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Abstract

The Rust programming language attempts to be both resource-efficient
and memory-safe, two properties which hardly any other program-
ming language manages to combine. The borrow checker of the com-
piler ensures memory safety but is itself a nontrivial program and does
not provide any formal proof of correctness. RustBelt tackles this issue
by defining a logic to create correctness proofs for Rust programs, ver-
ified by the Coq proof assistant, which has a much smaller codebase.
However, creating proofs that certify memory safety using RustBelt is a
difficult task and has to be done manually for every Rust program. To
solve this problem, we implemented the relevant RustBelt rules in the
verification language Viper for some of the most important language
features of Rust, using the information provided by the experimental
borrow checker, Polonius. While further work is necessary to support
more real-world applications, we have shown that automatically gen-
erating memory safety certificates for Rust programs by modelling the
RustBelt rules in Viper is a feasible and sensible approach.
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Chapter 1

Introduction

To this day, C and C++ are still the most widely used systems programming
languages. While they are an excellent choice regarding resource usage,
their memory accesses are not well defined, making them prone to memory-
related bugs. An investigation by Microsoft revealed that approximately
70% of their security vulnerabilities are caused by memory safety issues [25].

Rust is a relatively new programming language which attempts to fix this
problem by being both memory-efficient and memory-safe [11]. It does so
by introducing an ownership-based type system and rules how values may
be referenced and borrowed.

One example of a safety property we have in Rust is the absence of dangling
references. The function shown in Listing 1.1 takes a reference x to an integer
and returns its value. An equivalent function written in C or C++ could
cause a program to crash when called with a dangling reference. The Rust
compiler, on the other hand, makes sure this function is only ever called with
references to allocated and initialised integers which makes this function
memory-safe.

1 fn deref(x: &i32) -> i32 {
2 *x
3 }

Listing 1.1: Rust ensures the absence of dangling references and therefore parameter x of the
deref function is guaranteed to point to an allocated and initialised integer. In other languages
such as C or C++ such a function can be called with a reference to an integer which has already
been freed from memory.

The borrow checker of the Rust compiler ensures memory safety. It is, how-
ever, itself a nontrivial program with a large codebase [28]. From this, we
have to conclude that relying on the compiler to verify memory safety is
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1. Introduction

not optimal, especially when working in safety-critical domains. A solu-
tion would be to have memory safety certificates which can be checked by a
much smaller program. A program logic and a tool to automatically gener-
ate and verify proofs written in that logic could be used for this task.

The RustBelt [3] project contains such a program logic. The certificates for
programs and the rules of the RustBelt logic themselves can be verified with
the Coq proof assistant [1], which has a small codebase [28]. However, cre-
ating the proofs still has to be done manually. Integrating the RustBelt pro-
gram logic into a tool which can automate the process could be a solution.

Viper [15] is an intermediate verification language which comes with tools
to automate the process of creating and verifying properties of computer
programs. It is already capable of checking different properties of Rust
programs through its front-end Prusti [9], including functional properties or
the absence of panics.

The main goal of this thesis is to find out if it is feasible to automatically generate
memory safety certificates by modelling the RustBelt rules in Viper.

It should be noted that memory safety in Rust programs comes at a price.
With its type system, Rust can be overly restrictive at times – in short, it does
not allow mutating and aliasing simultaneously. This makes it impossible
to, for example, implement a mutex as multiple threads need to be able
to write to a shared object. Even implementing a doubly linked list with
cyclic references poses a problem. For this reason, Rust provides a second
language called Unsafe Rust which does not enforce memory safety and can
be used inside (safe) Rust [12, 28]. We do not consider unsafe Rust in this
thesis.

1.1 Contributions
With this thesis, we make the following contributions.

• Viper Encoding of the RustBelt rules concerning lifetimes for owner-
ship, borrows, branching, function calls and loops. We show how the
lifetime rules in RustBelt can be encoded in the intermediate verifica-
tion language Viper.

• Implementation of the encoding in Prusti. We automate the process
of creating the Viper encoding by implementing the rules in the Viper
front-end Prusti using the lifetime information from Polonius.

• A description of language features which are difficult to encode. We
show Rust programs which are not easy to encode and argue how they
could be supported in Prusti.
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1.2. Outline

• An evaluation of the implemented features on real-world applications.

• A discussion of future and related work. We discuss what work can
be done to further increase both the number of supported language
constructs and the confidence in the results.

1.2 Outline
We give a brief overview of the tools we work with in the remainder of this
chapter. Different language features of Rust are introduced in Chapters 2
to 6, along with a description of how RustBelt deals with them and how
we can encode the RustBelt rules in question. The Evaluation in chapter 7
describes the implementation in Prusti, provides an overview of supported
and unsupported language features covered by the encoding, and shows
how the encoding performs for real-world applications. We provide a con-
clusion in Chapter 8, including a future and related work description.

1.3 Architecture Overview
In this section, we briefly describe how Viper and its Rust front-end Prusti
work and interact with the Rust compiler and which parts of RustBelt we
require.

1.3.1 Viper

Using the tools surrounding the Viper intermediate verification language [15],
we can generate an encoding for programs written in commonly used lan-
guages such as Python, Java or Rust and then verify if the encoded speci-
fications hold [30]. In this project, we want to create a Viper program for
every function of a given Rust Program to show that the borrows are valid.
We can implement this functionality in Prusti, the Viper front-end for Rust.

The Viper code snippets in this document are largely simplified and omit
some complexity. Furthermore, to make the examples more readable, we
add the Rust type of functions, methods and predicates inside angle brack-
ets. For example, for an assign method for i32, we write assign<i32>.

1.3.2 Prusti

Given a Rust program, Prusti generates and verifies a Viper program for
each function. It relies and interacts closely with the Rust compiler by build-
ing upon the Mid-level Intermediate Representation (MIR).

The MIR is a Control-Flow Graph (CFG) consisting of basic blocks connected
through edges. A basic block contains statements of our program and has
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1. Introduction

the property that if one statement is executed, all must be [19]. As a conse-
quence, a basic block can not contain branches or loops. Every basic block
has one entry point, and the last statement determines which basic block, if
any, is executed next.

The Rust compiler creates the MIR in multiple steps by rst obtaining an
abstract syntax tree (AST) of the program before creating the High-Level
intermediate Representation (HIR), which is used for type checking. The
HIR is then lowered to the MIR, which is also what the borrow checker
of the Rust compiler uses to check memory safety. After those checks, the
compiler creates an executable binary from the MIR [32].

To check if memory operations are safe, the Rust compiler introduces so-
called lifetimes. Every variable has a lifetime which begins when it is created
and ends when it is destroyed [3]. To model memory safety, we require
information about those lifetimes, particularly when they begin and end
and how they are related to another. While the Rust compiler does not offer
this information by default, the prototype borrow checker, Polonius [8], has
an API in the form of Datalog facts which can be used to obtain all the
required information. With it, we can query the set of lifetimes and their
relations for every statement in the MIR.

1.3.3 RustBelt
RustBelt [3] provides a logic to model safe and unsafe Rust programs to
check their correctness. It does this by introducing λRust, a continuation-
passing style language to formally specify various features of the Rust pro-
gramming language [28]. Modelling all the RustBelt rules would be chal-
lenging as the MIR is a CFG and not written in continuation-passing style.
Luckily, we are only interested in the RustBelt rules covering the Rust life-
times, and those rules do not depend on the continuation-passing style.
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Chapter 2

Ownership

In this chapter, we introduce the ownership model used by Rust, explain
how RustBelt handles ownership and show how we can encode the required
RustBelt rules in Viper.

2.1 Rust’s Ownership Model

A core difference between Rust and most other programming languages lies
in its ownership-based type system. Every resource is owned by exactly one
variable, and only the owner can drop it. An ownership can be transferred
to another variable or a function, as shown in the following listing, where
the ownership of the String object is moved from x into the function foo.
The Rust compiler will reject this program because we attempt to use the
object after moving it. Allowing this would be dangerous because foo could
drop the object and free the memory location, making the reference y dan-
gling [24]. Note that for types that, unlike String, implement the Copy trait,
the ownership can not be moved because only a copy and not the original
object would be transferred. Most non-trivial data types like String or Vec
do not implement the Copy trait.

1 let x = String::from("hello");
2 foo(x);
3 let y = &x; // error: borrow of moved value: `x`

2.2 Ownership Encoding

Creating an object in Rust, for example, with let x = P{ a: 3 }, produces
multiple statements in the MIR, as shown in the following listing. The
StorageLive statement will be translated into instructions to allocate the
required space on the memory, and the assignment will initialise the object.

5



2. Ownership

At this point, x owns the object. There will come a location in the MIR where
the object is no longer needed and is dropped from memory, as indicated
by the StorageDead statement.

