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1 Introduction

A common approach to program verification is to use a verifier that encodes a pro-
gram and its specification into a set of universally quantified Satisfiability Modulo
Theories (SMT) formulas. These formulas can be given to a prover, which decides
their satisfiability. Based on the answer of the prover, the verifier then decides if the
program is correct with respect to its specification.

There are two main classes of provers that are used most in practice:

SMT Solvers such as Z3 [1] and CVCY [2] invoke algorithms as for example
E-Matching [3] or Model-Based Quantifier Instantiation (MBQI) [4] that differ
in how they handle quantifiers. While MBQI is essentially a counter-example
based refinement loop that can produce unsatisfiability proofs as a side effect,
the typically more efficient E-Matching algorithm selects partial instantiations
based on patterns that are provided for each quantifier.

Theorem Provers such as Vampire [5] use superposition calculi to identify
contradictions in the input formulas. They are designed to generate unsatisfia-
bility proofs (refutations).

We use “solver” to specifically talk about SMT solvers and we use “prover” when we
talk about either theorem provers or both of these.

Generally, a prover may return one of the following results:

SAT: The prover concluded that the input formula is satisfiable. Solvers can
produce models (valid assignments), but these are not relevant for this project.
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UNSAT: The prover concluded that the input formula is unsatisfiable. De-
pending on the specific algorithm used, it can give us a proof containing the
reasoning steps performed to derive the unsatisfiability or a so-called UNSAT
core, which is a subset of the input assertions that lead to a contradiction.

UNKNOWN: The prover was not able to decide the satisfiability of the input
formula due to incompleteness.

Figure 1 summarizes the tools that will be considered in this project.
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Figure 1: Overview of the tools considered here for deciding unsatisfiability of an
SMT formula. The squared boxes represent different types of provers and some of
their algorithms, while the rounded boxes represent inputs/outputs.

Program verifiers usually check the negation of a program and its specification. If the
negation is satisfiable, then we found a verification error. If it is instead unsatisfiable,
we successfully verified our program with respect to the specification.

In some situations, however, users of a verifier are not satisfied with a simple UNSAT
answer, as the following two scenarios suggest:

Alice wrote a specification and a program that by construction does not fulfill
the specification. This is why she is very surprised that the prover of her choice
returns UNSAT when run with the encoding of her program. Instead, she ex-
pected the formula to be satisfiable, as the program is not supposed to verify.
Since Alice assumes the prover to be correct, there must be an error in either
her specification or in the way the verifier encoded her program. To find this
error, she wants to look at the unsatisfiability proof that the prover provides.



Bob also wrote a program, which he expects to successfully verify. However,
28 using E-Matching returns UNKNOWN when run on the encoding of his
program. This forces him to use another algorithm to the same solver or another
prover, which indeed returns the UNSAT he expects. He now wonders why E-
Matching failed and hopes to get some insights when looking at unsatisfiability
proofs produced by alternative algorithms.

The unsatisfiability proofs produced by Z3 using MBQI and by Vampire contain the
reasoning steps performed by the prover to derive false, but are long and complex,
and require expert knowledge to be understood. If Alice and Bob are not that expe-
rienced in the area of formal reasoning, they will most probably not understand what
they are provided by their respective provers.

This project aims to help the users understand why their input formulas to provers
are unsatisfiable, by generating simple examples based on the information the unsat-
isfiability proofs provide.

2 Problem Description

To reconstruct the experience that Alice and Bob are about to have, we will take a
look at such unsatisfiability proofs produced by Z3 using MBQI and by Vampire.

Instead of trying to verify extensive programs, we will simplify the Bob scenario until
only essential details remain. To this end, consider the following two assertions (1)
and (2) that might occur in the negated encoding of Bob’s program:

() VeeZ:2>0= f(z)=x
(2) Ve eZ: f(z) >0

These assertions clearly contradict each other in the case where x = 0. Z3 using
E-Matching however returns UNKNOWN when given them in SMT-LIB syntax as
shown in Figure 2. Same as Bob, we now look at the unsatisfiability proofs produced
by Vampire and by Z3 using MBQI, which can be seen in Figures 3 and 4, respec-
tively.

