
Deductive Verification of Real-World C++
Weak-Memory Programs

Pascal Wiesmann
Supervised by Dr. Alexander J. Summers

June 2, 2019

Abstract

In this work we provide a high-level and intuitive logic for the verification of
weak memory C++ programs. The logic is based on FSL++[4] and improves it
in two crucial aspects. First, it significantly simplifies the task of writing the
specification. Second, it is more suitable for automating verification. We also
provide a tool that verifies weak-memory C++ programs using our new logic.
The program and the specifications are encoded into Viper in such a way that
they can then be automatically verified.

Contents

1 Introduction 4

2 Background 6
2.1 Weak Memory . 6
2.2 Data races . 7
2.3 Atomics and Synchronization . 7
2.4 Relaxed Separation Logic . 8
2.5 Fenced Separation Logic (FSL) 9
2.6 FSL++ . 10
2.7 Entity Fractional Counting . 10

3 Token-based Reasoning for Weak Memory Programs 11
3.1 Tokens . 12
3.2 Splitting and Merging Tokens . 13
3.3 The source of the tokens . 13
3.4 Generating tokens from the source and merging tokens back in . 13
3.5 Rules to get the write permission 14
3.6 The relation of tokens and the EFC monoid 14
3.7 Modalities . 15
3.8 The up-modality . 16
3.9 Rules for Acquire Fences . 17
3.10 Rules for Release Fences . 17
3.11 The life of a non-atomic variable and its tokens 18
3.12 Specification Syntax for Token-based Proofs 18

3.12.1 Source code annotations 18
3.12.2 Using Proof Rules from the RSL logics on IDF-Style As-

sertions . 19

4 Automation of Token-based Proofs 20
4.1 Merging and splitting resources 22
4.2 Method calls . 22
4.3 Release-acquire RMW operations 22
4.4 Generalized RMW operations . 23

1

5 Proofs for example programs 25
5.1 Spinlock . 26

5.1.1 try_lock_shared . 27
5.1.2 unlock_shared . 28
5.1.3 try_lock . 29
5.1.4 unlock . 29
5.1.5 unlock_and_lock_shared 30

5.2 Barrier . 30
5.2.1 Proof . 32

5.3 ARC . 33
5.3.1 Constructor . 34
5.3.2 read . 34
5.3.3 clone . 35
5.3.4 drop . 35

5.4 ARC version 2 . 36
5.4.1 Constructor . 36
5.4.2 read . 37
5.4.3 clone . 37
5.4.4 drop . 38

5.5 ARC comparison to FSL++ . 38
5.5.1 FSL++ proof of drop function 38

6 Syntax for C++ input programs 40

7 C++ to Viper encoding 42
7.1 Ghost locations and modalities 42
7.2 Encoding Tokens . 43

7.2.1 Encoding the Token Counting 43
7.2.2 Encoding the Permission Sum Associated with the Tokens 43
7.2.3 Encoding the Relation between the Token Count and the

Permission . 43
7.2.4 Inhaling Tokens . 45
7.2.5 Exhaling Tokens . 45

7.3 Encoding a C++ program . 46
7.4 Field declarations . 48
7.5 Non-Atomics . 48
7.6 Atomics . 49
7.7 Local variables . 49
7.8 Methods . 49
7.9 Assertions . 52
7.10 Inhales and Exhales . 52
7.11 Fences . 52
7.12 Read-Modify-Write Operations 53
7.13 Location Invariants . 53

7.13.1 Inhaling the source as part of the location invariant . . . 53
7.13.2 Exhaling the source as part of the location invariant . . . 53

2

8 Verification Tool for Weak Memory Programs 58
8.1 Parser . 58
8.2 Encoder . 58
8.3 Benchmarks . 59

9 Conclusion and Future Work 60
9.1 Conclusion . 60
9.2 Future Work . 60

Acknowledgments 62

A More details on Viper encoding 65
A.1 Fences . 65
A.2 exhaleSource definition . 66
A.3 Basic Viper definitions . 68
A.4 Parallel Heaps . 69
A.5 Barrier without precondition . 70

A.5.1 Specification . 70
A.5.2 Proof outline . 71
A.5.3 Explanations . 71

A.6 Full details for Atomic Reference Counter 73
A.6.1 C++ Code . 73
A.6.2 Generated Viper Code . 74

3

Chapter 1

Introduction

The performance that can be achieved by using low-level concurrent C++ is
often desired in library-programs. For the sake of performance, the memory
model that was introduced in C++11 provides very weak guarantees regarding
concurrency: this is the reason why it is called weak memory. Weak memory
programs are very hard to write, as well as to test, for at least two reasons.
First, the weak memory semantics allow even more executions of a program
than all the possible sequential interleavings of the threads (which might already
be many). Second, some of these executions might be extremely rare and it
would be very unlikely to observe them using random test-cases. However, such
low-level libraries are not only hard to write and to test, it is also absolutely
crucial that they are reliable, because they are used in many complex software
projects. Therefore, not even extremely rare failures are acceptable. Subtle
bugs in the libraries may affect all of these projects in ways which are hard and
frustrating to debug. In practice, these libraries are tested extensively, which
is very time-consuming and still, one cannot be 100% sure that the program
always is correct. Formal proofs, on the other hand, are also expensive, but they
provide something very desirable which is usually impossible to achieve with
testing: a guarantee that the program is correct in all scenarios.

Several logics for reasoning about weak memory programs have been proposed.
To our knowledge, the main ones are RSL [12], FSL [3] and FSL++ [4] (both
extensions of RSL) and GPS [11]. In this thesis, we focus on RSL and its
extensions (collectively referred to as RSL logics). RSL and FSL are easier to
automate than FSL++, but they are also much less expressive. In order to
encode real world programs, a logic with an expressiveness similar to that of
FSL++ is required. The problem with FSL++ is that the high flexibility of the
encoding makes it hard to automate proofs. Attempts to define a logic that is
possibly slightly less flexible than FSL++, but makes automation easier, have
been made [7] but not yet compiled to a finished proposal.

A prototype tool for the automated verification of weak memory programs
has been published [10]. It encodes large fractions of RSL and FSL into Viper
[6], a language for which reliable and established verifiers exist. However, RSL

4

and FSL only allow reasoning about individual atomic accesses in isolation. This
is often not sufficient for the verification of real-world programs [4]. The reason
is that in a particular library implementation, identical operations can have
different meanings for verification, depending on what happened earlier in the
program. In FSL++, ghost state makes it possible to artificially remember what
happened earlier in the program, even when this is not possible to determine by
looking at the program state.

This thesis addresses many of the shortcomings of existing logics and tools.
Our main contributions are: (1) a high-level specification language for weak
memory C++, (2) corresponding proof rules, (3) proofs for example programs
that show the effectiveness of our system, (4) a tool that encodes our specification
language and a subset of C++ into Viper, a framework for deductive verification.

5

Chapter 2

Background

2.1 Weak Memory
In his book The C++ programming language, Bjarne Stroustrup, the creator of
C++, writes “Most programmers do not need to understand a memory model
at all and can think of reorderings as amusing curiosities” and goes on to say
“as sensible and productive programmers, we stay away from the lowest levels
of software whenever we can. Leave those for the experts and enjoy the higher
levels that those experts provide for you.” [9]

If the typical professional software engineer should not have to worry about
memory models, the code which experts provide for managing these models has
to be absolutely bug-free. This does not mean that programmers do not have
to think about parallel programming in general. It just means that most pro-
grammers should use library implementations of locks and other synchronization
mechanisms (written by experts), which already take care of the relevant weak
memory issues.

Weak memory models allow executions of multi-threaded programs that are
not sequentially consistent. This means that the execution cannot be explained
by a sequential interleaving of all operations. Consider the example in Figure
2.1. We assume the variables are all initialized before the functions are executed
and ignore potential data races. Assuming sequential consistency, the resulting
values (x, y) can be (0, 1), (0, 1) or (1, 1). An execution resulting in (0, 0) is
not possible with a sequentially consistent memory model, but weaker memory
models might allow it.

Achieving sequential consistency would lead to a considerable overhead in
modern hardware. One reason is the hierarchical architecture of the caches that
are used to speed up memory accesses. An operation takes effect on the local
cache of a core long before it is visible for other cores. Sequentially consistent
memory models require to synchronize the caches with the main memory more
often than weaker memory models, which is expensive in terms of performance.

6

// thread 2:
int c = 0;
extern int b;
int f1()
{

c = 1; // A
int x = b; // B
return x;

}

// thread 2:
int b = 0;
extern int c;
int f2()
{
b = 1; // C
int y = c; // D
return y;

}

Figure 2.1: Example adapted from [9]

2.2 Data races
In C++, memory accesses can be atomic or non-atomic. Non-atomic accesses
lead to undefined behavior in the semantics of C++ if two accesses are executed
at the same time and at least one of them is a write. This is called a data race.
One way to prevent undefined behavior while using non-atomic accesses is to
protect them using synchronization libraries. These libraries are implemented
using atomic operations.

2.3 Atomics and Synchronization
The C++ semantics guarantee that atomic operations by multiple threads are
always ordered, even if multiple threads try to execute atomic operations simulta-
neously. In other words, atomic accesses are allowed to race. Atomic accesses are
much slower than non-atomic accesses, therefore using atomic operations on large
shared data would be inefficient. Atomic operations are not only safe themselves,
they can also be used to synchronize other memory accesses. Efficient library
implementations often protect large amounts of shared data using atomic opera-
tion on a few small, dedicated memory locations (e.g. simple boolean flags or
integer counters). Atomic operations have a synchronization parameter that can
be set to e.g. memory_order_release (release), memory_order_acquire
(acquire) or memory_order_relaxed. This parameter is also referred to as
the memory order of an atomic operation. If all threads perceive a certain
release operation on a memory location before an acquire operation on the same
location, we get certain guarantees with respect to the order in which memory
operations are perceived: All threads will perceive the effects of operations
preceding the release operation before the effects of subsequent operations of the
acquire operation. This means that non-atomic operations before (and in the
same thread as) the release operation will not race with non-atomic operations
after (and in the same thread as) the acquire operation. The same kind of
synchronization cannot be achieved using relaxed operations.

7

2.4 Relaxed Separation Logic
Relaxed separation logic (RSL) is a logic that can be used to verify properties
of weak memory programs. These programs have to be written in a simplified
weak-memory programming language. This programming language is only used
for verification purposes and never for programs that are actually executed. One
of the simplifications in this programming language is that memory locations
can either only be used with atomic operations or only with non-atomic oper-
ations. Theses types of locations are called atomic locations and non-atomic
locations, respectively. An ownership model is used to prove the absence of data
races. loc 17→ _ denotes the full ownership/permission (we use the two term
interchangeably) of the non-atomic memory location loc with an arbitrary value
at this location. loc 17→ v stands for the full ownership and the knowledge that
the value is v. With the full permission, a thread is allowed to write to the
location. Threads can also have partial ownership of the location, e.g. loc 1/27→ v.
With partial permission a thread can read from a location but not write to it.
When a location is allocated, the permission loc 17→ _ is created for the allocating
thread. This permission can then be split into parts which can be distributed
to other threads and added up again, but there is no way more than the full
permission can exist because permission cannot just be created out of thin air.
This system guarantees that no write operation can be executed at the same
time as another read or write operation, because this would in total require more
than the full permission.

Read/write operations: In RSL, threads can send permission to each
other using operations on atomic locations. As shown in Figure 2.2, write
operations are used to send permission and read operations to receive permission.
A so-called location invariant on the atomic location defines exactly which
permission has to be sent depending on the value that is written. Reading the
value results in receiving the permission. The location invariant is a function
from values to assertions. Permission can be contained in the assertions, but the
assertions can also contain other information (i.e. that the value at the location
always is in a certain range). Assume the location invariant Q on the left side of
Figure 2.2 is defined as Q(v) = x

17→ _. This invariant does not even depend on
the value of the location. In order to write any value, a thread must give up the
full permission to the location x. When a thread reads any value, it gets the full
permission to x. This is a simplified explanation. In reality, the full RSL Logic
is more complex. For example there are mechanisms that make sure that if the
same value twice is read twice, the assertion Q(v) is still only received once.

We saw how RSL models sending and receiving of resources. But we also
mentioned that weak memory models do not guarantee sequential consistency.
This means that a thread can observe the operations of another thread in a
different order than the thread that executes them. Clearly, we need some
ordering guarantees for sending around and using permission safely. This is
exactly what release-acquire synchronization gives us. If thread A sends resources
to thread B via an atomic write and corresponding read, A’s usages of the resource

8

loc.store(v,rel)

w = loc.load(acq)

Q(v)

Q(w)

v=loc.exchange(v’, rel_acq)

loc loc T1 T1T2

Figure 2.2: Atomic write and read operation on the left and RMW-operation on
the right.

are guaranteed to be ordered before B’s usages of the resource.
Read-modify-write (RMW) operations: Another kind of atomic opera-

tions are RMW operations. With RMW operations, threads both read and write
to the location with a single atomic operation. In RSL, this means that resources
can be sent and received with a single operation. In RSL, a location has to specify
whether its value can be read via normal reads or only via RMW operations.
Write operations are possible on both types of locations. The location invariant
conceptually defines the permission that is at the location depending on the
value. If the value that is read is the same as the one that is written, the thread
does not gain or loose any permission. But if, say, the location needs more
permission with the new value than it had before, this permission has to come
from the thread and the thread will end up with less permission than it had
before the operation. An example of such a scenario would be a RMW operation
used to release a mutex.

2.5 Fenced Separation Logic (FSL)
We have seen how release-writes and acquire-reads can be used for synchroniza-
tion. Relaxed writes and reads on the other hand do not synchronize in the same
way, but FSL still allows to send resources via a relaxed write, but only if it is
guaranteed that all the operations that need the resource are completed. This
guarantee can be provided by a release fence. Figure 2.3 shows how permission
can be transferred via a relaxed write and a relaxed read. The acquire fence
makes sure that all operations after the fence are only visible after the fence.
In combination, the two fences make sure that operations before the release
fence are completed before operations after the acquire fence start. In this way,
the permission can be transferred safely, without being used by both threads
simultaneously. In order to reason about the effect of fences, FSL introduces
modalities. Resources that were prepared (using a fence) for sending with a
relaxed write are labeled with 4. Resources that were received through a relaxed
write and are not usable before an acquire fence is hit are labeled with 5.

9

T1 T2

loc.store(v, rlx)

fence(rel)

fence(acq)

v = loc.load(rlx)

ready (“up”)

not usable (“down”)

loc

rel

acq

Figure 2.3: Fences and relaxed read/write

2.6 FSL++
In FSL++ it is possible to add memory locations, which are not present in the
original program. These so-called ghost-locations are only used for verification
purposes. The ownership of such locations can be represented by arbitrary partial
commutative monoids (PCM). PCMs are associative, commutative algebras and
have a neutral element. Since they are partial, the results of some operations
can be undefined. This rich facility for defining ghost state makes FSL++ very
expressive. PCMs can be tailored to match the exact program that is being
verified. Defining a PCM becomes part of writing the specification. This can be
a very hard task. The proof of the correctness of the Rust Atomic Reference
Counter given in [4] shows how a custom PCM is tailored to exactly contain
the information needed for this specific proof. Because of this modular aspect
of FSL++, it is hard to automate and automation of FSL++ has only been
achieved for simple monoids [10].