0 StorageLive(x)
1 x = P { a: const 1_i32 }
2 ...
3 StorageDead(x)

2.2.1 RustBelt
In RustBelt, there is a predicate JτK.own(t, v), which represents ownership
of an object of type τ. It contains a list of values v and an identifier t of
the thread that owns the values. A list of values is necessary as the type
may consist of multiple values, such as a struct with multiple fields. When
creating a new object with the ghost statement new, we get ownership of
it in the form of an own predicate instance. When deleting the object with
the delete ghost statement, that predicate instance is removed from the
program state [28].

When we are confronted with an assignment which instantiates a new object
in the MIR, we want to have an own predicate instance for it. Similarly, when
we find a StorageDead statement for a variable which owns a resource, we
want the predicate instance to be removed. Note that because we do not
model multi-threading in this thesis, we can ignore the thread identifier.

2.2.2 Viper
We can encode ownership in Viper by creating a predicate Owned for every
data type. Because Prusti already models memory allocations, we can reuse
the MemoryBlock predicate and the Address domain. Domains in Viper can
be used to create additional types, including functions and axioms to define
their properties [16]. The MemoryBlock predicate represents permission to
raw, untyped memory and can be identified by an Address. The Owned<T>
predicate for type T only has to hold an address and give us (full) access to
the memory locations of the object through the MemoryBlock<T> predicate.

An example of an Owned predicate for an i32 integer is shown in the follow-
ing listing. The Viper construct acc allows us to quantify permissions where
acc(x) denotes full permission on predicate x. Full permission gives us the
ability to modify the predicate instance. acc(x, q) indicates some fraction
q amount of permission on x which gives us read-only access if none < q
and q < write.

1 predicate Owned<i32>(address: Address){
2 acc(MemoryBlock<i32>(address))
3 }

6



2.2. Ownership Encoding

We can model ownership for types containing multiple values by encoding
a conjunction of Owned predicates for the nested values, which gives us ac-
cess to all the MemoryBlock predicate instances. For example, ownership for
struct S in Listing 2.1 would be encoded as shown in Listing 2.2.

1 struct S {
2 a: i32,
3 b: i32,
4 }

Listing 2.1: A struct
with name S containing
two integer fields x and
y.

1 predicate Owned<S>(address: Address) {
2 acc(Owned<i32>(
3 field_address<S>("a", address))) &&
4 acc(Owned<i32>(
5 field_address<S>("b", address)))
6 }

Listing 2.2: The ownership of the struct can be modelled
with a conjunction of ownerships of all its fields. The method
field_address<S>(n, a) returns the address of the value of the
field with name n of the struct S at address a.

To encode the assignment, let x = P{ a: 3 }, we translate each of the MIR
statements. For the StorageLive(x) statement, we first create a new ad-
dress. Since we do not know what address the variable will have at runtime,
we create a fresh, unconstrained address with var x_addr: Address. We
then use this address to encode the storage allocation by inhaling a memory
block with inhale acc(MemoryBlock<P>(x_addr)). The Viper statement
inhale x adds the permissions of x to the program state and assumes that
the constraints in x hold [16]. As there are no constraints in our inhale state-
ment, it will simply add permission to the memory block to the program
state.

The next statement in the MIR is the assignment which takes care of initiali-
sation. For our struct example, the assignment x = P { a: const 3_i32 }
can be encoded in Viper by adding and calling an assign method as de-
fined in Listing 2.3 on the following page for the struct P. To call the assign
method, we need full permission for the MemoryBlock predicate instance
because it has a precondition for it (the requires statement). We say the
method consumes the predicate instance because there is no postcondition
(ensures statement), which gives us the permission back. However, the
method gives us ownership as an Owned predicate instance. It also makes
sure we have the knowledge of the field value of P in the program state,
encoded with the value_of postcondition. Note that Prusti encodes values
differently. The encoding with value_of, however, is sufficient for the ex-
amples in this thesis as we only need to know that our object is initialised
correctly and do not care about the exact values.

At last, there will be a StorageDead(x) statement indicating that the ob-
ject owned by x can be removed from memory. We can encode this with

7



2. Ownership

exhale acc(MemoryBlock<P>(x_addr)), which deletes the predicate instance
from the program state. exhale x checks if the constraints and permissions
in x by asserting them, and if the assertion was successful, removes the per-
missions in x [16]. The complete encoding for this example is shown in
Listings A.1 and A.2 in the Appendix.

1 method assign<P>(
2 address: Address
3 value_a: Integer,
4 ) requires acc(MemoryBlock<P>(address)))
5 ensures acc(Owned<P>(address))
6 ensures value_of<i32>(field_address<S>("a", address))
7 == value_a

Listing 2.3: assign<P> takes a MemoryBlock<P> predicate instance and in return gives us
ownership in form of an Owned<P> predicate instance. Additionally, it has a postconditions to
add knowledge about the field value to the program state.
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Chapter 3

Borrowing

In this chapter, we first introduce the Rust concepts of borrowing and life-
times before we explain how different kinds of lifetimes are modelled in
RustBelt and in what way we can implement them in Viper. Using the
knowledge about ownership and lifetimes, we then show how both mutable
and immutable borrows can be encoded.

3.1 Borrowing in Rust

Moving around resources is rather expensive. Instead of passing the objects
by value and moving their ownership, we can temporarily borrow them
by creating references. So far, this sounds exactly like references as seen in
many other programming languages. Rust, however, enforces the correct use
of references through its type system. In C and C++, ensuring the safety of
the references lies in the responsibility of the programmer. Other languages,
such as Java or Go, use a garbage collector for this task. Furthermore, we
can only mutably borrow (i.e. borrow with write permissions) a resource once
at a time. Before we can create a second mutable borrow of an object, the
first one must have ended [22, 23].

In the following example, we can see that function bar mutably borrows x.
The borrow ends when function bar returns. Because we have not moved
the ownership of the String object, we can still use it at the end. Also, note
that to create a mutable borrow, the variable that owns the object must be
declared as mutable.

1 let mut x = String::from("hello");
2 bar(&mut x);
3 println!("{}", x);

9



3. Borrowing

3.2 Lifetimes
To check if all borrows are safe, the Rust compiler introduces so-called life-
times. Every variable has a lifetime which begins when it is created and
ends when it is destroyed [6]. The following code snippet shows an ex-
ample where the borrow checker would complain. We create two mutable
borrows b1 and b2 of the same object. The lifetime of b1 begins before the
lifetime of b2 as it is created first. Furthermore, b1 must live longer than
b2 as it is used on the last line. Its lifetime, therefore, ends after the life-
time of b2. Because two mutable borrows point to the same object and their
lifetimes overlap, the borrow checker will reject this program.

1 let mut x = 1;
2 let b1 = &mut x;
3 let b2 = &mut x;
4 let _ = *b1;

Based on an unpublished project description of this thesis, we distinguish
between the following three types of lifetimes.

• Opaque lifetimes are lifetimes which are passed to the function. This
includes the static lifetime, the lifetime of the function itself and the
lifetimes of the arguments the function is called with.

• Original lifetimes directly indicate a borrow location. For example,
when creating a reference y of a value x with the statement y = &'b x,
'b is an original lifetime.

• Derived lifetimes are lifetimes which are not opaque and do not directly
indicate a borrowed location. In the assignment above, y will have its
own lifetime 'a, derived from the original lifetime 'b.

In the following sections, we present how original and derived lifetimes are
related to the concepts in Polonius and RustBelt and how we can automati-
cally create lifetime proofs in Viper. The opaque lifetimes will be explained
when introducing function calls in Chapter 5.

3.3 Original Lifetimes
Original lifetimes appear when borrowing an object. For example, the state-
ment let _ = &mut s introduces a new original lifetime. In the MIR, there
will also be a statement which introduces the borrow, and the Polonius facts
for that location will contain that lifetime. Eventually, there will come a
point in the program where the borrow ends and that lifetime is no longer
needed. In that case, the lifetime will also not be in the Polonius facts any-
more.
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3.3. Original Lifetimes

3.3.1 RustBelt
RustBelt uses so-called lifetime tokens, which witness a lifetime being alive. In
contrast, a dead lifetime token is a witness that a lifetime is not alive anymore.
One way of creating and ending lifetimes in RustBelt is to use the ghost
instructions newlft and endlft following the RustBelt rules F-Newlft and
F-Endlft. newlft adds a new lifetime to the variable context. Consequently,
we have access to a lifetime token of this lifetime. endlft marks a lifetime
as dead and turns the lifetime token into a dead lifetime token [28].

Those two ghost statements are precisely what we need for the original
lifetimes. When we reach a statement in the MIR where the Polonius facts
contain an original lifetime that was not present in the previous statement,
we can create it with newlft. Similarly, when confronted with the first
statement in the MIR for which the Polonius facts do not contain the lifetime
anymore, we can use endlft to mark it as dead.

