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Abstract

SMT solvers such as Z3 and theorem provers such as Vampire are widely used in
program verification. Verifiers usually rely on quantifiers to encode the specification
and the semantics of a programming language, which is why universally quantified
variables are frequently responsible for the unsatisfiability of a set of SMT formu-
las. Provers can generate an unsat-proof for unsatisfiable inputs, which contains the
reasoning steps performed to derive false. They often use explicit or implicit in-
stantiation for quantified variables. However, such unsat-proofs are usually long and
complex, and require expert knowledge to be understood.

In this thesis, we present a technique for using unsat-proof information to generate
simple examples that explain the contradiction derived in these. We implemented
our technique as a reusable tool, which is highly modular and can be easily extended
to other provers.
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1 Introduction

A common approach to program verification is to use a verifier that encodes a pro-
gram and its specification into a set of universally quantified Satisfiability Modulo
Theories (SMT) formulas. Most of the universal quantifiers in SMT formulas gener-
ated by program verifiers appear in axioms over uninterpreted functions, which are
functions that are not defined in a built-in theory. These formulas can then be given
to a prover to decide their satisfiability. Based on the answer of the prover, the verifier
determines if the program is correct with respect to its specification.

In general, a prover can return one of the following results:

Sat. The prover infers that the input formulas are satisfiable together. Some solvers
can generate models (valid assignments), but these are not relevant for this thesis.

Unsat. The prover infers that the input formulas are unsatisfiable together. Some
provers can generate an unsat-proof, which contains the reasoning steps performed
to derive false, or an unsat-core, which is a subset of the input formulas that con-
tains contradictory constraints.

Unknown. The prover is not able to determine the satisfiability of the input formu-
las due to incompleteness or insufficient resources.

There are two main classes of provers that are used most in practice:

SMT Solvers such as Z3 [1] invoke algorithms such as Model-Based Quantifier
Instantiation (MBQI) [2] or E-Matching [3] to examine the input for satisfiability.
While MBQI is essentially a counter-example based refinement loop that can gener-
ate unsat-proofs as a side effect, the typically more efficient E-Matching algorithm
performs the instantiations based on patterns that are provided for each quantifier.

Theorem Provers such as Vampire [4] use superposition calculi to identify a con-
tradiction in the input formulas and are therefore designed to generate unsat-proofs.

Thus, Z3 and Vampire differ in the underlying technique and their approach to gener-
ate the unsat-proofs. They are similar because we can use them for the same problem
category and because they complement each other (i.e., there are inputs for which one
of them is successful and the other is not), presumably just thanks to the different
approaches they pursue according to [5].

Figure 1 summarizes the tools that are considered in this thesis.

Figure 1: Overview of the tools considered in this thesis for determining the unsatisfiability
of a set of SMT formulas. The square boxes represent different types of provers and some
of their algorithms, while the rounded boxes represent the inputs and outputs.
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1.1 Problem Description

Program verifiers usually check the negation of a program and its specification. If the
negation is satisfiable, then there is a verification error. If instead it is unsatisfiable,
then the program has been successfully verified with respect to the specification. In
some situations, however, the users not only want to know that their input formulas
are unsatisfiable, but also why this is the case, as the following two scenarios show:

Alice wrote a specification and a program that, by construction, does not fulfill the
specification. Therefore, she is very surprised that the prover of her choice infers
unsat when used with the encoding of her program. Instead, she expected the formulas
to be satisfiable, since the program is not intended to successfully verify. Since Alice
assumes that the prover is correct, there must be an error either in her specification
or in the way the verifier encoded her program. To find this error, she wants to look
at the unsat-proof that the prover can generate.

Bob also wrote a program that he expects to successfully verify. However, Z3 with
E-Matching returns unknown when used with the encoding of his program. This forces
him to use a different algorithm to the same solver or another prover, which indeed
infers the unsatisfiability he expects.1 He wonders why E-Matching failed and hopes
to get some insight by looking at unsat-proofs generated by the alternative algorithms.

To reconstruct the experience of Alice and Bob, we use such unsat-proofs generated
by Z3 with MBQI and by Vampire. Let us first consider a very simple version of the
Bob scenario. To this end, consider the following two formulas that might occur in
the negated encoding of Bob’s program:

∀x0 ∈ Z : x0 ≥ 0⇒ f(x0) = x0

∀x1 ∈ Z : f(x1) > 0

These formulas set contradictory constraints on the uninterpreted function f , as they
simultaneously require f(0) = 0 and f(0) > 0. Thus, no interpretation can be found
for f , so the two formulas are unsatisfiable together. Z3 with E-Matching returns
unknown when given these formulas as input in SMT-LIB syntax [6] as shown in
Figure 2, while Vampire and Z3 with MBQI return unsat and generate a proof.

(declare-fun f (Int) Int)

(assert (forall ((x0 Int)) (! (=> (>= x0 0) (= (f x0) x0)) :pattern (f x0))))

(assert (forall ((x1 Int)) (! (> (f x1) 0) :pattern (f x1))))

Figure 2: Encoding of Bob’s input in SMT-LIB syntax. The patterns are only required for
E-Matching ; MBQI and Vampire ignore them. For simplicity, we therefore omit them in
the further inputs that we show.

1Note that we use the word solver to talk specifically about SMT solvers, and we use the word
prover when talking about either theorem provers or both.

6



Same as Bob, we now manually inspect the unsat-proofs generated by Vampire and
by Z3 with MBQI, which can be seen in Figures 3 and 4, respectively.

The unsat-proof generated by Vampire in Figure 3 is very structured in the sense
that the steps of several applied stages are grouped together within the proof. After
stating the inputs and simplifying them into a more general form, Vampire usually

lists several axioms that are needed in later steps. For our simple input, only the
non-reflexivity of strict inequality ¬(X0 < X0) is needed, as stated in line 10. In the
preprocessing stage, the input formulas are converted into clauses. Then, it uses

superposition and resolution calculi to derive a contradiction.

1. ! [X0 : $int] : ($greatereq(X0,0) => f(X0) = X0) [input]

2. ! [X0 : $int] : $greater(f(X0),0) [input]

3. ! [X0 : $int] : $less(0,f(X0)) [evaluation 2]

4. ! [X0 : $int] : (∼$less(X0,0) => f(X0) = X0) [evaluation 1]

10. ∼$less(X0,X0) [theory axiom]

17. ! [X0 : $int] : (f(X0) = X0 | $less(X0,0)) [ennf transformation 4]

18. $less(0,f(X0)) [cnf transformation 3]

19. $less(X0,0) | f(X0) = X0 [cnf transformation 17]

21. f(0) = 0 [resolution 19,10]

22. $less(0,0) [superposition 18,21]

23. $false [evaluation 22]

Figure 3: Unsat-proof for Bob’s input generated by Vampire. The missing lines were re-
moved by Vampire and never appeared in the output.

Each proof step states a formula that is derived by an inference rule, usually using

one or more premises. E.g., f(0) = 0 [resolution 19,10] in line 21 can be trans-

lated to “f(0) = 0 is derived from (X0 < 0)∨(f(X0) = X0) (line 19) and ¬(X0 < X0)
(line 10) using a resolution calculus”. Note that this line implicitly instantiates the
quantified variable X0 (which, as we explain in Section 3.3.2.3, corresponds to the
two quantified variables x0 and x1 from the input) with 0 and actually suffices to
expose the contradiction in the input formulas.

The unsat-proof generated by Z3 with MBQI in Figure 4 is typically even longer and
more complicated. As opposed to the Vampire proof, the Z3 proof includes explicit
quantifier instantiations in lines 83 and 106 that it marks as such (quant-inst).

By now, it is clear that various challenges arise when working with such unsat-proofs.
On the one hand, they are long, complex, and difficult to read for humans. In
particular, the preprocessing and simplification steps often only serve the machine-
checkability, but do not provide a qualitative contribution to the reasoning. More-
over, quantifier instantiations can occur both explicitly and implicitly within possibly
complex, nested expressions. And last but not least, there is no common standard in
which these unsat-proofs are presented. Both provers studied in this thesis (i.e., Z3
and Vampire) differ in their semantics, the way they handle quantified variables and
references, and their general proof structures.
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Figure 4: Unsat-proof for Bob’s input generated by Z3 with MBQI.

In summary, the unsat-proofs generated by Z3 with MBQI and by Vampire contain
the reasoning steps performed by the prover to derive false, but they are long and
complex, and require expert knowledge to be understood. If Alice and Bob are not
so experienced in the field of formal reasoning, they will most likely not understand
what is provided to them by their respective prover.

1.2 Solution Approach

Given a set of SMT formulas for which either Z3 with MBQI or Vampire can pro-
duce an unsat-proof, our technique generates a simple example that explains the
contradiction derived in the unsat-proof. This benefits the users’ understandability
by showing in a simplified way why the input formulas are unsatisfiable, and therefore
Alice and Bob do no longer have to manually reconstruct the unsat-proofs.

We have designed and implemented a technique that generates such examples based
on instantiations of quantified variables we identify in the unsat-proofs. We consider
both explicit quantifier instantiations, which are explicitly marked as such, and im-
plicit quantifier instantiations, which appear in terms where quantified variables are
substituted by or related to concrete values, but the corresponding proof step does
not mention this.
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An example involves assignments of concrete values to quantified variables and the
contradictory constraints for them. Thus, we modify the quantified parts of the input
by instantiating the universally quantified variables with concrete values we extracted
from the unsat-proof, and expose the contradiction that is derived in it.

1.3 Contributions

With this thesis we make the following contributions:

1. We present a technique that generates simple examples to explain unsat-proofs
produced by Z3 with MBQI and by Vampire, which include all the details that
a human user requires to understand why the input formulas are unsatisfiable.

2. We extract explicit and implicit quantifier instantiations from unsat-proofs gen-
erated by Z3 with MBQI and by Vampire and use them to generate examples
that expose the contradiction derived in the unsat-proofs. Our technique is
successful if the unsat-proof performs all the quantifier instantiations necessary
for the contradiction.

3. We implemented our technique as a reusable tool, which is highly modular and
can be easily extended to other provers.

4. We evaluated our implementation on manually and automatically generated
benchmarks of varying complexity. Our experimental results show that it suc-
cessfully generated examples in 63% of the cases. Our examples can signifi-
cantly reduce the human effort in identifying the reason for the unsatisfiablity.

5. With this written report, we present a detailed study of unsat-proofs generated
by Z3 with MBQI and by Vampire, and provide a variety of inputs causing
specific behaviour.

1.4 Outline

The rest of this thesis is structured as follows: Section 2 presents a high-level overview
of our technique; the details follow in Section 3. In Section 4 we explain how we
included user needs in the design of our presentation format. Section 5 discusses the
implementation details of our technique and in Section 6 we present our experimental
results. Section 7 demonstrates another possible application of our examples by
using them to trigger quantifier instantiations in E-Matching. We then discuss related
work in Section 8 and possible future work in Section 9. Finally, we draw conclusions
in Section 10.
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2 Overview

In this section, we give a high-level overview of our approach, which is presented
in Figure 5. It takes as input a set of SMT formulas and uses a prover to produce
the corresponding unsat-proof, and it generates an example that explains why the
input is unsatisfiable. This example is primarily based on quantified variables and
their instantiations in the unsat-proof. To find them we rely on explicit markers and
heuristics for their implicit occurrence. In the following, we describe the main steps
of our technique (Section 2.1) and illustrate them on an example (Section 2.2).

Figure 5: Overview of the approach pursued in this thesis. The square boxes represent the
main steps of our technique and indicate where we use the prover, while the rounded boxes
represent the inputs and outputs.

2.1 High-Level Idea

Our approach consists of the following steps:

Extract Quantified Variables. Before we consider the unsat-proof, we examine
the input and gather information about all quantified variables that appear in it. We
memorize the name, which we assume to be unique, and the type of each quantified
variable, as well as uninterpreted functions that use it as an argument. To determine
if the input is satisfiable, the prover has to find, among others, an interpretation for
each uninterpreted function. This is possible if exactly one element of the codomain
can be assigned to each element of the domain. If the input imposes contradictory
constraints on an uninterpreted function, e.g., through its quantified arguments, then
it is not possible to satisfy this property. In that case the input is unsatisfiable.

Identify Quantifier Instantiations. Based on the information about all quanti-
fied variables we previously collected, we now identify explicit or implicit quantifier
instantiations in the unsat-proof generated by one of the provers considered in this
thesis (i.e., Z3 with MBQI or Vampire). While explicit quantifier instantiations are
marked as such, we rely on heuristics to identify implicit quantifier instantiations.
Among others, we consider uninterpreted functions that use quantified variables as
arguments as implicit quantifier instantiations. Concretely, we assume that the pres-
ence of a quantified variable as an argument of an uninterpreted function (e.g., f(x0))
in the input combined with the presence of the same uninterpreted function with a
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concrete value as an argument (e.g., f(0)) in the unsat-proof indicates that the quan-
tified variable is implicitly instantiated with that concrete value (e.g., x0 = 0).

Construct Potential Example. Once we extracted the quantifier instantiations
from the unsat-proof, we use them to generate a quantifier-free version of the input.
That is,we instantiate some of the input formulas by substituting each occurrence of
a quantified variable that has been instantiated with its concrete value(s). We further
keep the necessary definitions that are needed to successfully parse this example as
well as quantifier-free constraints.

Validate Example. To validate a potential example, i.e., to investigate whether
the quantifier-free version of the input is indeed unsatisfiable, we again use the prover.
If it is unsatisfiable, then the example is sufficient to expose the contradiction from
the input, and we proceed with the minimization step. This is because a contradic-
tion that arises from formulas where universally quantified variables were replaced
with concrete values of the same type is inevitably also present between the original
quantified formulas. If it is satisfiable instead, then we did not find the necessary
quantifier instantiations in the unsat-proof (we discuss potential reasons for this in
Section 3.3.4), so we continue with the recovery step to eventually still succeed.