2.7 Entity Fractional Counting
Entity Fractional Counting (EFC), a monoid for FSL++, was presented in
[7]. This monoid was shown to be effective for the verification of real world
weak memory examples. For some programs, a custom-made monoid might
still be required, but the EFC monoid seems to capture the intuition of why a
weak-memory program is correct very well. Is is unclear how reasoning with the
EFC monoid could be automated. One downside of the EFC monoid, is that
it uses fractions at places where the only information that seems to matter is
whether the fraction is zero, nonzero or exactly one.

10

Chapter 3

Token-based Reasoning for
Weak Memory Programs

As we saw in the previous chapter, permissions play an important role for the
verification of parallel programs, and therefore also for the verification of weak
memory programs. The RSL logics use fractional permissions for non-atomic
locations, and arbitrary PCMs for ghost locations. Fractional permissions have
the advantage that when using them, it is straightforward to model the fact
that the read permission can be distributed to an arbitrarily amount of threads.
However, there are also significant disadvantages. First, it is hard to model
counting using fractional permissions. This is because fractional permissions are
between 0 and 1 and the counting should be unlimited. As soon as we define
the fraction that corresponds to some count, the counting is limited from above.
Counting can be very useful for the verification of real-world programs, e.g. to
count the number of threads that have read permission. A second disadvantage
of fractional permissions is that, when using them in proofs, we have to worry a
lot about the exact fractions, even though for many real-world examples, what
matters is only the difference between no access, read access and write access.
This adds unnecessary complexity to the proofs and usually does not reflect the
intuition of why a program is correct. For the real-world examples that we are
tackling in this work, it seems that they pass read/write access to non-atomic
locations around, and track how many threads have access, rather than how
much.

The idea of having a permission structure that allows the counting of the
number of threads to which permission was given, is also what motivated the
EFC monoid. The EFC monoid relates a number of entities (one can think of
them as permission “chunks”) to the permission these entities add up to. The
EFC monoid is the basis for the permission structure that is introduced in this
work. Our goal is to define a structure similar to the EFC monoid, that is
independent of fractions and facilitates automation. In proofs, a ghost location
that is governed by the EFC monoid is closely related to a non-atomic memory

11

write read none

Figure 3.1: The three types of tokens.

location in the program. In our work, we want to use this fact to make the
syntax easier.

3.1 Tokens
We now introduce a new permission structure that provides counting and a
distinction between no permission, read permission and write permission.

In our logic, permission is held in the form of tokens. They give the owner
permission to a certain non-atomic location in memory. It is not possible to
have permission without owning any tokens. If multiple tokens for the same
non-atomic location are owned by one thread, they can be combined. In case
they are combined, only the number of tokens and the permission that they give
overall to the owner are remembered. The notation for expressing the ownership
of tokens for the non-atomic location loc is:

Tok(loc, n, τ) where n ∈ N>0 and τ ∈ {none, read, write}

The positive integer n is the number of tokens that are held while τ is the
actual permission that the tokens give to the owner. The three kinds of tokens
are also shown on figure 3.1. τ tells us what the thread can do with the location
for which it has the tokens. With none it cannot do anything, with read it can
read from the location and with write it can read and write. Read or write
access can only be held in the form of tokens.

A write-token can be exchanged for a read-token:

Tok(l, n, write) |= Tok(l, n, read) (tok-write-is-read)

But a read-token cannot be exchanged for a none-token.

Tok(l, n, read) 6|= Tok(l, n, none)

This is because read-tokens cannot be sent using relaxed operations, whereas
none-tokens can.

12

3.2 Splitting and Merging Tokens
For n > 0 and m > 0:

(none-tok-none-tok)
Tok(l, n, none) ∗ Tok(l,m, none) ≡ Tok(l, n+m,none)

(read-tok-read-tok)
Tok(l, n, read) ∗ Tok(l,m, read) ≡ Tok(l, n+m, read)

(write-tok-none-tok)
Tok(l, n, write) ∗ Tok(l,m, none) ≡ Tok(l, n+m,write)

(read-tok-none-tok)
Tok(l, n, read) ∗ Tok(l,m, none) ≡ Tok(l, n+m, read)

(write-tok-read-tok)
Tok(loc, n, write) ∗ Tok(loc,m, some) |= False

(write-split)
Tok(l, n+m,write) |= Tok(l, n, read) ∗ Tok(l,m, read)

Note that the ∗ is usually cancellative, meaning that A1 ∗A2 ≡ A1 ∗A3 =⇒
A2 ≡ A3. In our logic, ∗ is not cancellative, because otherwise the second and
the third rule would imply Tok(l, n, read) ≡ Tok(l, n, none).

3.3 The source of the tokens
Another resource in our logic is the so-called source. There is exactly one token
source per non-atomic location, and all tokens for the non-atomic location come
from this unique source. The source can be used to generate tokens. The
notation is as follows:

Src(loc, n, τ) where n ∈ N≥0, and τ ∈ {none, read, write}

n keeps track of the number of tokens that were given out and τ keeps track of
the kind of tokens that the source can generate. The source can never run out
of tokens. At the source, we are allowed to replace the write-state with read
and read with none. This is not the same as for tokens, because one cannot
exchange a read-token for a none-token. We never send the source with relaxed
operations, because we only allow the source at the location invariant, which
means that we do not send the source around at all.

Src(l, n, write) |= Src(l, n, read) (src-write-is-read)
Src(l, n, read) |= Src(l, n, none) (src-read-is-none)

3.4 Generating tokens from the source and merg-
ing tokens back in

The rules in this section show how the source of the tokens interacts with tokens.

13

n n n
none read write

Figure 3.2: The three possible states of the token-source with n missing tokens.

(none-src-none-tok)
Src(l, n+m,none) ∗ Tok(l,m, none) ≡ Src(l, n, none)

(read-src-read-tok)
Src(l, n+m, read) ∗ Tok(l,m, read) ≡ Src(l, n, read)

(none-src-write-tok)
Src(l, n+m,none) ∗ Tok(l,m,write) ≡ Src(l, n, write)

(any-src-read-tok)
Src(l, n+m, any) ∗ Tok(l,m, read) ≡ Src(l, n, read)

(read-src-none-tok)
Src(l, n+m, read) ∗ Tok(l,m, none) ≡ Src(l, n, read)

(write-src-split)
Src(l, n, write) |= Src(l, n+m, read) ∗ Tok(l,m, read)

(write-src-read-tok)
Src(l, n, write) ∗ Tok(l,m, read) |= False

(too-many-tokens)
Src(l, n, τ1) ∗ Tok(l,m, τ2) |= False if m > n

3.5 Rules to get the write permission
Until now, we saw several rules for splitting the write permission into read
permissions. There is one way to get back the write permission after it was split
into read permissions. If the source is not missing any tokens, we know that the
write permission is at the source, even if the keyword says something different.
This fact can be used with the following rules:

Src(l, 0, none) |= Src(l, 0, write) (all-tokens-a)
Src(l, 0, read) |= Src(l, 0, write) (all-tokens-b)

3.6 The relation of tokens and the EFC monoid
All possible tokens- or source-assertion that we saw are closely related to an
assertion in FSL++ using the EFC monoid for the ghost locations. α : (n, q)+

14

represents the ownership of the permission (n, q)+ to the ghost location α, where
(n, q)+ represents n entities that sum up to q. Having “-” in the exponent (as in
some of the expressions below) means that the expression refers to entities that
are missing for the full permission (which is (0, 0)−). For more details, see [7]:

Tok(loc, n, write) ≈ loc
17→ _ ∗ α : (n, 1)+

Tok(loc, n, read) ≈ ∃q. q ∈ (0, 1] ∧ loc q7→ _ ∗ α : (n, q)+

Tok(loc, n, none) ≈ α : (n, 0)+

Src(loc, n, write) ≈ loc
17→ _ ∗ α : (n, 0)−

Src(loc, n, read) ≈ ∃q. q ∈ (0, 1] ∧ loc q7→ _ ∗ α : (n, 1− q)−

Src(loc, n, none) ≈ ∃q. q ∈ [0, 1] ∧ loc q7→ _ ∗ α : (n, 1− q)−

α is a ghost location that is governed by the EFC permission structure. If we
plug the corresponding FSL++ assertions in for all of our introduced rules, the
rules can be proven correct using the FSL++ rules. The keywords that we
are using for our abstract reasoning do not always have a direct translation to
a fraction. For example, the read permission can correspond to any non-zero
fractional permission. The last of the embeddings is maybe the most surprising
one. Having a source that can only give none tokens corresponds to owning an
arbitrary fractional permission amount to the location. One way to understand
why this makes sense is that even if we could have some permission, we cannot
be sure to have some, so it would be unsound to add a rule which allows to give
away nonzero fractional permission (i.e. a read token).

3.7 Modalities
Modalities were briefly introduced in the previous Chapter. The up-modality (4)
is used for resources that can be sent using a relaxed write. The down-modality
(5) is used for resources that were received with a relaxed read and, therefore,
cannot be used without an acquire fence. With the concept of modalities added,
the notation is now extended: in Tok(loc, n, τ), τ can be instantiated with many
more options. For any n > 0, τ can be in

{none, read, write,5read,5write,4read,4write}

If n > 1, τ can additionally be in

{(5read, read), (5read, read,Σwrite), (read,4read), (read,4read,Σwrite) }

and if n > 2, τ can be all of the above and additionally in

{(5read, read,4read), (5read, read,4read,Σwrite)}

15

read

read read

read

READ-TOK-NONE-TOK

NONE-SRC-NONE-TOK

ALL-TOKENS-A

NONE-SRC-WRITE-TOK

READ-TOK-READ-TOK

none
none1

1

0

none

none

none

0
write

write

Figure 3.3: Two example derivations and the rules that were used.

For example Tok(loc, n, (5read, read)) means that we own at least one read
token that we received with a relaxed read (a 5read-token), and at least one
normal read-token. This is the reason why n must be at least 2. Except that
there is at least one of each kind, the distribution of the n tokens over the
modalities is flexible, e.g. the following equality holds for any i, j > 0 such that
i+ j = n:

Tok(l, i,5read) ∗ Tok(l, j, read) ≡ Tok(l, i+ j, (5read, read))

Σwrite means that the tokens carry the full (write) permission between them.
There are several ways how this information can get useful, as we will see below.

3.8 The up-modality
We add rules that do not exist in FSL++:

Tok(l, n,4read) |= Tok(l, n, read)
Tok(l, n,4write) |= Tok(l, n, write)

We essentially allow the removal of the 4-modality. Note that we do not allow
to add it again and we do not allow something similar for the 5-modality. This
is sound, because whenever we remove the modality from a resource using our
new rule, we could also just not have put it under the modality in the first place.

16

In FSL++, we are never forced to put anything under the modality whenever we
hit a release fence. For each proof that is done using our new rule, a similar proof
that uses the FSL++ style could be constructed. This proof can be constructed
as follows. First, just use the whole permission state that the thread owns at
the moment when it hits a release fence as annotation of the release fence (i.e.
everything gets the 4-modality). Second, continue the verification and whenever
a resource is needed without the up-modality that is under the up-modality,
remove this resource from the annotation of the fence. These two steps have to
be repeated for each release fence. Formally it would make sense to use another
symbol instead of 4 and call it maybe-up, but it seems that this would add
unnecessary complexity.

3.9 Rules for Acquire Fences
We use fenceacq as shorthand for atomic_thread_fence(memory_order_acquire).
We assume that we are always reasoning about the same location, therefore we
omit it. The idea behind these rules is that whenever we hit an acquire-fence,
we can remove the down-modality everywhere. In some cases, this can mean
that we get write access.

For n ≥ 1:

{Tok(n,5read)} fenceacq {Tok(n, read)}
{Tok(n,5write)} fenceacq {Tok(n,write)}

For n ≥ 2:

{Tok(n, (5read, read))} fenceacq {Tok(n, read)}
{Tok(n, (5read, read,Σwrite))} fenceacq {Tok(n,write)}

For n ≥ 3:

{Tok(n, (5read, read,4read))} fenceacq {Tok(n, (read,4read))}
{Tok(n, (5read, read,4read,Σwrite))} fenceacq {Tok(n, (read,4read,Σwrite))}

3.10 Rules for Release Fences
We use fencerel as shorthand for atomic_thread_fence(memory_order_release)
and again omit the location. These rules add the up-modality to all the permis-
sion that does not have a modality.

17

{Tok(n, read)} fencerel {Tok(n,4read)}
{Tok(n,write)} fencerel {Tok(n,4write)}

{Tok(n, (read,4read))} fencerel {Tok(n,4read)}
{Tok(n, (read,4read,Σwrite))} fencerel {Tok(n,4write)}

{Tok(n, (5read, read))} fencerel {Tok(n, (5read,4read))}
{Tok(n, (5read, read,Σwrite))} fencerel {Tok(n, (5read,4read,Σwrite))}
{Tok(n, (5read, read,4read))} fencerel {Tok(n, (5read,4read))}

{Tok(n, (5read, read,4read,Σwrite))} fencerel {Tok(n, (5read,4read,Σwrite))

3.11 The life of a non-atomic variable and its
tokens

acc(loc) is created when a non-atomic location is freshly allocated and initialized.
A source is created with the first write operation to the atomic location which
has this specific source in its location invariant. If this first write operation is
relaxed, the thread either has to own 4acc(loc) or keep a write-token. If the
first write is a release-write or if the thread owns 4acc(loc), the thread can also
keep only read access or no access at all. As soon as the non-atomic location is
“managed” by an atomic location, the thread does not hold any permission in
form of acc(loc) anymore, and can own tokens instead.

3.12 Specification Syntax for Token-based Proofs
The tokens and the source explained above can be used in the specification of
a program. They replace existing approaches for permissions to non-atomic
locations. This is not enough for the verification of weak memory programs, but
the rest stays the same as in the existing work on automation of weak memory
verification [10].

3.12.1 Source code annotations
A central element in specifications is assertions. Our syntax for assertions:

A ::= e | Tok(l, n, τ) | Src(x, n, τ)
| A1 ∗A2 | e⇒ A | (e ? A1 : A2) | Uninit(l) | Acq(l,Q) | acc(l)
| Rel(l,Q) | Init(l) | 4A | 5A | RMWAcq(l,Q)

where e is an (otherwise pure) expression that is allowed to contain x.val
if the context in which it appears contains read permission to x. We often use
Rmw(l, Q) where

Rmw(l, Q) := Init(l, Q) ∗ Rel(l, Q) ∗ RMWAcq(l, Q)

18

This is a useful short form because it contains exactly what is needed in order
to perform a RMW operation. Preconditions and postconditions are annotated
with assertions as defined above, and location invariants as functions from values
to assertions. The Src() is only allowed to appear in the location invariant and
never at the thread-level and Tok() can only appear at the thread-level.

3.12.2 Using Proof Rules from the RSL logics on IDF-
Style Assertions

The RSL logics are based on separation logic, whereas our logic uses a Viper-like
Implicit Dynamic Frames [8] syntax. Our proof rules are all derived from FSL++.
Why is this sound? Because for our real-world examples, the IDF-formulas on
which we apply the rules usually correspond to a formula in separation logic, on
which the separation logic version of the rules hold.

