references are valid,
and the different types used in the program. The prototype
borrow checker of the Rust compiler, Polonius, requires the
same data to check memory-safety and provides all the rel-
evant information needed to create the Viper certificates.
Generating the certificates will be done in the front-end
Prusti, where all other Viper code to check other properties
of Rust programs is generated.

The certificates will be encoded as shown in the fol-
lowing example in which we verify memory-safety for the
Rust program in Listing 1. This example illustrates how
a borrow can be encoded in Viper and that our Viper
certificate does not allow to have a second mutable borrow
of the same value (which is not allowed in the Rust
language).

1 fn assignment(){
2 let mut a: i32 = 4;
3 let x: &mut i32 = &mut a;
4 ...
5 }

Listing 1: Variable a of type i32 is instantiated on line 2
and the variable x of type &mut i32 then borrows a with
write-permission on line 3. We assume some code is present
after those two lines such that the compiler can not remove
them.

Listing 2 is a Viper certificate for the program in List-
ing 1. Note that the definitions of the domain Lifetime,
the predicates Owned, MutRef and DeadLifetimeToken
and the methods borrow, newlft and endlft are not
shown.

At first, the value 4 is assigned to the field a.val
before the predicate Owned(a) is folded to represent the
ownership of that value. We then assign a to x.ref and
as a preparation for the modelling of this borrow we
create a lifetime for both the reference and the assigned
object (lft_x and lft_mut_a) and a sufficiently small
permission-amount lft_perm for read-access for the life-
times. We then call the borrow method on line 20 which

1

takes away our folded Owned(a) predicate and in return
gives us a mutable reference in form of a MutRef predicate.
Note that at this point we don’t have ownership of a
anymore and we can thus not borrow a again. A so called
magic wand can later be applied to regain ownership of a
as soon as the lifetime of the borrow has ended (as on
line 33). After the borrow and the remaining function,
we have reached the end of the Rust program and can
therefore end the lifetimes, destroy the reference x, regain
ownership of a using the magic wand and finally destroy
a.

1 method assignment() {
2

3 // let mut a = 4
4 var a: Ref
5 inhale acc(a.val)
6 a.val := 4
7 fold Owned(a)
8

9 // let x = &mut a
10 var x: Ref
11 inhale acc(x.ref)
12 x.ref := a
13

14 // model the borrow
15 var lft_perm: Perm := write / 3
16 var lft_mut_a: Lifetime
17 var lft_x: Lifetime
18 lft_mut_a := newlft()
19 lft_x := lft_mut_a
20 borrow(lft_mut_a, lft_perm, x.ref)
21 assert acc(MutRef(lft_mut_a, x.ref))
22

23 // encoding of remaining function
24 // ...
25

26 // end of scope
27 endlft(lft_x)
28

29 // destroy reference x
30 exhale acc(x.ref)
31

32 // regain ownership of a
33 apply acc(DeadLifetimeToken(lft_mut_a))
34 --* acc(Owned(a))
35

36 // destroy value a
37 unfold Owned(a)
38 exhale acc(a.val)
39 }

Listing 2: Viper encoding of Listing 1

Such small programs will also be used to validate our
implementation. Because of the limited size, we can eas-
ily check if the resulting Viper code successfully verifies

memory-safety. While this will help to create a first proto-
type, it is not enough to know that the solution also works
for real-world applications.

Crater [5] will be used to automatically evaluate our
solution on many open source Rust programs and libraries.
This will be done during the implementation as soon as
the first version exists to ensure early detection of issues.
A. Extension Goals

There are some known limitations of the RustBelt rules
which will consequently not work for us either. In addition
we expect that some yet unknown language constructs will
be difficult to implement with the rules. Analysing and
solving all those problems are the extension goals of this
project.

One of the known issues are Two-phase Borrows which
require both a mutable reference (with write-permission)
and a non-mutable reference (read-only) to the same item
with overlapping lifetimes of the borrows. Rust only allows
this in some special cases and RustBelt does not handle
them. One example is shown in Listing 3 and expanded
in Listing 4 where the vector v is needed both to read the
length and to insert the value.

1 fn main(){
2 let mut v = Vec::new();
3 v.push(v.len());
4 }

Listing 3: Two-phase Borrow [6]

1 fn main(){
2 let mut v = Vec::new();
3 let temp1 = &two_phase v;
4 let temp2 = v.len();
5 Vec::push(temp1, temp2);
6 }

Listing 4: Expanded Two-phase Borrow of Listing 3 [6]

Another issue we expect are Overlapping Shared Refer-
ences. An example is given in Listing 5 where t1 references
only one of the variables of the object and t2 references
the entire object. Because both variables are used in the
println! function, their lifetimes overlap.

1 fn main (){
2 let t = T { x: 1, y: 2};
3 let t1 = &t.x; // borrow of t.x
4 let t2 = &t; // borrow of t
5 println!("{} {}" t1, t2);
6 }

Listing 5: Overlapping Shared References

Unsafe Rust will also be difficult to handle and will
be ignored. This will exclude about 24% of all projects
on crates.io [7]. We also expect to find more obstacles when
evaluating our implementation on a larger scale.

2

crates.io

III. Core Goals
C1 Create small Rust programs for initial tests.
C2 Extend Prusti to add borrow checking using

the RustBelt rules.
C3 Evaluate the implementation with a large

number of Rust programs.
IV. Extension Goals

E1 Find and implement a solution for Two-phase
Borrows.

E2 Find and implement a solution for Overlap-
ping Shared References.

E3 Analyze and implement solutions for yet un-
known problems.

V. Schedule
6 weeks Extend Prusti (C1, C2)
2 weeks Testing and Evaluation (C3) concur-

rently with previous
8 weeks Extension goals (E1 - E3)
4 weeks Write project report

References
[1] S. Fernandez. We need a safer systems programming language.

[Online]. Available: https://msrc-blog.microsoft.com/2019/07/
18/we-need-a-safer-systems-programming-language/

[2] Rust Programming Language. [Online]. Available: https://www.
rust-lang.org/

[3] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer, “Rustbelt:
Securing the foundations of the rust programming language,”
Proceedings of the ACM on Programming Languages, vol. 2, no.
POPL, p. 1–34, 2018.

[4] ERC Project ”RustBelt”. [Online]. Available: https://plv.
mpi-sws.org/rustbelt

[5] Crater. [Online]. Available: https://github.com/rust-lang/crater
[6] Guide to Rustc Development - Two-phase borrows. [Online].

Available: https://rustc-dev-guide.rust-lang.org/borrow_check/
two_phase_borrows.html

[7] V. Astrauskas, C. Matheja, F. Poli, P. Müller, and A. J. Summers,
“How do programmers use unsafe rust?” Proceedings of the ACM
on Programming Languages, vol. 4, no. OOPSLA, p. 1–27, 2020.

3

https://msrc-blog.microsoft.com/2019/07/18/we-need-a-safer-systems-programming-language/
https://msrc-blog.microsoft.com/2019/07/18/we-need-a-safer-systems-programming-language/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://plv.mpi-sws.org/rustbelt
https://plv.mpi-sws.org/rustbelt
https://github.com/rust-lang/crater
https://rustc-dev-guide.rust-lang.org/borrow_check/two_phase_borrows.html
https://rustc-dev-guide.rust-lang.org/borrow_check/two_phase_borrows.html

	Introduction
	Approach
	Extension Goals

	Core Goals
	Extension Goals
	Schedule
	References