( f (Int) Int)

( (forall ((x Int)) (=> (>=x 0) (= (f x) X))))
( (forall ((x Int)) (> (f x) 0)))

( )
( )

Figure 2: Encoding P := (1) A (2) of Bob’s simplified program in SMT-LIB syntax.

The unsatisfiability proof provided by Vampire in Figure 3 is very structured in the
sense that the steps of several stages that were applied are grouped together within
the proof. After stating the [inputs| and _ them into a more general form,



Vampire usually lists several axioms that will be needed in later steps. For our sim-
ple input it only requires the non-reflexivity of strict inequality —(Xy < Xj), as stated
in line 10 . The preprocessing step then transforms the input formula into clauses,

before _ are used to arrive at a contradiction.

% Refutation found Thanks to Tanya!

- Sint] : (f(X0) = X0 | Sless(XO, 0%) [ennf transformation 4]
Sless(0 f(XO) cnf transformation 3
Sless X0,0) | f(X0) = X0 [cnf transformation 17]
f(0) =0 [resolutlon 19,10]

Figure 3: Unsatisfiability proof produced by Vampire for P. The missing lines have
been removed by Vampire itself and never appeared in the output.

Each proof step states a formula that is derived by an inference rule, which most
often uses one or multiple premises. For example “f(0) = 0 [resolution 19,10]” in
line 21 can be translated to “f(0) = 0 is derived from (X, < 0) V (f(Xo) = Xo)
(line 19) and ~(Xo < Xo) (line 10) using a resolution calculus”. Note that this very
line implicitly instantiates the quantified variable and actually suffices to generate an
example that exposes the contradiction in the input formula.

The unsatisfiability proof provided by Z% using MBQI in Figure 4 works in a similar
fashion and is typically even longer. It also implicitly instantiates the quantified vari-
able in lines 3 and 4 , but this proof further contains explicit quantifier instantiations

in lines 33 and 46

1. unsat 22, (let ((?x158 (* (- 1) ?x125)))

2. ((proof 23, (let ((?x159 (+ 0 ?x158)))

3. (let ((2x125 (f 0))) 24, (let (($x160 (= 7x159 0)))

4. (let (($x198 (= 07x125))) 25, (let ($x153 (>= 0 0)))

5. (let @x204(symm (commutativity (= $x198 (= ?2x125 0))) (= (= 2x125 0) $x198))))  26. (let (($x154 (not $x153)))

6. let ((Sx176 125 27.  (let (($x161 (or $x154 $x160

7. Iet X104 foraII ((x Int) )(! (Iet (($x26 (>= x 0)). (Iet S(Sxaz(not $x26))) 28.  (let ((Sx190 (or $x188 $x161
or $x: 2(-sr E (-1) (fx))) 0)))) :pattern ( (f x 29.  (let (($x192 (= $x190 $x189)

8. (let (( x66( oral((x Int) )(! (let ((Sx26( = x 0)) (Iet ((Sx32 not $x26))) 30. (let ((@x180 (trans (monotonicity (rewrite (= ?x159 ?x158)) (= $x160 (= ?x158 0)))
or $x32 (= (+ x (* (- 1) (f ))) ?))) k!6)) ) rewrite (= (= ?x158 0) $x176)) (= $x160 $x176))))

9. ﬁlet x107 (Iambda ((x Int )e( Xx26 (>= xO)?R (let (($x32 (not $x26))) 31.  (let (@x170 (trans (monotonicity (rewrite (= $x153 true)) (= $x154 (not true)))
et (($x87 (or $x32 (= (+x (* f x))) 0)))) (re ( Sx8 87))) )) ) rewrite (= (not true) false)) (= $x154 false))))