Recover Example. After an unsuccessful validation, we again traverse the unsat-
proof and apply further heuristics to generate additional concrete values for instanti-
ating the quantified variables. We include them in our potential example and retry
the validation.

Minimize Example. The heuristics that we use for identifying implicit quantifier
instantiations and during the recovery can cause us to instantiate quantified variables
with concrete values that are not needed to expose the contradiction, all of which are
included in our example so far. We want to remove these unnecessary quantifier in-
stantiations as well as quantifier-free parts that are not needed, so that the example
only contains the formulas that are minimally necessary to reveal the contradiction.
This corresponds to the unsat-core of the example; we use Z3 to generate it.

2.2 Walkthrough

We now illustrate the main steps of our technique using the input in Figure 6.

(declare-fun f (Int Int) Int)

(in math notation: f : Z× Z→ Z)

(assert (forall ((x0 Int) (x1 Int)) (=> (and (> x0 (- 0 1)) (> x1 2)) (> (f x0 x1) 7))))

(in math notation: ∀x0, x1 ∈ Z : (x0 > −1) ∧ (x1 > 2)⇒ (f(x0, x1) > 7))

(assert (forall ((x2 Int) (x3 Int)) (=> (and (< x2 1) (< x3 4)) (= (f x2 x3) 6))))

(in math notation: ∀x2, x3 ∈ Z : (x2 < 1) ∧ (x3 < 4)⇒ (f(x2, x3) = 6))

(assert (forall ((x4 Int) (x5 Int)) (= (f x4 x5) (f x5 x4))))

(in math notation: ∀x4, x5 ∈ Z : f(x4, x5) = f(x5, x4))

Figure 6: SMT formulas we use as input for illustrating the steps from the high-level
overview of our approach in Figure 5.
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Extract Quantified Variables. In the input we find a total of six quantified vari-
ables called x0, x1, ..., x5, all of type Int. Furthermore, there is an uninterpreted
function f that uses each of these quantified variables as its arguments.

Identify Quantifier Instantiations. The unsat-proof generated by Z3 with MBQI
explicitly instantiates the quantified variables x0 and x2 with 0 as well as x1 and x3

with 3, while x4 and x5 are not instantiated. Figure 7 shows an extract of the unsat-
proof that instantiates x0 and x1. Although it is not directly visible, we explain in
Section 3.3.2.2 why this is indeed an explicit quantifier instantiation in the form how
Z3 with MBQI presents them.

...

(let ((a!1 (forall ((x0 Int) (x1 Int)) (or (<= x0 (- 1)) (<= x1 2) (not (<= (f x0 x1) 7))))))

(a!2 (<= (f (+ 1 (* (- 1) 1)) 3) 7)))

(let ((a!3 (or (not a!1) (<= (+ 1 (* (- 1) 1)) (- 1)) (<= 3 2) (not a!2))))

(quant-inst a!3)))

...

Figure 7: Extract from the unsat-proof generated by Z3 with MBQI for the input in Figure
6. It explicitly instantiates the quantified variables x0 and x1 with the concrete values 0
and 3, respectively (the explanation follows in Figure 20).

The unsat-proof generated by Vampire, on the other hand, contains no explicit quan-
tifier instantiations. Instead, we use the heuristic described in Section 2.1 to identify
the term f(0, 3) that occurs syntactically in the extract of the unsat-proof shown in
Figure 8 and implicitly instantiates some of the quantified variables. Namely, be-
cause the uninterpreted function f uses the quantified variables x0 and x2 as its first
argument in the input, and now in the unsat-proof the concrete value 0 is at this
position, we instantiate both with 0. For exactly the same reason, we instantiate the
quantified variables x1 and x3 with 3. Although they are also used as arguments by
f , we do not instantiate x4 and x5 because they do not occur in the unsat-proof.

1. ! [X1 : $int,X0 : $int] : (($greater(X0,$difference(0,1)) & $greater(X1,2))

=> $greater(f(X0,X1),7)) [input]

2. ! [X0 : $int,X1 : $int] : (($less(X0,1) & $less(X1,4)) => f(X0,X1) = 6) [input]

...

258947. f(0,3) = 6 [evaluation 258687]

...

Figure 8: Extract from the unsat-proof generated by Vampire for the input in Figure 6. It
implicitly instantiates the quantified variables x0 and x2 with 0 and x1 and x3 with 3.

The unsat-proofs generated by Z3 with MBQI and by Vampire therefore use different
approaches to instantiate the same quantified variables with the same values.

Construct Potential Example. Based on the quantifier instantiations we identi-
fied in the previous step, we generate a quantifier-free version of the input, as shown
in Figure 9. For each of the quantified variables we declare a free variable, to which we
assign the corresponding concrete value. We then use these free variables to substitute
the quantified variables in the input formulas. This detour via variables offers several
advantages, one of which is the preservation of the information whether a concrete
value in a formula from the example is actually the instantiation of a quantified
variable, or whether it is already a concrete value in the input. Other advantages are
more involved, which is why we postpone their discussion to Section 3.3.3.
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(declare-fun f (Int Int) Int)

(declare-const x0 Int)

(declare-const x1 Int)

(declare-const x2 Int)

(declare-const x3 Int)

(assert (= x0 0))

(assert (= x1 3))

(assert (= x2 0))

(assert (= x3 3))

(assert (=> (and (> x0 (- 1)) (> x1 2)) (> (f x0 x1) 7)))

(in math notation: (x0 > −1) ∧ (x1 > 2)⇒ (f(x0, x1) > 7))

(assert (=> (and (< x2 1) (< x3 4)) (= (f x2 x3) 6)))

(in math notation: (x2 < 1) ∧ (x3 < 4)⇒ (f(x2, x3) = 6))

Figure 9: Potential example for the input in Figure 6.

Validate Example. We again use the prover to verify that our example is unsatis-
fiable. This is the case, and since the corresponding formulas with concrete values for
x0, x1, x2 and x3 impose contradictory constraints on the uninterpreted function f ,
this must also be the case for the original quantified formulas from the input, which
is why the example indeed reveals the contradiction from the input.

Recover. This step is not needed, as we successfully validated the Example.

Minimize Example. We generate an unsat-core for the example in Figure 9, as
shown in Figure 10, which confirms that the example is already minimal.

(= x0 0)

(= x1 3)

(= x2 0)

(= x3 3)

(=> (and (> x0 (- 1)) (> x1 2)) (> (f x0 x1) 7))

(=> (and (< x2 1) (< x3 4)) (= (f x2 x3) 6))

Figure 10: Unsat-core generated by Z3 with MBQI for the example in Figure 9. It includes
all the formulas from the example, which is why this is already minimal.
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3 Methodology

We start this section with a brief argument of why our technique is based on quantifiers
(Section 3.1), and discuss our assumptions about the input formulas (Section 3.2).
Then, we revisit the steps from Figure 5, but this time we go into depth and explain
our technique in detail (Section 3.3). Finally, we discuss why a brute force approach
cannot be applied for constructing the examples (Section 3.4).

3.1 The Importance of Quantified Variables

The presence of quantifiers in our application domain of program verification is in-
evitable, since verifiers usually rely on them to encode the specification and the se-
mantics of a programming language. This is also the reason why universally quantified
variables are frequently responsible for the unsatisfiability of a set of SMT formulas.
At the same time, the introduction of quantifiers and the resulting potentially infinite
possible values for quantified variables is a main reason for the difficulty of solving
the satisfiability problem for universally quantified SMT formulas. The most common
approach of how solvers such as Z3 deal with quantified variables is instantiation [7].
Although provers like Vampire operate in a fundamentally different way, they too
resort to techniques of instantiation [5]. That is, the unsat-proofs generated by both
provers considered in this thesis can identify concrete values for quantified variables
to expose the contradiction, which is what our technique is based on.

3.2 Assumptions

Our technique makes the following assumptions about quantifiers in the input:
Unique Names. All quantified variables have unique names.
Universal Quantifiers. There are no existential quantifiers.

Making these assumptions does not compromise the generality of our technique, since
any set of SMT formulas can always be preprocessed in such a way that they are ful-
filled while keeping the satisfiability unchanged.

Figure 11 shows how to preprocess an input to satisfy our assumptions.

(assert (forall ((x Int) (y Int) (z Int)) (< (- (- x y) z) 13)))

(assert (exists ((x Int)) (= x 42)))

Step 1: Ensure unique names. ↓

(assert (forall (( x0 Int) ( x1 Int) ( x2 Int)) (< (- (- x0 x1 ) x2 ) 13)))

(assert (exists (( x4 Int)) (= x4 42)))

Step 2: Use Skolemization to remove the existential quantifier. ↓

(declare-const a Int)

(assert (forall ((x0 Int) (x1 Int) (x2 Int)) (< (- (- x0 x1) x2) 13)))

(assert (= a 42))

Figure 11: How to preprocess a set of SMT formulas to satisfy our assumptions. The math
notation is omitted, since the meaning of the formulas is not relevant for preprocessing.
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The first assumption about unique names allows us to identify the quantified vari-
ables in the unsat-proof directly by name. Otherwise, we would always have to trace
back the references to find out from which input formula a quantified variable men-
tioned in a proof step originates. The second assumption about the non-existence
of existential quantifiers allows us to treat all quantified variables equally, i.e., with
instantiation. Thus, the comprehensibility and directness of our approach benefits
from these assumptions.

3.3 Our Approach

We now explain our technique in detail. We first consider what information we ex-
tract from the input (Section 3.3.1) and how we identify quantifier instantiations in
the unsat-proofs (Section 3.3.2). Next, we explain how we construct potential exam-
ples (Section 3.3.3). We then present our validation mechanism (Section 3.3.4) and
how we can possibly recover from an unsuccessful validation (Section 3.3.5). After-
wards, we discuss the minimization step (Section 3.3.6).

Throughout our explanations we use various inputs that often use quantified vari-
ables of the built-in types for integers and Booleans. However, our technique is not
restricted to built-in types, but applies to arbitrary formulas containing also user-
defined types.

3.3.1 Extract Quantified Variables

Due to our assumption of unique names (Section 3.2), syntactically extracting all
quantified variables from the input is directly feasible without further complications.
For collecting each uninterpreted function that uses quantified variables in its argu-
ments, however, we must decide what to consider in case of nested function applica-
tions. We use the input in Figure 12 to illustrate the different scenarios.

(declare-fun f (Int) Int)

(declare-fun g (Int) Int)

(declare-fun h (Int Int) Int)

(in math notation: f : Z→ Z, g : Z→ Z, h : Z× Z→ Z)

(assert (forall ((x0 Int)) (> (f (g x0)) 0)))

(in math notation: ∀x0 ∈ Z : f(g(x0)) > 0)

(assert (forall ((x1 Int)) (< (f (+ x1 1)) 0)))

(in math notation: ∀x1 ∈ Z : f(x1 + 1) < 0)

(assert (forall ((x2 Int) (x3 Int)) (= (h x2 (+ x3 1)) 0)))

(in math notation: ∀x2, x3 ∈ Z : h(x2, x3 + 1) = 0)

Figure 12: SMT formulas we use to illustrate what information we extract from the input.

The first assertion in Figure 12 contains the term f(g(x0)) . We associate the un-
interpreted function g with the quantified variable x0, since we take an occurrence
of g(c) with some concrete value c in the unsat-proof as an indication of an implicit
quantifier instantiation of x0 with c, as we already mentioned in Section 2.1 and we
further elaborate on in Section 3.3.2. However, we do not associate the uninterpreted
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function f with x0, since according to our approach, an occurrence of f(c) in the
unsat-proof only suggests that g(x0) is equal to c, but this provides no information
about x0. Thus, for each occurrence of a quantified variable, it is sufficient to mem-
orize the innermost uninterpreted function in whose arguments it occurs.

The second assertion in Figure 12 contains the term f(x1 + 1) , which involves the

built-in function for addition, i.e., +. In this case, an occurrence of f(c) in the unsat-
proof does not provide a possible concrete value for just the quantified variable x1,
but for x1 + 1. Therefore, we not only associate f with x1, but also memorize the
term f(x1 + 1), so that we can syntactically extract the concrete value c for x1 if a
function application f(c + 1) occurs in the unsat-proof.

The third assertion in Figure 12 contains the term h(x2, x3 + 1) and therefore in-
volves two quantified variables x2 and x3 in the arguments of the higher-arity uninter-
preted function h. We associate h with x2 and x3 and remember the term h(x2, x3+1)
for both, so that we can syntactically extract the concrete values c and c′ for x2 and
x3, respectively, if a function application h(c, c′ + 1) occurs in the unsat-proof.

In summary, we syntactically identify all the uninterpreted functions that use as ar-
guments expressions over quantified variables, where for an expression we consider
the definition from Figure 13.

<expression> = <quantified variable>

| ’(’<unop> <expression>’)’

| ’(’<binop> <expression> <constant>’)’

| ’(’<binop> <constant> <expression>’)’

| ’(’<binop> <expression> <expression>’)’

<constant> = <built-in constant> | <free variable>

<unop> = ’-’ | ’not’

<binop> = ’+’ | ’-’ | ’*’ | ’and’ | ’or’ | ’=’ | ’!=’ | ’<’ | ’<=’ | ’>’ | ’>=’

Figure 13: Syntactic definition of an expression in SMT-LIB syntax, as we use it to find ar-
guments of uninterpreted functions in the input, which is neither complete nor semantically
correct. We use | to separate different options.

3.3.2 Identify Quantifier Instantiations

As explained in Section 3.1, provers may instantiate quantified variables with con-
crete values. We therefore first consider what a concrete value can be (Section 3.3.2.1),
and afterwards we show how we can syntactically detect quantifier instantiations in
unsat-proofs. Because our approach for this is prover-specific, we first address the
unsat-proofs generated by Z3 with MBQI (Section 3.3.2.2) and then those by Vam-
pire (Section 3.3.2.3). Ideally, we could simply search for expressions of the form
quant-inst(x = c), where x is a quantified variable and c is a concrete value. Un-
fortunately, however, this is not the case for either of the unsat-proofs examined here.