3.3.2 Viper
To model the lifetimes in Viper, we can use a custom domain Lifetime such
that we can create variables of type Lifetime. The two abstract (bodyless)
predicates LifetimeToken and DeadLifetimeToken, each holding a lifetime,
are used to distinguish between alive lifetimes and dead lifetimes. The re-
sulting Viper code will look as follows.

1 domain Lifetime {}
2 predicate LifetimeToken(lft: Lifetime)
3 predicate DeadLifetimeToken(lft: Lifetime)

We can implement the two ghost instructions newlft and endlft as abstract
methods where newlft gives us full access to LifetimeToken(lft) of a new
lifetime lft. The endlft method consumes that LifetimeToken(lft) and,
in return, gives us full access to DeadLifetimeToken(lft). The methods as
shown in the following listing.

1 method newlft() returns (lft: Lifetime)
2 ensures acc(LifetimeToken(lft))
3

4 method endlft(lft: Lifetime)
5 requires acc(LifetimeToken(lft))
6 ensures acc(DeadLifetimeToken(lft))

For a borrow statement such as let _ = &mut s where s is some variable
owning a resource, we can see in the Polonius facts that a new original life-
time appears at that location. Let us say that lifetime has the name bw0. Be-
fore we encode the borrow assignment itself, we create that lifetime by first
adding a new variable with var bw0: Lifetime and then initialising it with

11



3. Borrowing

bw0 := newlft(), which gives us full permission on the LifetimeToken of
the new lifetime. Once we reach a location in the MIR where the borrow is
no longer needed, the lifetime will also not be present in the Polonius facts
anymore. Given that we have not lost any permission amount of the lifetime
token, we can end the lifetime by calling endlft(bw0).

3.4 Derived Lifetimes
As with original lifetimes, we can use Polonius to find out where we need
to introduce new derived lifetimes and where they end. For example, the
Rust assignment let x = &mut s will have a corresponding assignment in
the MIR, which introduces a new derived lifetime. The new relation can
be found in the Polonius facts of that location. When the derived lifetime
ends, it will also be removed from the Polonius facts. Note that it is also
possible for a lifetime to be derived from multiple original lifetimes and
those relations can even change from statement to statement.

3.4.1 RustBelt

RustBelt introduces the concepts of lifetime inclusion and lifetime intersection,
which are essential to understanding how derived lifetimes are handled.

Lifetime κ being included in lifetime κ′, written κ ⊑ κ′, means that κ′ outlives
κ. Consequently, if we are given a lifetime token for κ, we can also obtain a
lifetime token for κ′. Moreover, if we have a dead lifetime token for κ′, we
should be able to obtain a dead lifetime token for κ [28].

The intersection κ ⊓ κ′ of two lifetimes is a lifetime which ends when either
κ or κ′ ends [28]. It follows that the intersection of two lifetimes is included
in either one of the lifetimes, written

(
κ ⊓ κ′

)
⊑ κ and

(
κ ⊓ κ′

)
⊑ κ′ [28].

When a new derived lifetime becomes alive, we can not simply use newlft
to create it as this would not model the constraint that the new lifetime
must be included in some other lifetime. Instead, RustBelt has a set of
rules, including Lftl-Tok-Inter and Lftl-Begin, which define how we can
use lifetime inclusion to create new derived lifetimes. The rules describe
that creating the new lifetime takes some permission amount away from
the lifetime token of the lifetime it is derived from. Only when the newly
derived lifetime ends, is the permission returned [28].

Lifetimes can also be derived from multiple original lifetimes. We can create
a new lifetime κ which is derived from κ′ and κ′′. In this case we get the
relations κ ⊑ κ′ and κ ⊑ κ′′ which can be simplified to κ ⊑

(
κ′ ⊓ κ′′

)
.

Whenever a new derived lifetime is introduced or removed by Polonius, we
can use those rules and concepts to encode them. When an already existing
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lifetime changes, we can first remove it and add it again with the updated
relation.

3.4.2 Viper

For the encoding of the concepts of lifetime intersection and lifetime in-
clusion, we can extend our lifetime domain by adding the abstract domain
functions included and intersect. Axioms can be used to define their
properties and how they are connected to each other as shown in Listing 3.1
where two axioms are used to define the semantics of lifetime inclusion and
intersection.

1 domain Lifetime {
2

3 // returns true iff lft_a is included in lft_b
4 function included(lft_a: Lifetime, lft_b: Lifetime): Bool
5

6 // returns the intersection of lft_a and lft_b
7 function intersect(
8 lft_a: Lifetime,
9 lft_b: Lifetime

10 ): Lifetime
11

12 // Every lifetime is included in itself
13 axiom included_in_itself {
14 (forall lft: Lifetime :: included(lft, lft))
15 }
16

17 // The intersection of lft_a and lft_b is included in
18 // both lft_a and lft_b
19 axiom included_intersect {
20 (forall lft_a: Lifetime, lft_b: Lifetime ::
21 included(intersect(lft_a, lft_b), lft_a) &&
22 included(intersect(lft_a, lft_b), lft_b))
23 }
24 }

Listing 3.1: Using axioms and domain functions, we can encode the semantics of lifetime
inclusion and intersection.

We can define the method lft_tok_sep_take as shown in Listing 3.2 on
the following page to create a new lifetime which is derived from other
lifetimes. The method takes the two lifetimes lft_a and lft_b as arguments
and consumes some non-zero permission amount q on their lifetime tokens.
In return, it gives us a new lifetime lft and q amount of permission on
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its lifetime token. In this case, we have defined the method to derive from
two other lifetimes; but we can define similar methods for any number of
lifetimes. Because the method consumes permission of the lifetime tokens,
we can not end the lifetimes lft_a or lft_b (using the endlft method)
before ending the newly created derived lifetime. The last postcondition of
the method ensures that the newly created lifetime is included in both lft_a
and lft_b.

1 method lft_tok_sep_take(
2 lft_a: Lifetime,
3 lft_b: Lifetime,
4 q: Perm
5 ) returns (lft: Lifetime)
6 requires none < q
7 requires acc(LifetimeToken(lft_a), q)
8 requires acc(LifetimeToken(lft_b), q)
9 ensures acc(LifetimeToken(lft), q)

10 ensures lft == intersect(lft_a, lft_b)

Listing 3.2: The lft_tok_sep_take can be used to create a new derived lifetime.

We also encode the inverse method lft_tok_sep_return to end a derived
lifetime. It does the opposite to lft_tok_sep_take by consuming the life-
time token of the derived lifetime and giving us back q amount of permis-
sion on the lifetime tokens lft_a and lft_b. Note that when an original
lifetime is ending, we have to call lft_tok_sep_return for all lifetimes de-
rived from it before we can call endlft. Otherwise, we would not have full
permission on its lifetime token. The encoding of the method is shown in
Listing A.3 in the Appendix.

lft_tok_sep_return does not give us a dead lifetime token for the derived
lifetime. Just as defined in RustBelt, if lifetime a is included in lifetime b
for which we have a dead lifetime token, we can also get a dead lifetime
token for a. We encode this with the method dead_inclusion as shown in
Listing 3.3 on the next page. After calling the method, we have dead lifetime
tokens for both the original and derived lifetime.

We can put everything together and create all the lifetimes needed to en-
code a borrow let x = &mut s as shown in Listing 3.4 on the facing page.
First, we create the original lifetime bw0 and then derive the lifetime lft_x
from it. bb0[n] is the first location in the MIR, where the Polonius facts
do not contain bw0 or lft_x. Before we can end bw0 by calling endlft,
we need to get back 1/3 amount of permission to its lifetime token using
lft_tok_sep_return. We then have a dead lifetime token for bw0 which al-
lows us to also obtain a dead lifetime token for lft_x with dead_inclusion.
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1 method dead_inclusion(
2 lft_derived: Lifetime,
3 lft_original: Lifetime
4 ) requires acc(DeadLifetimeToken(lft_original))
5 requires included(lft_derived, lft_original)
6 ensures acc(DeadLifetimeToken(lft_original))
7 ensures acc(DeadLifetimeToken(lft_derived))

Listing 3.3: Using method dead_inclusion, we can acquire a dead lifetime token for a derived
lifetime.

We have not yet discussed how we derive the permission amount q. In the
previous example, a fraction of 1/3 is small enough that we do not lose all
permission on the lifetime token of bw0. We could therefore derive more
lifetimes from it. When creating the encoding, we can specify a globally
used variable holding the permission amount q. A fraction 1

n where n is the
total number of lifetimes in the program gives us a small enough permission
amount that we never run out of permission when deriving lifetimes.

