
Specifying and Verifying Static
Initialisation in Deductive Program

Verifiers

Bachelor Thesis

Patricia Firlejczyk

March 7, 2024

Advisors: João C. M. Pereira, Dr. Marco Eilers,
Prof. Dr. Peter Müller

Department of Computer Science, ETH Zürich

Abstract

Static initialisers are blocks of code that initialise static variables be-
fore they are used in the program. They are often used to modularly
establish invariants on the static variables regardless of the clients of
the module. Static initialisation is prone to errors that are hard to
debug, and its implementation varies between different programming
languages. Moreover, static initialisers may run at unexpected moments
in the execution. In this thesis, we characterise and exemplify the uses of
static initialisers in large code collections. We analyse static initialisation
in two different settings and present a modular verification method-
ology for both settings. In the first setting, the time at which static
initialisation occurs is only minimally restricted. There, static initiali-
sation fulfils two characteristics that are satisfied by most mainstream
programming languages. Because of that, the presented methodology
applies to most mainstream programming languages. The second set-
ting is closely related to Java. Our approach presumes the absence of
cyclical initialisation dependencies, which, in our experience, are often
indicative of latent bugs. We define a modular check to prevent them.
To automate the verification, we provide an encoding from an annotated
Java program into Viper. Lastly, we evaluate this encoding on some
examples.

i

Acknowledgements

First and foremost, I am deeply thankful to my exceptional supervisors
João Pereira and Dr. Marco Eilers for their help and encouragement
during my bachelor’s thesis. They were always very enthusiastic to-
wards this project, had great ideas during our meetings and patiently
answered all my questions. I would also like to thank them for their
thorough proofreading, which helped me to improve my thesis. Further,
I would like to acknowledge Prof. Dr. Peter Müller for granting me the
opportunity to work on this interesting project. Lastly, I am grateful to
my boyfriend for providing feedback on my written report, as well as
my family and friends for their support during this time.

ii

Contents

Contents iii

1 Introduction 1

2 Background 5
2.1 Static initialisation in Java . 5
2.2 Characterisation of static initialisers 7
2.3 Verification . 11
2.4 Viper . 12
2.5 Related work . 14

3 Uses of static initialisation 17
3.1 Characterisation of uses of static initialisation 17
3.2 Examples . 19

4 Basic methodology 27
4.1 Language . 28

4.1.1 Syntax . 28
4.1.2 Semantics . 30

4.2 Specification and Verification 36

5 Methodology for Java 49
5.1 Language . 50
5.2 Methodology . 54
5.3 Viper encoding . 64

6 Evaluation 75

7 Conclusion 79

Bibliography 83

iii

Chapter 1

Introduction

Static initialisation refers to the process through which static variables, i.e.,
the variables whose lifetime is the entire program, are initialised. The
goal of static initialisation is to set up constants and static variables or
execute blocks of code that might be necessary for the proper functioning
of the program before these variables or the functionality are used. Some
programming languages provide a construct called a static initialiser, which
contains initialisation logic to perform setup tasks that need to be executed
once before the class is used. Static initialisers are present in multiple
mainstream programming languages: in Java or C#, static initialisers are used
to initialise the static fields of classes, whereas, in Go, static initialisers can
be used to initialise the global variables of a package.

In mainstream languages, static initialisers usually have the following
two properties guaranteed by the language runtime:

Property 1 Each static initialiser runs to completion before any access to the
static variables that are declared in its class, as long as there are no
cyclical initialisation dependencies. Accesses to its own static variables
inside the static initialiser are excluded from that.

Property 2 Each static initialiser runs at most once.

We say that there exists an initialisation dependency of class A on B if the static
initialiser of A might trigger the initialisation of B. A cyclical initialisation
dependency between classes exists if they cyclically depend on each other.
We provide an example of such a cyclical initialisation dependency later in
this chapter.

Even though most programming languages satisfy the two properties
mentioned above, how static initialisation is implemented depends on the
programming language or the compiler. In some languages, the exact order of
initialisation may even be undefined. This makes it harder for programmers

1

1. Introduction

class A {
static char a = 'a';
static { a = B.b; }

}

class B {
static char b = 'b';
static { b = A.a; }

}

Listing 1.1: The static initialisers of both classes depend on each other in this Java code, which
can lead to reading uninitialised data or even a deadlock in the concurrent case.

to reason about such programs.