19

Chapter 4

Automation of Token-based
Proofs

The token-based specification and the proof rules that we provided are arguably
at a much higher abstraction level than FSL++. However, we did not yet see
how our logic is more suitable for automation than existing approaches. In this
chapter we present a proof style that determines which rules should be applied
at which step of the verification. In a proof there are often point where multiple
valid rules could be applied and it is not clear which one ultimately leads to the
assertion we actually want to prove. In the following we show guidelines that
determine which outcomes of applying rules are preferred over others.

1. The threads get as much permission as possible. With “as much
as possible” we mean that we prefer write or Σwrite over any form and
combination of reads and and any read over none. E.g. if a thread
owns Tok(loc, 2, read) and calls a function that needs Tok(loc, 1, read), it
would itself keep Tok(loc, 1, read) and not Tok(loc, 1, none) (both would
be possible according to the rules). Read and write tokens are not strictly
more powerful than none tokens, because e.g. a relaxed RMW-operation
that fails if the thread has a read token could potentially succeed if the
thread would have a none token. So why is giving as much permission
as possible to the thread the right choice? In practice, it appears that it
never happens that none-tokens are distributed just to allow for relaxed
operations. If we happen to only get a none-token even though we wanted
read access, then we can at least get rid of it cheaply. However, this does
not mean that we should favor none-tokens simply because it is easy to
get rid of them later on.
Why should we always prefer write over read? There is nothing the owner
can do with read access that they cannot do with write access. The only
advantage of not having the write permission is that someone else can be
sure that we cannot modify the data. However, this person should keep a

20

read permission anyway, because otherwise they cannot be sure that the
data does not change. Now if they keep read access for themselves, there
cannot even be the option for us to get the write access. This shows that
if we have the opportunity to get the write permission, we should take it.
Another non-trivial application of this principle would be to prefer write
over 4read. This scenario can happen if a thread has 4read and can get
a read token from a location invariant, such that both would add up to
write, but the thread can only have one token. Then it will remove the
up-modality from the token it already has, and end up with a write-token.
This is just an application of the principle that we favor write over anything
else. The reason why we think this makes sense is that if the idea of the
proof is that no-one ever has the write permission, the location invariant
can just always keep the read permission. Otherwise, chances are that the
situations where a thread can get the write permission, are the situations
where we want it to get the write permission.

2. Prefer the real heap over the down-heap. If a thread already has
read access and performs a RMW operation without the acquire memory
order, it could in theory get another read token from the location invariant,
which would then end up under the down-modality. This does not seem
to be useful and for this reason our automated proofs would not do that.
There is one exception if what the thread already has and the read token
it can get from the location invariant sum up to write. In this case we
will add the read-token and the information that the sum is write to the
permission state of the thread.

3. Prefer the up-heap over real heap. This rule works similarly to the
previous one. If the thread already has 4read it will avoid additionally
getting read or 5read except in case the tokens add up to write. But not
only that, it should also actively try to get rid of read if it already has
4read. E.g. if the thread performs a RMW-operation with the release
memory order, it will use this to get rid of the read token (except in case
the tokens add up to write).

These principles lead us to conclude the following order of preference for the
permission at the thread-level:

1. 4write

2. (read,4read,Σwrite)

3. write

4. (5read, read,4read,Σwrite)

5. (5read, read,Σwrite)

6. 4read

21

7. (read,4read)

8. read

9. (5read, read,4read)

10. (5read, read)

11. 5read

12. none

4.1 Merging and splitting resources
When adding permissions together, the rules in Chapter 3 never leave a choice
for what the resulting permission is. However, after merging, we always try
to apply the rule that gives us the write permission at the source if no tokens
are missing (all-tokens-a and all-tokens-b). This is a crucial part of our
automation approach because it helps in giving as much permission as possible
to the threads. In the programs that we verify, we always split resources when we
want to remove something specific from a state. What is left after the removal
of the specified resources is not given, and sometimes multiple rules could be
applied. The “right” rule to apply (according to our system) is the one that
leaves as much permission as possible in the part that is not removed. With “as
much as possible” we refer to the order of preference introduced above.

4.2 Method calls
When a method is called, the current resources have to be divided into what the
caller keeps and what the callee gets. Since what the callee gets is already fixed
(it is written in its precondition), the only question is what the caller can keep.
The answer is straightforward: the caller gets as much permission as possible
(referring to the order of preference shown above) while the callee gets enough to
match his precondition. After the method call, we simply add the postcondition
of the method to the current state.

4.3 Release-acquire RMW operations
Figure 4.1 shows how a read-modify-write operation is verified in case the memory
order is rel_acq. We can simply think of it as adding Q(v) to the current state
of the thread (in the way described above). Then, the merged state is split into
a part that will go to the location invariant (Q(vnew)) and a leftover that the
thread can keep. The split is done in a way that maximizes the thread can keep.

22

Thread Thread

v = x.fetch_add(1,rel_acq)

3.) remove Q(v+1) from state

1.) add Q(v) to state

2.) apply rules

Figure 4.1: Automation of RMW-operations with rel_acq memory order
(fetch_add example).

4.4 Generalized RMW operations
If the memory order is rel, acq or rlx, the situation is a bit more complicated
and the simple explanation from above does not quite fit. A more general way to
think about it is the following (see Figure 4.2): Before the operation, the thread
has a permission state P . The previous value at the location invariant is some
value v. Q(v) defines the resources that are at the atomic location before the
RWM operation. Let v’ be the new value at the atomic location. Then Q(v′)
defines the resources that need to be at the invariant after the RMW-operation.
This can fail if there is no way to get this amount of resources. The resources
for Q(v′) can come either from Q(v) or from P . We can take them from Q(v)
regardless of the memory order (green, dotted arrow). If the memory order is
acq or rlx, what comes from P (orange, diagonal arrow) has to be under the
up-modality, except for none-tokens. What ends up at the location is fixed,
but what the thread gets (P ′) depends on how we apply the rules, i.e. how
we “fill” the diagonal arrows in Figure 4.2. This is again done in the way that
maximizes the permission in P ′ (while leaving enough for Q(v′)). What the
thread previously had it can keep regardless of the modality (green, dotted
arrow). If it wants to get rid of some permission, it can only do so if it had the
up-modality or the memory order is rel. Permission it gets from Q(v) ends
up on the down-heap if the memory order is rel or rlx. Not satisfying Q(v′)
is the only way the RMW can fail, but it can happen in nontrivial ways. E.g.
assume P = Tok(a, 1, read), Q(v) = Src(a, 2, none) and Q(v′) = Src(a, 1, none)
and the memory order is rlx. The source does not want any permission from
the thread, but it needs an additional token. This token cannot come from the
thread, because given the relaxed memory order, only none-tokens and tokens
that have the up-modality can be sent in this direction. This RMW-operation
fails and it would not fail if the thread had a none-token instead of a read-token.

23

Thread

RMW

loc

{P}

{P’}

Q(v)

Q(v’)

Figure 4.2: Automation of general RMW-operations.

In this explanation, unlike in the simplified one in Section 4.3, P and Q(v) are
never explicitly combined. However, we can still learn something by imagining
what would happen if we combined P and Q(v). First, we can learn that a
certain value v cannot even be read, because P ∗ Q(v) |= False. Second, we
check whether P contains all the tokens for some non-atomic location that are
missing in Q(v). If it does, and Q(v′) happens to not keep any permission to
the non-atomic location, we know that P ′ contains the write permission.

24

Chapter 5

Proofs for example
programs

We apply our proof system manually on three examples: a spinlock and a
barrier from the Folly library and the atomic reference counter from the Rust
programming language. Proofs for these examples using FSL++ and the EFC
monoid have been given in [7], but we now prove them on the level of abstraction
presented in Chapter 3, in a way that can be automated using the ideas presented
in Chapter 4. The goal of verification is set by the pre- and postconditions of the
functions. For our examples, the only annotations that are needed additionally
consist of location invariants. After the specification we show proof outlines where
we explicitly show the resources that a thread owns after each line of code. The
resources that the thread owns before the first instruction is the precondition.
After the last instruction, the current state of the thread should equal the
postcondition. The interesting parts of the proof outlines are the read-modify-
write (RMW) operations. For those, we provide detailed explanations. For the
RMW operations we essentially prove two properties. First, that the RMW
operation is successful, meaning that the location invariant can be re-established
for the new value at the atomic location. Second, that after the RMW operation,
the thread actually owns the resources which we claim it owns in our proof
outline. We always leave out Rmw(l, Q) (= Init(l, Q) ∗ Rel(l, Q) ∗ RMWAcq(l, Q))
from the postconditions in order to keep them short. In theory this could
lead to the situation where a caller of the functions loses Rmw(l, Q). However,
because Rmw(l, Q) is duplicable, the caller of the functions can in practice always
create a backup duplicate before calling a function. Also, we do not mention
Rmw(l, Q) at all in the proof outlines, because for functions in which this was in
the precondition it is easy to show that it is always present whenever needed.

The actual C++ code that we verify is never exactly the same as in the
original, but the core functionality and (crucially) the modes of synchronization
are the same. The atomic reference counter was not written in C++ at all, so
we just verify our own C++ implementation of it. In the original code that we

25

got from the Folly library, as well as in our adapted versions, the functions are
all methods of a class and the (atomic and non-atomic) memory locations are
fields of the class.

In the following sections we do not show the whole C++ classes. For each class
we first show the field declarations and then discuss the methods individually.
The code that we show is a mix between C++ and annotations, which are also
written in C++ syntax (but also using language features that are not part of the
C++ language). The features that we use for annotations are declared in our
own C++ header file. The detailed syntax for the C++ and annotations that
we support can be found in Chapter 6. The location invariants are added as
annotations directly to the C++, but we show them in a more readable format
here (see below).

5.1 Spinlock
In this section we prove that the reader-writer-spinlock in the Folly library is
correct. The lock has a state that is stored in the atomic integer bits_. The
least significant bit of bits_ is 1 if there currently is a writer and 0 otherwise.
In the original implementation, the second least significant bit is used if a thread
has a read lock and wants a write lock. In our adapted version however, the
second least significant bit is not used. It seems that adding support for this
additional functionality would not make the proof harder (only longer). The
number encoded by the rest of the bits represents the number of readers. The
number of readers is the value divided by 4 and rounded down. When threads
try to get read access, they increment the value at the atomic location by 4.
A thread also increments the value of bits_ by 4 if there is already a writer.
When inspecting the value that it read from the atomic location, it will later
discover that it did not actually get read access and decrement the counter. This
means that bits_/4 (using integer division) does not necessarily correspond to
the number of threads that actually have read access. It also includes threads
that tried to get read access and did not yet decrement the value.

The actual spinning is not part of the code that we verify here. We verify the
functions that are repeatedly called if a thread tries to get a lock and that e.g. a
client who gets the write lock (potentially after trying to get it many times) can
be sure no one else has a reader or a writer lock.

Location invariant

The proof we are showing uses the following location invariant for the atomic
location bits_:

Q(v) := let n = b v
4c, w = lsb(v) in:

v ≥ 0 ∧
(w = 1 ? Src(res, n+ 1, none) ∗ Src(rds, n, write)
: Src(res, n, read) ∗ Src(rds, n, read))

26

res stands for resource and it represents the data that the lock protects.
The ghost location rds stands for readers and is used to keep track of the
reader locks that were distributed. This is used to make sure that if someone
has a read lock, no-one can have a write lock, not even the thread itself. In
other words the information we capture is that threads cannot themselves
transform a write lock into a read lock: if they want to do so, they have to call
unlock_and_lock_shared.

Field definitions

int res;
int rds = GhostRef();
atomic<int> bits_ = atomic<int>(Q);

5.1.1 try_lock_shared

Specification, Code and Proof outline

bool try_lock_shared() {
//
Requires(Rmw(bits_,Q));
Ensures(boolRes() ? (Tokens(res, 1, read) && Tokens(rds, 1, read))

: true);
//

{Rmw(bits_, Q)}

bool ret;
int value;
value = bits_.fetch_add(4, memory_order_acquire); // RMW1
{v0 mod 2 = 1 ? Tok(res, 1, none) ∗ Tok(rds, 1, none)
: Tok(res, 1, read) ∗ Tok(rds, 1, read)}
if (value % 2 == 1) {
{Tok(res, 1, none) ∗ Tok(rds, 1, none)}
bits_.fetch_add(-4, memory_order_release); // RMW2
ret = false;

}
else {

ret = true;
}
return ret;
{ret ? Tok(res, 1, none) ∗ Tok(rds, 1, none) : true}

}
};

RMW1

Case lsb(v) = 0: The location invariant contains read permission to res and to
rds. Increasing the counter by 4 makes the counter for missing tokens go up by
one for both rds and res, which means that the invariant gives away a token of
each. Both are read-tokens, because taking tokens from a read-source produces
read-tokens.

Case lsb(v) = 1: The location invariant has none permission to res and
write to rds. As before, it gives away one token for rds and one for res to the

27

thread. The token for res is of the type none, because the source is in the none
state. The token to rds is also none, because the location invariant wants to
keep write after the update-operation.

RMW2

Case v < 0: such a v cannot be read, because the location invariant states v ≥ 0.
Case 0 < v < 4: Src(rds, 0, τ) ∗ Tok(rds, 1, none) |= False (too-many-

tokens). Intuitively, the location invariant did not give away any tokens for rds
and the thread holds one, which is a contradiction. Therefore, this case cannot
occur.

Case v ≥ 4: The location invariant needs to get back one token of each res
and rds. This is exactly what the thread had, therefore it does not keep any
tokens. Also, v − 4 is still positive, which is needed in order to establish the
location invariant after writing the new value.

5.1.2 unlock_shared

Specification, Code and Proof outline

void unlock_shared() {
/////////////////////////////////
Requires(Rmw(bits_,Q) && Tokens(res, 1, read) && Tokens(rds, 1,

read));
/////////////////////////////////
{Rmw(bits_, Q) ∗ Tok(res, 1, read) ∗ Tok(rds, 1, read)}

bits_.fetch_add(-4, memory_order_release); // RMW
{true}

}

RMW

Case lsb(v) = 1: The location invariant holds Src(rds, n, write) (i.e. all of
rds), and the thread Tok(rds, 1, read). Such a v cannot be read because
Src(rds, n, write) ∗ Tok(rds, 1, read) |= False (write-src-read-tok). Intu-
itively, this case cannot happen because together they hold more than the full
permission, which is a contradiction.

Case v < 4 ∧ lsb(v) = 0: The location invariant holds Src(res, 0, read) and
the thread Tok(res, 1, read). In other words the thread has a token even though
the location invariant did not give out any. This is a contradiction and therefore
this case cannot occur.

Case v ≥ 4 ∧ lsb(v) = 0: The counter of missing tokens for both locations
goes down by one. The location invariant can be established because it can take
the two tokens that it needs from the thread.

28

5.1.3 try_lock

Specification, Code and Proof outline

bool try_lock() {
///
Requires(Rmw(bits_,Q));
Ensures(boolRes() ? Tokens(res, 1, write) : true);
///
{Rmw(bits_, Q)}

bool ret;
int expect;
expect = 0;
ret = bits_.compare_exchange_strong(
expect, 1, memory_order_acq_rel); // RMW

{ret =⇒ Tok(res, 1, write)}
return ret;

}

RMW

Case v = 0: The resources held by the invariant change from Src(res, 0, read)
(which implies Src(res, 0, write)) to Src(res, 1, none). The thread therefore gets
Tok(res, 1, write). The thread does not get any token to rds, because the
corresponding count did not change at the invariant.

Case v > 0: The value and the permission at the location invariant are left
unchanged.