10. (let ((?x91 (lambda ((x Int) (Iet ($x26 (>= x 0))) (let (($x32 (not X26))) 32.  (let (@x187 (trans (monotonicity @x170 @xwo( $x161 (or false $x176)))
et (($x87 (or $x32 -(+x *(-1) (Fx))) 0)))) (refl (~ Sx87 $x87)))))) )) rewrite (= (or false $x176) $x176)) (= $x161 $x176)))

11, (let (($x69 (forall ((x Int) )(! (let ($x26 (> X 0))) (let (($x32 (not X26))) 33.  (let (@x197 (mp (trans (monotonncnty@x187 $x192)
12. (I tsi(327(5_ E”b’g & I)t ))I )t))(s 26 ) ))o ) (let (($x32 (not $x26)) 34 WEE; (208)((183 x18|9‘ X1@9219;1(8 %) 95 (quant-intro (proof-bind ?x107)
. (let ((?x75 (lambda ((x Int) )(let (($x26 (>= x et (($x32 (not $x: . (le X unit-resolution @x mp @x uant-intro (proof-bind ?x

Ie % x87 (or $x32 E +x) (( 1) (f x) ( ) (et ( 0 = $X66 $x104)) Sx104;$x17 )) P g P
et
13 | t

x67 (or $x32 (= (+ (Fx) (* (- 1) x (rewrlte( $x67 Sx87 D)) 35.  (let (($x206 (not $x198)
S 5 let (($x126 (<= 2x125 0))

23 s(fma"o% '("t) Es('Et (xa1 (fxg;gg (%2 kIGB » 37, (let ((3x141 (not $x126

14. 1(73)(7216 ﬁ> );)d | g i n$0t2$6X26 00|' Vi SSXZQSZ)) ) ésl 26 38 let ((Sx112 (forall |)t ! (not fx) 0 tt f d k!7)
: (e?x (ambda (6 nt) et é* (= O (et (B gno x26) - et (a2 for (é(x(xmp) 2((r$2?ﬁ<(f-(f(x)x)0)))) paten (1)) id k7))

I = (+(Fx) (* |
ot E$x67§or ) et X)( o )0))2 % ?7)(27( 0 a ((x Int) )(refl (= (not (<= ?fx) 0)) (not (<= (f x) 0)))))))

9.
let (($x28 rewrite (= $x33 $x67))))))))))) 40.  (let ((?x115 (lamb

15 $x30 f_vxl?7X)l))()|e'(ﬁ 7(%r7>f<2 ot 3(28 41, (let ((?x98 (lambda ((x Int) )(refl (~ (not (<= (f x) 0)) (not (< ( ) 0)))))
. (let (($x30 (forall ((x int etx X)) (let (($x28 (= ?7x27 X . (let ((?x98 (lambda ((x Int) )(refl (~ (not (<= (f X no—
let x2 >= XOS X 2(6 g (qc&( ¢ » 42, (let Sx43(ﬁforall ((x Int) )(* (let ((?x27 (fx)?) (> ?x270)) :

16.  (let (7x37(ambda ((xlnt) (let (7x27 (fx)) ﬁlet ($x28 (= ?7x27 X)) 43.  (let ((?x50 (lambda ((x InJg(rewrne( (>(fx) 0) (not <= (f x)O )))))
Iet Sx26 >-x0))) let (($x32 (not $x26))) (let (($x33 (or $x32 $x28))) 44.  (let (@x54 (mp (asserte x43) (quant-intro (proof-bind ?x50) (= $x43 $x49)) $x49)))
Iet Sx29 => $x26 9x28))) (rewrite (= $x29 $x33)) )))) ) 45, (let (@x102 (mp~ (mp @x54 gewnte( $x49 $x49)) $x49)

17. @x4'| mp asserted $x30) (quant-intro (proof-bind ?x37) (= $x30 $x36)) $x36))) Snnf 0s (proof-bind ?x98) (~ $x49 $x49)) $x49

