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1 Introduction

The performance that can be achieved by using low-level concurrent C++ is
often desired in library-programs. For the sake of performance, the memory
model that was introduced in C++11 provides very weak guarantees. This is
the reason why it is called weak memory. Weak memory programs are very hard
to write, as well as to test, for at least two reasons. First, the weak memory
semantics allow many different executions of the same code. Second, some of
these executions might be extremely rare and it would be nearly impossible to
observe them using random test-cases. However, such low-level libraries are not
only hard to write and to test, it is also absolutely crucial that they are reliable,
because they are used in many complex software projects. Therefore, not even
extremely rare failures are acceptable. Subtle bugs in the libraries may affect all
of these projects in ways which are hard and frustrating to debug. In practice,
these libraries are tested extensively, which is very time-consuming. Still, one
can not be 100% sure that the program always is correct. Formal proofs, on the
other hand, are also expensive, but they provide something very desirable which
is usually impossible to achieve with testing: a guarantee that the program is
correct for all scenarios.

2 Existing Work and its Limitations

2.1 Weak Memory Logics

Several logics for reasoning about weak memory programs have been proposed.
To our knowledge, the main ones are RSL [7], FSL [2] and FSL++ [3] (both
extensions of RSL) and GPS [6]. We focus on the RSL logics, but might benefit
from some ideas from GPS. RSL and FSL are easier to automate than FSL++,
but they are also much less expressive. In order to encode real world programs,
a logic with a similar expressiveness to that of FSL++ is required. The prob-
lem with FSL++ is that the high flexibility of the encoding makes it hard to
automate the proofs. Attempts to define a logic that is possibly slightly less
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flexible than FSL++, but makes automation easier, have been made [4]. This
work provides valuable insights, but it is not yet a finished proposal, leaving
several research questions and design decisions which mus be addressed before
being ready to use in a verifier.

2.2 Automation

A prototype tool for an automated verification of weak memory programs has
been published [5]. It encodes large fractions of RSL and FSL into Viper, a
language for which a reliable and established verifier exists. However, RSL and
FSL only allow reasoning about individual atomic accesses in isolation. This
is often not sufficient for the verification of real-world programs, as argued in
[3]. The reason is that identical operations can have different significance in a
particular library implementation, depending on what happened earlier in the
program. In FSL++, ghost state allows to artificially remember what happened
earlier in the program, even when it is not possible to determine it by looking
at the program state.

3 Core Goals

Preparation:

• Manually encode proofs from the extended FSL++ described in [4] into
Viper in order to understand their potential for automation.

Define an expressive and automatable logic for weak memory pro-
grams:

• Permission structures: Proofs for weak memory programs are mostly
about permissions. A straightforward approach for reasoning about per-
missions is with fractional permissions. At each point in a program, the
thread that is executing the current statement has a certain amount of
permission (∈ [0, 1]) to each memory location. A permission > 0 cor-
responds to the permission to read from the memory location. The full
permission (= 1) corresponds to the permission to write to the memory
location. Fractional permissions are suitable for automation, which is why
they are used in the Viper verification framework. However, they make it
hard to prove properties of concurrent programs, as explained in [1]. One
issue is that an unlimited amount of threads should be allowed to read
from a memory location simultaneously. Additionally, each reader thread
should itself be allowed to spawn an unlimited amount of reader threads.
If the amount of permission that is given away to a reader thread is fixed,
the amount of reader threads is limited and reader threads cannot spawn
additional reader threads. If, on the other hand, the reader threads do not
all get the same permission, it becomes hard to find a mapping between
the amount of permission that is held, and the count of readers that have
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been spawned. In order to deal with this complexity, FSL++ allows the
usage of custom partial commutative monoids for permissions. For a veri-
fier, supporting arbitrary monoids does not seem feasible because different
monoids require different custom decomposition/recomposition operators
on the verifier state. Also, in order to use Viper as a backend, there needs
to be a mapping between the custom monoids and the supported monoids
in the Viper language. If it is not possible to do so, suitable features
have to be designed and added to the Viper language. Which permission
structures are most fitting for usage in a C++ verifier is an open problem
which will be tackled during this thesis.

• Transition invariants: FSL++ potentially leaves many choices for proof
steps that are applicable at a certain position in the program. Often, the
proofs involve sophisticated manipulation of ghost state, which an auto-
mated verifier cannot be expected to come up with. Fortunately, these
manipulations are usually not arbitrary. They typically reflect the mod-
eling of a concept relevant to the data structure in question; the concept
and appropriate rules can be defined once and then stay the same for the
whole program. In [4] it is argued that these concepts can be captured by
transition invariants. These specify which of the possible proof steps has
to be applied depending on the current state. Transition invariants have
been proposed in [4]. At first sight, they seem suitable for encoding into
Viper.

Automate proofs in this logic using Viper:

• Find suitable Viper encodings for the added logic features.

Implement a Front-End tool for Verification of C++ programs:

• Support actual C++ syntax: A minimal subset of C++ has to be de-
fined for which a parser will be implemented. Hopefully, large parts of an
existing C++ parser can be reused.

• Define annotation syntax: It has to be possible to write the annotations
directly into the C++ code. These will also need to be parsed.

• Translation to Viper: Once an intermediate representation of the program
and its annotations is available, it will have to be encoded into Viper.

• Report results of verification: One of the verifiers (Silicon or Carbon) for
the Viper language will be invoked, and as the verification results sent
back to the user. The errors will be shown to the user, but in a way that
he does not need to know about the Viper backend (e.g. line numbers
should correspond to lines in the C++ code).

• Tool infrastructure (e.g. VSCode plugin): The tool has to be easy to use.
This is probably best achieved if it is integrated into some text editor or
IDE in form of a plugin.
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Evaluate using real world examples.

• Show non-trivial code examples which the verifier handles successfully.

• Measure the run-times on examples of different sizes.

4 Extension Goals

• Extend the subset of C++ that is supported.

• More substantial evaluation:

– Take new examples from libraries and verify them.

– Describe the limitations of the implemented tool and explain why
they are hard to overcome.

• Prove the soundness of the used logic: The soundness of the RSL logics has
been proved using Coq. It would make sense to also prove the soundness
of the logic we will define during this thesis. Rather than using Coq as
well, we might prove our logic using the RSL logics.

• Define equality for predicates in Viper in order to extend support for fences
to arbitrary resources (predicates): The technique used in the prototype
verifier to encode fences is probably going to be reused in this thesis. It
does not work for arbitrary resources and could be further improved.
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