There are a lot of examples of problems related to static initialisation.
One example from Java is shown in Listing 1.1. In Java, static fields are
declared using the keyword static, here A.a and B.b, and the block of code
enclosed in curly braces and preceded by the static keyword is called a
static initialiser. In this example, class A accesses a static field declared in class
B in its static initialiser. If the initialisation of class B is not completed before
the execution of a = B.b, uninitialised data will be read. The same is true in
the opposite direction. This is called a cyclical initialisation dependency. As
a result, it is unclear which order the static initialisers should be executed in.
In Java, in the sequential case, cyclical initialisation dependencies may lead
to reading uninitialised data. Thus, Property 2 is violated in their presence.

Another difficulty related to static initialisation is that it is hard to track
when static initialisers are running because they may run at unexpected
moments in the execution. Since each static initialiser runs at most once, it
depends on how the program has progressed so far, if a statement triggers the
initialisation of some classes. Additionally, static initialisers often manipulate
the global state. So, one has to make sure their side effects don’t result
in problems for the code that is currently running and that they do not
invalidate any assumptions other initialisers make about the state of their
static variables. This is exemplified in Listing 1.2. The static variable A.a is

class A {
static char a = 'a';

}
class B {

static { A.a = 'b'; }
}

class Main {
public static void main() {

f();
print(A.a);

}
}

Listing 1.2: The static variable a declared in class A is modified by the static initialiser in class
B. We assume that f() is a method that does not write to A.a. The value of A.a in main() is
determined by whether the execution of f() caused B’s initialiser to run.

initialised to ’a’ in class A. The static initialiser in class B overwrites it, so

2

the value of A.a depends on whether B is initialised. After B was initialised,
A cannot claim any more that A.a holds the value ’a’. The outcome of the
program depends on whether the execution of the method f() leads to B
being initialised.

Therefore, methods for reasoning about the correctness of programs
that use static initialisation are clearly needed. Currently, there are not
many widely accepted solutions to this problem. We present two existing
verification approaches in Section 2.5.

The purpose of a static initialiser is usually to get the class into a valid
state before it is used. In formal verification, the conditions that must be met
for a state to be valid, one would declare as the static class’ invariant. We are
going to present an approach for verifying programs with static initialisers
regarding their static class invariants, which ensures the following properties:

• The class invariants are established by the static initialisation code.

• The established invariants are preserved by all program code, including
other initialisers.

• An invariant is guaranteed always to hold while another code that
relies on it (i.e., that assumes that the invariant holds) is running.

– An invariant can only be assumed after the class, that establishes
it, is initialised.

– While an invariant is broken, no code can be executed that relies
on the validity of this invariant.

• Cyclical initialisation dependencies are ruled out.

In this thesis, we propose an annotation style where users provide a static
invariant per class, expressed in a specification language that extends sep-
aration logic. To prove that a class is correct against its static invariant, we
must first check that the static initialisation code establishes the invariant.
We introduce a verification construct, called an open/close block, that allows
us to assume and potentially temporarily break static class invariants in the
code. To assume an invariant, we require that the class is initialised. We
need to ensure that through program execution this invariant will never
be assumed while it is broken. In our work, we provide a solution to the
problem in two different settings. The former is a language in which static
initialisers can run concurrently with the main programs at arbitrary points
in the execution. This way, its methodology may serve as a model for many
different programming languages. The latter setting is strongly based on
the Java language and considers only sequential programs. We present a
sound verification technique for both settings. A core restriction we impose
is that cyclical initialisation dependencies are not allowed; we rule them out
modularly using a novel specification construct we call static levels.

3

1. Introduction

Thesis structure The structure of this thesis is the following: In Chapter
2, we provide the background knowledge related to this thesis, including
how initialisation works in various languages, especially Java. Afterwards,
we describe and characterise the applications of static initialisation and
provide examples from large, real-world code bases for them in Chapter
3. This helped us find out which restrictions are acceptable in practice. In
the following two chapters, Chapters 4 and 5, we present two verification
methodologies to reason about static initialisation and the values of static
fields at different points in the program. At the end of this chapter, we
present a systematic way to automatically verify programs according to the
second methodology by encoding them into the Viper language. In Chapter 6,
we present some examples encoded into Viper using the methodology from
Chapter 5 and we evaluate this approach. Finally, we give a brief conclusion
of this work in Chapter 7.