1 // bb0[4] x = &'bw0 mut s
2 // lft x ⊑ bw0
3 var bw0: Lifetime
4 bw0 := newlft()
5 lft_x := lft_tok_sep_take(bw0, 1/3)
6 // borrow encoding
7 // ...
8

9 // bb0[n]
10 lft_tok_sep_return(lft_x, bw0, 1/3)
11 endlft(bw0)
12 dead_inclusion(lft_1, bw0)

Listing 3.4: Creating and ending an original lifetime bw0 and a derived lifetime lft_x. At the
end of this snippet, we have dead lifetime tokens for both lifetimes.

3.5 Mutable Borrows

Now that we can encode ownership and lifetimes, we have all the means to
model borrowing.

3.5.1 RustBelt

The RustBelt rule C-Borrow specifies that to mutably borrow an object, we
require ownership of it and, in return, we get a mutable reference with a

15



3. Borrowing

lifetime. It also guarantees that we can regain ownership of the object when
that lifetime has ended [28].

While C-Borrow describes the creation and destruction of borrows, it does
not let us access the resource behind it and creating a mutable borrow usu-
ally comes with dereferencing and modifying the resource at some point.
The rule LftL-bor-acc allows opening a mutable borrow to obtain access to
the borrowed object. The rule states that we can temporarily give up a bor-
row and its lifetime token to gain access to the resource. A so-called update
can later be used to restore the borrow and regain the lifetime token. If this
update is not used, the lifetime token and the borrow will be lost [28].

3.5.2 Viper
We can encode borrowing in Viper using a method borrow as shown in List-
ing 3.5 on the next page for our struct S from the previous chapter. The
method consumes ownership of our struct instance and the memory block
for the borrow itself. In return it gives us ownership of a mutable borrow
through the predicate Owned<&mut S>. Ownership of a mutable borrow con-
sists of a memory block for the reference in addition to the abstract predicate
MutRef<S> which we will use later to access the resource. It also ensures that
we have some fractional permission for the lifetime token of the (original)
lifetime of the borrow. The last postcondition is a magic wand that encodes
the guarantee that when the borrow has ended, we can regain ownership of
the resource. This magic wand can be applied when we have a dead lifetime
token for the lifetime of the borrow. Note that magic wands themselves can
consume the predicates on the left-hand side. In order not to lose the dead
lifetime token, it is also present on the right-hand side.

We can now encode the borrow let x = &mut s where s owns an instance
of the struct. The Viper encoding is shown in Listing 3.6 on page 18. The
encoding of the first two MIR statements bb0[0] and bb0[1] give us own-
ership of the resource. bb0[2] then allocates the reference before we create
the lifetimes and perform the borrow in bb0[3]. In bb0[n] the borrow ends
and we therefore end the lifetimes and exhale the memory block. Lastly, the
magic wand can be applied to regain the ownership of the struct.

It remains to show how we model the behaviour of the LftL-bor-acc rule
to access the resource of a mutable borrow. We can encode this rule with
the two methods open_mut_ref and close_mut_ref to temporarily gain
ownership of the value behind the reference and to return the ownership
again. This may sound like a violation as we have established that a mu-
table borrow should not give us ownership abilities. However, as every
open_mut_ref comes with a close_mut_ref which requires ownership to
be called, this is not an issue. Dropping the object would take away the
MemoryBlock predicate of the object, and we would lose the Owned predicate
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1 method borrow<S>(
2 target_address: Address,
3 operand_address: Address,
4 operand_lifetime: Lifetime,
5 q: Perm
6 ) requires none < q && q < write
7 requires acc(MemoryBlock<&mut S>(target_address))
8 requires acc(Owned<S>(operand_address))
9 requires acc(LifetimeToken(operand_lifetime), q)

10 ensures operand_address == points_to_addr(target_address)
11 ensures acc(LifetimeToken(operand_lifetime), q)
12 ensures acc(Owned<&mut S>(
13 operand_lifetime,
14 target_address,
15 operand_address))
16 ensures acc(DeadLifetimeToken(operand_lifetime))
17 --* acc(Owned<S>(operand_address)) &&
18 acc(DeadLifetimeToken(operand_lifetime))
19

20 predicate Owned<&mut S>(
21 address: Address,
22 lifetime: Lifetime
23 ) {
24 acc(MemoryBlock<&mut S>(address)) &&
25 acc(MutRef<S>(lifetime, address))
26 }

Listing 3.5: The method borrow consumes ownership of the resource and, in return, gives us
ownership of the borrow.

instance. Consequently, the encoding would not verify because the precon-
ditions of close_mut_ref are not met.

The open_mut_ref method consumes both the MutRef predicate instance,
which the borrow method call added to the program state, and some frac-
tional permission of the lifetime token of the borrow. In return, it gives us
access to an Owned predicate instance of the resource behind the reference
together with a CloseMutRef predicate instance. This predicate holds all the
information about the consumed MutRef predicate instance. Most impor-
tantly, it contains the address of the reference, the lifetime of the borrow
and the permission amount a as those values are not in the Owned predi-
cate. The close_mut_ref method requires this information to restore the
MutRef predicate instance and give us back the predicate instances which
open_mut_ref consumed. The two methods are shown in Listing A.4 in the
Appendix.
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1 // bb0[0] StorageLive(s)
2 var s_address: Address
3 inhale acc(MemoryBlock<S>(s_address)))
4

5 // bb0[1] s = S { x: const 1_i32, y: const 2_i32 }
6 assign<S>(s_address, Integer(1), Integer(2))
7

8 // bb0[2] StorageLive(x)
9 var x_address: Address

10 inhale acc(MemoryBlock<&mut S>(x_address))
11

12 // bb0[3] x = &'bw0 mut s
13 bw0 := newlft()
14 lft_x := lft_tok_sep_take(bw0, q)
15 borrow<S>(x_address, s_address, bw0, q)
16

17 // ...
18

19 // bb0[n]: StorageDead(x)
20 lft_tok_sep_return(lft_x, bw0, q)
21 endlft(bw0)
22 dead_inclusion(lft_x, bw0)
23 exhale acc(MemoryBlock<&mut S>(x_address))
24 apply acc(DeadLifetimeToken(bw0))
25 --* acc(Owned<S>(s_address)) &&
26 acc(DeadLifetimeToken(bw0)) &&

Listing 3.6: Viper encoding of a mutable borrow.

3.6 Immutable Borrows
Mutable borrows are quite restrictive as it is a common pattern in program-
ming to have multiple references to the same object. To allow this, Rust
introduces immutable borrows, which, as the name suggests, allow reading
but not modifying the borrowed objects. In contrast to mutable borrows, it
possible to immutably borrow an object multiple times. In other words, the
lifetimes of immutable borrows of the same resource may overlap [22, 23].

3.6.1 Rustbelt
In RustBelt, immutable borrows are produced by creating a mutable borrow
and then turning it into a fractured borrow as described by the rule LftL-
bor-fracture. The rule LftL-fract-acc then can be used to gain some
fractional permission on the resource. The key idea is that we can always
split a fractional permission into two smaller fractional permissions, which
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allows us to have multiple fractured borrows of the same object, all with
some non-zero amount of permission on the resource [28]

3.6.2 Viper

In Viper, we can follow the same idea. We create fractured borrows by
introducing the method bor_fracture which takes a mutable borrow in
form of a MutRef predicate instance and turns it into a FracRef predicate
instance with the same attributes as shown in Listing 3.7. The method is
called right after the creation of the mutable borrow, i.e. right after the call
of the borrow method.

1 method bor_fracture<T>(
2 lifetime: Lifetime,
3 reference_address: Address,
4 value_address: Address,
5 q: Perm
6 ) requires rd > none
7 requires acc(LifetimeToken(lifetime), q)
8 requires acc(MutRef<T>(
9 lifetime,

10 reference_address,
11 value_address))
12 ensures acc(LifetimeToken(lifetime), q)
13 ensures acc(FracRef<T>(
14 lifetime,
15 reference_address,
16 value_address))

Listing 3.7: The method bor_fracture turns a mutable borrow into an immutable one.

This allows us to distinguish between mutable and immutable references
and we can implement the rules for immutable borrows by using the FracRef
predicate. If we want to access an object behind an immutable borrow, we
can use the method frac_bor_atomic_acc which consumes a non-zero per-
mission amount of the lifetime token and the FracRef instance. In return, it
gives us some fractional permission on the ownership of the object, which
allows us to read but not change it. When calling the method, we are also
given a guarantee in the form of a magic wand which allows us to return
the fractional permission on the ownership and reobtain the consumed per-
mission of the lifetime token.

So far, this allows us to have exactly one immutable borrow as our FracRef
instance is consumed by frac_bor_atomic_acc. We can implement the
splitting of permissions in RustBelt by allowing FracRef instances to be du-
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plicated by adding a method duplicate_frac_ref. It requires one FracRef
predicate instance to be called and has two postconditions which each give
us an identical FracRef predicate instance. The encoding of this method can
be found in Listing A.5 in the Appendix.