Furthermore, we note that the identification of quantifier instantiations and the re-
covery of an unsuccessful validation (follows in Section 3.3.5) are the only prover-
dependent parts of our technique. All other steps are generic.
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3.3.2.1 Concrete Values

Intuitively, we would mainly consider built-in constants of the respective type as con-
crete values, e.g., 42 for integers and false for Booleans. In fact, there are several
terms that qualify as concrete values, which is why we define them as in Figure 14.

<concrete value> = <built-in constant> | <free variable> | ’(’<function> <concrete value>+’)’

<function> = <built-in function> | <uninterpreted function>

Figure 14: Syntactic definition of a concrete value SMT-LIB syntax. We use | to separate
different options and + to indicate a 1-or-more instance of the preceding item.

We now illustrate this definition with with concrete inputs and the corresponding
unsat-proofs.

Figure 15 provides a scenario which shows that quantified variables can be instanti-
ated with free variables from the input. The unsat-proof concludes that the Barber
of Seville cannot exist by instantiating the quantified variables x0 and x1 with the
free variable barber defined in the input.

Figure 16 goes a step further by providing an incorrect partial specifiaction of a linked
list, for which the unsat-proof instantiates the quantified variable x3 with the term
(next last), i.e., with an uninterpreted function that uses as argument a free vari-
able from the input.

Finally, in the world described by Figure 17, the unsat-proof instantiates both quan-
tified variables x0 and x1 with the fresh variable elem!0 of the user-defined type cat.

(declare-sort man)

(there is a data type called man)

(declare-fun shave (man) man)

(there is a function shave that maps mans to each other, which denotes which man is shaved by whom)

(declare-const barber man)

(there is a dedicated instance of man called barber)

(assert (forall ((x0 man)) (=> (not (= (shave x0) x0)) (= (shave x0) barber))))

(in math notation: ∀x0 ∈ man : (shave(x0) 6= x0)⇒ (shave(x0) = barber))

(assert (forall ((x1 man)) (=> (= (shave x1) barber) (not (= (shave x1) x1)))))

(in math notation: ∀x1 ∈ man : (shave(x1) = barber)⇒ (shave(x1) 6= x1))

...

(let ((a!1 (forall ((x0 man)) (or (= (shave x0 ) x0) (= (shave x0) barber)) ))))

(quant-inst (or (not a!1) (= (shave barber ) barber) (= (shave barber) barber))))

...

(let ((a!1 (forall ((x1 man)) (or (not (= (shave x1 ) barber)) (not (= (shave x1) x1)))))))

(let ((a!2 (or (not a!1) (not (= (shave barber ) barber)) (not (= (shave barber) barber)))))

(quant-inst a!2)))

...

Figure 15: Encoding of the barber paradox in SMT-LIB syntax (above). The corresponding
unsat-proof generated by Z3 with MBQI instantiates the quantified variables x0 and x1

with the free variable barber, which is marked with color (below).
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(declare-sort list_element)

(there is a data type called list_element)

(declare-fun next (list_element) list_element)

(declare-fun prev (list_element) list_element)

(there are two functions next and prev that map list_elements to each other)

(declare-const first list_element)

(declare-const last list_element)

(there are some dedicated instances of list_element called first and last)

(assert (forall ((x0 list_element)) (= (next (prev x0)) x0)))

(in math notation: ∀x0 ∈ list_element : next(prev(x0)) = x0)

(assert (forall ((x1 list_element) (x2 list_element))

(=> (= (next x1) x2)(= (prev x2) x1))))

(in math notation: ∀x1, x2 ∈ list_element: (next(x1) = x2)⇒ (prev(x2) = x1))

(assert (forall ((x3 list_element)) (not (= (next last) x3))))

(in math notation: ∀x3 ∈ list_element : next(last) ! = x3))

...

(let ((a!1 (forall ((x3 list_element)) (not (= (next last) x3 )))))

(let ((a!2 (or (not a!1) (not (= (next last) (next last) )))))

(quant-inst a!2)))

...

Figure 16: Incorrect partial specification of a linked list in SMT-LIB syntax (above). The
last formula requires last to have no next list element. But this implies that there is
a list element for which the uninterpreted function next cannot be interpreted, which is
a contradiction. The corresponding unsat-proof generated by Z3 with MBQI instantiates
the quantified variable x3 with (next last), which is marked with color (below).

(declare-sort cat)

(there is a data type called cat)

(declare-fun alive (cat) Bool)

(there is a function alive that maps a cat to a boolean value, which denotes whether the cat is alive)

(assert (forall ((x0 cat)) (alive x0)))

(in math notation: ∀x0 ∈ cat : alive(x0))

(assert (forall ((x1 cat)) (not (alive x1))))

(in math notation: ∀x1 ∈ cat : ¬(alive(x1)))

...

(let ((a!1 (or (not (forall ((x0 cat)) (alive x0 )))) (alive elem!0 ))))

(quant-inst a!1))

...

(let ((a!1 (not (forall ((x1 cat)) (not (alive x1 )))))))

(quant-inst (or a!1 (not (alive elem!0 )))))

...

Figure 17: Encoding of a fact about cats in SMT-LIB syntax, which assumes that they are
alive and not alive at the same time (above). The corresponding unsat-proof generated by
Z3 with MBQI instantiates both quantified variables x0 and x1 with a fresh variable elem!0
of the user-defined type cat, which is marked with color and corresponds to Schrödingers
cat that cannot exist (below).
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3.3.2.2 Quantifier Instantiations in Z3

The unsat-proofs generated by Z3 explicitly instantiate universally quantified vari-
ables with expressions that follow a particular structure [8], which we refer to as
Or-Not form (named after its format in SMT-LIB syntax). We first explain this
form for the simple case of a single quantified variable being instantiated, and then
we generalize it to the case with multiple quantified variables.

If x0 is a quantified variable that occurs in some formula ϕ, which we denote by
ϕ[x0], then its instantiaton with the concrete value c is presented in the unsat-proof
generated by Z3 with the expression shown in Figure 18, where ϕ[x0 7→ c] denotes
that every occurrence of x0 in ϕ[x0] is replaced by c without further simplifying the
formula ϕ.

(or (not (forall (x0) (ϕ[x0]))) (ϕ[x07→c]))

(in math notation: ¬(∀x0 : ϕ[x0]) ∨ ϕ[x0 7→ c])

Figure 18: The Or-Not form, according to the proof format as specified by Z3 [9] and
inspired by SMT-LIB, with which Z3 instantiates a single quantified variable x0, occurring
in a formula ϕ, with the concrete value c.

Z3 may also simultaneously instantiate multiple quantified variables x0, x1, ..., xk that
occur together in some formula ϕ, which we denote by ϕ[x0, x1, ..., xk]. Their instan-
tiation with the concrete values c0, c1, ..., ck presented in the unsat-proof generated
by Z3 as shown in Figure 19 then follows the same structure.

(or (not (forall (x0 x1 ... xk) (ϕ[x0, x1, ..., xk]))) (ϕ[x07→c0, x1 7→c1, ..., xk 7→ck]))

(in math notation: ¬(∀x0, x1, ..., xk : ϕ[x0, x1, ..., xk]) ∨ ϕ[x0 7→ c0, x1 7→ c1, ..., xk 7→ ck])

Figure 19: The Or-Not form, according to the proof format as specified by Z3 [9] and
inspired by SMT-LIB, with which Z3 instantiates multiple quantified variables x0, x1, ..., xk,
occurring in a formula ϕ, with the concrete values c0, c1, ..., ck.

In practice, the formula ϕ can contain any number of nested function applications.
We thus find the concrete value ci with which xi is instantiated in two steps. First, we
search for an occurrence of xi in ϕ[xi]. Then we find ci at the exact same position in
ϕ[xi 7→ ci]. This approach succeeds because Z3 does not further simplify ϕ[xi 7→ ci]
after replacing each occurrence of xi by ci, which is why the positions within the
formula stay the same. And even if xi occurs multiple times in ϕ[xi], it is sufficient
for us to find it once, since the quantified variable is replaced everywhere with the
same concrete value ci in ϕ[xi 7→ ci]. Figure 20 shows this procedure for the input in
Figure 6 that we used in Section 2.2 for illustrating the main steps of our technique.

(let ((a!1 (forall ((x0 Int) (x1 Int)) (or (<= x0 (- 1)) (<= x1 2) (not (<= (f x0 x1) 7))))))

(a!2 (<= (f (+ 1 (* (- 1) 1)) 3) 7)))

(let ((a!3 (or (not a!1) (<= (+ 1 (* (- 1) 1)) (- 1)) (<= 3 2) (not a!2))))

(quant-inst a!3)))

Figure 20: Extract from the unsat-proof generated by Z3 with MBQI for the input in Figure
6, which is split up into multiple parts but explicitly instantiates the quantified variables
x0 and x1 according to the Or-Not form. To extract them, we locate an occurrence of xi
in the first part of the formula, and then we find the corresponding concrete value at the
same position in the second part, which is marked with colors.
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3.3.2.3 Quantifier Instantiations in Vampire

Although the unsat-proofs generated by Vampire can instantiate universally quanti-
fied variables with concrete values, there is no common method or structure for doing
so; instead, the instantiations are implicitly embedded in superposition and resolution
steps without appropriate marking. Due to this unspecified behaviour of Vampire,
it is not possible to guarantee that we identify all quantifier instantiations in every
case (as we can according to Section 3.3.2.2 for Z3 ). Our technique instead follows a
best-effort approach based on heuristics.

Unsat-Proof Structure. Before presenting our heuristics for identifying implicit
quantifier instantiations, we must elaborate on some special characteristics of unsat-
proofs generated by Vampire that are relevant for us. First of all, they are structured
as a derivation tree with false at the root. Thus, the order in the printed unsat-proof
we use is not from top to bottom, but is given by the premises at the end of each line.
Furthermore, as we have already seen in Section 1.1, unsat-proofs generated by Vam-
pire use different names for quantified variables than the input does, and if later steps
treat multiple quantified variables as identical, they are unified earlier in the proof.
In Figure 3, this resulted in the name X0 being used for both quantified variables x0

and x1, and with X0 we thus instantiated x0 and x1 simultaneously. Moreover, Vam-
pire does not preserve the uniqueness of names from the input. Instead, the branches
of the derivation tree can use the same names for different quantified variables. We
therefore must maintain a dynamic mapping of names of quantified variables in the
input to the corresponding name in the unsat-proof. We then use the names given
by Vampire only for extracting quantifier instantiations from the unsat-proof, and in
all other steps of our technique we use the names from the input.

Uninterpreted Functions. As introduced in Section 2.1, our main heuristic for
identifying implicit quantifier instantiations is based on uninterpreted functions. We
make use of the fact mentioned in Section 3.1 that the presence of quantified variables
as arguments of an uninterpreted function can lead to contradictory constraints on the
interpretation of that function, which is then often the cause for the unsatisfiability.
In order to reveal these contradictory constraints, Vampire may apply the uninter-
preted function to concrete values. In concrete terms, if we identify in the input a
function application of some uninterpreted function f that uses a quantified variable
xi in its arguments, and then in the unsat-proof we identify a function application of
the same function f that uses some concrete value c in its arguments instead of xi,
then we consider this as an implicit quantifier instantiation of xi with c.

Inequalities. An unsat-proof generated by Vampire may prevent the instantiation
of a quantified variable with a certain concrete value, so to speak, using the built-in
function for inequality (i.e., ! =). Since, according to our assumptions from Section
3.2, all quantified variables are universal, a contradiction arises directly if a certain
concrete value cannot be used for the instantiation, which provides us another heuris-
tic. In concrete terms, if we identify in the unsat-proof a formula of the shape xi ! =
c or c ! = xi, where xi is a quantified variable and c a concrete value, then we consider
this as an implicit quantifier instantiation of xi with c.
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Figure 21 provides an input and the corresponding unsat-proof generated by Vam-
pire, which contains the formula 7 ! = X0 and therefore implicitly instantiates the
quantified variable X0 with the concrete value 7 according to this heuristic.

(declare-fun f (Int) Int)

(declare-fun g (Int) Int)

(in math notation: f : Z→ Z, g : Z→ Z)

(assert (forall ((x0 Int)) (not (= (f x0) 7))))

(in math notation: ∀x0 ∈ Z : (f(x0) 6= 7))

(assert (forall ((x1 Int)) (= (f (g x1)) x1)))

(in math notation: ∀x1 ∈ Z : f(g(x1)) = x1)

1. ! [X0 : $int] : ∼f(X0) = 7 [input]

2. ! [X0 : $int] : f(g(X0)) = X0 [input]

3. ! [X0 : $int] : f(X0) != 7 [flattening 1]

4. f(g(X0)) = X0 [cnf transformation 2]

5. f(X0) != 7 [cnf transformation 3]

6. 7 != X0 [superposition 5,4]

7. $false [equality resolution 6]

Figure 21: SMT formulas that set contradictory constraints if the quantified variables x0

and x1 are both instantiated with the concrete value 7 (above), and the corresponding
unsat-proof generated by Vampire that, according to our heuristics, implicitly instantiates
them by using an inequality (below).

Of course, it depends on the exact context in which the inequality occurs, so that it
really can be an implicit quantifier instantiation, i.e., inequalities can also occur in
the unsat-proof for other reasons than implicitly instantiating quantified variables.

Comparisons. Finally, we consider cases where the unsat-proof relates different
quantified variables to each other and generate concrete values for one of them based
on the concrete values we already extracted for the other. In concrete terms, if we
identify in the unsat-proof a formula of the shape xi ◦ ϕ[xj] or ϕ[xj] ◦ xi, where xi

and xj are distinct quantified variables, ϕ is a formula containing xj (and no other
quantified variable), and ◦ is a relational operator such as =, <,≤, > or ≥, then we
can use this constraint to generate concrete values for xi based on the concrete values
we have already extracted for xj.