18. Iet x65 mp m @x41 (rewrite (= Sx36$ 36)) $x36) 46.  (let ((@x209 (unit-resolution

quant intro (proof blnd 2X71) (= $x36 $x69)) $x69))) mp @x102 (quant-intro (?roof bind ?7x115) (= $x49 $x112)) Sx112) $x141)))

19. (et (@x95 (mp~ (mp @x65 (quant-intro (proof-bind ?x75) (= $x69 $x66)) $x66) 47.  (unit-resolution (unit-reso utlon (_ th-lemma arith triangle-eq)
nnf 0s (proof-bind ?x91) (~ $x66 $x66)) $x66))) or $x206 $x126)) @x209 $x2!

20. $X1 88 not $x104))) 48.  (mp @x200 @x204 $x1 98) false)))))))))))))))))))))))))))))))))))))))))))))))

21. Iet Sx'l 89 or $x188 $x176)))

Figure 4: Unsatisfiability proof produced by Z3 using MBQI for P.



The overall challenges that arise when working with these unsatisfiability proofs are:

e They are long, complex and hard to read for humans. Especially the simplifi-
cation and preprocessing steps only serve the machine-checkability, but do not
provide any qualitative contribution to the reasoning.

e Some quantifier instantiations are only implicit, which is why it does not suffice
to just search all the explicit quantifier instantiations.

e There is no common standard in which the proofs are presented. Both provers
examined here employ differences in their semantics, the way they handle ref-
erences and their general proof structures.

3 Solution Approach

Having simple examples that expose the contradictions derived in unsatisfiability
proofs prevents Alice and Bob from the trouble of reconstructing these proofs. We
want to design and implement an algorithm that provides such examples.

In a first step, we will determine what exact information the proofs include, by man-
ually analyzing a variety of them. Next, we will shift our focus to the users and
their needs and accordingly define the format of our examples. These primary steps
will equip us with all the information necessary to formulate the specific task of our
algorithm, which we can then realize.

To evaluate our solution approach, we will design a validation mechanism that checks
if the examples we generate are indeed sufficient to expose the contradiction.

4 Core Goals

With the high-level overview given in the Solution Approach in mind we set ourselves
the following core goals:

e Analyzing Proofs

We analyze various proofs generated by Z3 using MBQI and by Vampire to
gain the required knowledge of the information they provide. We assume that
the contradictions always include universally quantified variables, as the for-
mulas could otherwise be solved by FE-Matching. Since the explicit quantifier
instantiations typically do not suffice to determine the contradiction, we will
also consider implicit instantiations of quantified variables and what informa-
tion they provide with their syntactical appearance.

e Analyzing Users Needs
Our solution should enhance the user experience when working with unsatisfi-
ability proofs. We achieve this by discussing the following components:

— The information provided by our examples should include all the essential
details that a human requires to reproduce the contradiction.



— We want to find a suitable way to present the extracted examples that is
not too overwhelming or complicated.

¢ Designing a Representation Format
We introduce a layer of abstraction by designing a generic format that rep-
resents the information required to construct our examples. This separates
preprocessing from the main algorithm and provides the modularity required
to add support for other provers and algorithms that have a different output
format.

e Choosing a Programming Language
We choose a suitable programming language for implementing our algorithms
based on the knowledge we gain through the theoretical study of the unsatisfi-
ability proofs and on the existence of helpful libraries that possibly exist.

e Extracting Information

We develop and implement an algorithm that automatically extracts the neces-
sary information from the proofs produced by both Z3 using MBQI and Vam-
pire and translates it into our representation format. Our examples include
pairs of assignments from quantified variables to values and additional infor-
mation about how the accordingly instantiated formulas relate to each other.
Given the proofs of our simple formula from the Problem Description, we would
therefore extract the information z = 0 and f(0) that leads to the contradict-
ing constraints for f which arise when the quantified variable z is instantiated
accordingly.

e Generating Examples
We develop and implement an algorithm that generates the examples by using
the information given in our generic format and meets the users needs.

e Validation

We develop and implement a validation mechanism that checks if the generated
examples are indeed sufficient to expose the contradiction in the input formulas.
Given again the proofs of our simple formula from the Problem Description, we
could for example instantiate x = 0 and detect the contradicting constraints for
f(0) by deriving f(0) = 0 based on assertion (1) and then comparing it to the
constraint set by assertion (2), which will expose the contradiction.