1 method frac_bor_atomic_acc<T>(
2 lifetime: Lifetime,
3 reference_address: Address
4 value_address: Address
5 q: Perm
6 ) returns (frac_q: Perm)
7 requires q > none
8 requires acc(LifetimeToken(lifetime), q)
9 requires acc(FracRef<T>(

10 lifetime,
11 reference_address,
12 value_address))
13 ensures none < frac_q && frac_q < write
14 ensures acc(Owned<T>(object), frac_q)
15 ensures acc(Owned<T>(object), frac_q)
16 --* acc(LifetimeToken(lifetime), q)

Listing 3.8: The method frac_bor_atomic_acc gives us some fractional permission of the
ownership. The resource can be returned to regain the consumed permission of the lifetime
token.
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Chapter 4

Branching and Reborrowing

In this chapter, we explain the challenges which arise with branching and
how they are dealt with in RustBelt and Viper. The example we introduce
for this will also show us the concept of reborrowing which comes with an
additional challenge for the lifetime encoding.

4.1 Branching in Rust

We consider the function foo defined in Listing 4.1. Depending on param-
eter c, the variable x mutably borrows either a or b. The assignment after
the branching on line 10 ensures that x and the object it points to can not be
dropped inside the branch bodies. This will bring forth a synchronization
issue regarding the lifetimes and we will have to make sure in our encoding
that we have a consistent and well-defined state after the if-else statement
regardless of which branch was taken.

1 fn foo(c: bool){
2 let mut a: i32 = 4;
3 let mut b: i32 = 5;
4 let x;
5 if c {
6 x = &mut a;
7 } else {
8 x = &mut b;
9 }

10 *x = 6;
11 }

Listing 4.1: Depending on the value of the boolean c, x mutably borrows either a or b.
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4.2 MIR and Lifetimes
To get a better understanding of the problem we will first inspect the MIR
of this program shown in Figure 4.1. It contains four basic blocks: bb0 is
the block which initialises our integers and then checks the condition of
the if-statement, bb1 and bb2 are the bodies of the two branches and bb3 is
the basic block after the if-else-statement. Also note that we have removed
most of the StorageLive and StorageDead statements as they do not play
an important role here. The lifetime relations from Polonius are denoted in
the comments for some of the statements.

Basic Block bb0

bb0[0] _a = const 4_i32
bb0[1] _b = const 5_i32
bb0[2] _c = _1
bb0[3] switchInt(move _c) -> [false: bb2, otherwise: bb1]

Basic Block bb1

bb1[0] _7 = &'lft_3 mut _a
bb1[1] _x = move _7

// lft x ⊑ bw0
bb1[2] goto -> bb3

Basic Block bb2

bb2[0] _9 = &'lft_4 mut _b
// lft 4 ⊑ bw1

bb2[1] _8 = &'lft_5 mut (*_9)
// lft 5 ⊑ (bw1 ⊓ bw2)

bb2[2] _x = move _8
// lft x ⊑ (bw1 ⊓ bw2)

bb2[3] StorageDead(_8)
bb2[4] StorageDead(_9)

// lft x ⊑ bw1
bb2[5] goto -> bb3

Basic Block bb3

// lft x ⊑ (bw0 ⊓ bw1)
bb3[1] (*_x) = const 6_i32
bb3[2] return

Figure 4.1: The MIR of Listing 4.1 on the previous page, consisting of four basic blocks. Some
of the statements are annotated with their lifetime relations from Polonius.
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4.3 Reborrowing

One might naı̈vely assume that the two basic blocks bb1 and bb2 have the
same number and kinds of statements, but looking at the MIR, we can see
that bb2 contains an additional assignment. Instead of performing the bor-
row and moving it to the correct location as in bb1, it dereferences the bor-
row only to reference it again and store the result in a different variable
before moving it to _x. We call this a reborrow, and in fact, the Rust compiler
does it all the time. Every time it sees an assignment to a reference, it adds
a reborrow statement. Because we did not defined the type of x when we
declared it, the first branch will define it, and as a consequence, we do not
have a reborrow in bb1. In bb2, the compiler knows that x is a reference and
therefore adds the reborrow.

This becomes interesting when inspecting the lifetime relations of the vari-
ables given by Polonius as shown in the comments between the lines. We can
see that lft_5 and as a consequence lft_x are derived not only from bw1
but also from bw2, a new original lifetime only used for the reborrow. And
after the StorageDead(_9) statement, it is again derived from bw1 only. In
other words, the lifetime is shortened for the reborrow and extended again
after the reborrow has ended.

4.3.1 RustBelt

RustBelt provides a rule C-Reborrow which, given a borrow, creates a new
borrow with a new lifetime which is included in the lifetime of the original
borrow [28].

To extend the lifetime after the reborrow has ended, the RustBelt rule F-
Equalize could be used [26]. However, this rule was not added to RustBelt
for reborrowing but to support programs which the Rust developers are in-
tending to support in the future. Currently, those programs are still rejected
by the compiler. While F-Equalize is sound, it is incomptable with other
projects such as GhostCell [34]. For this reason, we decided to completely
ignore the lifetimes introduced for the reborrow only.

4.3.2 Viper

We can perform a reborrow with a slightly modified version of the borrow
method. The main difference is that it does not need ownership to be called
but instead requires a MutRef predicate instance. An additional parameter
to specify the lifetime of the original borrow is necessary and a precondition
ensures that the reborrow lifetime (operand_lft) is included in the lifetime
of the original borrow. An example method to reborrow an integer value is
shown in Listing 4.2 on the following page.

23



4. Branching and Reborrowing

1 method reborrow<&mut i32>(
2 target_addr: Address,
3 operand_addr: Address,
4 operand_lft: Lifetime,
5 borrow_lft: Lifetime,
6 q: Perm
7 ) requires none < q && q < write
8 requires acc(MemoryBlock<i32>(target_addr))
9 requires acc(MutRef<i32>(borrow_lft, operand_addr))

10 requires acc(LifetimeToken(operand_lft), q)
11 requires acc(LifetimeToken(borrow_lft), q)
12 requires included(operand_lft, borrow_lft)
13 ensures operand_address == points_to_addr(target_addr)
14 ensures acc(LifetimeToken(borrow_lft), q)
15 ensures acc(LifetimeToken(operand_lft), q)
16 ensures acc(Owned<&mut i32>(target_addr, operand_lft))
17 ensures acc(DeadLifetimeToken(operand_lft))
18 --* acc(MutRef<i32>(borrow_lft, operand_addr)) &&
19 acc(DeadLifetimeToken(operand_lft))

Listing 4.2: The reborrow method creates a new borrow of a resource and guarantees that we
can restore the original borrow when the lifetime of the reborrow has ended.

4.4 Merging Branches
The reborrowing does not affect our original problem of merging branches
since the lifetime extension and shortening happens within the basic block
of the else-branch. What we require for bb3 is a well-defined state of the
lifetimes. We will first look at the state at the end of bb1 and bb2. In
particular, we are interested in the lifetime lft_x of the borrow held by _x.
We know from Polonius that at the beginning of the last basic block, the two
original lifetimes, bw0 and bw1, must exist. However, in bb1, the lifetime bw1
does not exist and lft_x is only derived from bw0.

To fix this issue, we have to create the missing lifetimes at the end of the
block, make sure lft_x is derived from both lifetimes bw0 and bw1 and also
ensure the borrow _x contains the new version of lft_x. Similarly, we have
to create bw0 in bb2 to shorten the borrow.
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4.5 Borrow Shortening

4.5.1 RustBelt
RustBelt has a rule Lftl-Bor-Shorten which tells us that when lifetime κ′

is included in κ, and we have a mutable reference with lifetime κ, we can
shorten the mutable reference to lifetime κ′ [28].

4.5.2 Viper
In order to shorten the borrows, we need to also create the missing life-
times using the newlft method. The shortening of the borrow can be done
by creating and using a method bor_shorten as defined in Listing 4.3.
The method takes the old lifetime lft_old and the new (shorter) lifetime
lft_new and consumes the existing MutRef predicate instance and, in re-
turn, gives us a new MutRef instance with the new lifetime.

1 method bor_shorten<&mut i32>(
2 lft_new: Lifetime,
3 lft_old: Lifetime,
4 address: Address,
5 q: Perm,
6 ) requires none < q && q < write
7 requires included(lft_new, lft_old)
8 requires acc(LifetimeToken(lft_new), q)
9 requires acc(LifetimeToken(lft_old), q)

10 requires acc(MutRef<i32>(lft_old, address))
11 ensures acc(LifetimeToken(lft_new), q)
12 ensures acc(LifetimeToken(lft_old), q)
13 ensures acc(MutRef<i32>(lft_new, address))

Listing 4.3: bor_shorten exchanges the lifetime of a mutable borrow with a shorter one.