4

Chapter 2

Background

In this chapter, we provide the background knowledge necessary to un-
derstand this thesis. First, we provide an in-depth explanation of Java’s
approach to static initialisation, with a focus on its initialisation problems.
Then, we briefly explain and characterise static initialisation implementations
in different programming languages. Afterwards, we explain the concept
of verification. Finally, we summarise two existing techniques for reasoning
about static initialisation.

2.1 Static initialisation in Java

In Java, a class may contain several static variable definitions and static
initialisers. Instead of requiring explicit calls to initialise static variables,
in Java, one can place the initialisation logic in a static initialiser. The Java
Runtime Environment (JRE) guarantees that a static initialiser is executed
at most once and each static initialiser is initialised before the first active
use of the class it belongs to (unless there are initialisation cycles, this case
will be explained later). In Java, a class is considered initialised after all its
static variable definition(s) and static initialiser(s) finish executing. Static
variables, that are only declared, but no explicit value is assigned to them,
are initialised to a default value during static initialisation, that is for example
false for booleans and 0 for numeric types.

Classes are initialised lazily, which means that initialisation happens
at runtime just before the first active use of that class. Six situations are
considered active use, and all will trigger class initialisation if the class has
not already been initialised. Examples of active uses are creating a new
instance of a class, calling a static method of a class, the initialisation of
its subclass or the access (for both reading and writing) of a static field
declared by a class. If there are multiple active uses of a class, from Property
2 mentioned in Chapter 1 follows that this class is initialised at most once.

5

2. Background

Uses that are not considered active uses are called passive uses and do not
trigger the class’s initialisation [36]. So in Java, if a class is never used, it
won’t be initialised. The possibly multiple static variable definitions and
static initialisers will execute in the same order as they appear in the program,
i.e. they will be executed from top to bottom [27].

As mentioned in Chapter 1, Java does not forbid static initialisers of
different classes to depend on each other mutually, this means, they can
trigger the initialisation of each other. An example of this issue is provided
in Listing 1.1. Since the access of B.b inside the static initialiser of class A is
considered an active use of class B, the initialisation of class B is triggered
before its execution. There is a cyclical initialisation dependency between
both classes in our example because the static initialiser of B also has an active
use of A. In this example, the cycle exists between classes A and B. cyclical
dependencies, however, may be of arbitrary size.

There are three possible executions of this program:

Execution 1: A single thread initialises both A and B and the static initialiser
of A starts before B’s.

Execution 2: A single thread initialises both A and B and the static initialiser
of B starts before A’s.

Execution 3: Classes A and B are initialised by two threads concurrently.

The Java Language Specification (JLS) specifies that every class C has a
corresponding initialisation lock LC. A thread must acquire this lock before
it can initialise class C. If thread T wants to initialise class C but a different
thread is already initialising it, T will stall and wait until it gets notified
that C has been fully initialised. In the case that a thread wants to get the
lock for a class C for which it’s currently holding the initialisation lock (this
may happen in the presence of cyclical initialisation dependencies or in the
static initialiser of class C), it will not block. Instead, it will continue with
its regular execution (that is, with the statement that has an active use of C),
even though C’s initialisation is not completed. It thus allows the thread to
access static variables from a class whose initialisation did not finish [30].

In the first execution of Listing 1.1, a thread enters the static initialiser
of class A, claims its initialisation lock LA and sets the static char A.a to ’a’.
Because class A has an active use of class B, it triggers the initialisation of class
B before continuing with A. As this thread already holds the initialisation
lock LA, it does not block and even though A’s initialisation is not completed,
the current value of A.a, which is ’a’, is assigned to B.b. The problem in
this execution is that the static variable A.a, which contains data that has not
been fully initialised, is read, i.e., the static initialiser has not completed, and
the value stored in the static field A.a may be changed by the static initialiser.
In the end, both A.a and B.b hold the value ’a’.

6

2.2. Characterisation of static initialisers

In the second execution, the opposite happens. Both A.a and B.b end
up holding the value ’b’ at the end of the initialisation. Thus, the outcome
depends on the order in which the static initialisers are executed.

In the last execution, the lock LA is claimed by one thread and the lock
LB is claimed by another thread. A.a is set to ’a’ and B.b is set to ’b’.
However, in both classes the static block cannot be executed, as neither
class A nor class B have finished their initialisation. Both threads wait for
the other one to finish; thus, there is a deadlock [13]. A reason why Java
does not reject programs with static initialisation dependencies may be that
such dependencies are hard to find statically, and without additional input
from the user, especially in the presence of subtyping. The authors of a
paper called ”Initializing Global Objects” [23] argue that cyclical initialisation
dependencies are impossible to find modularly, without whole-program
analysis.

