
Specifying and Verifying Static Initialization in

Deductive Program Verifiers

Bachelor’s Thesis Description

Patricia Firlejczyk
Supervised by João Pereira, Dr. Marco Eilers

and Prof. Dr. Peter Müller

September 2023

1 Introduction

Static initializers are blocks of code responsible for initializing the static vari-
ables of a module, i.e., the variables whose lifetime is the entire program, before
they are first accessed. Static initializers are present in multiple mainstream
programming languages: in Java, static initializers are used to initialize the
static fields of classes, whereas in Go, static initializers can be used to initialize
the global variables of a package.
In mainstream languages, static initializers typically have the two following
properties, which are guaranteed by the language runtime:

Property 1: Each static initializer runs before any access to the static variables
that it initializes

Property 2: Each static initializer runs at most once

Most mainstream imperative and object-oriented programming languages pro-
vide support for initialization code. However, how initialization is done strongly
depends on the programming language. One difference is how the first property
is implemented. In Go, this property is achieved by executing the static ini-
tializers before executing the main method. Java uses lazy initialization, which
means that initialization happens at runtime and a class is only initialized just
before the first use of any item declared in this class. So in Java, a static ini-
tializer may run after the start of the main method as long as the first property
holds.
The two properties listed above must be guaranteed by the language implemen-
tation and the client does not have to ensure them manually.

1

Because of the first property, static initializers can be used to establish prop-
erties of static fields independently of the clients of the class. An example of
static initializers is printing in Java. If one wants to print to the console in Java,
one often uses the System.out.println() method. The variable out is a static
variable of the class System and is initialized there statically. Because of that,
a client which wants to use the println() method, does not need to explicitly
initialize the System class, but can directly call the method println() on the
field out [1].

class A {

public static int X;

static {

X = 1;

}

}

Listing 1: The block on lines 3-5 is a static initializer of class A. The static
variable A.X is initialized to 1 before the first mention of A and the initialization
happens only once even if there are multiple objects of type A.

In Java, we have static blocks for static initialization as shown in listing 1.
There are a lot of different problems with initialization in Java and its imple-
mentations. One problem is that the JLS underspecifies when static fields in
interfaces are initialized. They don’t have to be initialized before the initializa-
tion of classes that import them, however they can. This means that the same
program can lead to different results under different implementations.

Another problem is that Java allows for cyclic dependencies between the ini-
tialization order of classes. In Java, a class is initialized by the runtime before
the first active use of that class. There are six situations that are considered
active usage, such as creating a new instance of a class, calling a static method
declared by a class or the use or assignment of a static field declared by a class
or interface. Even if there are multiple active uses of a class, from the second
property follows that each static initializer is executed at most once. Uses that
are not considered active uses are called passive uses and do not trigger the
class’s initialization [2].
Therefore, if class A has an active use of B in its static initializer, then B must
be initialized before A can do its static initialization. If B also has an active use
of A in its initialization, then we have a cyclic dependency. This leads to the
problem that concurrent initialization in Java can deadlock.
In listing 2, the initialization dependencies form a cycle, since the accesses of
B.b and A.a are considered active uses. There are three possible executions of
this program.

Execution 1: a thread enters class A before it enters class B

2

class A {

static char a = 'a';

static { a = B.b; }

}

class B {

static char b = 'b';

static { b = A.a; }

}

Listing 2: The static initializers of both classes depend on each other, so con-
current execution may deadlock or lead to nondeterministic results.

Execution 2: a thread enters class B before it enters class A

Execution 3: classes A and B are initialized by two threads at the same time

In the first execution, the static char A.a is initialized to ’a’ first. Then, when
class B is entered, B.b is set to ’a’, since A.a equals ’a’. In the end, both A.a

and B.b hold the value ’a’.
In the second execution, the opposite happens. Both A.a and B.b end up hold-
ing the value ’b’ at the end of the initialization.
In the last execution, A.a is set to ’a’ and B.b is set to ’b’. However, in both
classes the static block cannot be executed, as neither class A nor class B have
finished their initialization. Both threads wait for the other one to finish the
initialization and thus there is a deadlock [3].

Go uses init blocks for package initialization. In Go, a static variable is initial-
ized after all variables that it depends on are initialized.
The initialization in Go happens one package at a time. Across multiple pack-
ages, the language specificiation defines that a package will be initialized before
all packages that import it. By construction it is guaranteed that there are no
cyclic initialization dependencies between packages.

The initialization in Go suffers from a known problem called the Static Initial-
ization Order Fiasco [4], which was initially coined for C++. Across multiple
files, the initialization order of variables is determined by the order in which the
files are compiled. As such, the order of the initialization may depend on the
command used to compile the project.

package main

var X map[int]int

func init() {

X = make(map[int]int)

}

package main

func init() {

X[0] = 0

}

func main() { }

If you compile and run the programs using the command go run file2.go

file1.go, you get an error message. The second file is initialized before the

3

Listing 3: The outcome of this program depends on the order in which the files
are passed to the compiler. The file on the left is called file1.go and the file
on the right is file2.go

first file, thus X[0] is accessed, before X is created in file1. If you run them the
other way around, there is no problem, since X = make(map[int]int) happens
before X[0]=0. [5]

The dynamic initialization in C++ suffers from the same problem. In C++, the
initialization of static variables happens in two stages. Since static variables re-
fer to variables whose lifetime is the entire program, in C++, if the initial value
of a variable can be evaluated at compile time, this variable is also initialized
at compile time. This makes the runtime of the program faster. The remaining
variables are zero-initialized at compile time and later dynamically initialized
at runtime [6].