In order to call this function, we need both the old and new lifetime. We
thus need to create a backup copy of our lifetime before we shorten it. We
also return the old derived lifetime before we call lft_tok_sep_take such
that we do not loose any permission of bw0. At the end of bb1, we will have
to add the code shown in following listing.

1 bw1 := newlft()
2 var lft_old: Lifetime := lft_x
3 lft_tok_sep_return(lft_x, bw0, q)
4 lft_x = lft_tok_sep_take(bw0, bw1)
5 bor_shorten(lft_x, lft_old, x_address, q)
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Chapter 5

Function calls

In this chapter, we first show how function calls and lifetime relations can
be encoded in Rust before we describe what has to be done in the Viper
encoding for both the caller and callee.

5.1 Lifetime Elision

So far we have assumed that all lifetimes are given to us by the compiler,
and the programmer does not have to specify them. In some cases the
compiler can not figure out what the lifetimes of the variables are and the
developer has to explicitly list them. Such an example can be found in
Listing 5.1, where the Rust compiler requires the programmer to provide
lifetime names of the returned reference and consequently also the lifetimes
of the parameters.

1 fn first<'a, 'b>(x: &'a i32, y: &'b i32) -> &'a i32 {
2 x
3 }

Listing 5.1: Function first takes two integer references and also returns an integer reference.
We can also see that the two borrows in the parameters have distinct lifetimes with the names
'a and 'b and the returned reference has the same lifetime as parameter x. This is an example
of a function which the Rust compiler would reject had we not explicitly specified the lifetimes.

We have introduced RustBelt’s lifetime inclusion in Section 3.4 on page 12.
Such lifetime relations can also be specified directly in Rust. In Listing 5.2
on the following page, we can see that function foo has two lifetimes 'a
and 'b and in order to call this function we require 'b to outlive 'a, written
'b : 'a. This means that 'a may not start before 'b and must end together
with 'b at the latest. In RustBelt, we would write 'a ⊑ 'b. This knowledge
allows us to perform the assignment x = y, which is only allowed because
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we know that the value of y will not be destroyed before lifetime 'a ends.

1 fn foo<'a, 'b: 'a>(mut x: &'a i32, y: &'b i32){
2 x = y;
3 }

Listing 5.2: Function foo can only be called if lifetime 'b outlives lifetime 'a.

5.2 Lifetime Encoding

The lifetime specifications of a function are given by its opaque lifetimes,
which exist on entry of the function. Polonius provides a list of opaque life-
times for every function. Because every Rust function is encoded in its own
Viper method, we can add some fractional permission to the lifetime tokens
as preconditions of the called method. To avoid losing the permissions on
the caller side, we also add them as postconditions.

Polonius not only gives us the list of opaque lifetimes but also specifies their
relations using lifetime inclusion and intersection. To ensure those relations
hold, we also add preconditions for them using the included and intersect
functions. For function foo in Listing 5.2, the encoded method would look
as shown in Listing 5.3 on the facing page.

Because Polonius maintains different sets of lifetimes for the two functions,
the remaining challenge is to find the matching lifetimes on the caller side.
Every function has at least two opaque lifetimes, the static lifetime and a
lifetime of the function itself. The static lifetime is trivial to find as it is
the lifetime which outlives all other lifetimes. As a consequence, the static
lifetime of the called function is equivalent to the static lifetime of the caller
function, and it can easily be identified using the information from Polonius.
It is the lifetime which is not included in any other lifetime. The lifetime of
the called function does not exist on the caller side, but it can be constructed
as it is derived from all other opaque lifetimes. It is also the shortest opaque
lifetime and all parameters outlive the function call.

The remaining challenge is to find the lifetimes of the parameters. For the
function in Listing 5.2, we need to find the lifetimes on the caller side cor-
responding to lft_a and lft_b. From the MIR statement for the function
call, foo::<'lft_7, 'lft_8>(...), we know that lft_7 and lft_8 are the
lifetimes we are looking for. However, we do not know which lifetime corre-
sponds to lft_a and which to lft_b. The only option we have is to look at
the subset relations of Polonius. Indeed, we can see there that lft_8 outlives
lft_7, and thus lft_a must correspond to lft_7 and lft_b to lft_8. This
is only possible because we have only two lifetimes in this example. If we
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had four parameter lifetimes with the relations 'b: 'a and 'd: 'c, there
would be no easy way to find out which lifetime corresponds to which.

1 method foo(
2 lft_foo: Lifetime,
3 lft_a: Lifetime,
4 lft_b: Lifetime,
5 lft_static: Lifetime,
6 ...
7 )
8 // opaque lifetime tokens
9 requires acc(LifetimeToken(lft_foo), q)

10 requires acc(LifetimeToken(lft_a), q)
11 requires acc(LifetimeToken(lft_b), q)
12 requires acc(LifetimeToken(lft_static), q)
13 // opaque lifetime relations
14 requires included(lft_foo, intersect(lft_a, lft_b, lft_static)
15 requires included(lft_a, intersect(lft_b, lft_static))
16 requires included(lft_b, lft_static)
17 // return opaque lifetime tokens
18 ensures acc(LifetimeToken(lft_foo), q)
19 ensures acc(LifetimeToken(lft_a), q)
20 ensures acc(LifetimeToken(lft_b), q)
21 ensures acc(LifetimeToken(lft_static), q)
22 {
23 // encoding of function foo
24 }

Listing 5.3: The Rust function foo is called from another function. Permissions for the lifetime
tokens for the opaque lifetimes are added as preconditions and postconditions of method foo.
The relations between the lifetimes are also added as preconditions to ensure they hold.

As a workaround for this issue, we manually encode the preconditions and
postconditions with inhale, exhale, assert and assume statements. In
Viper, assert and assume are similar to exhale and inhale, but do not
remove or add permissions [16]. Manually encoding the conditions gives
us more flexibility, mainly because we can remove the lifetimes from the
parameters. At the beginning of the method foo, we create variables for
the lifetimes, inhale access to their tokens and assume the relations between
them. At the end of the method, we exhale access to the lifetime tokens
again to ensure they have not been ended inside the function.

On the caller side, we can do the opposite. We exhale the lifetime tokens
before the function call and inhale them again when the function returns.
Furthermore, we can easily assert the relations for the static and function
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lifetimes as we can identify or construct them on the caller side. We need to
do something different to assert the relations of the parameter lifetimes. We
can assert all relations we can find which contain the parameter lifetimes.
If the information provided by Polonius is correct and complete, this will
contain the required relations. Consequently, we put more trust in Polonius
and do not assert precisely what we assume in the function encoding, which
is not the idea of preconditions.
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Chapter 6

Loops

This chapter introduces verifications of loops in Viper and describes how we
add support for lifetimes.

6.1 Loop invariants

Loops are a particularly challenging language construct in program verifi-
cation because it is not possible to statically determine the number of it-
erations. To verify the specifications for a program with a loop, we need
an induction-based approach where we introduce an induction hypothesis
which must hold before the loop begins and is preserved in every execution
of the loop body. We can add the hypothesis as a loop invariant in Viper. It
can then be verified that the specifications of the invariant hold before and
after every iteration.

For example, consider the Viper method id shown in Listing 6.1, where we
want to prove that the result res is equal to the (positive) input parameter n.
Without a loop invariant, the only thing we know after the loop is res >= n
because the loop condition does not hold anymore. However, with the loop
invariant res <= n, Viper knows that both res >= n and res <= n hold and
therefore, the postcondition res == n holds. It is also easy for Viper to verify
that if the invariant holds before one execution of the loop body, it must also
hold after the body as we know that res < n holds at the beginning of the
body and we only increase res by 1.

6.2 Viper

Recall that we use the MIR as a basis for the Viper encoding, and the MIR
does not contain loop statements. There are, however, cycles of basic blocks
in the CFG and the loop invariants are also modelled in Prusti.

31



6. Loops

1 method id(n:Int)
2 returns(res:Int)
3 requires n >= 0
4 ensures res == n
5 {
6 res := 0
7 while(res < n)
8 invariant res <= n
9 {

10 res := res + 1
11 }
12 }

Listing 6.1: The method id contains a loop with a loop invariant without which the postcondition
could not be verified.