5.1.4 unlock

Specification, Code and Proof outline

void unlock(bool getRead) {
//////////////////////////////////
Requires(Rmw(bits_,Q) && (getRead ? Tokens(res, 2, write) && Tokens

(rds, 1, none)
: Tokens(res, 1, write)));

Ensures(getRead ? Tokens(res, 1, read) && Tokens(rds, 1, read) :
true);

//////////////////////////////////
{Rmw(bits_, Q) ∗ (getRead ? Tok(res, 2, write) ∗ Tok(rds, 1, none) : Tok(res, 1, write))}

bits_.fetch_add(-1, memory_order_release); // RMW
{getRead ? Tok(res, 1, read) ∗ Tok(rds, 1, read) : true}

}

RMW

Case lsb(v) = 1 ∧ getRead = false: The thread gives a write-token for res
back to the invariant. The invariant then holds Src(res, n, write) which can
be replaced with Src(res, n, read). No rds-tokens are moved around, but the
abstract keyword changes from write to some, which is allowed.

29

Case lsb(v) = 1 ∧ getRead = true: The thread gives a read-token for res
back to the invariant, which then holds Src(res, n, some) and keeps a read-token.
Since the thread has a none-token for rds, and the invariant stars with write.
Since the invariant only wants to keep read, the none-token can be exchanged
for a read-token. The acquire memory order is not needed because rds is a
ghost-location.

Case lsb(v) = 0: The thread holds a write token for res and the location
invariant has read permission. Applying the read-src-write-tok rule shows
that this case cannot occur.

5.1.5 unlock_and_lock_shared

Specification, Code and Proof outline

void unlock_and_lock_shared() {
//
Requires(Rmw(bits_, Q) && Tokens(res, 1, write));
Ensures(Tokens(res, 1, read) && Tokens(rds, 1, read));
//
{Rmw(bits,Q) ∗ Tok(res, 1, write)}

bits_.fetch_add(4, memory_order_acquire); // RMW
{Rmw(bits,Q) ∗ Tok(res, 2, write) ∗ Tok(rds, 1, none)}
unlock(true);
{Rmw(bits,Q) ∗ Tok(res, 1, read) ∗ Tok(rds, 1, read)}

}

RMW

Case lsb(v) = 0: The thread holds a write token for res and the location invariant
has read permission as well. This adds up to more than the full permission
which is a contradiction.

Case lsb(v) = 1: Increasing the counter by 4 makes the invariant give out
one token of both res and rds. Since the invariant only holds none for res and
wants to keep write for rds both are none-tokens.

5.2 Barrier
In this section we will verify a barrier implementation from the Folly library.
In the original, an instance of this barrier is created for a certain number of
threads. In our version we use a constant number, but our proof works for any
constant that would be allowed as parameter of the original constructor. The
wait-function is the central element of the barrier. It returns a future-object
that is completed after all threads called wait(). The wait-function consists
of two steps. The last thread that executes the first RMW-operation performs
a write-operation to a data structure of the barrier. Then the last thread that
executes the second RMW-operation also performs a write operation on the same
data structure. Figure 5.1 illustrates the principle. This is not an explanation
why the two steps are needed, it is just an observation that in the original

30

RMW1 RMW2 WRITE

WRITE2

WRITE1

RMW2

RMW2

RMW2

RMW2RMW1

RMW1

RMW1

RMW1

Figure 5.1: Example execution of four threads calling wait().

implementation there are two write operations that would race without proper
synchronization. We also verified a different specification, which mainly shows
that our logic can be used for complex proofs (see Appendix A.5).

Location invariant
Q(r, v) := 0 ≤ r ∧ r ≤ v∧(

Src(g, n− v, write)∗
if v < n then Src(data, 2 ∗ r, write)
elseif (r,v) = (0,n) then Src(data, 1, none)
else Src(data, 2 ∗ r, none)

)
Field definitions

const int kReader = 8;
const int size_ = 5;
int g = GhostRef();
int data;
atomic<int> valueAndReaderCount = atomic<int>(Q);

31

Specification, Code and Proof outline

void wait() {
///
Requires(Rmw(valueAndReaderCount,Q) && Tokens(g,1,none));
///
{Rmw(valueAndReaderCount,Q) ∗ Tok(g, 1, none)}

int prev;
prev = valueAndReaderCount.fetch_add(kReader + 1,

memory_order_acquire); // RMW1
{(prev mod kReader) = size_− 1 =⇒ Tok(data, 2, write)
∧ (prev mod kReader) < size_− 1 =⇒ Tok(data, 2, none)}
if ((prev%kReader) + 1 == size_) {

////////////////////////////
Assert(Tokens(data,1,write));
////////////////////////////

}
prev = valueAndReaderCount.fetch_add(-kReader, memory_order_acq_rel

); // RMW2
{prev == (size_ + kReader) =⇒ Tok(data, 1, write)}
if (prev == (size_ + kReader)) {

////////////////////////////
Assert(Tokens(data,1,write));
////////////////////////////

}
}

5.2.1 Proof
RMW1

Case we read v ≥ n: This case cannot happen because the location invariant
holds Src(g, 0, write) and the thread holds Tok(g, 1, none), which is one token
too much.

Case we read v = n − 1: The thread sets v to n and increases r by one.
We obviously get two tokens for data. The keyword of the permission that the
invariant holds changes from write to none. The write permission therefore
goes to the thread (along with the two tokens). The location invariant takes
back the token for g.

Case we read v < n− 1: By increasing r by one the thread gets two tokens
for data and gives up one for ticket. The keyword at the location invariant stays
write, therefore the thread gets none.

RMW2

Case we read r = 0∧ v < n: The source is not missing any token, but the thread
has two, which is a contradiction.

Case we read r = 0 ∧ v = n: The source is missing only one token, but the
thread has two, which is a contradiction.

Case r = 1 ∧ v = n: The source and the invariant together have all tokens
and therefore the full permission. The invariant keeps only none, and gives out

32

one token. The thread therefore gets one token with the write permission.
Case r > 1: The thread has to give up two tokens, and with that also all the

real permission it holds.

5.3 ARC
We verify a version of the atomic reference counter (ARC) from Rust that we
reimplemented in C++. The ARC allows to store some data in the memory,
and then give read access to many threads. The value that is stored stays the
same as long as some thread has a reference. The count of threads that have a
reference is stored in an atomic location. If a thread does not need its reference
anymore, it calls the drop function. The drop function then decrements the
atomic counter and if the thread was the last one to hold a reference, it will
deallocate the memory.

In our verification, holding one reference is represented as Tok(g, 1, none) ∗
Tok(data, 1, read) ∗ Rmw(count), which is (unsurprisingly) exactly the precondi-
tion of read(). When a new reference is created, the read permission never
comes from the location invariant. It always comes from the thread that owns
a reference and clones it. Permission only gets to the location invariant at all
if a thread calls drop. As soon as the counter reaches 0, the location invariant
will give away all the permission it received by previous drop calls to the last
thread that has a reference. This last thread will then have two tokens, the
one it already had and one that contains the rest of what is missing for the full
permission. g is a ghost location that is needed only for verification. In the next
section we will see a slightly different proof, where this ghost location is not
needed.

Location invariant

Q(v) := Src(g, v, write) ∧ (v = 0 ? Src(data, 2, none) : Src(data, v, none))

Field definitions

int data;
int g = GhostRef();
atomic<int> count = atomic<int>(Q);

33

5.3.1 Constructor
Specification, Code and Proof Outline

Arc(int v)
{

//
Requires(RMWAcq(count, Q) && Rel(count, Q) && Uninit(data) && acc(g

));
Ensures(Tokens(data, 1, read) && Tokens(g, 1, read));
//
{RMWAcq(count,Q) ∗ Rel(count,Q) ∗ Uninit(data) ∗ acc(g)}
data = v;
{RMWAcq(count,Q) ∗ Rel(count,Q) ∗ acc(g) ∗ acc(data) ∗ data = v}
count.store(1, memory_order_relaxed);
{Init(count) ∗ RMWAcq(count,Q) ∗ Rel(count,Q) ∗ Tok(g, 1, none) ∗ Tok(data, 1, write) ∗ data = v}

{Tok(g, 1, none) ∗ Tok(data, 1, write) ∗ data = v}
{Tok(g, 1, none) ∗ Tok(data, 1, read)) ∗ data = v}

}
}

Write operation

Before the write (store) operation the thread has the full access to data and to g.
When the 1 is written to the location, the invariant wants Src(data, 1, none) and
Src(data, 1, write), so the thread can keep Tok(data, 1, write) and Tok(g, 1, none).
Since no real permission gets transferred to the invariant, the write operation
can be relaxed. The full permission to g goes from the thread to the location
invariant, but since g is a ghost location, it can be sent with a relaxed write.

5.3.2 read

Specification, Code and Proof Outline

int read()
{

//
Requires(Tokens(g, 1, none) && Tokens(data, 1, read) && Rmw(count,Q

));
Ensures(Tokens(g, 1, none) && Tokens(data, 1, read));
//

{Tok(g, 1, none) ∗ Tok(data, 1, read)}
return data;
{Tok(g, 1, none) ∗ Tok(data, 1, read)}

}

34

5.3.3 clone

Specification, Code and Proof Outline

void clone()
{

//
Requires(Tokens(data, 1, read) && Tokens(g, 1, none))&& Rmw(count,Q

));
Ensures(Tokens(data, 2, read) && Tokens(g, 2, none)));
//
{Tok(data, 1, read) ∗ Tok(g, 1, none)}

count.fetch_add(1, memory_order_relaxed); // RMW
{Tok(data, 2, read) ∗ Tok(g, 2, none)}

}

RMW

Case v = 0: Cannot happen because the location invariant is not missing any
tokens for g and the thread has one.

Case v > 0: Increasing the counter by 1 makes the invariant give away one
token of both g and data. Since the invariant keeps the write permission for g,
the thread gets a none-token for g. Since the thread already has read permission
to data, it only needs a none-token for data which can be transferred with the
relaxed memory order.

5.3.4 drop

Specification, Code and Proof Outline

void drop()
{

///
Requires(Tokens{data, 1, read} && Tokens{g, 1, none} && Rmw{count,Q

});
///
{Tok(data, 1, read) ∗ Tok(g, 1, none)}
int y;
y = count.fetch_add(-1, memory_order_release); // RMW

{y = 1 =⇒ Tok(data, 2, (5read, read,Σwrite))}
if (y == 1) {

{Tok(data, 2, (5read, read,Σwrite))}
atomic_thread_fence(memory_order_acquire);
{Tok(data, 2, write)}
delete this;

}
}

RMW

Case v = 0: Cannot happen because the location invariant is not missing any
tokens for g and the thread has one.

35

Case v = 1: The invariant and the thread together hold Src(data, 0, write).
Since the invariant keeps Src(data, 2, none), the thread can have all the permission
and two tokens. But because the memory order is neither acq nor rel_acq, the
permission that the thread gets from the invariant needs is under the down-
modality. This permission is exactly what is missing for the thread in order to
have write access. The location invariant needs one more token for g. The write
permission it already had before, so a none-token is enough.

Case v > 1: After updating the value, the invariant needs one additional
tokens for g and one for data. The thread is left with no tokens, and therefore
also without permission. Since the memory order is rel, the transfer of permission
is successful.

5.4 ARC version 2
This proof uses a different location invariant than the previous one. Unlike the
other one, it does not need a ghost location. What we achieved with the ghost
location we now encode with the amount of tokens. Holding a reference is now
represented by Tok(data, 3, read) ∗ Rmw(count). The number three could be
replaced with anything larger than three. The only thing that matters is that
the number is strictly larger than two. This is needed to prove that we can never
read zero from the counter if we hold a reference, because the source would be
missing two tokens, whereas the thread has more than two.

Location invariant

Q(v) := v = 0 ? Src(data, 2, none) : Src(data, 3 ∗ v, none)

5.4.1 Constructor
Specification, Code and Proof Outline

Arc(int v)
{

//
Requires(RMWAcq(count, Q) && Rel(count, Q) && Uninit(data));
Ensures(Tokens(data, 2, read) && Rmw(count,Q));
//
{RMWAcq(count,Q) ∗ Rel(count,Q) ∗ Uninit(data)}
data = v;
{RMWAcq(count,Q) ∗ Rel(count,Q) ∗ Owns(data) ∗ data = v}
count.store(1, memory_order_relaxed); // write operation
{Init(count) ∗ RMWAcq(count,Q) ∗ Rel(count,Q) ∗ Tok(data, 3, write) ∗ data = v}
{U(count,Q) ∗ Tok(data, 3, write) ∗ data = v}
{U(count,Q) ∗ Tok(data, 3, read)) ∗ data = v}

}
}

36

Write operation

When the 0 is written to the location, the invariant only wants Src(data, 3, none),
so the thread can keep Src(data, 3, write). Since no real permission gets trans-
ferred to the invariant, the write operation can be relaxed.

5.4.2 read

Specification, Code and Proof Outline

int read()
{

//
Requires(Tokens(data, 3, read) && Rmw(count,Q));
Ensures(Tokens(data, 3, read));
//

{Tok(data, 3, read) ∗ Rmw(count,Q)}
return data;
{Tok(data, 3, read)}

}

5.4.3 clone

Specification, Code and Proof Outline

void clone()
{

//
Requires(Tokens(data, 3, some) && Rmw(count,Q));
Ensures(Tokens(data, 3, some) * Tokens(data, 3, some));
//
{Tok(data, 3, read)}

count.fetch_add(1, memory_order_relaxed); // RMW
{Tok(data, 6, read)}
{Tok(data, 3, read) ∗ Tok(data, 3, read)}

}

RMW

Case v = 0: Cannot happen because the location invariant gave out only two
tokens and the thread owns three.

Case v > 0: Increasing the counter by 1 makes the invariant give away
three tokens. Since the invariant holds Src(data, 3v, none) it can give out only
none-tokens.

37

5.4.4 drop

void drop()
{

///
Requires(\Tokens{data, 3, read} && \Rmw{count,Q});
///
{Tok(data, 3, read) ∗ Rmw(count,Q)}
int y;
y = count.fetch_add(-1, memory_order_release); // RMW

{y = 1 =⇒ Tok(data, 2, (5read, read,Σwrite))}
if (y == 1) {

{Tok(data, 2, (5read, read,Σwrite))}
atomic_thread_fence(memory_order_acquire);
{Tok(data, 2, write)}
delete this;

}
}

RMW

Case v = 0: Cannot happen because the location invariant gave out only two
tokens and the thread owns three.

Case v = 1: The invariant and the thread together hold Src(data, 0, write).
The thread can have two tokens, and since the invariant keeps Src(data, 2, none),
the thread can have all the permission. But because the read mode is neither
acq nor rel_acq, the permission that the thread gets from the invariant needs
to be fenced. This permission is exactly what is missing for the thread in order
to have write access.

Case v > 1: After updating the value, the invariant needs three additional
tokens. The thread is left with no tokens, and therefore also without permission.
Since the memory order is rel, the transfer of permission is successful.

5.5 ARC comparison to FSL++
5.5.1 FSL++ proof of drop function

Q(c) := c = 0 ? λ : 0− ∗ δ : 0− : ∃f ∈ Q ∩ [0, 1] . data f7→ _ ∗
λ : (c− 1 + f)− ∗ δ : (1− f)−

The ghost locations are governed by the SFC monoid defined in [4].