Figure 22 provides an input and the corresponding unsat-proof generated by Vampire,
which relates the quantified variables X1 and X0 with the formula X1 < X0. First,
we can use the previously presented heuristic based on inequalities to instantiate the
quantified variable X0 with 42. Then, we could replace X0 with 42 in the formula
X1 < X0 and use this constraint to generate a concrete value for X1.

However, the generation of such concrete values requires semantic reasoning, as re-
placing xj with some concrete value cj in the formula only implicitly generates a
concrete value for xi (i.e., xi ◦ ϕ[xj 7→ cj]), which does not suffice for our technique.
While technically our approach only uses syntactic reasoning, we nevertheless imple-
mented parts of this heuristic. As we describe in Section 5.3.2.3, we support equalities
of the form xi = xj ± c, where c is a concrete value. We leave the further potential of
this heuristic open for future work (Section 9).
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(declare-fun f (Int) Int)

(in math notation: f : Z→ Z)

(assert (forall ((x0 Int) (x1 Int)) (=> (= x0 42) (> x0 x1))))

(in math notation: ∀x0, x1 ∈ Z : (x0 = 42)⇒ (x0 > x1))

1. ! [X0 : $int,X1 : $int] : (42 = X0 => $greater(X0,X1)) [input]

2. ! [X0 : $int,X1 : $int] : (42 = X0 => $less(X1,X0)) [theory normalization 1]

8. ∼$less(X0,X0) [theory axiom]

15. ! [X0 : $int,X1 : $int] : ($less(X1,X0) | 42 != X0 ) [ennf transformation 2]

16. $ less(X1,X0) | 42 != X0 [cnf transformation 15]

18. $false [equality resolution 8,16]

Figure 22: SMT formulas that set contradictory constraints if the quantified variable x0 is
instantiated with 42 and x1 with some integer ≥ 42 (above), and the corresponding unsat-
proof generated by Vampire that, according to our heuristics, implicitly instantiates them
both with 42 by using an inequality and a comparison (below).

3.3.3 Construct Potential Example

Once we extracted the instantiations of quantified variables from the unsat-proof into
some intermediate data structure, we can use them to construct a potential example.
In principle, we want to replace all quantified variables that have been instantiated
with their corresponding concrete values, directly in the formulas where they occur
in the input, thus creating a quantifier-free version of the input. However, with help
of several concrete inputs and special cases, we explain the difficulties in doing so and
gradually arrive at the approach that finally works. As we assume that the quantifier
instantiations have been extracted at this point, we omit showing the unsat-proofs
for most of the following inputs, but directly provide the possible concrete values.

Detour via Variables. For the input in Figure 2 used in Section 1.1, we generate
the potential example in Figure 23 according to the procedure described above.

(declare-fun f (Int) Int)

(assert (=> (>= 0 0) (= (f 0) 0)))

(in math notation: 0 ≥ 0⇒ f(0) = 0)

(assert (> (f 0) 0))

(in math notation: f(0) > 0)

Figure 23: First approach for constructing a potential example for the input in Figure 2.
We directly replace the quantified variables in the input formulas with concrete values.

The fact that we do not show the input in Figure 2 again here presents the first prob-
lem, namely that we can no longer tell from the example in Figure 23 which parts
are actually instantiated quantified variables, and which have always been concrete
values. While this is not a problem for the validation, it is one for the user presenta-
tion that we address in Section 4.

Moreover, this approach becomes a problem for the validation as well once we en-
counter an input formula for which some of the quantified variables are instantiated
and others are not. Then, we have no concrete values to replace the quantified vari-
ables that are not instantiated, so we cannot generate quantifier-free formulas.
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The example in Figure 24 solves these problems by taking the detour via variables
already mentioned in Section 2.2, i.e., for each quantified variable we declare a free
variable, with which we replace it in the input formula. We then assign the concrete
values for instantiating the quantified variables to the corresponding free variables.

(declare-fun f (Int) Int)

(declare-const x0 Int)

(declare-const x1 Int)

(assert (= x0 0))

(assert (= x1 0))

(assert (=> (>= x0 0) (= (f x0 ) x0 )))

(assert (> (f x1 ) 0))

Figure 24: Second approach for constructing a potential example for the input in Figure
2. We replace the quantified variables in the input formulas with free variables , to which
we assign the concrete values instead of replacing them directly with the concrete values.

This procedure also simplifies the solution of the problems described next.

Quantifier-Free Parts. Figure 25 shows that we should include quantifier-free parts
of the input in the example, as they may contribute to the contradiction as well.

(declare-fun f (Int) Int)

(assert (forall ((x0 Int)) (> (f x0) 0)))

(in math notation: ∀x0 ∈ Z : f(x0) > 0)

(assert (= (f 0) 0))

(in math notation: f(0) = 0)

(declare-fun f (Int) Int)

(declare-const x0 Int)

(assert (= x0 0))

(assert (> (f x0) 0))

(assert (= (f 0) 0))

Figure 25: SMT formulas that generate a contradiction which includes quantifier-free parts
(above), and the potential example that must include them as well (below).

No Quantified Variables. If the input contains no quantifiers, then we do not
find any quantifier instantiations in the corresponding unsat-proofs. In this case, by
keeping the quantifier-free parts, we trivially generate a potential example that is
equal to the input and therefore also successfully validates.

Figure 26 shows such an input, together with the corresponding unsat-proofs gener-
ated by Z3 with MBQI and by Vampire, and the example we generate for it.

Multiple Concrete Values. So far, we have only considered cases where for each
quantified variable we find at most one instantiation in the unsat-proof. The heuris-
tics described in Section 3.3.2.3 may however provide multiple concrete values for a
quantified variable, and the input in Figure 27 even requires the instantiation of a
quantified variable with multiple concrete values to expose the contradiction.
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(declare-const x0 Int)

(declare-const x1 Int)

(assert (and (<= x0 x1) (> x0 x1)))

(in math notation: (x0 ≤ x1) ∧ (x0 > x1))

(let ((a!1 (and-elim (asserted (and (<= x0 x1) (> x0 x1))) (> x0 x1)))

(a!2 (rewrite (= (> x0 x1) (not (<= x0 x1)))))

(a!3 (not (<= (+ x0 (* (- 1) x1)) 0)))

(a!6 (and-elim (asserted (and (<= x0 x1) (> x0 x1))) (<= x0 x1)))

(a!7 (= (<= x0 x1) (<= (+ x0 (* (- 1) x1)) 0)))

(a!9 (= (<= (+ x0 (* (- 1) x1)) 0) true)))

(let ((a!4 (rewrite (= (not (<= x0 x1)) a!3)))

(a!8 (mp a!6 (rewrite a!7) (<= (+ x0 (* (- 1) x1)) 0))))

(let ((a!5 (mp a!1 (trans a!2 a!4 (= (> x0 x1) a!3)) a!3))

(a!10 (trans (monotonicity (iff-true a!8 a!9) (= a!3 (not true)))

(rewrite (= (not true) false))

(= a!3 false))))

(mp a!5 a!10 false))))

1. $lesseq(x0,x1) & $greater(x0,x1) [input]

2. ∼$less(x1,x0) & $less(x1,x0) [theory normalization 1]

15. $less(x1,x0) [cnf transformation 2]

16. ∼$less(x1,x0) [cnf transformation 2]

17. $false [subsumption resolution 15,16]

(declare-const x0 Int)

(declare-const x1 Int)

(assert (and (<= x0 x1) (> x0 x1)))

Figure 26: SMT formulas that contain no quantifiers (above), together with the correspond-
ing unsat-proofs generated by Z3 with MBQI and by Vampire that contain no quantifier
instantiations (middle), and the potential example that is equal to the input (below).

(declare-fun f (Int) Int)

(assert (forall ((x0 Int)) (> (f x0) (f (- x0 1)))))

(in math notation: ∀x0 ∈ Z : f(x0) > f(x0 − 1))

(assert (= (f 0) 1))

(assert (= (f 2) 0))

(in math notation: f(0) = 1 and f(2) = 0)

Figure 27: SMT formulas that cause the unsat-proof to instantiate the quantified variable
x0 with two different values 1 and 2, which is also necessary to expose the contradiction.

To solve the problem of having multiple concrete values for a single quantified vari-
able, one might first propose the idea of assigning all of them to the same free variable
using disjunctions, as is done in Figure 28, where the term (x0 = 1) ∨ (x0 = 2) is
supposed to provide a selection of assignments to the free variable x0 associated with
the quantified variable of the same name.

(declare-fun f (Int) Int)

(declare-const x0 Int)

(assert (or (= x0 1) (= x0 2)) )

(assert (> (f x0) (f (- x0 1))))

(assert (= (f 0) 1))

(assert (= (f 2) 0))

Figure 28: First (erroneous) approach for constructing a potential example for the input

in Figure 27, where the term (x0 = 1) ∨ (x0 = 2) provides a selection of values for the free
variable x0. The example is satisfiable, because x0 = 1 satisfies all the assertions.
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However, this erroneous approach leads to the satisfiability of the potential example
in Figure 28, i.e., it does not expose the contradiction from the input formulas. As
mentioned before, the quantified variable x0 must be instantiated twice for exposing
the contradiction, which is not feasible with only one free variable. Furthermore, as
explained in Section 3.3.2.3, we might extract noisy information from the unsat-proof,
i.e., our heuristics may identify false positive quantifier instantiations. If we then have
a possible concrete value that would not reveal the contradiction, this leads to the
example being satisfiable.

To prevent these problems, we use a different free variable for each possible concrete
value that was extracted for a quantified variable, as is done in Figure 29, where
we declare two free variables x00 and x01 that we both associate with the quantified
variable x0 and which we assign the possible concrete values to.2 We also instantiate
the corresponding input formula twice, once with each free variable.

(declare-fun f (Int) Int)

(declare-const x01 Int)

(declare-const x00 Int)

(assert (= x00 1))

(assert (= x01 2))

(assert (> (f x00 ) (f (- x00 1))))

(assert (> (f x01 ) (f (- x01 1))))

(assert (= (f 0) 1))

(assert (= (f 2) 0))

Figure 29: Second approach for constructing a potential example for the input in Figure
27, declaring two free variables x00 and x01 for the quantified variable x0 from the input,
and using each of them to instantiate it with a different concrete value in the input formula.

Consider Combinations. For the input in Figure 27, it was sufficient to instanti-
ate the input formula twice, once with each of the two free variables. However, if an
ipnut formula uses multiple quantified variables and we find multiple concrete values
for some of them, as it is the case in Figure 30, it is no longer clear which of the
corresponding free variables we should combine to instantiate the input formula.

(declare-fun f (Int Int) Int)

(assert (forall ((x0 Int) (x1 Int)) (= (f x0 x1) (f x1 x0))))

(in math notation: ∀x0, x1 ∈ Z : f(x0, x1) = f(x1, x0))

(assert (not (= (f 2 3) (f 3 2))))

(in math notation: ¬(f(2, 3) = f(3, 2)))

Figure 30: SMT formulas that include two quantified variables x0 and x1 in one formula,
and for which our main heuristic for identifying implicit quantifier instantiations in the
unsat-proof generated by Vampire (as presented in Section 3.3.2.3) extracts the concrete
values 2 and 3 for both quantified variables.

2To provide a better overview in the figures, we use short names for free variables that are
associated with the same quantified variable. In practice we have to be careful that all free variables
have unique names. For instance, x0 and x01 are valid names for quantified variables according to
our assumptions from Section 3.2, but they cause a problem if we use two free variables x00 and x01

for the quantified variable x0 and only one with the same name for the quantified variable x01.
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In this case we must find exactly the combination of concrete values that causes the
contradiction. This is why we instantiate the input formula with all possible combi-
nations of the free variables associated with the corresponding quantified variables.
Figure 31 shows how we do this for the input in Figure 30.

(declare-fun f (Int Int) Int)

(declare-const x00 Int)

(declare-const x01 Int)

(declare-const x10 Int)

(declare-const x11 Int)

(assert (= x00 3))

(assert (= x01 2))

(assert (= x10 2))

(assert (= x11 3))

(assert (= (f x00 x10) (f x10 x00)))

(assert (= (f x00 x11) (f x11 x00)))

(assert (= (f x01 x10) (f x10 x01)))

(assert (= (f x01 x11) (f x11 x01)))

(assert (not (= (f 2 3) (f 3 2))))

Figure 31: Potential example for the input in Figure 30 that instantiates the quantified
formula with all possible combinations of free variables.

Nested Quantifiers. Finally, we consider the case where not all quantified variables
have the same scope. Figure 32 provides such a scenario, where we again have two
quantified variables in one formula, but there is an inner and an outer quantifier.

(declare-fun f (Int) Int)

(assert (forall ((x0 Int)) (or (= (f x0) 0) (forall ((x1 Int)) (< (f x0) (+ (f x1) 1))))))

(in math notation: ∀x0 ∈ Z : (f(x0) = 0) ∨ (∀x1 ∈ Z : f(x0) < f(x1) + 1))

(assert (= (f 0) 1))

(assert (= (f 1) 0))

(in math notation: f(0) = 1 and f(1) = 0)

Figure 32: SMT formulas that include a nested quantifier, and for which our main heuristic
for identifying implicit quantifier instantiations in the unsat-proof generated by Vampire
(as presented in Section 3.3.2.3) extracts the concrete values 0 and 1 for both quantified
variables x0 and x1.

If we only consider quantifiers at the beginning of the input formula, we do instantiate
the outer quantifier and therefore the quantified variable x0 in Figure 32, but we miss
to instantiate the quantified variable x1, as is done in Figure 33.

(declare-fun f (Int Int) Int)

(declare-const x00 Int)

(declare-const x01 Int)

(assert (= x00 0))

(assert (= x01 1))

(assert (or (= (f x00) 0) ( forall ((x1 Int) ) (< (f x00) (+ (f x1 ) 1)))))

(assert (or (= (f x01) 0) ( forall ((x1 Int) ) (< (f x01) (+ (f x1 ) 1)))))

(assert (= (f 0) 1))

(assert (= (f 1) 0))

Figure 33: First (erroneous) approach for constructing a potential example for the input
in Figure 32, where we do not instantiate the inner quantifier .