Because we use the Polonius information to encode the lifetimes for ev-
ery statement in every basic block and also prepare the lifetimes for sub-
sequent blocks at the end of every basic block, the task of adding life-
time specifications is not particularly challenging. We can add the lifetime
knowledge consisting of the relations between the lifetimes to the loop in-
variant to check if they actually hold. For example, the loop invariant of
the program in the following listing is encoded at the beginning of basic
block bb5, where Polonius gives us the four derived lifetimes lft 0 ⊑ bw5,
lft 1 ⊑ (bw5 ⊓ bw6), lft 21 ⊑ (bw0 ⊓ bw2) and lft 22 ⊑ bw0. We therefore
add assertions for those four relations to verify that they hold before we in-
hale them again for the next iteration. Note that the IteratorWrapper has
to be implemented such that the next function, which the loop requires, can
be marked as trusted so that the iterator itself does not get verified. The
implementation can be found in Listing A.6 in the Appendix.

1 let mut ve = Vec::new();
2 let mut v: IteratorWrapper<i32> =
3 IteratorWrapper::new(&mut ve);
4 for x in &mut v {}

32



Chapter 7

Evaluation

In this chapter, we first give a brief overview of how the lifetime encoding
was added to Prusti before describing which features are supported and the
remaining problems. Finally, we show how the implementation performs
for real-world Rust programs.

7.1 Implementation

The features described in chapters 2 to 6 have been implemented in Prusti.
The functionality was added to a new version of the core proof, which is still
under active development. The core proof verifies the properties checked
by the Rust compiler [18]. Some features (not only concerning the lifetime
encoding) are still missing and Prusti aborts when confronted with one of
them.

To generate a Viper program, the MIR is first translated into the Viper Inter-
mediate Representation (VIR), containing internal statements holding all the
information required to create the Viper program. This happens in multiple
stages where the result of the previous stage is processed block by block and
statement by statement. To add the required function calls and methods, we
first query the lifetime relations using the Polonius facts. With this informa-
tion, statements can be added to the encoding. In particular, we prepend
Prusti statements for every MIR statement to create lifetime backups (re-
quired for bor_shorten), extend derived lifetimes (lft_tok_sep_return),
end lifetimes (endlft, dead_inclusion), create lifetimes (lft_tok_sep_take,
newlft) and shorten the borrows (bor_shorten). Similarly, the statements
required for function calls, loop invariants and assignments (e.g. borrow,
bor_fracture, open_mut_ref) can be added to this representation.

Finally, the encoding for all the methods, functions, domains, and predicates
is added such that Prusti can generate the Viper program.
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7.2 Features

We show an overview of the implementation status of the different language
features in Table 7.1.

Supported

Branching
Function calls
Reborrowing

Partially Supported

Borrowing
Dereferencing

Loops

Not Supported

Slices
Generics

Table 7.1: Overview of Rust language features for which lifetime encoding is supported.

While branching, function calls, and reborrowing are fully operational, some
features require more work to be fully supported. Due to time constraints,
they were not implemented in this thesis. In particular, dereferencing is
not yet implemented for all types and does not yet work for struct fields or
enums, for example. Additionally, the missing dereferencing features make
it hard to test the features with more complex data types. Slices are not
covered yet but adding support for them should not be a big problem as
they are not much different to borrows of arrays in terms of the lifetime
encoding.

The following subsections describe three remaining issues: a problem con-
cerning borrowing objects with nested lifetimes, loops with more complex
data types, and the yet unsupported generics.

7.2.1 Borrowing Nested Structs

Listing 7.1 shows a Rust program where we use the same lifetime 'a for
both fields in the two nested structs OuterStruct and NestedStruct.

1 struct NestedStruct<'a> {
2 x: &'a mut i32,
3 }
4 struct OuterStruct<'a> {
5 x: &'a mut NestedStruct<'a>,
6 }
7 fn main () {
8 let mut n = 4;
9 let mut i = NestedStruct { x: &mut n };

10 let mut o = OuterStruct { x: &mut i };
11 }

Listing 7.1: Two nested structs which use the same lifetime for their reference type fields.
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The MIR of the main function contains the statements shown in the follow-
ing listing. The interesting lifetime relations are shown as comments. The
first two assignments are a normal borrow and reborrow, and we ignore
the newly introduced lifetime bw3 to avoid the shortening and extension of
lft_7 as described in Section 4.3 on page 23. It becomes interesting when
we compare the two lifetimes of the fields in the two structs. In Rust, we
only have one lifetime, 'a. Polonius gives us two lifetimes: lft_16 for the
lifetime of the field in NestedStruct and lft_8 for the field in OuterStruct.
We can see that lft_8 is shorter than lft_16 as it is derived from both bw0
and bw2. While this should not be problematic as bw2 is the lifetime of the
original borrow, this example will require some changes in Prusti. Currently,
it does not verify as it tries to use the Owned predicate with the unshortened
lifetime.

0 // lft 6 ⊑ bw2
1 borrow_i = &'lft_6 mut i
2

3 // lft 16 ⊑ bw0
4 reborrow_i = &'lft_7 mut (*borrow_i)
5

6 // lft 8 ⊑ (bw0 ⊓ bw2 ⊓ bw3)
7 x = OuterStruct::<'lft_8> { x: move reborrow_i }

While further investigation is necessary for this issue, we strongly believe it
is fixable. Also note that this shortening does not happen when we do not
use the same lifetime in the nested struct, i.e., if we define the outer struct
as OuterStruct<'a, 'b>{ x: &'a mut NestedStruct<'b>}.

7.2.2 Unconstrained Lifetimes in Loops

Iterating over more complex data types turns out to be more complicated.
In the example shown in Listing 7.2 on the next page, we iterate over a
vector of structs where our struct X contains a field with lifetime 'a. This
example is more challenging than the loop with the integers because there
exist lifetimes for which Polonius gives us no subset relation but are required
for the encoding. No other language feature we have encoded so far uses
such lifetimes. A solution would be to replace the problematic lifetimes with
the static lifetime. Due to time constraints, only a prototype was created to
check that the solution works.

7.2.3 Generics

Generics make the lifetime encoding more complex, in particular for func-
tion calls. The function fn f<T>(p: T){}, for example, takes an argument
of the generic type T, which may contain an arbitrary number of lifetimes. In
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1 struct X<'a>{
2 a: &'a i32,
3 }
4 let mut ve = Vec::new();
5 let mut v: IteratorWrapper<X> =
6 IteratorWrapper::new(&mut ve);
7 for x in &mut v {}

Listing 7.2: Rust program which iterates over an empty vector of structs.

order to prove the correctness of this function, we would have to show that it
is correct for any type T. Unfortunately, we can not quantify over predicates
in Viper as we can in RustBelt. Prusti currently uses abstract predicates to
verify functions with generics. The idea is that if the function verifies with
an abstract predicate, it will also verify for any concrete predicate on the
caller side. However, if we add lifetimes to the generic, it becomes more
challenging. An example of such a function would be fn g<T: 'a>, which
states that all lifetimes of T must outlive lifetime 'a [31]. Prusti does not yet
support this.

7.3 Coverage
Test functions for the different features have been implemented to verify that
the encoding works. However, we are most interested in how many real-
world applications we cover with our lifetime encoding. Crater [2] is a tool
with which we can test this by running Prusti on the 500 most used crates.
In a first crater run, it was found that 7.2% of all crates were successfully
encoded and verified. This is exactly the same percentage as the current
version of the core proof without the RustBelt encoding achieved. It should
be noted that the sets of crates, which were successfully verified of the two
versions, are not identical. There are crates that verify with the current
version but not with the new core proof and vice versa.

The current version of Prusti has a flag PRUSTI SKIP SUPPORTED FEATURES
that, if enabled, ignores unsupported features. The new version of the core
proof does not have this flag and will always panic for programs with un-
supported features. To have more comparable results, this flag was disabled.
When the flag is enabled, the current Prusti version can handle more than
three times as many crates without crashing.

The Prusti and Viper versions and the relevant settings are shown in Ta-
ble 7.2. The list of the crates can be found in the Prusti GitHub reposi-
tory [10].
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Prusti Commit Hash a70ce38939eefde053e1070fb0fdb6e08a5f4f86
Viper Version v-2022-07-01-0736
Environment Variables PRUSTI CHECK PANICS=false

PRUSTI CHECK OVERFLOWS=false
PRUSTI ASSERT TIMEOUT=60000
PRUSTI SKIP UNSUPPORTED FEATURES=false

Table 7.2: Crater Evaluation setup
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Chapter 8

Conclusion

In this thesis, we attempted to investigate the feasibility of creating mem-
ory safety certificates for Rust programs by modelling the RustBelt rules in
Viper.

We have shown how we can encode Rust’s ownership model and borrowing
rules in Viper. Furthermore, we have described how support for branching,
function calls and loops can be added to the encoding.

To automate the process of creating the proofs, we have extended the Viper
front-end Prusti to create the necessary encoding and verify that given Rust
programs are indeed memory-safe. Polonius, Rust’s nightly borrow-checker,
provides the necessary information about the lifetimes needed to perform
this task. Some language features came with surprising challenges, such as
the lifetime shortening when performing a reborrow or finding the matching
lifetimes for function calls.