To summarise, cyclical initialisation dependencies may result in reading
uninitialised data in the sequential scenario, while they can lead to a deadlock
in the concurrent case. If cyclical initialisation dependencies are forbidden,
then static initialisation in Java satisfies both properties mentioned in Chapter
1.

Another problem in Java related to static initialisation is that in the
JLS, it is underspecified when static fields in interfaces are initialised. In
contrast to static fields in superclasses, they don’t have to be initialised
before the initialisation of classes that implement them, however, they can.
This means the same program can lead to different results under different
implementations [13].

2.2 Characterisation of static initialisers

As mentioned in Chapter 1, the implementation of static initialisers can vary
significantly between programming languages. In this section, implementa-
tions from languages other than Java are described and grouped based on
the characterisations they provide.

Lazy and eager initialisation The first characteristic refers to the time when
static initialisers are executed and static variables are initialised. There are
two common approaches: lazy initialisation and eager initialisation. In the first
approach, static variables are initialised only when the class to which they
belong is used for the first time. Statements, which are first uses, trigger the
initialisation of the used class. The initialisation of static variables occurs
during program execution. A class’ static initialiser never executes and its
static variables are never initialised if the class is never used as the program
is running.

7

2. Background

Eager initialisation differs from lazy initialisation in that all static variables
are initialised before program execution. As a result, Property 1 which
specifies that all static initialisers run before accessing the static variables
they initialise is always true, thus at runtime, no checks are required before
accessing static variables, which may increase the performance.

Go is a programming language in which global variables are initialised
before the main function’s first statement. In Go, static initialisers are rep-
resented by init blocks and can be used to initialise the global variables of
a package. For the sake of discussion, a simplified explanation of static
initialisation in Go is provided, where we assume that all initialisation ex-
pressions for all global variables do not refer to other global variables or
invoke methods that do that.

The initialisation in Go happens one package at a time. Across multiple
packages, the language specification defines that a package must be initialised
before all packages that import it. Inside a package, first, all global variables
are declared and assigned the value of their initialisation expression if there
is any, otherwise, they are initialised to the default value. After this step is
completed, the init blocks in all files are executed. Across multiple files, the
initialisation order of variables is determined by the order in which the files
are compiled. After all variables are initialised, the main method is executed.
In Go, all initialisation code is executed exactly once, regardless of whether
the variables are used in the program [4].

A problem in Go comes from the fact that init blocks from multiple files
are allowed to access the same global variable. An example of this problem
is explained in Listing 2.1. As previously stated, the order in which static ini-

// file1.go
package main
var X int
func init() {

X = 5
}

// file2.go
package main
func init() {

X = 3
}
func main() { }

Listing 2.1: The init blocks in the files file1.go and file2.go both write to the global variable
X. The outcome of this program depends on the order in which the files are passed to the compiler.
If the command go run file2.go file1.go is used, the init block in file1.go is executed last,
and after initialisation, X will hold value 5. Else, X will hold value 3.

tialisers from different files are executed is determined by the command used
for compilation. The init block from the first file in the command is executed
first. If multiple files write to the same variable, its value may depend on the
order in which the init blocks are executed, so on the used command [4].
The dynamic initialisation in C++ suffers from the same problem, and it is

8

2.2. Characterisation of static initialisers

called the Static initialisation Order Fiasco [12].

C++, unlike Java or Go, does not have a direct syntax for a static initialiser,
but it does have static variables. Like in Go, non-local static variables are
initialised before the program execution starts. These are the variables
defined in the global namespace or class scope, but not within functions.
In C++, the initialisation of static variables happens in two stages. If the
initial value of a non-local static variable can be evaluated at compile time,
this variable is initialised at compile time. This makes the runtime of the
program faster. The remaining non-local static variables are zero-initialised at
compile time and later dynamically initialised at runtime. Unless otherwise
specified, dynamic initialisation of non-local static variables happens before
the execution of the main method [5].