26



While we can use the same approach for instantiating the quantified formula as be-
fore, we now must also identify nested quantifiers and instantiate them as well with
all possible combinations of concrete values. Figure 34 correctly instantiates the inner
quantifier and therefore the quantified variable x1 as well.

(declare-fun f (Int Int) Int)

(declare-const x00 Int)

(declare-const x01 Int)

(declare-const x10 Int)

(declare-const x11 Int)

(assert (= x00 0))

(assert (= x01 1))

(assert (= x10 1))

(assert (= x11 0))

(assert (or (= (f x00) 0) (< (f x00) (+ (f x10) 1))))

(assert (or (= (f x01) 0) (< (f x01) (+ (f x10) 1))))

(assert (or (= (f x00) 0) (< (f x00) (+ (f x11) 1))))

(assert (or (= (f x01) 0) (< (f x01) (+ (f x11) 1))))

(assert (= (f 0) 1))

(assert (= (f 1) 0))

Figure 34: Second approach for constructing a potential example for the input in Figure
32, where we correctly detect the nested quantifier and instantiate it accordingly.

Thus, we arrived at an approach that correctly constructs potential examples.
Whilst we refined it, our examples have also increased in size. To accommodate
this, we introduce the minimization step in Section 3.3.6, after which the examples
include only the formulas necessary to expose the contradiction.

To summarize, we perform the following steps to construct a potential example:

Quantifier-Free Parts. The input can contain declarations, which are used in in-
stantiated formulas, and quantifier-free formulas, which may also contribute to the
contradiction. We must include them in our examples.

Detour via Variables. For each quantified variable, we create a free variable. If
we extracted multiple concrete values for a single quantified variable from the unsat-
proof, then we create as many free variables. We assign the corresponding concrete
values to these free variables and use them to instantiate the input formulas.

Consider Combinations. If an input formula uses multiple quantified variables
and we find multiple concrete values for some of them, then we instantiate the input
formula multiple times. We consider all possible combinations of the corresponding
free variables.

Nested Quantifiers. We also identify nested quantifiers and instantiate them by
again considering all possible combinations of concrete values.

Finally, we want to note that a potential example may be empty if we did not
extract any quantifier instantiations from the unsat-proof.
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3.3.4 Validate Example

Once we have constructed a potential example, we need to check its correctness,
that is, whether it can expose the contradiction from the input.

Due to the nature of our approach for constructing the examples presented in Sec-
tion 3.3.3, it must include the same contradiction that the unsat-proof exposes in the
input formulas. As paraphrased in Section 2.1, a contradiction arising from formulas
where universally quantified variables are replaced with concrete values of the same
type is inevitably also present between the original quantified formulas. That is, a
contradiction that is caused by some formula ϕ[x0 7→ c], where every occurrence of
the quantified variable x0 in ϕ[x0] is replaced by some concrete value c, is inevitably
also caused by the formula ∀x0 : ϕ[x0].

Checking whether an example contains a contradiction is then reduced to the fa-
miliar problem of showing whether a set of SMT formulas is unsatisfiable, for which
we can again use the prover. Since our examples are free of quantified variables, we
are in a simpler problem class, which we expect the prover to solve very quickly.

Unsuccessful Validation. There are two possible reasons why the validation of
a syntactically correct example can fail, firstly if the prover returns unknown, and
secondly if it returns sat.

In the first case, the prover is incomplete and our algorithm terminates without gen-
erating an example that is guaranteed to expose the contradiction. Nevertheless, it
can provide the potential example for the user to examine manually.

In the second case, our potential example does not expose the contradiction.3 The
only difference between the example and the input are the quantified formulas, some
of which are instantiated in the example and some of which are omitted, because
we did not find instantiations of the corresponding quantified variables in the unsat-
proof. So if the input is unsatisfiable and the example is not, the reason must be
erroneous or missing quantifier instantiations. In the following, we explain for each
of the provers considered in this thesis why it can happen that we did not find the
necessary quantifier instantiations in their unsat-proofs.

Z3 . As stated in Section 3.3.2.2, we find all quantifier instantiations in an unsat-
proof generated by Z3 if we identify the corresponding explicit markers and then use
the structure of the Or-Not form. Thus, the success of our technique using Z3 with
MBQI depends only on whether the unsat-proof performs all the necessary instanti-
ations, and an unsuccessful validation therefore implies that this is not the case.

Vampire . If instead we extract implicit quantifier instantiations using heuristics
from an unsat-proof generated by Vampire, as explained in Section 3.3.2.3, then there
is a gap between the information from the unsat-proof and that which we extract. On
the one hand, our heuristics cause us to extract implicit quantifier instantiations that

3As mentioned in Section 3.3.3, the potential example may be empty if we did not extract any
quantifier instantiations from the unsat-proof. Z3 with MBQI and Vampire both return sat for
empty inputs.
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are actually not quantifier instantiations. On the other hand, we may miss actual
implicit quantifier instantiations, because Vampire does not specify how exactly it in-
stantiates quantifiers. We eliminate false positive quantifier instantiations using the
minimization step we introduce in Section 3.3.6, but we cannot prevent missing quan-
tifier instantiations without the presence of explicit quantifier instantiations. Also,
as mentioned in Section 3.2, Vampire can perform quantifier instantiations, but due
to the underlying technique this is not always the case in practice. We can see this
in Figure 35, where we have an input and the corresponding unsat-proof generated
by Vampire, which does not instantiate the quantified variables, because there are
infinitely many possible values, all of them exposing the contradiction.

(declare-fun f (Int) Int)

(assert (forall ((x0 Int)) (> (f x0) 0)))

(in math notation: ∀x0 ∈ Z : f(x0) > 0)

(assert (forall ((x1 Int)) (<= (f x1) 0)))

(in math notation: ∀x1 ∈ Z : f(x1) <= 0)

1. ! [X0 : $int] : $greater(f(X0),0) [input]

2. ! [X0 : $int] : $lesseq(f(X0),0) [input]

3. ! [X0 : $int] : ∼$less(0,f(X0)) [theory normalization 2]

4. ! [X0 : $int] : $less(0,f(X0)) [theory normalization 1]

17. ∼$less(0,f(X0)) [cnf transformation 3]

18. $less(0,f(X0)) [cnf transformation 4]

19. $false [subsumption resolution 18,17]

Figure 35: SMT formulas for which the contradiction is revealed by instantiating the quan-
tified variables x0 and x1 with the same, arbitrary value (above), and the corresponding
unsat-proof generated by Vampire that, according to our heuristics presented in Section
3.3.2.3, contains no implicit quantifier instantiations (below).

So, there are cases where either the unsat-proof does not perform all the necessary
quantifier instantiations, or where we cannot find all of them with the technique pre-
sented so far. Section 3.3.5 presents an approach, with which we can nevertheless
possibly generate an example that successfully validates.

3.3.5 Recover Example

We saw in Section 3.3.5 that the validation of an example fails if we do not find
the necessary quantifier instantiations in the unsat-proof. This may be because the
unsat-proof does not use quantifier instantiations at all, but derives the contradiction
in a different way. In order to nevertheless generate successful examples for some of
these cases, we resort to various recovery heuristics.

We are aware that by doing so, we are moving away from our actual task of explain-
ing unsat-proofs. While the concrete values that we have extracted through explicit
and implicit quantifier instantiations appear in any case in proof steps related to the
quantified variables, this is no longer the case here. That is, with the heuristics pre-
sented below, we can no longer guarantee that the unsat-proof uses the same concrete
values for quantifier instantiations. Nevertheless, an example we generate this way
can provide insights into the contradiction in the input formulas and is thus valuable.
However, we mark accordingly that it was generated with the help of recovery meth-
ods and thus does not necessarily correspond to the unsat-proof.
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Default Values. A simple solution is to associate different quantified variables with
each other by declaring a fresh variable for each interpreted and user-defined type,
which we consider as a concrete value for all quantified variables of that same type
for which we identified no quantifier instantiation in the unsat-proof. For interpreted
types, such as integers or Booleans, we could also use built-in constants as default
values, such as 0 and true. But this would be more of a guess, so the approach with
fresh variables corresponds closer to the behaviour of unsat-proofs. For the input in
Figure 35 we thus generate the example in Figure 36, which successfully validates.

(declare-fun f (Int Int) Int)

(declare-const x0 Int)

(declare-const x1 Int)

(declare-const c Int)

(assert (= x0 c))

(assert (= x1 c))

(assert (> (f x0) 0))

(assert (<= (f x1) 0))

Figure 36: Potential example for the input in Figure 35, where we use the heuristic with
default values to instantiate both quantified variables with the same free variable c.

However, this heuristic does not guarantee success, as we can see in Figure 37, where
using the same free variable for instantiating both quantified variables still generates
a satisfiable example.

(declare-fun f (Int) Int)

(assert (forall ((x0 Int)) (> (f x0) 0)))

(in math notation: ∀x0 ∈ Z : f(x0) > 0)

(assert (forall ((x1 Int)) (=> (> x1 1337) (<= (f x1) 0))))))

(in math notation: ∀x1 ∈ Z : x1 > 1337⇒ f(x1) <= 0)

Figure 37: SMT formulas for which the contradiction is revealed by instantiating the quan-
tified variables x0 and x1 with the same, arbitrary value greater than 1337. Using a free
variable c for instantiating both quantified variables does not expose the contradiction,
because the constraint c > 1337 is not present.

Concrete Values from the Unsat-Proof. A brute force approach (as we present
in Section 3.4) syntactically identifies all concrete values in the unsat-proof, and then
it tries all the type-correct combinations of quantifier instantiations. This is not scal-
able. However, we can build on it by not only considering type-correctness, but by
including the information we extracted from the unsat-proof. That is, on the one
hand, for each quantified variable where we extracted an explicit quantifier instan-
tiation, we also keep this and do not consider any further concrete values. On the
other hand, we use the syntactic information we extracted from the unsat-proof ac-
cording to Section 3.3.2.3 when identifying implicit quantifier instantiations to prune
the search space, and thus we do not have to explore all the combinations.

Boundary Testing. If we have quantified variables of the type integer, then we can
use syntactic constraints from the unsat-proof to extend the previous heuristic by
possibly considering values in the range ±1 of the concrete values.
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The latter two heuristics lead to the extraction of the necessary concrete values from
the unsat-proof in Figure 38 for the input in Figure 37. We consider the syntactically
occuring constraint 1337 < X0 and use the heurisitc inspired from boundary testing
to instantiate the quantified variable X0 with 1338, which exposes the contradiction.
This way we can generate an example that successfully validates.

The recovery step is thus a compromise between considering too many concrete values,
which leads to an explosion of the search space, and considering too few values, which
may not reveal the contradiction.

1. ! [X0 : $int] : $greater(f(X0),0) [input]

2. ! [X0 : $int] : ($greater(X0,1337) => $lesseq(f(X0),0)) [input]

3. ! [X0 : $int] : ($less(1337,X0) => ∼$less(0,f(X0))) [theory normalization 2]

4. ! [X0 : $int] : $less(0,f(X0)) [theory normalization 1]

14. $less(X1,$sum(X0,1)) | $less(X0,X1) [theory axiom]

17. ! [X0 : $int] : (∼$less(0,f(X0)) | ∼$less(1337,X0)) [ennf transformation 3]

18. ∼$less(0,f(X0)) | ∼$less(1337,X0) [cnf transformation 17]

19. $less(0,f(X0)) [cnf transformation 4]

21. ∼$less(1337,X0) [resolution 18,19]

33. $less(X1,1337) [resolution 14,21]

38. $false [resolution 33,21]

Figure 38: Unsat-proof generated by Vampire for the input in Figure 37, which does not
contain an implicit quantifier instantiation according to our heuristics form Section 3.3.2.3
due to the syntactic absence of any concrete value greater than 1337.

3.3.6 Minimize Example

The examples we generate following the approach in Section 3.3.3 are not always
minimal in the sense that they contain declarations and formulas that do not con-
tribute to the contradiction from the input. One reason for this are false positive
quantifier instantiations; another is the fact that provers give no guarantees on the
minimality of the unsat-proofs they generate. However, the smaller the size of an
example, the more the informative value and readability benefit, which is why we
want to keep our examples as small as possible.

This is reduced to the familiar problem of finding an unsat-core, for which we can
again use Z3 (Vampire cannot generate unsat-cores). The unsat-core contains a sub-
set of the formulas from the example, i.e., assignments of concrete values to free
variables and formulas that use these variables, but no declarations, as we can see in
Figure 39.

We therefore only use the concrete values appearing in the unsat-core for instantiat-
ing the quantified variables, and remove all other possibilities we extracted from the
unsat-proof or generated using recovery methods, as shown in Figure 40.

This concludes the detailed discussion of our technique for generating simple exam-
ples that explain the contradiction derived in unsat-proofs generated by Z3 with
MBQI and by Vampire.
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(declare-fun f (Int Int) Int)

(declare-const x00 Int)

(declare-const x01 Int)

(declare-const x10 Int)

(declare-const x11 Int)

(assert (= x00 3))

(assert (= x01 2))

(assert (= x10 2))

(assert (= x11 3))

(assert (= (f x00 x10) (f x10 x00)))

(assert (= (f x00 x11) (f x11 x00)))

(assert (= (f x01 x10) (f x10 x01)))

(assert (= (f x01 x11) (f x11 x01)))

(assert (not (= (f 2 3) (f 3 2))))

(assert (= x00 3))

(assert (= x10 2))

(assert (= (f x00 x10) (f x10 x00)))

(assert (not (= (f 2 3) (f 3 2))))

Figure 39: Potential example generated by our technique (above) and the corresponding
unsat-core generated by Z3 with MBQI (below). To reproduce this result when using Z3
with MBQI with the command line and generate a non-empty unsat-core, the formulas
must be named, e.g., (assert (! (= x00 3) :named A0)).