38

void drop()
{

{Rmw(count,Q) ∗ ∃q ∈ Q ∩ (0, 1].data f7→ q ∗ λ : (1− q)+ ∗ δ : (q)+ }
int y;
y = count.fetch_add(-1, memory_order_release);

{y = 1 =⇒ data
q7→ v ∗ 5data 1−q7→ _}

if (y == 1) {

{data q7→ v ∗ 5data 1−q7→ v}
atomic_thread_fence(true, memory_order_acquire);

{a.data 17→ v}
delete this;

}
}

Transition invariant for the FSL++ proof

Transition invariants were introduced in [7] and the one we present here is taken
from [7]. A transition invariant defines how an existentially quantified variable
in a location invariant should be instantiated when the new value is written to
the atomic location.

t(c, f, c′, P) =

f if c′ = c+ 1
f + q if c′ = c− 1 > 0 and P |= δ : q+ for q > 0
0 if c′ = c− 1 = 0
undefined otherwise

Where c is the old value at the location and f the old value of f . c′ is the value
that is being written to the location and P is the current permission of the
thread.

Observations

The location invariant for the FSL++ proof seems much harder to understand
than the one for the proof we gave above. Another difference is that FSL++ does
not define how to conduct the proof. For example with this invariant there are
infinite options on how to instantiate the existential. In order to automate the
FSL++ proof one would at least need the transition invariant for the existential,
which further adds to the size and complexity of the specification that is needed
in order to verify the program. In our system, the specification is smaller, simpler
and the proof can be fully automated.

39

Chapter 6

Syntax for C++ input
programs

We implemented a tool that verifies C++ programs. This chapter shows the
subset of C++ that our tool supports.

Program ::= #include "weak-memory-frontend.h"
Class

Class ::= class c { public: Constructor [Decl]∗}
Constructor ::= c ([Type p]∗) {

Precondition
Postcondition
[Stmt]∗

}
Decl ::= Method | TopLevelVarDecl

TopLevelVarDecl ::= int v = 0; | atomic<int> v = atomic<int>(LocInv); |
| int v = GhostRef() | const int v = n;

Type ::= int | bool
Method ::= (Type | void) f ([Type p]∗) {

Precondition
Postcondition
[Stmt]∗
[return v;]?

}
Stmt ::= if (BExpr){[Stmt]∗} else {[Stmt]∗}

| v = Expr; | f([e]∗); | v = f([e]∗); | LocalVarDecl
| v = Expr; | v1 = v2.load(Sync);
| v.store(e,Sync); | Rmw;
| atomic_thread_fence(memory_order_acquire);
| atomic_thread_fence(memory_order_release);
| delete this; | AssertionStmt

40

LocalVarDecl ::= Type v ;
Sync ::= memory_order_relaxed | memory_order_acquire

| memory_order_release | memory_order_rel_acq
Rmw ::= v = l.compare_exchange_strong(n1, n2, sync)

| v = l.fetch_add(n, sync)
Expr ::= v | BExpr | IExpr

BExpr ::= true | false | (b1 && b2) | (b1 || b2) | (e1 == e2)
| (e1 != e2)

IExpr ::= -n | n1*n2 | n1 + n2 | n1 − n2 | n1 % n2 | n1 / n2

Where {v, v1, v2, c, f, p, t} are identifiers, {e, e1, e2} ⊆ Expr, {n, n1, n2} ⊆
IExpr and {b, b1, b2} ⊆ BExpr. In this work we often use rlx instead of
memory_order_relaxed and also rel, acq and rel_acq instead of the
corresponding long versions. Furthermore, we sometimes write fence instead
of atomic_thread_fence.

The syntax for annotations in C++:

LocInv ::= Invariant Q = [this] (int v) -> bool {
return Assertion;
}

Precondition ::= Requires(A);
Postcondition ::= Ensures(A);
AssertionStmt ::= Assert(A);

Assertion ::= A1 && A2 | BExpr ? A1: A2 | BExpr
| OnlyAtLocInv | OnlyAtThread

OnlyAtLocInv ::= Src(loc, n, Perm)
OnlyAtThread ::= Tok(loc, n, Perm) | Rmw(loc) | Uninit(loc)

| Rel(loc)
Perm ::= write | read | none

where {A,A1, A2} ⊆ Assertion and Q and v are Identifiers. We additionally
allow boolRes() and intRes() in the pre- and postconditions, so that we
can reason about the return value even before the method body starts.

41

Chapter 7

C++ to Viper encoding

This chapter shows how C++ code with specification can be encoded into Viper.
First, we briefly explain the encoding of ghost locations and modalities. Second,
look at how tokens are encoded. Third, we will tackle real C++ code.

7.1 Ghost locations and modalities
The encoding of ghost locations and modalities is the same as in [10]. For this
reason we will only give a brief overview here. C++ locations are encoded as
Refs in Viper. The function is_ghost(r) returns true if and only if r is a Viper
reference that represents a ghost location. Viper references that do not originate
from a ghost location are distributed over three heaps, called down-heap, real
heap and down-heap. One real (non-ghost) memory location in the original
program is represented by three Refs in Viper, each belonging to a different
one of the three heaps. This is because to a real memory location, we can have
three different types of permission depending on whether the permission has
1. the down-modality, 2. no modality or 3. the up-modality. Permission with
the down-modality is on the down-heap, permission without modality is on the
real-heap and permission with the up-modality is on the up-heap. To which heap
a reference r points can be checked using the heap(r)-function, which returns 0
if it points to the real heap, and -1 or 1 if it points to the down- or the up-heap,
respectively. From a reference r on the real heap, the corresponding references
on the up- and the down-heap can be retrieved using the up(r) and down(r),
respectively.

During the verification of RMW-operations, the verifier is in an intermediate
state, where so-called temp-heaps are additionally used. Using the temp(r)-
function, a temporary heap location can be retrieved for any non-ghost Viper-Ref.
The full Viper domain that is used for encoding the different heaps can be found
in Appendix A.4.

42

7.2 Encoding Tokens
In the following, we first describe how we encode the ownership of a certain
number of tokens and then the encoding of the permission the tokens give to
the owner.

7.2.1 Encoding the Token Counting
This section shows how we encode the counting of tokens. The number of tokens
is the sum of all tokens, regardless of the modalities. One non-atomic location
is modeled as several Refs in Viper, one for each modality and an additional
temp-heap. The token count, on the other hand, should be combined for all
of these Refs. We provide a function tokCountRef(r:Ref) which returns
a ghost reference used to model the counting. Tokens are then modeled as
access to the posTok-predicate on this , and missing tokens (at the source)
as access to the negTok-predicate. These kind of predicates can only be held
together with the source. We model owning the source as having the full access
to the ownsSource field. Partial access is never used on this field and also the
actual value at the field is irrelevant. An individual assertion that expresses
ownership of n positive tokens to the location x would then be encoded as
acc(posTok(tokCountRef(x)),n/1). The full Viper definitions for the
token counting are given on figure 7.1.

7.2.2 Encoding the Permission Sum Associated with the
Tokens

When encoding tokens in Viper, we use the macro tokens(loc,n,q), defined
on figure 7.2. Unlike in the specification, the q used here is a concrete fraction,
and not an abstract keyword. For the keywords none and write, the transition
from the keywords to fractions is trivial. none translates directly to 0/1. Viper
even supports the keyword none that can be used instead of 0/1. write also
exists in Viper, and corresponds to the fraction 1/1. The read-keyword is
more complicated, as it does not correspond to a concrete fraction, but can be
instantiated with any fraction in (0, 1]. When the keyword read appears, we
often define a variable with the associated permission amount, and assume that
the variable is nonzero.

7.2.3 Encoding the Relation between the Token Count
and the Permission

If x is a non-atomic location in the original C++ program, we should always be
able to assert isValidLoc(x) (see figure 7.2) before and after the encoding
of a C++ statement. The helper macro permSumOverHeaps sums up the
permission to a location over all heaps (see also definition of parallel heaps).
isValidLoc makes sure that someone who does not hold the source and does
not have any token, gets no real permission. Someone who does not hold the

43

// tokenCounting.vpr

import "parallelHeaps.vpr"
field ownsSource: Int

define tokCount(r) perm(posTok(tokCountRef(loc)))
define missingTokCount(r) perm(negTok(tokCountRef(loc)))

predicate posTok(r:Ref)
predicate negTok(r:Ref)

domain TokCountRef {
function tokCountRef(r:Ref): Ref
function tokCountRef_inv(r:Ref): Ref
axiom inv {

(forall r: Ref :: { tokCountRef(r) } (heap(r)==0 || is_ghost(
r)) ==> tokCountRef_inv(tokCountRef(r)) == r)

}
axiom always_ghost {

(forall r: Ref :: { tokCountRef(r) } is_ghost(tokCountRef(r))
)

}
axiom always_on_separate_heap {

(forall r: Ref :: { tokCountRef(r) } heap(tokCountRef(r)) ==
2)

}
axiom up_has_same_counter {

(forall r: Ref :: { up_inv(r) } (!is_ghost(r) && heap(r)
== 1)==> tokCountRef(up_inv(r))==tokCountRef(r))

}
axiom down_has_same_counter {

(forall r: Ref :: { down_inv(r) } (!is_ghost(r) && heap(r) ==
-1)==> tokCountRef(down_inv(r))==tokCountRef(r))

}
axiom temp_has_same_counter_1 {

(forall r: Ref :: { temp_inv(r) } (!is_ghost(r) && heap(r) ==
-2)==> tokCountRef(temp_inv(r))==tokCountRef(r))

}
axiom temp_has_same_counter_2 {

(forall r: Ref :: { temp_inv(r) } (!is_ghost(r) && heap(r) ==
-3)==> tokCountRef(temp_inv(r))==tokCountRef(r))

}
axiom temp_has_same_counter_3 {

(forall r: Ref :: { temp_inv(r) } (!is_ghost(r) && heap(r) ==
-4)==> tokCountRef(temp_inv(r))==tokCountRef(r))

}
}
// end of file

Figure 7.1: Viper encoding of token counting.

44

// tokens.vpr

define tokens(loc,count,sum) acc(posTok(tokCountRef(loc)), count/1)
&& acc(loc.val, sum)

define source(loc,count,sum) acc(negTok(tokCountRef(loc)), count/1)
&& acc(loc.val, sum) && acc(tokCountRef(loc).ownsSource)

define permSumOverHeaps(loc) is_ghost(loc) ? perm(loc.val) : perm(
down(loc).val) + perm(loc.val) + perm(temp(loc).val) + perm(up(
loc).val) + perm(temp(up(loc)).val) + perm(temp(down(loc)).val)

define isValidLoc(loc)
permSumOverHeaps(loc) <= 1/1
&& (perm(tokCountRef(loc).ownsSource) == 0/1 ==>

((perm(posTok(tokCountRef(loc)))==0/1 ==> permSumOverHeaps(
loc)==0/1))

&& perm(negTok(tokCountRef(loc)))==0/1)
&& (perm(tokCountRef(loc).ownsSource) == 1/1 ==>

((perm(posTok(tokCountRef(loc)))==perm(negTok(tokCountRef(loc
)))==>permSumOverHeaps(loc)==1/1)

&& perm(posTok(tokCountRef(loc)))<=perm(negTok(tokCountRef(
loc)))))

// end of file

Figure 7.2: Viper macros for token-based permissions.

source cannot hold any negative tokens. If someone owns the source and the
same amount of negative and positive tokens, it means that they did not give
away any tokens and therefore have the full (i.e. write) permission.

7.2.4 Inhaling Tokens
For inhaling tokens we basically inhale the tokens macro, which takes fractional
permissions as third argument. none and write are already a exact permission
amount, whereas read is not. For read, we inhale an unspecified, but nonzero
amount of permission. See figure 7.3.

7.2.5 Exhaling Tokens
For exhaling tokens we use the macro exhaleTokens (see Figure 7.4). If the
thread only exhales none-tokens, it does not matter whether the location is a
ghost location. We simply exhale tokens(loc,count,0/1), which exhales
count instances of the posTok-predicate. If a thread exhales read permission
to a ghost location, we first assert it has nonzero permission to loc.val. Then
we check whether the thread will have any tokens left. If not, we exhale all
the permission the thread has, because without any tokens it cannot keep any
permission. If yes, we exhale half of the permission. If the location is not a
ghost location, it is more complicated. The read-permission can come either
from the real heap or from the up-heap, so we assert that there is permission on
one of them. Then the thread again tries to exhale only part of its permission if
possible. It cannot keep any of the permission in question if either it does not

45

// inhaleTokens.vpr

define inhaleTokens(loc,count,sum) {
if (sum == NONE) {

inhale tokens(loc,count,none)
}
elseif (sum == READ) {

var q:Perm
q := havocedPerm()
inhale q > 0/1
inhale tokens(loc,count,q)

}
elseif (sum == WRITE) {

inhale tokens(loc,count,write)
}
else {

assert false
}

}

// end of file

Figure 7.3: Macro for inhaling tokens.

keep any tokens or if it keeps only one token, but needs that token for permission
it has on the down-heap. If the thread has permission on both the real and the
up-heap and can keep some of it, it keeps only the permission on the up-heap,
because this is strictly more useful (as the exact permission amounts do not
matter anyway as long as they are not 0 or 1).

If the thread wants to exhale the write permission for a ghost location, we
can simply exhale tokens(loc,count,1/1). If the location is not a ghost
location, the write permission can come partly from the real heap and partly
from the up-heap. We first assert that their sum is write and then exhale both.

7.3 Encoding a C++ program
As described in chapter 6, our input C++ programs consist of one class and their
member fields and methods. Figure 7.5 shows how a concrete C++ program is
translated to Viper. The produced Viper file consists of an import statement and
the encodings of the class members. For the class members, Figure 7.5 shows
only the encoding of fields. Location invariants and methods are explained in
separate sections.

The encoding that we present here uses Viper macros extensively. Every
generated Viper program includes includes.vpr (see appendix A.3), which
again imports many files that stay the same for every C++ program that is
encoded. This allows us to clearly separate parts of the encoding that depend
on the input C++ program and parts that do not. The files that are included
do not only contain macros, but also other Viper definitions (e.g. domains).

46

// exhaleTokens.vpr

define exhaleTokens(loc,count,sum) {
if (sum == NONE) {

exhale tokens(loc,count,0/1)
}
elseif (sum == READ) {

if (is_ghost(loc)) {
assert perm(loc.val) > 0/1
if (perm(posTok(tokCountRef(loc))) == count / 1) {

exhale tokens(loc, count, perm(loc.val))
}
else {

exhale tokens(loc, count, perm(loc.val) / 2)
}

}
else {

assert perm(loc.val) + perm(up(loc).val) > 0/1
// exhaling all tokens from up and real

if (perm(posTok(tokCountRef(loc))) == count / 1 || (perm(
posTok(tokCountRef(loc))) == (count / 1) + 1/1 &&
perm(down(loc).val) > 0/1)) {
exhale acc(posTok(tokCountRef(loc)), count/1) && acc(

loc.val, perm(loc.val)) && acc(up(loc).val, perm(
up(loc).val))

}
// leaving at least one token on up or real. if possible, we only

leave permission on "up"
else {

if (perm(loc.val) > 0/1 && perm(up(loc).val) > 0/1) {
exhale tokens(loc,count,perm(loc.val))

}
elseif (perm(loc.val) > 0/1) {

exhale tokens(loc,count,perm(loc.val)/2)
}
elseif (perm(up(loc).val) > 0/1) {

exhale tokens(up(loc),count,perm(up(loc).val)/2)
}

}
}

}
elseif (sum == WRITE) {

if (is_ghost(loc)) {
exhale tokens(loc,count,1/1)

}
else {

assert perm(loc.val) + perm(up(loc).val) == 1/1
exhale acc(posTok(tokCountRef(loc)), count/1) && acc(loc.

val, perm(loc.val)) && acc(up(loc).val, perm(up(loc).
val))

}
}

}

// end of file

Figure 7.4: Macro for exhaling tokens.