C# is an example of a language that uses lazy initialisation for static
variables. In C#, static constructors are used to initialise static fields, or to
perform actions that need to be executed only once. Static fields can also
contain their own initialisers. Those initialisers are executed in textual order
immediately before static constructors. When an explicit static constructor
is declared, static initialisation (i.e., executing the static field initialisers and
the static constructor) is triggered by the first access to a static member
or the first creation of an instance of this class. When no explicit static
constructor is declared, the exact initialisation time of static field initialisers
is implementation-dependent. The only guarantee is that static initialisation
must occur before any static field of that class is accessed. However, creating
an instance of the type does not have to trigger the initialisation in this
case [11][2].

In Scala, singleton objects are equivalent to classes in Java, except that only
one instance of a singleton object can exist. A singleton object can define
multiple fields. Scala does not have the direct concept of a static initialiser;
instead, each field is bound to its own block of code, its initialiser, which is
executed when the field is initialised. An initialiser can also contain code,
that is independent of any fields. Scala has two types of fields: mutable
fields called vars and immutable fields. The immutable fields are additionally
divided into ones that are initialised eagerly, called vals and the lazy vals,
which are initialised lazily. Lazy vals are initialised on its first access.

Singleton objects, like lazy vals, are initialised on their first use, i.e., lazily.
A first use refers to assigning the singleton object to a variable, calling the
object’s method or accessing one of its fields. When a singleton object is
initialised, all its vars and all non-lazy vals are initialised [19].

In Rust, a program can contain static items, which are values whose
lifetime is the entire program. Each static item has its static initialiser, i.e. a
constant expression. Static initialisers are evaluated at compile time, thus
eagerly [9]. Using the library lazy init one can declare immutable variables,

9

2. Background

which are initialised on their first access [3].

The language Python does not have an explicit static initialiser, however,
imports satisfy both static initialisation properties. When the running pro-
gram reaches an import statement, the entire code in the imported module is
run to completion. Imports in Python adhere to Property 2. This means, that
even if the program encounters multiple import statements referring to the
same module, the module is imported at most once. However, the module
from which the program starts running might run up to two times, once in
the beginning and once if another imported module imports it (so, in case of
a cyclical import dependency). Modules whose import has begun are stored
in a cache. Before importing a module, the program first checks the cache to
see if it has already been imported. Moreover, the import statement must be
executed before a variable or function from the imported module is accessed,
otherwise, it results in a NameError.

The difference to static initialisers in other languages is that in Python,
one must explicitly call the static initialiser by using the import statement.
Because of that, the initialisation in Python cannot be classified as lazy or
eager [18].

Cyclical initialisation dependencies Another characteristic is whether cycli-
cal initialisation dependencies between static initialisers are rejected. A
cyclical dependency between two classes exists if the execution of its ini-
tialisers requires the other class to be initialised. In Listing 1.1, a cyclical
dependency in Java code is demonstrated. Because given a cyclical initialisa-
tion dependency, it is unclear in which order the initialisation should happen,
some languages forbid them.

In Go, at compile time, it is checked if the import relation between
packages is a partial order, so acyclic. If this is not the case, the program is
rejected. Thus, imported packages are always initialised before packages that
import them.

The language C# does not forbid cyclical initialisation dependencies
between static initialisers, which might lead to reading uninitialised data.
Similar to Java, C# uses initialisation locks. In C#, if a thread fails to acquire
an initialisation lock held by itself or another thread, to resolve the deadlock
it simply returns and continues with its regular execution. As a result, the
thread might see an incompletely initialised state in both the sequential and
concurrent cases.

In contrast to static constructors, cyclical dependencies between static
field initialisers are not allowed. Since static field initialisers are executed in
textual order, if one references the contents of a static field defined below,
this field has not yet been initialised. Such dependencies are not statically
rejected, but an exception is thrown [11].

10

2.3. Verification

// Main.py
print("in Main.py, start")
import A
print("in Main.py, end")

// A.py
print("in A.py, start")
import B
print("in A.py, end")

// B.py
print("in B.py, start")
import A
print("in B.py, end")

Listing 2.2: This example shows a cyclical import dependency between two modules.

In Scala, the initialisers of two vals in separate singleton objects can
cyclically depend on each other, just like in Java or C#. Again, this might
lead to a deadlock or reading uninitialised data [7].