(declare-fun f (Int Int) Int)

(declare-const x0 Int)

(declare-const x1 Int)

(assert (= x0 3))

(assert (= x1 2))

(assert (= (f x0 x1) (f x1 x0)))

(assert (not (= (f 2 3) (f 3 2))))

Figure 40: Minimized version of the example in Figure 39.

3.4 Brute Force Baseline

A simpler alternative approach for finding possible quantifier instantiations just tra-
verses the unsat-proof and collects every term that is a concrete value according to
the definition from Section 3.3.2, which it then uses for instantiating each quantified
variable of the corresponding type. So if the instantiated quantified variable occurs
syntactically in the unsat-proof, this brute force approach is guaranteed to find it.

The big disadvantage here, however, is the large number of possible concrete values
to instantiate the quantified variables, which leads to the generation of exponentially
many instantiated formulas and very quickly becomes inefficient. The main advan-
tage of our technique is thus the fact that in many cases we extract as many quantifier
instantiations as necessary, but at the same time as few as possible. Moreover, in the
cases where no recovery is applied (as explained in Section 3.3.5), we indeed explain
the unsat-proof, whereas the brute force approach is mere guesswork and does not
take quantifier instantiations performed by the unsat-proof into account at all.
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4 User Presentation

We have discussed the contents of our examples thoroughly in Section 3, but we have
so far omitted how we present them to users. As our solution is meant to improve the
user experience when working with unsat-proofs, we should not only consider whether
the information provided by our examples is sufficient to reveal the contradiction,
as we did in Section 3.3.4, but it should also be presented to users in a way that meets
their expectations without being too overwhelming or complicated.

To understand these expectations, we asked potential users by conducting a small
survey within ETH Zürich among 19 people working with SMT solvers or theorem
provers. We presented them the input in Figure 41, which contains a contradiction
that is not directly visible because it includes formulas that are not relevant for
proving unsat. We gave to the participants several possible outputs for our tool
(shown in Figures 43 - 46) that are all correct, but differ in form, length, syntax, and
content. We then let them decide for each output how useful they perceive it on a
scale from 1 (not useful) to 10 (useful).

(declare-fun f (Int) Int)

(declare-fun g (Bool) Bool)

(declare-fun h (Int Bool) Int)

(in math notation: f : Z→ Z, g : B→ B, h : Z× B→ Z)

(assert (forall ((x0 Bool)) (g x0)))

(in math notation: ∀x0 ∈ B : g(x0))

(assert (forall ((x1 Bool) (x2 Int)) (=> (not (g x1)) (>= (h x2 x1) x2))))

(in math notation: ∀x1 ∈ B, x2 ∈ Z : (¬g(x1))⇒ (h(x2, x1) ≥ x2))

(assert (forall ((x3 Int)) (=> (> x3 -1) (> (f x3) 7))))

(in math notation: ∀x3 ∈ Z : (x3 > −1)⇒ (f(x3) > 7))

(assert (forall ((x4 Int)) (=> (< x4 1) (= (f x4) 6))))

(in math notation: ∀x4 ∈ Z : (x4 < 1)⇒ (f(x4) = 6))

(assert (forall ((x5 Int) (x6 Bool)) (=> (g x6) (< (h x5 x6) x5))))

(in math notation: ∀x5, x6 ∈ Z : g(x6)⇒ (h(x5, x6) < x5))

(assert (forall ((x7 Bool) (x8 Int) (x9 Int)) (=> (= (f x8) x9) (g x7))))

(in math notation: ∀x7 ∈ B, ∀x8, x9 ∈ Z : (f(x8) = x9)⇒ g(x7))

Figure 41: SMT formulas we presented to the participants of our user study.

The example that our technique generates for the input in Figure 41 is shown in
Figure 42, but this was not displayed to the participants.

(declare-fun f (Int) Int)

(declare-const x3 Int)

(declare-const x4 Int)

(assert (= x3 0))

(assert (= x4 0))

(assert (=> (> x3 (- 1)) (> (f x3) 7)))

(assert (=> (< x4 1) (= (f x4) 6)))

Figure 42: Example for the input in Figure 41.

In the following, we discuss the possible outputs and present the results of the survey.
We use avg to indicate the average number of points that the corresponding output
received out of 10.
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The outputs that performed worst among all participants, as shown in Figure 43,
were those providing the least amount of information, which however would still be
sufficient to expose the contradiction. From this we conclude that it is not a good
idea to reduce the information to the most essential.

Output 9 (avg = 2.74):
f(0).

Output 10 (avg = 4.16):
x3 = 0, x4 = 0.

Figure 43: Minimal outputs. They received the worst ratings in terms of usefulness.

The outputs in Figure 44 do not mention any quantified variables or input formulas,
but only the uninterpreted function f and the fact that no interpretation can be found
for it due to contradictory constraints. They performed similarly badly.

Output 3 (avg = 4.32):
The prover cannot find an interpretation for f(0) due to contradictory constraints.

Output 4 (avg = 4.37):
The prover cannot find an interpretation for the uninterpreted function (f (Int) Int)

due to contradictory constraints for (f 0).

Output 5 (avg = 4.89):
The prover cannot find an interpretation for the uninterpreted function f: Int -> Int

due to contradictory constraints for f(0).

Figure 44: Outputs that only mention the uninterpreted function. They also received rather
low ratings in terms of usefulness. Outputs 4 and 5 differ only in the syntax used for the
declaration and application of f .

Figure 45 presents further outputs, some of which contain less and some more in-
formation, but all of them are in their own way somewhat more detailed than the
options considered so far. Here, the opinions differ the most in terms of usefulness.
Although all outputs from Figure 45 achieved a relatively high average score, there
were individual users for each output who did not consider it particularly useful.

Output 1 (avg = 6.79):
Instantiating the quantified variables x3 = 0, x4 = 0 leads to a contradiction.

Output 8 (avg = 7.16):
The assertions require both f(0) = 6 and f(0) > 7, which is a contradiction.

Output 2 (avg = 7.63):
The following assertions set contradictory constraints for x3 = 0, x4 = 0:

(assert (forall ((x3 Int)) (=> (> x3 -1) (> (f x3) 7))))

and

(assert (forall ((x4 Int)) (=> (< x4 1) (= (f x4) 6)))).

Figure 45: Outputs that are more verbose. They performed better on average, but for all
options there were also participants who marked them as rather less useful.

Lastly, however, there are two very detailed outputs that clearly stood out as the
most useful, as shown in Figure 46.
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Output 6 (avg = 7.74):
Instantiating the quantified variables x3 = 0, x4 = 0 leads to the following contradiction:

(=> (> 0 -1) (> (f 0) 7))

and

(=> (< 0 1) (= (f 0) 6)).

Output 7 (avg = 8.58):
Instantiating the quantified variables x3 = 0, x4 = 0 leads to the following contradiction:

(0 > -1 => f(0) > 7)

and

(0 < 1 => f(0) = 6).

Figure 46: Outputs containing all the information from the example in Figure 42. They
performed best among all participants, Output 7 even slightly better than Output 6, mainly
due to the more human-readable syntax, which is the only difference between them.

From this we conclude that our potential users would rather receive more information
than less. In fact, it was even the case that the participants in the study preferred to
receive combinations of the options:

“A combination of Output 8 and Output 6/7 would be perfect in my opinion. Output 8 has the nice,

to the point description of the contradiction, but doesn’t tell me from which constraints it derived it;

if that is added it would be perfect.”

“It would be nice to get the quantifier instantiations and the fact that f(0) cannot be given a model

together (instead of just one of the two).”

“It is important to know which constraints cause the contradiction and how the variables are instan-

tiated. While preserving this information, the formulas should be simplified as much as possible.”

These statements and the results of the rating suggest that we should provide both
the quantifier instantiations and the formulas from the examples to increase the
overall comprehensibility, where applicable (when the number of formulas involved
in the contradiction is not too high), and we should also show where quantified vari-
ables have been instantiated in the formulas. This reduces to a problem that we have
already solved with the detour via variables, which we introduced in Section 3.3.3.

Based on the results of this small user study and the information we have from the
unsat-proofs, we finally designed the presentation format shown in Figure 47. It is
scalable to a certain extent, supports multiple instantiations of the same quantified
variable and can be generated with purely syntactic information.

Instantiating the quantified variables x3 = [0], x4 = [0] leads to the following contradiction:

(or (not (<= (f x3) 7)) (<= x3 (- 1)))

(or (<= 1 x4) (= (f x4) 6))

The following input formulas were instantiated:

(forall ((x3 Int)) (=> (> x3 (- 1)) (> (f x3) 7)))

(forall ((x4 Int)) (=> (< x4 1) (= (f x4) 6)))

Figure 47: User presentation of the example for the input in Figure 41.

We have not yet included a translation of SMT-LIB syntax into a more human-
readable format, but this can be implemented on top of our technique and is therefore
covered in Section 9, which presents possible future work.

35



5 Implementation Details

This section discusses the implementation of our technique as a stand-alone tool, some
of the challenges we faced, and how we solved them. We start by giving an overview
of our implementation in Section 5.1 and present the preliminaries that it relies on
in Section 5.2. Then, we once more revisit the steps from Figure 5 and describe how
we implemented each of them in Section 5.3.

5.1 Overview

Figure 48 gives an overview of the main classes used in our implementation. It is
divided into three parts:

Interactive Component . This is the part that the clients are exposed to.

Proof Analysis . This is the direct implementation of our technique.

Utility . This part is responsible for specifying the setup and I/O interaction, as
well as syntactic extraction, syntax manipulation, and parsing.

Figure 48: Overview of the main classes used in our implementation. It is di-
vided into an interactive component , the direct implementation of our technique , and

further utility methods . The square boxes represent classes that we implemented, while
the rounded boxes represent the inputs and outputs. If the purpose of a class is not directly
visible by its name, a few keywords follow to describe it.
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5.2 Setup and Assumptions

Our implementation [10] is written in Java. We use Z3 version 4.8.10 [11] with Java
bindings (Z3 API [9]), and Vampire version 4.5.1 with the command-line [12]. We
expect the user to have the corresponding version of Z3 and/or Vampire installed,
depending on which prover(s) they want to use our tool with.

Based on the user’s settings, we use either the Z3 API or Vampire to generate the
unsat-proofs. For the validation step, however, we always use the Z3 API. Based on
empirical evidence, there is little difference in the performance between the Z3 API
with MBQI and Vampire for inputs that use no universal quantifiers. Furthermore,
for the minimization step we need an unsat-core, which only Z3 can generate.

We read the input formulas in a file in SMT-LIBv2 syntax (.smt2), as both Z3 and
Vampire support SMT-LIBv2 inputs. Moreover, we assume the input to satisfy our
assumptions from Section 3.2, i.e., all quantifiers are universal and quantified variables
have unique names. If this is not the case, our implementation throws an exception
during the phase that extracts quantified variables from the input.

For reproducibility, we fix the random seeds as follows: If an input file specifies
random seeds, we adopt them, otherwise we use the ones we defined in the Setup

class (sat.random seed to 488, smt.random seed to 599, and nlsat.seed to 611).

For the implementation to successfully terminate for a given input, we require the
prover to generate an unsat-proof within the available resources, which instantiaties
all quantified variables necessary for exposing the contradiction. For this we provide
a time limit of 600 s and a memory limit of 6000 MB to the prover.

5.3 Our Approach

The aim of this section is to describe the interaction and tasks of the classes from
Figure 48 and to explain how each of the steps of our technique from Figure 5 is
implemented by them. Among others, it thus provides the necessary overview so that
one could further extend the implementation.

This section is structured in the same way as the detailed explanation of our technique
in Section 3.3. We first consider how we extract the information related to quantified
variables from the input (Section 5.3.1) and how we identify quantifier instantiations
in the unsat-proofs (Section 5.3.2). Next, we explain the approach that our imple-
mentation pursues to construct potential examples (Section 5.3.3). We then discuss
our validiation process (Section 5.3.4) and how we can possibly recover from an un-
successful validation (Section 5.3.5). Finally, we present the implementation of the
minimization step (Section 3.3.6).

5.3.1 Extract Quantified Variables

We use the Input Reader to preprocess and parse the input file with the Z3 API (as
introduced in Section 5.2) and collect all information related to quantified variables
and their occurrence within the input that we need for the subsequent steps.
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Preprocessing. The Z3 API differs from the command-line tool in that we cannot
directly pass the input to the parser of the Z3 API, as some of the configurations
(e.g., (set-option :smt.auto-config false)) trigger an error. Our preprocessing
step therefore removes these configurations from the input file, among others. We
then set these configuration options directly in the Z3 API.

If the user wants to use Vampire for generating the unsat-proof, we further preprocess
the input so that Vampire succeeds as well in parsing it, since it does not support
the entirety of SMT-LIBv2. We further explain this in Section 5.3.2.3.

Extract and Maintain Information. Once the Z3 API has parsed the prepro-
cessed input, we search for quantified expressions marked as Z3 QUANTIFIER AST. We
create a fresh Quant Var object for each quantified variable we encounter to store its
name and type, the input formula it appears in, and applications of uninterpreted
functions that use it as an argument (as specified in Section 3.3.1). We use these
Quant Var objects in all steps of our approach through a Quant Var Handler ob-
ject, which is a wrapper with methods for adding information to and also retrieving
information from them.

5.3.2 Identify Quantifier Instantiations

The Proof Analyser interface in Figure 49 captures the generality and modularity of
our approach in the sense that any algorithm can be used to generate and analyse an
unsat-proof, as long as the methods prove() and collect concrete values() are
provided as specified. The prove() method implements the part of our main tech-
nique that extracts information about quantifier instantiations from the unsat-proof
(as explained in Section 3.3.2). The collect concrete values() method imple-
ments the part of our recovery approach that extracts all syntactically appearing
concrete values from the unsat-proof (as explained in Section 3.3.5).

public interface Proof_Analyser {

// Uses a prover to generate an unsat-proof for the input.

// Searches quantifier instantiations in there.

// Throws a Proof_Exception if the prover cannot prove unsat within the resources

// defined in the class Setup.