Because of these problems, it would be useful to use tools like program verifiers
to reason about static initialization and the values of static fields at different
points in the program.

An existing approach providing a methodology for specifying and verifying static
class invariants in object-oriented programs is described in a paper written by
K. Rustan M. Leino and Peter Müller [7]. This paper considers three major
uses of static fields and invariants in the Java library. In the methodology
described in this paper, each class and each object have a field which marks if
the class/object invariant holds or may not hold. It thus allows an invariant to
be temporarily violated. The paper defines a validity ordering between classes
and uses it, among other things, as the initialization order. From the validity
ordering follows that subclasses must be initialized before a superclass they
extend is initialized. However, this does not hold in some languages like in Java
or in C#. Another issue is that this paper does not use separation logic [8].
This makes it more difficult to deal with concurrency. The goal of this project
is to define a new approach using separation logic based on the ideas in [7].

2 Goals

2.1 Core Goals

1. Collect and analyze the uses of static initializers and the kinds of properties
that they are used to establish. The analysis may be inspired by the work
by K. Rustan M. Leino and Peter Müller [7] and the work by Simon
Fritsche supervised by Malte Schwerhoff and Peter Müller [9]. Based on
that, we plan to categorize the uses of static fields and invariants and find
interesting example programs for all of them. These code examples can

4

be later used as test cases.

2. Devise a modular specification language that extends separation logic (lan-
guage agnostic or not) capable of describing module invariants and prop-
erties established by static initializers.

3. Develop a verification methodology to verify the properties that can be
expressed in the specification language defined in goal 2. Define a toy
language with support for modules, static initializers, and heap-allocated
data-structures. The initialization order may be less defined in this lan-
guage than in Java, and further assumptions may be taken into account
later, or it may be more precisely defined from the beginning. The outcome
should be an encoding of the toy language using the developed methodol-
ogy into Viper [10].

4. Implement the test cases obtained in goal 1 using our obtained method-
ology from goal 3 in Viper and evaluate this approach.

5. Characterize static initialization implementations from different languages,
for example Java, Go, C++, based on the features they provide, e.g., lazy
vs eager (including whether they ensure that all static initializers run once,
or at most once), whether they allow cyclical dependencies or not.

2.2 Extension Goals

1. Develop a program logic for the toy language mentioned in core goal 3.
Implement the methodology obtained in goal 3 as a set of formal rules.
The logic can be used to verify the correctness of programs containing
static initializers.

2. Develop extensions of the verification methodology catering to different
language features then identified in core goal 5. The goal is to incorporate
more knowledge (for example, the initialization order if it is known) in
order to prove more properties set established static initializers.

References

[1] Javainterviewpoint, “Java – how system.out.println() re-
ally work?.” https://www.javainterviewpoint.com/

java-how-system-out-println-really-work/. Accessed: 2023-09-
17.

[2] B. Venners, “The lifetime of a type.” https://www.artima.com/

insidejvm/ed2/lifetype.html. Accessed: 2023-09-20.

[3] E. Börger and W. Schulte, “Initialization problems for java,” Softw. Con-
cepts Tools, vol. 19, no. 4, pp. 175–178, 2000.

5

[4] “Static initialization order fiasco.” https://en.cppreference.com/w/

cpp/language/siof. Accessed: 2023-09-25.

[5] “The go programming language specification.” https://go.dev/ref/

spec\#Program_initialization_and_execution. Accessed: 2023-09-
17.

[6] P. Arias, “C++ - initialization of static vari-
ables.” https://pabloariasal.github.io/2020/01/02/

static-variable-initialization/. Accessed: 2023-09-17.

[7] K. R. M. Leino and P. Müller, “Modular verification of static class in-
variants,” in FM 2005: Formal Methods, International Symposium of For-
mal Methods Europe, Newcastle, UK, July 18-22, 2005, Proceedings (J. S.
Fitzgerald, I. J. Hayes, and A. Tarlecki, eds.), vol. 3582 of Lecture Notes
in Computer Science, pp. 26–42, Springer, 2005.

[8] J. C. Reynolds, “Separation logic: A logic for shared mutable data struc-
tures,” in 17th IEEE Symposium on Logic in Computer Science (LICS
2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings, pp. 55–74,
IEEE Computer Society, 2002.

[9] S. Fritsche, M. Schwerho, and P. Müller, “Verifying scala’s vals and lazy
vals,” 2014.

[10] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verification in-
frastructure for permission-based reasoning,” in Verification, Model Check-
ing, and Abstract Interpretation (B. Jobstmann and K. R. M. Leino, eds.),
(Berlin, Heidelberg), pp. 41–62, Springer Berlin Heidelberg, 2016.

6