In Python, cyclical imports of modules are not statically rejected. A
cyclical import dependency between modules exists if they all cyclically
import each other. In Listing 2.2, a cyclical dependency between modules
A.py and B.py is shown. If the program is run from Main.py, the output is
the following:

in Main.py, start
in A.py, start
in B.py, start
in B.py, end
in A.py, end
in Main.py, end

The program starts its execution in Main.py. On import A, it starts executing
A.py. Inside this file, the import of B.py is triggered. However, when import
A is reached for the second time, due to the cache, the program knows that an
import of module A has already started, ignores this statement and continues
with its execution in B.py. However, if one of the files A.py or B.py would
import Main, the Main module would be executed twice [18].

The example above runs without errors. But if both files A.py and B.py
would define functions and call each other’s functions, it would result in an
error. As a result, circular dependencies should be avoided in Python as well.

2.3 Verification

Formal verification in programming is a rigorous and mathematical approach
to statically prove or disprove the correctness of a program with respect to
a formal specification or property [32]. It is usually used to reason if some
post-condition Q holds after the execution of a program s (if s terminates)

11

2. Background

under the assumption that the precondition P holds at the beginning of the
execution of the program. The pre-and post-conditions are assertions about
the program state. Hoare logic [20] provides a way to reason mathematically
about statements of this form, which are often represented as the {P} s {Q}
Hoare triple. Mathematical axioms and derivation rules are provided that
specify which properties can be proven about programs. There are many
extensions of Hoare logic that, among other things, allow to reason about
parallelism or pointers.

One of these extensions is called Separation logic [31]. Separation logic is
designed to reason about heap manipulation or concurrent programs. Each
heap location is associated with a permission. The program state is extended
by a mapping from heap locations to values and a mapping from heap
locations to rational numbers in the range [0, 1], which correspond to the
amount of permission held. Permissions guard heap accesses by specifying
which locations can be accessed by statements or expressions. A field o.f
can only be written to if the full permission (p = 1) to o.f is held, and it can
only be read from if a non-zero permission is held [15]. Permissions to heap
locations are created on object allocation.

2.4 Viper

Verification Infrastructure for Permission-based Reasoning (Viper) [24] is an
infrastructure that automates program verification. It includes an intermedi-
ate language, also called Viper, which is a sequential, object-based, imperative
programming language. At its core, the language contains methods, func-
tions, and specification constructs such as function and method contracts
(i.e. preconditions, postconditions and invariants, which are similar to Hoare
triples) and predicates. To prove the correctness of a program, Viper verifies
the correctness of all methods and functions against their specification.

The language Viper is based on Implicit Dynamic Frames [34], a permi-
ssion-based program logic similar to Separation Logic. In the Viper language,
object creation is done using the new(...) statement, which additionally
inhales permissions to all fields listed within the parentheses. Fields are
declared by the keyword field and all objects can contain all fields. Per-
mission to field f of object o is denoted by acc(o. f , p) in Viper. The value
p ∈ [0, 1] ∪ {wildcard} is optional (if left out, it equals one) and denotes
the amount of permission held. If 0 < p < 1, the permission acc(o. f , p) is
called a fractional permission. The wildcard keyword denotes an unspecified
positive number, which is always strictly smaller than 1 and greater than 0.
The expression old[l](o. f) in Viper refers to the value of o. f on the heap in
the program state at label l.

In Viper, an assertion is called self-framing if it contains read permissions

12

2.4. Viper

to all the locations it reads. For example, the assertion o. f == 3 is not
self-framing, however, acc(o. f) && o. f == 3 is, because it contains read
permissions to field o. f .

Methods in Viper can contain a sequence of statements, and functions can
contain a single expression as a body. If no body is provided, they are called
abstract. Viper’s methods are impure, which means that their execution can
modify the program state. Functions, however, are pure and, given the same
input, always return the same value. Pre- and post-conditions of methods
or functions (which are self-framing assertions) can be specified with the
requires and ensures keywords.

Let A be a Viper assertion that is not necessarily self-framing on its
own but in the current program state. The statement assert A checks the
permission and value properties specified by A. assume A assumes the
permission and value properties denoted by A. It only executes if the given
permission is already held in the current state without modifying the held
permissions.

Similar to the assume A and assert A statements, Viper additionally
contains inhale A and exhale A statements. However, these statements
may add to or remove permissions from the program state. The inhale A
statement is executed by first adding the permissions denoted by A to the
program state and then assuming all value constraints in A. For example,
inhale acc(o. f) && o. f == 3 first adds the full permission to o. f into the
program state and then assumes o. f == 3 to be true. Executing exhale
A, first asserts all values constraints in A, then asserts that all permissions
denoted by A are currently held and finally removes all these permissions. If
one of these assert statements does not hold, verification fails.