// Returns a Quant_Var_Handler object that contains all the information extracted from

// both the input and the unsat-proof.

public Quant_Var_Handler prove() throws Proof_Exception;

// Traverses the unsat-proof and collects all syntactically occurring concrete values,

// which we can then consider as possible values for all quantified variables of the

// same type.

// Returns a Proof_Concrete_Values object that contains all these.

// Assumes that the method prove has been called before.

public Proof_Concrete_Values collect_concrete_values();

}

Figure 49: The Proof Analyser interface, which specifies the requirements for a class to
analyse unsat-proofs generated by any prover to be compatible with the other parts of our
implementation.
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In the following, we explain how we detect concrete values (Section 5.3.2.1). We then
present the classes Z3 Proof Analyser (Section 5.3.2.2) and Vampire Proof Analyser

(Section 5.3.2.3), which generate and analyse the unsat-proofs of the respective prover.

5.3.2.1 Concrete Values

The concrete values we extract from the unsat-proofs always satisfy our syntactic
definition from Figure 14.

For explicit quantifier instantiations we identify in unsat-proofs generated by the
Z3 API with MBQI (as we describe in Section 5.3.2.2), there is no need to check
whether the concrete values satisfy our syntactic definition, since this is guaranteed
by the correctness of Z3. If, independently of quantifier instantiations, we identify
further concrete values in the unsat-proof, then we also use the definition of Figure 14,
but with a subset of the built-in functions so that the search space does not become
extremely large. This subset is defined in the Z3 Proof Analyser.

For concrete values we identify in unsat-proofs generated by Vampire, we always use
the Vampire to Z3 Parser (which we describe in Section 5.3.2.3). It is also based on
our syntactic definition for concrete values.

5.3.2.2 Quantifier Instantiations in Z3

The Z3 Proof Analyser uses the Z3 API introduced in Section 5.2 to generate an
unsat-proof for the input and identify explicit quantifier instantiations. If this suc-
ceeds, we search expressions marked as Z3 OP PR QUANT INST. These have the Or-Not
form introduced in Section 3.3.2.2 and we use the approach described there to extract
the quantifier instantiations. We then give them to our Quant Var Handler, which
maintains the information about quantified variables.

Enforce MBQI . We have empirically observed that Z3, although configured to use
MBQI, does not do so in some cases and therefore cannot generate useful unsat-proof
due to missing patterns (both with the command-line and with the API). We can
force Z3 to always use MBQI by using (check-sat-using smt) with the command-
line, and in the API with a corresponding tactic.

De Bruijn Indexing. One of the main challenges we solve in the Z3 Proof Analyser

is the conversion from de Bruijn indexes so that we can find the corresponding quanti-
fied variables. Namely, the body of a quantifier instantiation does not directly contain
the quantified variables, but local variables that reference the actual quantified vari-
ables with de Bruijn indexes. They denote the number of quantifiers that are in scope
between the occurrence and the declaration of the corresponding quantified variable.
Figure 50 shows a concrete example for this scenario.

In particular with nested quantifiers, implementing this translation is nontrivial, since
the quantified variables have different scopes and are thus also defined in different
expressions marked as Z3 OP PR QUANT INST.

De-Brujn indexes become once more a challenge in Section 5.3.3, when we instantiate
the input formulas to construct potential examples.
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(forall ((x1 Int) (x2 Int)) (or (<= x1 (- 1)) (<= x2 2) (not (<= (f x1 x2 ) 7)))))

(or (<= (:var 1) (- 1)) (<= (:var 0) 2) (not (<= (f (:var 1) (:var 0) ) 7)))

Figure 50: Explicit quantifier instantiation from the unsat-proof generated by the Z3 API
with MBQI for the input in Figure 6 (above), and the body of it (below). Instead of quan-
tified variables, the body uses local variables that reference the actual quantified variables
with de Brujn indexes, as marked with colors.

5.3.2.3 Quantifier Instantiations in Vampire

The Vampire Proof Analyser uses Vampire with the command-line to generate an
unsat-proof for the input. If this succeeds, we use the heuristics described in Section
3.3.2.3 to identify implicit quantifier instantiations. We extract them with the meth-
ods in String Utility, which are based on regular expressions, and give them to our
Quant Var Handler, which maintains the information about quantified variables.

Preprocessing. As mentioned in Section 5.3.1, Vampire does not support the en-
tirety of SMT-LIBv2, which is why we preprocess the input once more. For instance,
the unary minus operator -x is not supported by Vampire. We rewrite these occur-
rences to (- 0 x). Other expressions that we rewrite for this reason are contained
in the vampirize method of String Utility.

Names of Quantified Variables. As explained in Section 3.3.2.3, unsat-proofs gen-
erated by Vampire use different names for quantified variables than the input does.
Thus, we need an appropriate mapping. For this, we again use Vampire with the
command-line to translate all input formulas individually into Vampire proof syntax,
so we know which line marked as [input] in the unsat-proof corresponds to which
input formula. Based on that, we can identify the names that Vampire uses for each
quantified variable occurring in that line. Figure 51 presents the steps of our approach
for this with a concret input.

Heuristics. Our implementation uses the heuristics presented in Section 3.3.2.3 only
partially. It supports the heuristics with uninterpreted functions and inequalities
in that they are considered if they can be successfully identified with help of reg-
ular expression and parsed by our Vampire to Z3 Parser. The heuristic based on
comparisons is only partially implemented, namely we support equalities of the form
xi = xj ± c, where xi and xj are quantified variables, and c is a concrete value, as
already mentioned in Section 3.3.2.3.

Parsing. We use the data structures from the Z3 API to maintain the assignment
of concrete values to quantified variables in our Quant Var Handler (regardless of
which prover we use to generate the unsat-proof). After syntactically extracting the
implicit quantifier instantiations from the unsat-proof, we must therefore parse the
concrete values accordingly. For this we use the Vampire to Z3 Parser. It is by no
means complete, but it can handle built-in constants, free variables defined in the
input, and a subset of unary and binary operations, which suffices for the treatment
of many concrete values. Figure 52 shows the syntactic extraction and parsing step
by step using an example.
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(declare-fun f (Int) Int)

(assert(forall ((x0 Int)) (=> (>= x0 0) (= (f x0) x0))))

(assert (forall ((x1 Int)) (> (f x1) 0)) )

...

Step 1: Choose an input formula and turn it into a formula that is always unsat (conjunction with false). ↓

(declare-fun f (Int) Int)

(assert (and (forall ((x1 Int)) (> (f x1) 0)) false))

Step 2: Run Vampire with this single-formula input. ↓

1. ! [X0 : $int] : ($greater(f(X0),0) & false [input]

Step 3: Extract the relevant part from the unsat-proof for the single-formula input. ↓

($greater(f(X0),0)

Step 4: Find the best match in the lines marked as [input] from the unsat-proof for the initial input. ↓

1. ! [X0 : Int] : ($greatereq(X0,0) => f(X0) = X0) [input]

2. ! [X1 : Int] : ($greater(f(X1),0) [input]

...

Step 5: Associate the corresponding quantified variables with each other. ↓

The quantified variable x1 from the input is called X0 in line 1 of the unsat-proof.

Figure 51: Steps for mapping the names of the quantified variables from an input formula
to the corresponding names in the unsat-proof generated by Vampire. Note that not every
quantified variable from the input necessarily occurs in the unsat-proof.

... f($uminus(1)) ...

Step 1: Syntactic extraction based on regular expressions with String Utility. ↓

$uminus(1)

Step 2: Syntactic rewriting with String Utility. ↓

-1

Step 3: Parsing to a Z3 expression with Vampire to Z3 Parser. ↓

Context.mkUnaryMinus(Context.mkInt(1))

Figure 52: Steps for syntactically extracting concrete values from unsat-proofs generated
by Vampire and parsing them to an expression accepted by the Z3 API.

5.3.3 Construct Potential Example

Our Quant Var Handler manages all quantified variables and the concrete values with
which we want to instantiate them. The Example accesses the Quant Var Handler

whenever we want to generate a potential example.

In the Quant Var Handler object, we use the Z3 API to generate expressions for the
declarations of free variables (e.g., (declare-const x0 Int)), the assignments of
concrete values to free variables (e.g., (= x0 0)), and the instantiated input formulas,
as explained in detail in Section 3.3.3. Along with these we also include declarations
and quantifier-free constraints from the input in our example.
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Nested Quantifiers. One of the main challenges we solve here is the instantiation
of nested quantifiers. Namely, we must do this from the outside in, not from the
inside out, since the inner quantifier may use the quantified variables from the outer
one. Figure 53 shows the problem that arises when instantiating them starting form
the inner quantifier.

(forall ((x0 Int)) (or (= (f x0) 0) (forall ((x1 Int)) (< (f x0) (+ (f x1) 1)))))

Step 1: Detect the inner quantifier. ↓

(forall ((x0 Int)) (or (= (f x0) 0) (forall ((x1 Int)) (< (f x0) (+ (f x1) 1))) ))

Step 2: Extract the body of the inner quantifier. ↓

(< (f (:var 1) (+ (f (:var 0) 1)))

Step 3: Instantiate the inner quantifier. ↓

(< (f (:var 1) (+ (f x1 1))))))

Figure 53: Wrong order for the instantiation of a nested quantifier. The de Bruijn index 1
of the local variable (var: 1) in the inner quantifier is converted to −1, because the inner
quantifier declares only one quantified variable, which results in an array out-of-bounds.

5.3.4 Validate Example

The Evaluator checks whether a potential example generated by Example is unsat-
isfiable. For this, the Input Compability saves the example as a file and then we
use the Z3 API again to parse and check its satisfiability.

5.3.5 Recover Example

If the example is satisfiable, then we use the heuristics described in Section 3.3.5,
one after the other with increasing complexity, i.e., the more concrete values a re-
covery method is likely to identify or generate, the later we use it. We start with
the default values provided by Default Values. The recovery heuristics adjust the
concrete values directly in our Quant Var Handler. Whenever we have applied a re-
covery heuristic, we generate a new example and try to validate it again.

If all recovery heuristics fail or the timeout or memory limit defined in Setup is
reached, we return the most recently generated potential example, which is satisfi-
able due to the failed validation, but which still contains potentially useful information
for the user.

5.3.6 Minimize Example

Once we have successfully validated an example, we use the Z3 API to generate
an unsat-core for it. We then keep in the Quant Var Handler only the quantifier
instantiations that are also present in the unsat-core. Then, again using Example,
we generate a minimized example, which we validate again and return if successful.
If the minimized example cannot be successfully validated (which we have never
encountered in our experiments), we return the non-minimized example.

42



6 Evaluation

To evaluate the success rate of our technique, we tested our implementation on dif-
ferent sets of unsat benchmarks of varying complexity.

Benchmarks. First, we used a set of manually created benchmarks, from which
most of the inputs shown in the previous sections are taken (Test Set 1). While they
are rather short and concise, they expose various edge cases and helped us examine
different approaches taken by the provers. Next, we used a set of benchmarks from
the figures in [13], some of which are already more involved, and which we have used
as a basis for studying unsat-proofs since the beginning of the work on the thesis
(Test Set 2). And finally, we used some more complex benchmarks from Viper ’s test
suite [14], from various unsound axiomiatations for Gobra [15], from Dafny [16], from
F* [17], and from the SMT-COMP suite [18]. These latter benchmarks were auto-
matically preprocessed by and also used in the evaluation of [13]. All benchmarks
that we used are available on [10].

Experimental Setup. We used our general setup from Section 5.2, with the only
difference that we provided an overall timeout of 600 s per input. The experiments
with Z3 were performed on a Windows computer with 32 GB of RAM and an AMD
Ryzen 7 3800X 8-core processor. The experiments with Vampire were performed on
the same machine, but inside an Ubuntu virtual machine with only 8 GB of RAM
and 4 cores. For each of the experiments, we removed the benchmarks for which
the prover cannot generate an unsat-proof within the given resources on our machine
(according to empirical evidence).

Table 1 shows the results of our experiments.

Benchmarks # #F #∀ Z3 MBQI Vampire
#OK #X #MIN #REC #OK #X #MIN #REC

Test Set 1 40 2 3 40 40 3 0 40 39 20 20
Test Set 2 25 4 6 20 20 4 0 21 17 9 11
Viper 15 118 408 9 7 6 0 15 0 0 0
Gobra 11 69 242 6 6 6 0 11 0 0 0
Dafny 4 11 23 1 1 1 0 1 0 0 0
F* 2 1202 4092 0 0 0 0 0 0 0 0
SMT-COMP 61 519 673 30 20 4 0 52 6 0 0

106 94 24 0 140 62 29 31

Table 1: Results of our experiments to evaluate our implementation on different sets of
benchmarks. The columns, from left to right, show: the source of the benchmarks, the
number of benchmarks from each source (#) and their average number of input formulas
(#F) and quantifiers (#∀), and then, for each prover, the number of benchmarks that
we did not remove (#OK), the number of successfully validated examples generated by
our implementation (#X), the number of successful examples that required minimization
(#MIN), and the number of successful examples that required recovery (#REC).

In the following, we discuss the consequences of these results as well as limitations
for our implementation with Z3 (Section 6.1) and with Vampire (Section 6.2).
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6.1 Discussion of the Evaluation with Z3

When using Z3 with MBQI to generate the unsat-proofs, we were successful for all
the smaller benchmarks and for about 3

4
of the complex benchmarks. Thus, our

implementation clearly performs better with Z3 than with Vampire.

Technique vs. Implementation. Our implementation did not generate a potential
example that was satisfiable for any of the benchmarks. Instead, there were only
unsuccessful outcomes due to timeouts. This means that we did not encounter any
input during the experiments for which our technique using Z3 with MBQI failed.
Based on our empirical results, we can conclude that MBQI performs all the necessary
quantifier instantiations in the unsat-proofs it generates.

Minimization. We were initially surprised to observe that examples generated by
only considering explicit quantifier instantiations were not always already minimal.
However, we then discovered that the examples generated for the simple benchmarks
could only be further minimized if the contradiction already occurs by assigning
concrete values to a subset of the free variables in an instantiated formula. Z3 with
MBQI instantiates all quantified variables of an input formula simultaneously, which
is why, as for the input in Figure 54, sometimes not all of them are necessary.