Even though encoding different language features is not always easy and
still requires more work to support a larger portion of real-world applica-
tions, we are confident that creating memory safety certificates by modelling
the RustBelt rules in Viper is a feasible and sensible approach.

8.1 Future Work

8.1.1 Missing Features

To cover more real-world applications, the yet unsupported features have
to be implemented. This includes missing features of the new core proof
and features of the lifetime encoding as described in Section 7.2 on page 34.
There also exist language constructs which RustBelt does not yet support.
Trying to implement them would also be an exciting project.

39



8. Conclusion

8.1.2 RustBelt Limitations

An advantage of Prusti is that implementing and testing new rules may be
easier than extending RustBelt. Yet unsupported features could be imple-
mented in Prusti and added to RustBelt if they work.

Two-Phase Borrows

One of the known limitations of RustBelt are Two-Phase Borrows which re-
quire both a mutable and immutable reference to the same object with over-
lapping lifetimes [26]. Rust only allows this in some special cases, and
RustBelt does not support them. One example is shown in Listing 8.1, where
the vector v is needed to both read its length and insert the value. Listing 8.2
shows how the compiler expands the program. We can see that temp1 is a
special kind of borrow of v which allows using v even though the borrow
has not yet ended.

1 fn main(){
2 let mut v = Vec::new();
3 v.push(v.len());
4 }

Listing 8.1: Two-phase Borrow

1 fn main(){
2 let mut v = Vec::new();
3 let temp1 = &two_phase v;
4 let temp2 = v.len();
5 Vec::push(temp1, temp2);
6 }

Listing 8.2: Expanded Two-Phase Borrow

Overlapping Shared References

Another limitation of RustBelt are overlapping shared references. An ex-
ample is given in Listing 8.3, where t1 immutably borrows only one of the
fields of the struct t and t2 immutably borrows the entire object. Note that
because both variables are used in the println! function call, their lifetimes
overlap.

8.1.3 Fine-grained Tests

Once the new core proof supports the missing features and does not throw
as many unimplemented errors, a more fine-grained evaluation can be per-
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1 fn main (){
2 let t = T { x: 1, y: 2};
3 let t1 = &t.x;
4 let t2 = &t;
5 println!("{} {}" t1, t2);
6 }

Listing 8.3: Overlapping Shared References

formed to see how the encoding works for real-world applications. Crater
can be used for this.

8.1.4 Coq instead of Z3

In this thesis, we encoded RustBelt rules in Viper. It is also thinkable to
generate the proofs for the Coq proof assistant [1]. An advantage of Coq
is that it has an exceptionally small codebase compared to Z3 [17], which
Viper uses. Furthermore, a bug in the Viper encoding, such as a forgotten
precondition, could cause an unsafe program to verify successfully. Coq
would complain if a rule is not sound as the RustBelt rules themselves are
verified too.

8.2 Related Work
There is a large variety of tools for different programming languages to
check correctness properties and identify bugs. VeriFast, for example, can
prove properties of annotated C and Java programs [14]. Different Viper
front-ends exist for programs written in Python, Java, and OpenCL [15].
Infer [4] is a static analyzer which can detect potential bugs in Java, C, C++
and Objective-C, including null pointer dereferences and memory leaks [5].

Even though Rust is a comparably new language, there are some tools and
projects which formalize and verify different aspects of Rust programs. MI-
RAI is a static analyzer working on the MIR which can find panics and verify
other correctness properties or Rust programs [7]. As we have seen in this
thesis, the RustBelt project [3] provides an incredibly expressive program
logic with which we can create correctness and memory safety proofs, but
it lacks automation. Stacked Borrows [13] defines rules to describe aliasing,
which can be used to detect undefined behaviour. In contrast to this thesis,
it performs a dynamic analysis and works in both safe and unsafe Rust. [27].

Rust is different from most other languages because its type system is built
in a way that the compiler can check memory safety. RustHorn [29] and
Creusot [21] both make use of this type system and can be used to prove
functional specifications of Rust programs. They do not, however, prove
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memory safety and rely on the borrow checker for this task. To our knowl-
edge, there currently is no other verifier which automatically proves mem-
ory safety for Rust programs.

Related in a different way is Voila, a proof outline checker for the TaDA [20]
logic. Just as we have determined that Viper is an excellent fit to encode
parts of the RustBelt logic, it was found that the TaDA proofs can be encoded
in Viper [33].
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Appendix

A.1 Code Listings

1 struct P {
2 a: i32
3 }
4 let x = P{
5 a: 1,
6 };

Listing A.1: Declaration and
initialisation of the struct P

1 // bb0[0] StorageLive(x)
2 var x_address: Address
3 inhale acc(MemoryBlock<P>(x_address))
4

5 // bb0[1] x = P { a: const 3_i32 }
6 assign<P>(x_address, Integer(1))
7

8 // bb0[n] StorageDead(x)
9 exhale acc(MemoryBlock<P>(x_address))

Listing A.2: The encoding of the relevant statements MIR of
Listing A.1 to create, initialise and delete the struct owned by
x.

1 method lft_tok_sep_return(
2 lft_derived: Lifetime,
3 lft_orig_a: Lifetime,
4 lft_orig_b: Lifetime,
5 q: Perm
6 ) requires none < q
7 requires acc(LifetimeToken(lft_derived), q)
8 requires lft == intersect(lft_orig_a, lft_orig_b)
9 ensures acc(LifetimeToken(lft_orig_a), q)

10 ensures acc(LifetimeToken(lft_orig_b), q)

Listing A.3: The method lft_tok-sep_return consumes a derived lifetime token and in return
gives back access to the (original) lifetime tokens it was derived from.
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1 method open_mut_ref<&mut S>(
2 ref_address: Address,
3 val_address: Address,
4 lifetime: Lifetime,
5 q: Perm
6 ) requires none < q
7 requires acc(LifetimeToken(lifetime), q)
8 requires acc(MutRef<&mut S>(
9 lifetime,

10 ref_address,
11 val_address))
12 ensures acc(Owned<S>(val_address))
13 ensures acc(CloseMutRef<&mut S>(
14 ref_address,
15 val_address,
16 lifetime,
17 q))
18

19 method close_mut_ref<&mut S>(
20 ref_address: Address,
21 val_address: Address,
22 lifetime: Lifetime,
23 q: Perm
24 ) requires none < q
25 requires acc(CloseMutRef<&mut S>(
26 ref_address,
27 val_address,
28 lifetime,
29 q))
30 requires acc(Owned<S>(val_address))
31 ensures acc(LifetimeToken(lifetime), lifetime_perm)
32 ensures acc(MutRef<&mut S>(
33 lifetime,
34 ref_address,
35 val_address))

Listing A.4: open_mut_ref consumes some fractional permission on the lifetime token of
the borrow and gives us both ownership in form of the Owned predicate and an instance
of CloseMutRef. close_mut_ref restores the borrow by doing the opposite. It consumes
CloseMutRef and the ownership and in return gives us back the MutRef predicate and the
permission on the lifetime token.
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1 method duplicate_frac_ref<T>(
2 lifetime: Lifetime,
3 reference_address: Address
4 value_address: Address
5 ) requires acc(FracRef<T>(
6 lifetime,
7 reference_address,
8 value_address))
9 ensures acc(FracRef<T>(

10 lifetime,
11 reference_address,
12 value_address))
13 ensures acc(FracRef<T>(
14 lifetime,
15 reference_address,
16 value_address))

Listing A.5: duplicate_frac_ref consumes one FracRef predicate instance and in return
provides two identical predicate instances.
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1 extern crate prusti_contracts;
2 use prusti_contracts::*;
3

4 #[ trusted ]
5 struct IteratorWrapper<'a, T>{
6 iter_mut: std::slice::IterMut<'a, T>,
7 }
8 impl<'a, T> IteratorWrapper<'a, T> {
9 #[ trusted ]

10 fn new(x: &'a mut Vec<T>) -> Self {
11 IteratorWrapper {
12 iter_mut: x.iter_mut(),
13 }
14 }
15 }
16 impl<'a, T> Iterator for IteratorWrapper<'a, T> {
17 type Item = &'a mut T;
18 #[ trusted ]
19 fn next(&mut self) -> Option<Self::Item> {
20 self.iter_mut.next()
21 }
22 }
23

24 fn main() {
25 let mut ve = Vec::new();
26 let mut v: IteratorWrapper<i32> =
27 IteratorWrapper::new(&mut ve);
28 for x in &mut v {}
29 }

Listing A.6: To test the encoding of loops, we have to create a wrapper around the iterator
such that we can mark the required functions as trusted.
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