47

[[[include]∗ using namespace std; Class]]
import "include/includes.vpr"

[[[TopLevelDecl]]]∗

[[(int v;)TopLevelDecl]]
function v():Ref

ensures !is_ghost(result) && heap(result)==0

[[(atomic<int> v = atomic<int>();)TopLevelDecl]]
function v():Ref

ensures !is_ghost(result) && heap(result)==0

[[(int v = GhostRef();)TopLevelDecl]]
function v():Ref

ensures is_ghost(result) && heap(result)==0

[[(const int v = n;)TopLevelDecl]]
define v n

Figure 7.5: Viper encoding of a C++ program and fields of a class.

7.4 Field declarations
Fields of the class (except constants) are encoded as Refs. For each field we
generate a Viper function (with the same name as the original C++ field) that
returns the Ref. The postcondition ensures that is_ghost(result) returns
true for a ghost location and false otherwise. heap(res)==0 ensures that the
reference is on the real heap. A field can be atomic or non-atomic, but this
difference is not visible when looking at the definition of the function that returns
the Ref. The difference between atomic and non-atomic locations will be visible
in our encoding of the usage of the locations (see sections on non-atomics and
atomics).

We also support definitions of constant integers as fields of the class. This is
not crucial to our encoding. It just increases convenience and readability. For
each such constant, a Viper macro is defined which simply replaces occurrences
of the variable with the integer value.

7.5 Non-Atomics
This section describes how non-atomic fields are used. The value of a non-atomic
location loc is accessed through loc.val. For this, the appropriate permission
has to be held. Most of the reasoning in our proofs is about permission to loc.

val for some non-atomic loc. Figure 7.6 shows how read and write operations
to a non-atomic field are encoded. If enough permission on the real heap is held
(i.e. > 0/1 in case we want to read, and 1/1 in case we want to write) loc.val

48

can be accessed directly. If we do not have enough permission on the real heap,
we try to move some from the up-heap to the real heap. With our set of proof
rules (unlike in the RSL logics!), this is allowed. The permission has to be moved
from the up-heap to the real heap, because as long as it is under the modality,
it cannot be used for non-atomic reads or writes. For an non-atomic read, if
the thread has a read token, the read operation can be performed without any
changes to the state. If this is not the case, the read operation is still possible
given that the thread has at least one read-token with the up-modality (perm(
up(loc).val)>0/1 && !is_ghost(loc)). If the thread has exactly one token
with the up-modality (perm(posTok(tokCountRef(loc)))==1/1), it has to
remove the modality of this token and ends up with Tok(loc, 1, read). Similarly,
if the thread has Tok(loc, 2, (5read,4read)) it also cannot keep a read-token
with the up-modality and ends up with Tok(loc, 2, (5read, read)). If the thread
has enough tokens to have permission both on the up-heap and on the real-heap,
we move half of the permission from the up-heap to the down-heap. It does
not matter that it is a half, it could be any nonzero fraction. If the thread
has neither permission on the up-heap nor on the real heap, we make sure the
verification fails by asserting false.

7.6 Atomics
The encoding of atomic writes (loc.store()) is shown on listing 7.7, where Q
is the location invariant of the location. The definition of the macro ExhaleInv

is explained in the section on the encoding of location invariants (Section 7.13).
An encoding of atomic reads is not shown, because we only allow atomic reads
in form of read-modify-writes 7.12, which are treated later.

7.7 Local variables
With local variables we mean variables that are declared in the scope of a method
and not as a field of a class. In our model, local variables are not on the heap
and they are not shared between threads. Local variables are therefore simply
encoded as local Viper variables and no permission is involved.

7.8 Methods
Figure 7.8 shows how methods and method calls are encoded. The macros
exhale_precondition_f and exhale_postcondition_f are not used
for the verification of the method itself. They are only used at places where the
method f is called.

49

v = loc; nonAtomicRead(loc,v)
loc = e; nonAtomicWrite(loc,[[e]])

// nonAtomics.vpr

define nonAtomicRead(loc, target) {
if (perm(loc.val) > 0/1) {

target := loc.val
}
elseif (perm(up(loc).val) > 0/1 && !is_ghost(loc)) {

if ((perm(posTok(tokCountRef(loc))) == 1/1) || (perm(posTok(
tokCountRef(loc))) == 2/1 && perm(down(loc).val) > 0/1))
{

// move all from up to real
inhale acc(loc.val, perm(up(loc).val))
exhale acc(up(loc).val, perm(up(loc).val))

}
else {

// move part from up to real
inhale acc(loc.val, perm(up(loc).val)/2)
exhale acc(up(loc).val, perm(up(loc).val)/2)

}
target := loc.val

}
else {

assert false
}

}

define nonAtomicWrite(loc, v) {
if (perm(loc.val) == 1/1) {

loc.val := v
}
elseif (perm(up(loc).val) + perm(loc.val) == 1/1 && !is_ghost(loc

)) {
// move all from up to real

inhale acc(loc.val, perm(up(loc).val))
exhale acc(up(loc).val, perm(up(loc).val))
loc.val := v

}
else {

assert false
}

}

Figure 7.6: Viper encoding of non-atomic memory accesses.

[[v.store(e,sync);]] store(v, [[e]], [[sync]])

// in file includes/BasicDefinitions.vpr
define store(v, newVal, sync) {

assert SomeRel(v)
ExhaleInv(newVal,sync)
inhale Init(v)

}

Figure 7.7: Viper encoding of atomic writes.

50

T f(params) {
[Stmt]∗
return ret;

}

method f(this:Ref,[[params]])
returns (res:[[T]])

{
bbAccinhale

[[[Stmt]]]∗
res := ret

bbBccexhale

}
define exhale_precondition_f(this, [[params]]) {
bbAccexhale

}
define inhale_postcondition_f(this, [[params]], res) {
bbBccinhale

}

void f(params) { ... }
 ... (nearly identical as case with return value)

bbv = f(params)cc

exhale_precondition(this,[[params]])
v = havoced[[T]]()
inhale_precondition(this,[[params]],v)

bbf(params)cc

exhale_precondition(this,[[params]])
inhale_precondition(this,[[params]])

Figure 7.8: Encoding of methods and method calls.

51

7.9 Assertions
The encoding of assert statements:

[[Assert(A);]] assert(bbAcc)
bbA1 && A2cc bbA1cc && bbA2cc

bbBExpr ? A1 : A2cc bbBExprcc ? bbA1cc : bbA2cc
bbTokens(loc, n, ThreadPerm)cc tokens(loc(this), n, bbpermcc)

bbRmw(loc)cc rmw(loc(this))
bbUninit(loc)cc uninit(loc(this))

bbnonecc none
bbreadcc wildcard
bbwritecc write

7.10 Inhales and Exhales
For inhales:

bbBExpr ? A1: A2cc if(bbBExprcc){bbA1cc}else{bbA2cc}
bbBExprcc inhale bbBExprcc

bbA1 && A2cc bbA1cc
bbA2cc

bbRmw(loc)cc inhale rmw(loc(this))
bbUninit(loc)cc inhale uninit(loc(this))

bbTokens(loc,n,perm)cc inhaleTokens(loc,n,bbpermcc)
bbwritecc WRITE
bbreadcc READ
bbnonecc NONE

Note that inhale is a built-in Viper keyword and inhaleTokens is a macro
that we defined.

For exhales the encoding is very similar as for inhales. The only differences
are that inhale is replaced with exhale and inhaleTokens is replaced with
exhaleTokens.

7.11 Fences
Acquire fences are encoded the same way as in [10], but release fences are different.
Acquire fences just move all the permission that is held on the down-heap to
the real heap. Unlike in the previous work, our release fences do not need any
annotation. All the permission that is held on the real heap is moved to the
up-heap instead of only what was specified in the annotation. The idea behind
the Viper implementation of this transfer is the same as for the acquire fences
(see Appendix A.1 for the Viper code).

52

7.12 Read-Modify-Write Operations
Figure 7.9 shows how we encode a RMW operation with sync ∈ {rlx, rel,
acq, rel_acq}. Note that the described encoding only works if the source
permission is at the location invariant before and after the RMW operation.

7.13 Location Invariants
Figure 7.10 shows the encoding of location invariants. Each invariant that is
defined gets a fresh index. When we write index(Q) we mean this index. At the
Viper level only the index is used and not the identifier Q. We want to be able
to use the location invariant in two ways. We want to be able to inhale it and
exhale it. For these usages we generate the macros InhaleInvindex(Q) and
ExhaleInvindex(Q).

The macro on figure 7.11 are generated depending on how many location
invariants there are in the program. It connects the locations with the corre-
sponding invariants. If the value at a location is updated, the macro makes sure
that the correct location invariant is inhaled and exhaled (i.e. the one for which
the thread holds Rmw(loc,Q)).

7.13.1 Inhaling the source as part of the location invariant
See figure 7.12. The most interesting case is when the keyword is none. With
none we can only be sure to have some permission if we have all the tokens. If
we do not have all tokens (i.e. perm(negTok(.))!=perm(posTok(.)), we
make sure that the inhaled permission is zero. If we have all the tokens, we still
don’t know for sure how much of the full permission was contributed by the
thread and how much by the invariant, so we just don’t constrain the permission
amount. Inhaling isValidLoc later on will add the constraint that they add
up to write. Note that we inhale the actual permission to the temp heap and
not to the real heap.

7.13.2 Exhaling the source as part of the location invari-
ant

Exhaling the location invariant usually happens as part of a RMW operation, i.e.
after inhaling it and modifying the value at the location. If we (in the following
explanation) refer to what the invariant or the thread had before, we mean what
it had before the whole RMW operation.

See appendix A.2 for the definition of the Viper macro exhaleSource.
First we make sure to split off positive tokens if the thread will get more positive
tokens than it had before (using produceMissingTokens). If this is the case
we then exhale all the negative tokens and no positive ones. If the invariant
wants less negative tokens than it had before, it has to inhale the difference in
form of positive tokens. E.g. let us say it had 3 missing tokens and now it only

53

[[vold = loc.fetch_add(x, sync};]]
 fetch_and_add(loc, x, vold, [[sync]])

[[v = loc.compare_exchange_strong(vold , vnew , sync};]]
 compare_exchange_strong(loc, vold , vnew , v , [[sync]])

// RMWs.vpr

define Rmw(l, QIndex) Init(l) && RMWAcq(l,QIndex) && SomeRel(l) && l.
rel == 0

define compare_exchange_strong(loc, expect, newVal, success, sync) {
assert Init(loc) && SomeRMWAcq(loc) && SomeRel(loc)
var vRet:Int
vRet := havocedInt()
InhaleInv(loc, vRet)

var vNew:Int := vRet
if (vRet == expect) {

vNew := newVal
success := true

}
else {

success := false
}
ExhaleInv(loc,vNew,sync)

}
define fetch_add_discard(loc, x, sync) {

assert Init(loc) && SomeRMWAcq(loc) && SomeRel(loc)
var vRet:Int
vRet := havocedInt()
InhaleInv(loc,vRet)
var vNew:Int := vRet + x
ExhaleInv(loc,vNew,sync)

}
define fetch_add(loc, x, vRet, sync) {

assert Init(loc) && SomeRMWAcq(loc) && SomeRel(loc)
vRet := havocedInt()
InhaleInv(loc, vRet)
var vNew:Int := vRet + x
ExhaleInv(loc,vNew,sync)

}
// end of file

Figure 7.9: Viper encoding of RMW-operations.

54

Invariant Q = [this] (int v) -> bool {
return Assertion;

}

define InhaleInvindex(Q)(v,sync) {
bbAssertionccinhaleLocInv
for all non-atomic locations "loc" that appear in Q
inhale isValidLoc(loc)

}
define ExhaleInvindex(Q)(v,sync) {
bbAssertionccexhaleLocInv
for all non-atomic locations “loc” that appear in Q
if(!is_ghost(loc(this)))
inhale acc(downOrReal(loc(this),sync).val, perm(temp(loc(this)).val

))
exhale acc(temp(loc(this)).val, perm(temp(loc(this)).val))

}

}

bbAssertionccinhaleLocInv is similar to the encoding of other inhales. The only
addition is:

bbSource(loc,n,perm)cc inhaleSource(loc,n,bbpermcc, sync)

bbAssertionccexhaleLocInv is similar, with one difference:

bbSource(loc,n,perm)cc exhaleSource(loc,n,bbpermcc, sync)

Figure 7.10: Encoding of location invariants.

55

define InhaleInv(loc, v) {
if (perm(AcqConjunct(loc,0)) > 0/1) {
InhaleInv0(v)

}
...
elseif (perm(AcqConjunct(loc,n)) > 0/1) {
InhaleInvn(v)

}
else {
assert false

}
}
define ExhaleInv(loc, v, sync) {

if (loc.rel==0) {
ExhaleInv0(v, sync)

}
...
elseif (loc.rel==n) {
ExhaleInvn(v, sync)

}
else {
assert false

}
}

Figure 7.11: Dispatching of location invariants.

// inhaleSource.vpr

define inhaleSource(loc,count,sum) {
inhale acc(negTok(tokCountRef(loc)), count/1)
inhale acc(tokCountRef(loc).ownsSource)
var havocedP:Perm
havocedP := havocedPerm()
if (sum == READ) {

assume havocedP > 0/1
}
elseif (sum == WRITE) {

assume havocedP == 1/1
}
elseif (sum == NONE) {

if (perm(negTok(tokCountRef(loc))) != perm(posTok(tokCountRef
(loc)))) {
assume havocedP == 0/1

}
}
else {

assert false
}
inhale acc(temp(loc).val, havocedP)

}
// end of file

Figure 7.12: Definition of the Viper macro inhaleSource.

56

wants 1 missing. Exhaling 2 positive tokens along with all negative tokens will
give it the 1 missing it wanted. (Note that tokens and missing tokens cancel out
each other.)

As a second step we check what kind of permission the invariant needs. If
it had it already before, we can just take if from the temp heap (because this
is where the invariant was inhaled to). Notice that in the case of read we take
less than what is there, because potentially the thread could use read as well.
If the invariant needs more permission than it had before, it has to come from
the thread. If the memory order is not rel, the resource needs to be fenced, and
therefore come from the up-heap.

If the thread does not keep any tokens for a location, it cannot keep any
of the permission it had to the location. If the memory order is rel, it can
give everything from the real and the up-heap to the location invariant. This
permission is simply exhaled. Permission from the down heap cannot be handed
over to the location invariant, and can also not be kept, so we assert that
such permission is not held by the thread. If the memory oder is not rel, only
permission from the up-heap can be exhaled. Other permission should not be
held.

57

Chapter 8

Verification Tool for Weak
Memory Programs

In this work we provide a tool 1 that implements the concepts described in the
previous chapter. The tool consists of three parts: A parser, an encoding to
Viper and the existing Viper backends.