(declare-fun f (Bool Bool) Bool)

(in math notation: f : B× B→ B)

(assert (forall ((x0 Bool) (x1 Bool)) (and x0 (f x0 x1))))

(in math notation: ∀x0, y0 ∈ B : x0 ∧ f(x0, x1))

(let ((a!1 (forall ((x0 Bool) (x1 Bool))

(not (or (not x0 ) (not (f x0 x1 )))))))

(a!2 (not (or (not false ) (not (f false false ))))))

(quant-inst (or (not a!1) a!2)))

Figure 54: SMT formulas (above) and an extract from the corresponding unsat-proof gener-
ated by Z3 with MBQI, for which our implementation requires minimization (below). The
unsat-proof explicitly instantiatiates both quantified variables with false, which is marked
with colors. The potential example can be minimized because the instantiation of the
quantified variable x0 with false already exposes the unsatisfiablity regardless of x1.

Recovery. Recovery was not needed for any of the benchmarks.

Limitations. As mentioned above, our implementation is not performant enough
for long unsat-proofs, as we have reached the time limit for some of the complex
benchmarks without generating a potential example. We leave the optimization of
our implementation open for future work in Section 9.

Furthermore, we observed an extreme difference in performance between the Z3 API
and Z3 with the command-line under equal conditions (i.e., with the same random
seeds and configurations). For some of the benchmarks, the Z3 API did not manage
to generate an unsat-proof within the time limit specified in Section 5.2, while Z3
with the command-line succeeded in a very short time.
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6.2 Discussion of the Evaluation with Vampire

When using Vampire to generate the unsat-proofs, we were successful for many of
the smaller benchmarks, but only for very few of the complex benchmarks.

Technique vs. Implementation. As explained in Section 5.3.2.3, the syntactic
identification and extraction of implicit quantifier instantiations is based on regular
expressions and an incomplete parser, which both do not fully capture the heuristics
described in Section 3.3.2.3. That is, not every implicit quantifier instantiation is
identified by the regular expressions, and not every expression that is extracted can
be parsed. So there are cases where our technique would work, but the implementa-
tion does not in its current state.

Recovery. Recovery was used in relatively many cases, which was also to be ex-
pected when only using implicit quantifier instantiations presented in Section 3.3.2.3.
In fact, for the simple benchmarks, each of the recovery heuristics from Section 3.3.5
was successfully applied at least once, which means that they do theoretically work.
Table 1 shows, however, that the recovery approaches were never successfully applied
to the complex benchmarks. The reason for this is that the simpler heuristics are not
sufficient, and the more involved ones quickly lead to a search space explosion.

Minimization. Minimization was also often needed, mostly in combination with
recovery. This underlines how the two steps together can generate a successfully val-
idated example even if we do not find implicit quantifier instantiations.

Limitations. The obvious explanation for the not so good results would be that
the heuristics described in Section 3.3.2.3 are not sufficient for extracting all implicit
quantifier instantiations. Therefore, the question arises whether using a single addi-
tional heuristic would lead to much better results. The problem, however, is rather
that for certain inputs, applying the heuristics one after the other is not sufficient to
find the required quantifier instantiations. Instead, we would need combinations of
different heuristics for identifying implicit quantifier instantiations.

Figure 55 provides such an input and the corresponding unsat-proof generated by
Vampire. To expose the contradiction, we must instantiate the quantified variable x0

with some integer c and x1 with g(c) − 1, where g is an uninterpreted function de-
clared in the input. The unsat-proof contains neither function applications of g with
concrete values as arguments nor inequalities with the quantified variables, which is
why our heuristics for identifying quantifier instantiations from Section 5.3.2 are ini-
tially unsuccessful. The recovery heuristic based on default values from Section 3.3.5
then instantiates all quantified variables with the same fresh variable c fresh of type
integer, but this does not expose the contradiction. To actually succeed, we would
have to extract g(X0), instantiate X0 with the fresh variable c fresh, and use the
(not yet implemented) comparison heuristic for < to generate g(c fresh)−1. Even if
we fully integrate the corresponding heuristics in our implementation, jumps between
the steps for identifying quantifier instantiations and recovery would be necessary to
generate a corresponding concrete value. At the same time, these combination of
heuristics would also extract noise, which would quickly lead to a state space explo-
sion for bigger unsat-proofs. For the other benchmarks this looks similar.
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(declare-fun f (Int) Int)

(declare-fun g (Int) Int)

(declare-fun h (Int Int) Int)

(in math notation: f : Z→ Z, g : Z→ Z, h : Z× Z→ Z)

(assert (forall ((x0 Int)) (> (f (g x0)) 0)))

(in math notation: ∀x0 ∈ Z : f(g(x0)) > 0)

(assert (forall ((x1 Int)) (< (f (+ x1 1)) 0)))

(in math notation: ∀x1 ∈ Z : f(x1 + 1) < 0)

(assert (forall ((x2 Int) (x3 Int)) (= (h x2 (+ x3 1)) 0)))

(in math notation: ∀x2, x3 ∈ Z : h(x2, x3 + 1) = 0)

1. ! [X0 : $int] : $greater(f(g(X0)),0) [input]

2. ! [X0 : $int] : $less(f($sum(X0,1)),0) [input]

4. ! [X0 : $int] : $less(0,f(g(X0))) [evaluation 1]

6. $sum(X0,$sum(X1,X2)) = $sum($sum(X0,X1),X2) [theory axiom]

7. $sum(X0,0) = X0 [theory axiom]

9. 0 = $sum(X0,$uminus(X0)) [theory axiom]

10. ∼$less(X0,X0) [theory axiom]

11. ∼$less(X1,X2) | ∼$less(X0,X1) | $less(X0,X2) [theory axiom]

15. $uminus($uminus(X0)) = X0 [theory axiom]

19. $less(f($sum(X0,1)),0) [cnf transformation 2]

20. $less(0,f(g(X0))) [cnf transformation 4]

21. 0 = $sum($uminus(X0),X0) [superposition 9,15]

64. $less(X0,f(g(X1))) | ∼$less(X0,0) [resolution 11,20]

144. $less(f($sum(X27,$sum(X28,1))),0) [superposition 19,6]

166. ∼$less(f(g(X0)),0) [resolution 64,10]

176. $less(f($sum(X8,0)),0) [superposition 144,21]

182. $less(f(X8),0) [forward demodulation 176,7]

183. $false [resolution 182,166]

Figure 55: SMT formulas that we already used in Figure 12 (above) and the corresponding
unsat-proof generated by Vampire (below), for which our implementation cannot generate
an example that successfully validates.
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7 Build the Bridge to E-Matching

E-Matching performs a controlled number of quantifier instantiations based on pat-
terns provided in the input to stay time-efficient. A failure of E-Matching (i.e., it
returning unknown), as it was the case for the Bob scenario in Section 1.1, is there-
fore often caused by a lack of triggering terms that would be necessary to discover
the contradiction. To prevent this, we use the information our technique extracts
from the unsat-proofs to include further formulas for the input that only syntacti-
cally match patterns to trigger the necessary quantifier instantiations.

We pursue an approach that is otherwise applied manually and in a sense corresponds
to the inverse of an implicit quantifier instantiation. We use applications of uninter-
preted functions with quantified arguments from the patterns (e.g., f(x0, x1)), where
we replace the quantified variables with their instantiations (e.g., f(0, 3)). In order
to include them in the input without changing its satisfiability, we declare a fresh
uninterpreted dummy function that takes the function application as an argument,
and to which we impose no further constraints.

Figure 56 shows how we used this approach to automatically modify the input from
Figure 6 so that E-Matching succeeds in proving unsat.

(declare-fun f (Int Int) Int)

(assert (forall ((x0 Int) (x1 Int))

(! (=> (and (> x0 (- 0 1)) (> x1 2)) (> (f x0 x1) 7)) :pattern (f x0 x1))))

(assert (forall ((x2 Int) (x3 Int))

(! (=> (and (< x2 1) (< x3 4)) (= (f x2 x3) 6)) :pattern (f x2 x3))))

(assert (forall ((x4 Int) (x5 Int)) (= (f x4 x5) (f x5 x4))))

(declare-fun dummy0 (Int) Bool)

(assert (dummy0 (f 0 3)))

Figure 56: SMT formulas from Figure 6 (with patterns), where we automatically added a
dummy function and a further formula to trigger the quantifier instantiations necessary
for E-Matching to succeed in proving unsat.

At the time of writing, the implementation is not yet mature enough to be generally
used, but conceptually the approach is successful. We leave the further development
and evaluation of this approach open for future work (Section 9).

47



8 Related Work

The idea behind this thesis, i.e., extracting information from unsat-proofs to explain
the contradictions derived in them, has to the best of our knowledge not yet been
pursued. Research in this area does not generally address the problems of simplifying
unsat-proofs and making them human-readable. Instead, there is ample work on the
correctness of unsat-proofs. In addition, there have been efforts to develop a uniform
format for SMT proofs.

Proof Checking. Unsat-proofs are first and foremost certificates of the correctness
of a prover’s unsat answer, which can be used to automatically check the correctness
of the prover. Such proof checkers are the main topic of current research [19, 20]. A
major problem with unsat-proofs is their length, which, as we have observed, is often
significantly higher than the length of the input. This imposes several challenges on
proof checkers. Moskal [21] presents a technique that encodes unsat-proofs and thus
enables faster proof checking.

Proof Formats. Barret, de Moura and Fontaine [22] present the approaches of vari-
ous SMT solvers to proof production as well as the challenges this poses for a generic
proof format in order to prevail. We also observed that the unsat-proofs generated by
Z3 and by Vampire are completely different, one of the reasons being the disparate
underlying technique of the respective provers. A general proof format should be
flexible enough to support different proof rules of the various provers and at the same
time simple enough to actually provide an advantage. Besson, Frédéric and Fontaine
[23] propose such a generic proof format, whose aim is to simplify proof checking as
much as possible. For our purposes, however, this would be of no use, as it does not
cover quantifiers and instantiations. Böhme and Weber [24] discuss design choices for
proof formats, with the focus once more on checkability, but they also take human
readability into account. Despite the existing efforts, however, no general format has
yet become established. Manually extracting the information from the unsat-proofs
thus requires expert, tool-specific knowledge. Our technique automates this process
for two state-of-the-art provers, Z3 and Vampire, and presents the examples in a
simple, common format.
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9 Future Work

In this section, we present a list of possible extensions for the work done in this thesis
together with some further explanations and possible approaches for each of them.

Generalize Implementation. Our implementation does not fully capture all the
heuristics for extracting implicit quantifier instantiations from unsat-proofs generated
by Vampire that we presented in Section 3.3.2.3. As described in Section 6.2, there
is still room for improvement for syntactic identification and extraction of implicit
quantifier instantiations, and also the parser could be extended. Moreover, one could
include further semantic reasoning for finding concrete values.

Optimize Implementation. The evaluation (Section 6) showed that our imple-
mentation is not particularly fast for larger inputs, as we have reached the time limit
for some of the complex benchmarks without generating a potential example. Since
performance was not our main concern, optimizing the implementation would, accord-
ing to our expectation, lead to the generation of successfully validated examples for
these complex benchmarks when using Z3 with MBQI.

Better Output Format. Many potential users of our tool indicated that they would
prefer a more familiar format for the examples than SMT-LIB syntax (Section 4).
For this purpose, one could use the work from [25] to translate SMT-LIB syntax into
a human-friendly notation and integrate it with our tool.

Build the Bridge to E-Matching . In Section 7 we established the groundwork
for an automatic generation of triggering terms for E-Matching. One could further
develop this technique and evaluate whether it is successful for complex benchmarks.

Include Additional Provers. Our technique and its implementation are designed
so that only the steps that extract information from the unsat-proof are prover-
dependent, as we describe in Sections 5.3.2 and 5.3.1. Thus, one could without too
much effort add another prover that instantiates quantifiers in its unsat-proofs, which
possibly increases the applicability of our tool.

Integration into Viper . Viper is a language and suite of tools developed at ETH
Zürich, providing an architecture on which new verification tools and prototypes can
be developed simply and quickly [14]. One could extend Viper by integrating our
work. However, since the integration of our implementation into a verifier would in-
volve significant effort, one should consider beforehand what impact this would have
and what challenges they might have to overcome. If a set of SMT formulas generated
by Viper is unsatisfiable, then either the specification provided by the user contra-
dicts an internal axiomatisation, or the axiomatisation is even self-contradictory. The
contradiction may therefore involve formulas that are not known to the user, and so
an example generated with our technique is not necessarily meaningful for them.
Moreover, all the encodings that Viper generates are based on E-Matching, meaning
that they include patterns on which the soundness depends as well, but these are
ignored by MBQI and by Vampire. Therefore, one might first have to find a way to
extend these algorithms to consider them after all.
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10 Conclusions

The main goal of this thesis was to syntactically extract quantifier instantiations from
unsat-proofs generated by Z3 with MBQI and by Vampire and use them to explain
to users why their input formulas are unsatisfiable. We have developed a compre-
hensive technique for this purpose. An important part of it is the validation whether
the examples we generate really satisfy this requirement, i.e., whether they actually
expose the unsatisfiability. To ensure this, we use an elegant approach, some parts of
which we have implemented ourselves and others we use the prover for.

While working on this thesis, we studied quantifier instantiations in unsat-proofs in
detail. We recorded the findings in this written report. Since quantifier instantiations
in the unsat-proofs we encountered are neither always sufficient nor always minimal,
we have introduced approaches for minimization and recovery.

Our solution is intended to improve the user experience when working with unsat-
proofs, which is why we identified their expectations through a survey and designed
a suitable presentation format based on its results.

We present a theoretical solution, as well as its implementation. We evaluated our im-
plementation on manually and automatically generated benchmarks, including mini-
mal inputs consisting of single formulas up to complex benchmarks from SMT-COMP.
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