We could again rely on a prover to evaluate the assertions. Validation gets more
difficult if the contradiction is between quantified and quantifier-free parts of
the input formula, which is typically the case.

e Evaluation
We evaluate our approach on benchmarks from SMT-COMP [6].



5 Extension Goals

Additionally, we could address some of the following extension goals:

e Minimization Algorithm
Unsatisfiability proofs produced by Z3 using MBQI and by Vampire are not
guaranteed to be minimal. If a formula is extensive, the extracted example will
include assignments of a possibly huge number of quantified variables, which is
not human-readable. We could design an algorithm that extracts the subset of
assertions that contradict each other, i.e. a minimal example. The information
provided by UNSAT core might help us there.

e Support for additional Provers
We could look at other provers (e.g. C'V(C4) that also produce unsatisfiability
proofs and translate their output into our generic format.

e Integration into Viper
Viper (Verification Infrastructure for Permission-based Reasoning) is a language
and suite of tools developed at ETH Zurich, providing an architecture on which
new verification tools and prototypes can be developed simply and quickly. [7]
We could extend Viper by integrating our algorithm.

e Build the Bridge to E-Matching

E-Matching does a controlled number of quantifier instantiations based on given
patterns to stay as time-efficient as possible. A failure of E-Matching (i.e., it
returning UNKNOWN) is therefore often caused by a lack of triggering terms
that would be necessary to discover the contradiction. Maybe we can use the
examples our algorithm generates to add further assertions to the input for-
mula that only syntactically match patterns to trigger the necessary quantifier
instantiations.



6 Schedule

To meet our core goals, we will roughly adhere to the following schedule:

Week 1: 01.02.2021 - 07.02.2021 | Theoretical Study
Week 2: 08.02.2021 - 14.02.2021 | Theoretical Study
Week 3: 15.02.2021 - 21.02.2021 | Project Description
Week 4: 22.02.2021 - 28.02.2021 | Project Description
Week 5: 01.03.2021 - 07.03.2021 | Initial Presentation

Week 6:

08.03.2021 - 14.03.2021

Analyzing Proofs

Week 7:

15.03.2021 - 21.03.2021

Analyzing Proofs

Week 8&:

22.03.2021 - 28.03.2021

Analyzing User Needs

Week 9:

29.03.2021 - 04.04.2021

Analyzing User Needs

Week 10:

05.04.2021 - 11.04.2021

Designing a Representation Format

Week 11:

12.04.2021 - 18.04.2021

Designing a Representation Format

Week 12:

19.04.2021 - 25.04.2021

Extracting Information

Week 13:

26.04.2021 - 02.05.2021

Extracting Information

Week 14:

03.05.2021 - 09.05.2021

Generating Examples

Week 15:

10.05.2021 - 16.05.2021

Generating Examples

Week 16:

17.05.2021 - 23.05.2021

Generating Examples

Week 17:

24.05.2021 - 30.05.2021

Validation

Week 18:

31.05.2021 - 06.06.2021

Validation

Week 19:

07.06.2021 - 13.06.2021

Validation

Week 20:

14.06.2021 - 20.06.2021

Validation

Week 21:

21.06.2021 - 27.06.2021

Evaluation

Week 22:

28.06.2021 - 04.07.2021

Write Thesis

Week 23:

05.07.2021 - 11.07.2021

Write Thesis

Week 24:

12.07.2021 - 18.07.2021

Write Thesis

Week 25:

19.07.2021 - 25.07.2021

Prepare Presentation

Week 26:

26.07.2021 - 01.08.2021

Prepare Presentation
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