8.1 Parser
For parsing C++ programs, we use Libclang, which is a C Interface to Clang.
“The C Interface to Clang provides a relatively small API that exposes facilities for
parsing source code into an abstract syntax tree (AST), loading already-parsed
ASTs, traversing the AST, associating physical source locations with elements
within the AST, and other facilities that support Clang-based development
tools.”[2]

8.2 Encoder
The encoding part is programmed in Python, using Python bindings ([1]) for
Libclang. This has the advantage that we can reuse functionality from the
Nagini [5] Verifier, which also uses Viper as a backend. Nagini provides code
that interacts with the Viper backends, which run on the JVM. Our tool encodes
C++ programs into Viper, invokes a Viper verification backend and reports back
whether the verification was successful or not.

1The tool can be downloaded here: https://polybox.ethz.ch/index.php/s/5AL2vXFz7zVvLj6

58

Weak-Memory C++ Frontend for Viper

Viper	
Backends

C++	program

Specification

FAILURE
Encoding

SUCCESS
Parsing

Libclang

Evaluated on real-world examples
• Folly Spinlock (5 methods)
• Folly Barrier (1 methods)
• Atomic Reference Counter (4 methods)

Figure 8.1: An overview of the tool.

Program Frontend Verification
(Silicon)

Verification
(Carbon)

RWSpinlock.cpp 1s 43s 58s
barrier.cpp 0.6s 27s 39s
barrier2.cpp 0.6s 24s 36s
barrier_err1.cpp 0.6s 24s 44s
arc.cpp 1s 29s 40s
arc_err1.cpp 0.7s 19.8s 21s
release-fence-ex.cpp 0.8s 620s 14.9s

Figure 8.2: Benchmarks

8.3 Benchmarks
The benchmarks show that in all cases the runtime of the frontend (parsing and
encoding to Viper) is negligible. Silicon and Carbon typically need between 30s
and 60s, but in the only example which contains a release fence Silicon is much
slower (620s).

59

Chapter 9

Conclusion and Future
Work

9.1 Conclusion
We presented a token-based logic for the verification of weak-memory C++
programs that is simpler to use and more suitable for automation than existing
approaches. Our system allows for proofs that are intuitive and capture the
essence of why the programs are correct. We also automated the release fences
in the sense that they do not need annotations in our logic. We provided a Viper
encoding for our logic features. We have implemented a tool that automates
the encoding procedure and evaluated our work on real-world examples from
concurrency libraries.

9.2 Future Work
For future work we mainly suggest two directions:

1. It is surprising how well our way of reasoning works for the three very
different examples on which we evaluated it and the next step is definitely
to investigate how our logic can be applied on more examples and to find
its limitations.

2. Our Viper encoding currently uses fractional permissions for encoding
none, read and write permission but it might be possible to avoid using
fractions at all. E.g. one could use read(r:Ref), up_read(r:Ref),
write(r:Ref), sum_is_write(r:Ref) etc. The advantage would be
that it seems like a more direct implementation of our high-level logic.
On the negative side one might also loose the convenience of fractional
permission based features that Viper provides.

60

Further ideas for future work are: proving the soundness of our logic, extend-
ing the subset of C++ that the tool supports, IDE support and improved error
reporting. Also, one could re-implement the contributions of the previous work
[10] on using Viper for Weak Memory programs that are not yet part of our new
tool.

61

Acknowledgments

I would like to thank my supervisor Alexander Summers who guided me in a
very kind and intelligent way during the whole project. Without him I would
have been stuck immediately. I would also like to thank Professor Müller for
the opportunity to work on this interesting project. Thank you all the other
members of the group who were very willing to helped me with my questions
on Viper and Nagini. I would also like to thank Esther Kaplony and my other
friends who constantly encouraged me with kind words and also with delicious
snacks.

62

Bibliography

[1] Libclang Python bindings. https://github.com/llvm-mirror/
clang/tree/master/bindings/python. Accessed: 2019-04-10.

[2] LLVM website. https://clang.llvm.org/doxygen/group_
_CINDEX.html#details. Accessed: 2019-04-10.

[3] Marko Doko and Viktor Vafeiadis. A program logic for C11 memory fences.
In Barbara Jobstmann and K. Rustan M. Leino, editors, Verification, Model
Checking, and Abstract Interpretation, pages 413–430, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

[4] Marko Doko and Viktor Vafeiadis. Tackling real-life relaxed concurrency with
FSL++. In Hongseok Yang, editor, Programming Languages and Systems,
pages 448–475, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.

[5] Marco Eilers and Peter Müller. Nagini: A static verifier for python. In Hana
Chockler and Georg Weissenbacher, editors, Computer Aided Verification,
pages 596–603, Cham, 2018. Springer International Publishing.

[6] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A
verification infrastructure for permission-based reasoning. In Proceedings
of the 17th International Conference on Verification, Model Checking, and
Abstract Interpretation - Volume 9583, VMCAI 2016, pages 41–62, New
York, NY, USA, 2016. Springer-Verlag New York, Inc.

[7] Gaurav Parthasarathy. Applying and extending the weak-memory logic
FSL++. 2017.

[8] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames.
ACM Trans. Program. Lang. Syst., 34(1):2:1–2:58, May 2012.

[9] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley
Professional, 4th edition, 2013.

[10] Alexander J. Summers and Peter Müller. Automating deductive verification
for weak-memory programs. In Dirk Beyer and Marieke Huisman, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages
190–209, Cham, 2018. Springer International Publishing.

63

https://github.com/llvm-mirror/clang/tree/master/bindings/python
https://github.com/llvm-mirror/clang/tree/master/bindings/python
https://clang.llvm.org/doxygen/group__CINDEX.html#details
https://clang.llvm.org/doxygen/group__CINDEX.html#details

[11] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: Navigating weak
memory with ghosts, protocols, and separation. SIGPLAN Not., 49(10):691–
707, October 2014.

[12] Viktor Vafeiadis and Chinmay Narayan. Relaxed separation logic: A
program logic for C11 concurrency. SIGPLAN Not., 48(10):867–884, October
2013.

64

Appendix A

More details on Viper
encoding

A.1 Fences
// fences.vpr
define fence(sync) {

if (sync == ACQ) {
var FenceRefSet: Set[Ref]
FenceRefSet := havocedRefSet()
inhale (forall r: Ref :: { (r in FenceRefSet) } (r in

FenceRefSet) ==> heap(r) == 0 && (!is_ghost(r) && perm(
down(r).val) > none))

inhale (forall r: Ref :: { down(r) } perm(down(r).val) > none
&& !is_ghost(r) ==> (r in FenceRefSet))

inhale (forall r: Ref :: { (r in FenceRefSet) } (r in
FenceRefSet) ==> acc(r.val, perm(down(r).val)))

inhale (forall r: Ref :: { (r in FenceRefSet) } { down(r) } (
r in FenceRefSet) ==> r.val == down(r).val)

exhale (forall r: Ref :: { (r in FenceRefSet) } (r in
FenceRefSet) ==> acc(down(r).val, perm(down(r).val)))

}
if (sync == REL) {

var FenceRefSet: Set[Ref]
FenceRefSet := havocedRefSet()
inhale (forall r: Ref :: { (r in FenceRefSet) } (r in

FenceRefSet) ==> heap(r) == 0 && (!is_ghost(r) && perm(r.
val) > none))

inhale (forall r: Ref :: { heap(r) } heap(r)==0 && perm(r.val
) > none && !is_ghost(r) ==> (r in FenceRefSet))

inhale (forall r: Ref :: { (r in FenceRefSet) } (r in
FenceRefSet) ==> acc(up(r).val, perm(r.val)))

inhale (forall r: Ref :: { (r in FenceRefSet) } { heap(r) } (
r in FenceRefSet) ==> up(r).val == r.val)

exhale (forall r: Ref :: { (r in FenceRefSet) } (r in
FenceRefSet) ==> acc(r.val, perm(up(r).val)))

}
}
// end of file

65

A.2 exhaleSource definition
// exhaleSource.vpr

define exhaleSource(loc,count,sum,sync) {
assert acc(tokCountRef(loc).ownsSource)
produceMissingTokens(loc,count)
exhale acc(posTok(tokCountRef(loc)), perm(negTok(tokCountRef(loc)

))-count/1)
exhale acc(negTok(tokCountRef(loc)), perm(negTok(tokCountRef(loc)

)))
exhale acc(tokCountRef(loc).ownsSource)

// give to the loc inv what is needed
if (sum == READ) {

if (is_ghost(loc)) {
assert perm(loc.val) > 0/1
exhale acc(loc.val, perm(loc.val)/2)

}
elseif (isRel(sync) && perm(loc.val) > 0/1 && perm(up(loc).

val) > 0/1) {
exhale acc(loc.val, perm(loc.val))

}
elseif (perm(temp(loc).val) > 0/1) {

exhale acc(temp(loc).val, perm(temp(loc).val)/2)
}
elseif (isRel(sync) && perm(loc.val)>0/1) {

exhale acc(loc.val, perm(loc.val)/2)
}
else {

assert perm(up(loc).val) > 0/1
exhale acc(up(loc).val, perm(up(loc).val)/2)

}
}
elseif (sum == WRITE) {

if (is_ghost(loc)) {
exhale acc(loc.val, write)

}
elseif (isRel(sync)) {

assert perm(loc.val) + perm(up(loc).val) + perm(temp(loc)
.val) == write

exhaleAll(loc)
exhaleAll(up(loc))
exhaleAll(temp(loc))

}
else {

assert perm(up(loc).val) + perm(temp(loc).val) == write
exhaleAll(up(loc))
exhaleAll(temp(loc))

}
}
else {

assert sum == NONE
}

// give away permission that cannot be kept
if (is_ghost(loc)) {

if (perm(posTok(tokCountRef(loc))) == 0/1) {
exhaleAll(loc)

}
}
else {

// case thread keeps no tokens

66

if (perm(posTok(tokCountRef(loc))) == 0/1) {
if (sync == REL || sync == REL_ACQ) {

// exhale everything that thread has left on the real heap
exhaleAll(loc)

}
else {

// assert it does not have anything on the real heap
// TODO: example where this fails

assertNone(loc)
}
exhaleAll(up(loc))

}
// case the thread keeps one token

elseif (perm(posTok(tokCountRef(loc))) == 1/1) {
// if there is something on the down-heap, nothing else can be kept

if (perm(down(loc).val) > 0/1) {
if (isRel(sync)) {

exhaleAll(loc)
}
else {

assertNone(loc)
}
exhaleAll(up(loc))
if (isAcq(sync)) { // todo: explain

exhaleAll(temp(loc))
}
else {

// we keep what is on the temp heap
// because it will end up on the down-heap and might add up to "write

" there
}

}
// case there is something on the up-heap

elseif (perm(up(loc).val) > 0/1) {
// case it will add up to write -> sacrifice up-modality

if (perm(loc.val) + perm(up(loc).val) == 1/1
|| (perm(loc.val) + perm(up(loc).val) + perm(temp

(loc).val) == 1/1) && isAcq(sync))
{

inhale acc(loc.val, perm(up(loc).val))
exhaleAll(up(loc))

}
// keep only what is on up-heap

else {
exhaleAll(up(loc))
exhaleAll(temp(loc))
if (isRel(sync)) {

exhaleAll(loc)
}
else {

assertNone(loc)
}

}
}

}
// case the thread can keep two tokens and it might be a problem
// because the thread already has some permission on up-heap

elseif (perm(posTok(tokCountRef(loc))) == 2/1 && perm(up(loc)
.val) > 0/1) {

// case something will end up on down-heap
if (temp(loc).val > 0/1 && !isAcq(sync)

|| perm(down(loc).val) > 0/1)
{

// case we need to sacrifice up-modality

67

if (perm(loc.val) + perm(up(loc).val) + perm(temp(loc
).val) == 1/1

|| perm(loc.val) > 0/1 && !isRel(sync)) {
inhale acc(loc.val, perm(up(loc).val))
exhaleAll(up(loc))

}
// just exhale what is and what would end up on real heap

else {
if (isRel(sync)) {

exhaleAll(loc)
}
else {

assertNone(loc)
}
exhaleAll(temp(loc))

}
}

}
}

}
// end of file

A.3 Basic Viper definitions

// imports.vpr

import "tokens.vpr"
import "inhaleTokens.vpr"
import "exhaleTokens.vpr"
import "RMWs.vpr"
import "basicDefinitions.vpr"
import "parallelHeaps.vpr"
import "tacasDefinitions.vpr"
import "tacasDefinitions.vpr"
import "inhaleSource.vpr"
import "exhaleSource.vpr"
import "tokenCounting.vpr"
import "nonAtomics.vpr"
import "fences.vpr"
// end of file

// basicDefinitions.vpr

field val: Int

define RLX 0
define REL 1
define ACQ 2
define REL_ACQ 3

define READ 1
define WRITE 2
define NONE 3

define exhaleAll(loc) {
exhale acc(loc.val, perm(loc.val))

}
define assertNone(loc) {

assert perm(loc.val) == 0/1
}

define isAcq(sync) (sync == ACQ || sync == REL_ACQ)

68

define isRel(sync) (sync == REL || sync == REL_ACQ)

define upOrReal(loc, sync) (sync == REL || sync == REL_ACQ) ? loc :
up(loc)

define downOrReal(loc, sync) (sync == ACQ || sync == REL_ACQ) ? loc :
down(loc)

define Uninit(x) acc(x.init) && acc(x.val) && !x.init && acc(
tokCountRef(x).ownsSource)

define store(v, newVal, sync) {
assert SomeRel(v)
ExhaleInv0(newVal,sync)
inhale acc(v.init, wildcard)

}

define produceMissingTokens(loc, wanted) {
if (perm(negTok(tokCountRef(loc))) < wanted/1) {

inhale acc(posTok(tokCountRef(loc)), wanted/1 - perm(negTok(
tokCountRef(loc))))

inhale acc(negTok(tokCountRef(loc)), wanted/1 - perm(negTok(
tokCountRef(loc))))

}
}

// uninteresting definitions
method havocedPerm() returns (res:Perm)
method havocedInt() returns (res:Int)
method havocedBool() returns (res:Bool)
method havocedRefSet() returns (res:Set[Ref])
// end of file

// tacasDefinitions.vpr

field init: Bool // value is used for nonatomics, only permissions
are used for atomics

field rel: Int
field acq: Bool // use true to indicate RMWAcq, false to indicate

normal Acq
define SomeRel(x) acc(x.rel, wildcard)
define SomeAcq(x) acc(x.acq, wildcard) && x.acq == true
define SomeRMWAcq(x) acc(x.acq, wildcard) && x.acq == false
define SomeAcqOrRMWAcq(x) acc(x.acq, wildcard)
predicate Acq(x: Ref, idx: Int)
define Init(x) acc(x.init, wildcard)

define Rel(x, idx) SomeRel(x) && x.rel == idx
define RMWAcq(x, idx) SomeRMWAcq(x) && acc(Acq(x, idx), wildcard)

// end of file

A.4 Parallel Heaps

domain parallelHeaps {
function up(x: Ref): Ref
function down(x: Ref): Ref
function up_inv(x: Ref): Ref
function down_inv(x: Ref): Ref
function temp(x: Ref): Ref
function temp_inv(x: Ref): Ref
function heap(x: Ref): Int
function is_ghost(x: Ref): Bool

69

axiom inv_up {
(forall r: Ref :: { up(r) } up_inv(up(r)) == r && (is_ghost(r

) ? up(r) == r : heap(up(r)) == heap(r) + 1))
}
axiom inv_up_inv {

(forall r: Ref :: { up_inv(r) } up(up_inv(r)) == r && (
is_ghost(r) ? up_inv(r) == r : heap(up_inv(r)) == heap(r)
- 1))

}
axiom inv_down {

(forall r: Ref :: { down(r) } down_inv(down(r)) == r && (
is_ghost(r) ? down(r) == r : heap(down(r)) == heap(r) -
1))

}
axiom inv_down_inv {

(forall r: Ref :: { down_inv(r) } down(down_inv(r)) == r && (
is_ghost(r) ? down_inv(r) == r : heap(down_inv(r)) ==
heap(r) + 1))

}
axiom inv_temp {

(forall r: Ref :: { temp(r) } temp_inv(temp(r)) == r && (
is_ghost(r) ? temp(r) == r : heap(temp(r)) == heap(r) -
3))

}
axiom inv_temp_inv {

(forall r: Ref :: { temp_inv(r) } temp(temp_inv(r)) == r && (
is_ghost(r) ? temp_inv(r) == r : heap(temp_inv(r)) ==
heap(r) + 3))

}
}
// end of file

A.5 Barrier without precondition
This version of the barrier does not need a precondition. Like the other, it
can only be used for one epoch. This proof uses an old version of the syntax.
loc : (n)−, τ) is now written as Src(loc, n, τ) and loc : (n)+, τ) as Tok(loc, n, τ).

A.5.1 Specification
b is the amount of bits that are available for the value/reader count. The actual
value at the location is bits. bits is a bit-level encoding of two counters r and v.
bits = r + 2bv. pd stands for "possible decrements".

Location invariant

Q(bits = (r, v)) := 0 ≤ r ∧ r ≤ v ∧ if v <= n then(
pd : ((r)−, none ∗

if v < n then data : ((2 ∗ r)−, write)

else if (r,v) = (0,n) then data : (1−, none)

else data : ((2 ∗ r)−, none)
)

70

else if v > n then ∗ data : 2 ∗ (bits)−, none) ∗ pd : (bits− (n+ 1) ∗ 2b)−, none)

Pre- and Postconditions

{emp} wait() {emp}

A.5.2 Proof outline

wait() {
{emp}
(r1, v1) := fetch_and_addacq(VRC, (1, 1)) // RMW1

{v1 > n =⇒ pd : (2b + 1, none)+ ∗ data : (2 ∗ (2b + 1))+, none) }

∧ v1 = n ∧ r = 0 =⇒ pd : (1, none)+ ∗ data : (2b+1(n+ 1) + 1)+, none)

∧ v1 = n ∧ r > 0 =⇒ pd : (1, none)+ ∗ data : (2b+1(n+ 1) + 2)+, none)

v1 = n− 1 =⇒ pd : (1, none)+ ∗ data : (2, write)+

∧ v1 < n− 1 =⇒ pd : (1, none)+ ∗ data : (2, none)+ }
if(v1 == n-1) {

//update signal data structure
}
(r2, v2) := fetch_and_addrel_acq(VRC, (-1,0)) // RMW2

{(r2, v2) = (1, n)? data : (1, write)+ : emp}
if((r2, v2) == (1,n)) {

//deallocate signal data structure
}
{emp}

}

A.5.3 Explanations
RMW1:

Case we read v > n: The "branch" of the location invariant that is used stays
the same, and it only depends on bits. bits is increased by 2b + 1 and it is
straightforward to see how many positive tokens the thread gets.

Case we read v = n ∧ r = 0: The location invariant initially contains
(0)− tokens for pd and (1)− tokens for data. After updating the value, bits =
2b(n + 1) + 1, which means the location invariant keeps bits − 2b(n + 1) =
2b(n+ 1) + 1− 2b(n+ 1) = 1 negative tokens for pd (the same amount of positive
tokens goes to the thread). The amount of negative tokens for data that is left
at the invariant is 2(bits) = 2(2b(n+ 1) + 1). Since the invariant already had −1
before, the thread gets 2b+1(n+ 1) + 1 positive tokens.

Case we read v = n ∧ r > 0: The location invariant initially contains (r)−
tokens for pd and (2r)− tokens for data. After updating the value, bits =
2b(n+ 1) + r + 1, which means the location invariant keeps bits− 2b(n+ 1) =
2b(n+ 1) + 1 + r − 2b(n+ 1) = r + 1 negative tokens for pd. Since the count of

71

bitsold

= 2bv + r
Q(bitsold) Thread (bef.) Q(bitsnew) Thread (aft.)

v > n (bits− (n+ 1)2b)− (0)+ (bits− (n+ 1)2b

+(2b + 1))− (2b + 1)+

(v = n)
∧(r = 0) (0)− (0)+ (1)− (1)+

(v = n)
∧(r > 0) (r)− (0)+ (r + 1)− (1)+

v < n (r)− (0)+ (r + 1)− (1)+

Table A.1: The effect of RMW1, which adds 2b + 1 to the value at the atomic
location, with respect to the tokens of the ghost location pd.

bitsold

= 2bv + r
Q(bitsold) Thread (bef.) Q(bitsnew) Thread (aft.)

v > n (2 · bitsold)− (0)+ (2(bitsold + (2b + 1)))− (2b + 1)+

(v = n)
∧(r = 0) (1)− (0)+ (2b+1(n+ 1) + 2)− (2b+1(n+ 1) + 1)+

(v = n)
∧(r > 0) (2r)− (0)+ (2b+1(n+ 1) + 2(r + 1))− (2b+1(n+ 1) + 2)+

v = n− 1 (2r)− (0)+ (2(r + 1))− (2)+

v < n− 1 (2r)− (0)+ (2(r + 1))− (2)+

Table A.2: The effect of RMW1 with respect to the tokens of data.

negative tokens at the invariant increased by one, the thread gets one positive
token. The amount of negative tokens for data that is left at the invariant is
2(bits) = 2(2b(n+ 1) + r + 1). Since the invariant already had −2r before, the
thread gets 2b+1(n+ 1) + 2 positive tokens.

Case v = n− 1: For pd the count of negative tokens at the location invariant
increases by one, and one positive token goes to the thread. The negative token
count of data increases by two. The abstract permission sum changes from write
to none. The thread therefore gets the write permission in form of two tokens.

Case v < n− 1: For pd the count of negative tokens at the location invariant
increases by one, and one positive token goes to the thread. The negative token
count of data increases by two. The read gets two tokens with the sum none.

Tables A.1 and A.2 might help to get an overview for RMW1.

RMW2:

Let x be the number pd-tokens and y the number of data-tokens that the thread
owns before the RMW operation. We know that x > 1 and y > 2 by checking
all individual possible outcomes.

Case v ≤ n ∧ r = 0: The invariant has (1)− tokens for data (i.e. only one
token is missing) and the thread has at least two tokens for data, which is a

72

contradiction. Therefore this case cannot happen.
Case v ≤ n∧r = 1: For pd the invariant will claim one token from the thread.

This is fine, because the thread has at least one token for pd. For data the
invariant will change from (2−, write) to (1−, none), which means the thread is
left with (1+, write).

Case v ≤ n ∧ r > 1: As above, the thread will give back one pd-token. For
data, the invariant will change from (r)− to (r − 1)−, which means that the
thread will have to release a data-token.

Case v = n+ 1 ∧ r = 0: The invariant has (0)− tokens for pd (i.e. no tokens
are missing) and the thread has at least one token for pd, which is a contradiction.
Therefore this case cannot happen.

Case v = n+ 1 ∧ r > 0: Since r > 0, we can reduce bits and still v == n+ 1.
So we are for sure still in the "v > n"-branch of the invariant. Reducing bits by
one will cause the location invariant to contain one less missing token for both
pd and data, which means the thread will have to give up one token each of pd
and data. This is possible because as observed above, the thread owns at least
one token of each.

Case v > n+ 1: Since v > n+ 1, reducing bits by one cannot lead to v <= n,
which means that we are still in the "v > n"-branch of the invariant.

A.6 Full details for Atomic Reference Counter
A.6.1 C++ Code

#include "weak-memory-frontend.h"

class Arc {
public:

int data = 0;
Invariant Q = [this] (int w) -> bool {

return (w == 0 ? Source(data, 2, none) : Source(data, 3*w, none));
};
atomic<int> count = atomic<int>(Q);

void drop()
{
//
Requires(Tokens(data, 3, read) && Rmw(count,Q));
//

int y;
y = count.fetch_add(-1, memory_order_release);
if (y == 1) {
atomic_thread_fence(memory_order_acquire);
delete this;

}
}

Arc(int v)
{

73

//
Requires(RMWAcq(count, Q) && Rel(count, Q) && Uninit(data));
Ensures(Tokens(data, 3, read) && Rmw(count,Q));
//
data = v;
count.store(1, memory_order_relaxed);
}

int arc_read()
{
//
Requires(Tokens(data, 3, read) && Rmw(count,Q));
Ensures(Tokens(data, 3, read));
//

int ret;
ret = data;
return ret;

}
void clone()
{
//
Requires(Tokens(data, 3, read) && Rmw(count,Q));
Ensures(Tokens(data, 6, read));
//

count.fetch_add(1, memory_order_relaxed);
}

void test()
{
Requires(Tokens(data, 3, read) && Rmw(count,Q));

clone();
Assert(Tokens(data,6,read));
drop();
drop();
// int v;
// v = arc_read();

}
};

// needed for it to compile
int main() {

return 0;
}

A.6.2 Generated Viper Code

import "include/imports.vpr"

function data(this:Ref): Ref
ensures !is_ghost(result) && heap(result)==0

define InhaleInv0(w) {
if (w == 0) {
inhaleSource(data(this),2,NONE)

}

74

else {
inhaleSource(data(this),3 * w,NONE)

}
inhale isValidLoc(data(this))

}
define ExhaleInv0(w, sync) {

if (w == 0) {
exhaleSource(data(this),2,NONE,sync)

}
else {
exhaleSource(data(this),3 * w,NONE,sync)

}
if(!is_ghost(data(this))) {
inhale acc(downOrReal(data(this),sync).val, perm(temp(data(this))

.val))
exhale acc(temp(data(this)).val, perm(temp(data(this)).val))

}
}

function count(this:Ref): Ref
ensures !is_ghost(result) && heap(result)==0

method drop(this:Ref)
{
inhaleTokens(data(this),3,READ)
inhale Rmw(count(this),0)
var y:Int
fetch_add(count(this),-1,y,REL)
if (y == 1) {
fence(ACQ)
exhale acc(data(this).val)

}
}
define exhale_precondition_drop(this) {
exhaleTokens(data(this),3,READ)
exhale Rmw(count(this),0)

}
define inhale_postcondition_drop(this) {
}

method Arc(this:Ref, v:Int)
{
inhale RMWAcq(count(this),0)
inhale Rel(count(this),0)
inhale Uninit(data(this))
nonAtomicWrite(data(this), v)
store(count(this),1,RLX)
exhaleTokens(data(this),3,READ)
exhale Rmw(count(this),0)

}
define exhale_precondition_Arc(this, v) {
exhale RMWAcq(count(this),0)
exhale Rel(count(this),0)
exhale Uninit(data(this))

}
define inhale_postcondition_Arc(this, v) {
inhaleTokens(data(this),3,READ)
inhale Rmw(count(this),0)

}

method arc_read(this:Ref) returns (res:Int)
{
inhaleTokens(data(this),3,READ)
inhale Rmw(count(this),0)

75

var ret:Int
nonAtomicRead(data(this), ret)
res := ret
exhaleTokens(data(this),3,READ)

}
define exhale_precondition_arc_read(this) {
exhaleTokens(data(this),3,READ)
exhale Rmw(count(this),0)

}
define inhale_postcondition_arc_read(this, res) {
inhaleTokens(data(this),3,READ)

}

method clone(this:Ref)
{
inhaleTokens(data(this),3,READ)
inhale Rmw(count(this),0)
fetch_add_discard(count(this),1,RLX)
exhaleTokens(data(this),6,READ)

}
define exhale_precondition_clone(this) {
exhaleTokens(data(this),3,READ)
exhale Rmw(count(this),0)

}
define inhale_postcondition_clone(this) {
inhaleTokens(data(this),6,READ)

}

method test(this:Ref)
{
inhaleTokens(data(this),3,READ)
inhale Rmw(count(this),0)
exhale_precondition_clone(this)
inhale_postcondition_clone(this)
assert(tokens(data(this),6,wildcard))
exhale_precondition_drop(this)
inhale_postcondition_drop(this)
exhale_precondition_drop(this)
inhale_postcondition_drop(this)

}
define exhale_precondition_test(this) {
exhaleTokens(data(this),3,READ)
exhale Rmw(count(this),0)

}
define inhale_postcondition_test(this) {
}

define InhaleInv(loc, v) {
if (perm(Acq(loc,0)) > 0/1) {
InhaleInv0(v)

}
else {
assert false

}
}
define ExhaleInv(loc, v, sync) {

if (loc.rel==0) {
ExhaleInv0(v, sync)

}
else {
assert false

}
}

76

	Introduction
	Background
	Weak Memory
	Data races
	Atomics and Synchronization
	Relaxed Separation Logic
	Fenced Separation Logic (FSL)
	FSL++
	Entity Fractional Counting

	Token-based Reasoning for Weak Memory Programs
	Tokens
	Splitting and Merging Tokens
	The source of the tokens
	Generating tokens from the source and merging tokens back in
	Rules to get the write permission
	The relation of tokens and the EFC monoid
	Modalities
	The up-modality
	Rules for Acquire Fences
	Rules for Release Fences
	The life of a non-atomic variable and its tokens
	Specification Syntax for Token-based Proofs
	Source code annotations
	Using Proof Rules from the RSL logics on IDF-Style Assertions

	Automation of Token-based Proofs
	Merging and splitting resources
	Method calls
	Release-acquire RMW operations
	Generalized RMW operations

	Proofs for example programs
	Spinlock
	try_lock_shared
	unlock_shared
	try_lock
	unlock
	unlock_and_lock_shared

	Barrier
	Proof

	ARC
	Constructor
	read
	clone
	drop

	ARC version 2
	Constructor
	read
	clone
	drop

	ARC comparison to FSL++
	FSL++ proof of drop function

	Syntax for C++ input programs
	C++ to Viper encoding
	Ghost locations and modalities
	Encoding Tokens
	Encoding the Token Counting
	Encoding the Permission Sum Associated with the Tokens
	Encoding the Relation between the Token Count and the Permission
	Inhaling Tokens
	Exhaling Tokens

	Encoding a C++ program
	Field declarations
	Non-Atomics
	Atomics
	Local variables
	Methods
	Assertions
	Inhales and Exhales
	Fences
	Read-Modify-Write Operations
	Location Invariants
	Inhaling the source as part of the location invariant
	Exhaling the source as part of the location invariant

	Verification Tool for Weak Memory Programs
	Parser
	Encoder
	Benchmarks

	Conclusion and Future Work
	Conclusion
	Future Work

	Acknowledgments
	More details on Viper encoding
	Fences
	exhaleSource definition
	Basic Viper definitions
	Parallel Heaps
	Barrier without precondition
	Specification
	Proof outline
	Explanations

	Full details for Atomic Reference Counter
	C++ Code
	Generated Viper Code