Predicates in Viper are written in the form predicate P(...){B}, where
B, a self-framing assertion, is the predicate body, or they are written without
a body as predicate P(...). The latter is called an abstract predicate. In
Viper, predicate instances can be held. A predicate instance can be received
e.g. by inhaling or folding P.

For a non-abstract predicate P, Viper defines two statements: unfold
P() and fold P(). If permissions to P are held, unfold P() is executed
by exhaling the predicate instance and inhaling the predicate body. The
statement fold P() exhales the predicate body and then inhales the predicate
instance. Let P be a predicate defined as follows: predicate P(){acc(o.f)
&& o.f == 3}. At a program point, where no instance of P is held, the
statements inhale P(); unfold P() are equivalent to directly inhaling
acc(o. f) && o. f == 3. Executing fold P(); exhale P(), first checks if
o. f == 3 holds and full permissions to o. f are held in the current program
state. If this is the case, permissions to o. f and the predicate instance P are
removed.

13

2. Background

A detailed description of the language is provided in the Viper tuto-
rial [38].

2.5 Related work

An existing approach providing a modular methodology for specifying and
verifying static class invariants in object-oriented programs is described in
a paper by K. Rustan M. Leino and Peter Müller [22]. Their methodology
supports three major uses of static fields and invariants within the Java library.
Leino and Müller propose attaching static class invariants to each class. They
define static class invariants as invariants that are described at the class level
and enforced by their static initialiser. After a static initialiser is executed, its
static class invariant must be established. The authors also propose expose
blocks, inside which the static class invariants may be temporarily broken,
and static ghost fields, that specify if one currently is inside an expose block.
The static class invariant of C may not hold within an expose C {s} block,
but it must be re-established on exit.

Moreover, the authors define a partial order between classes, called
validity ordering. The validity ordering is used, among other things, as
the initialisation order. It is required to be acyclic. Because of behavioural
subtyping, the validity ordering requires that subclasses are initialised before
the initialisation of their superclasses. However, this assumption does not
hold in languages like Java or C#. So, in the methodology defined in this
paper, the static initialiser of a subclass cannot refer to the static fields of
the class it extends. Another issue is that this paper does not use separation
logic and in general targets a sequential setting. This makes it more difficult
to extend this approach to deal with concurrency or heap-allocated data
structures.

Another related work is the paper called ”Initializing Global Objects:
Time and Order” by Fengyun Liu et al [23]. The authors present a modular
static analysis to ensure the safe initialisation of global objects. For the static
analysis, Fengyun Liu et al. define two small calculi, an abstract domain,
and the corresponding declarative rules. In the first calculus, all global
variables are immutable, whereas in the subsequent calculus, mutable global
variables are supported. The approach proposed in this paper is based on
two principles:

• Initialisation of global objects must follow a partial order.

• The state of a global object should be independent of when the global
object is initialised.

The first principle disallows cyclical initialisation dependencies. This re-
striction is enforced by a rule in the static analysis. To enforce the second
principle, the authors disallow side effects during the initialisation of global

14

2.5. Related work

objects. This forbids for example global objects to write to mutable variables
in other global objects during initialisation. This approach also has the re-
striction that during initialisation, global objects are not allowed to read from
mutable variables declared in other global objects.

15

Chapter 3

Uses of static initialisation

The goal of this chapter is to describe how static initialisation is used in
practice. Our observations are based on several real-work code bases: the Java
Standard library (2018, Oracle) [1], a Minecraft Hack Client code base [35],
a Java design patterns code base [37] and the Go Standard library [16]. A
special focus lies on the Java Standard library. In the first section, we explain
and characterise the different uses of static initialisation that we found. In the
following section, we provide and explain some examples of the mentioned
uses. The characterisation is based on one in the paper ”Modular verification
of static class invariants” [22].

3.1 Characterisation of uses of static initialisation

The main purpose of static initialisation is to initialise static variables in-
dependently of the clients, such that they do not have to do it themselves.
We encountered three main patterns of static initialisation. All of them are
explained in a paragraph below.

1. Set up a consistent global state.

2. Initialise a shared pool.

3. Register a callback.

Set up a consistent global state The first application is the most com-
monly encountered. During static initialisation, a consistent global state is
established by initialising the static fields. The consistent global state can
be described by static class invariants, which describe what properties hold
for the static and instance fields. The code relies on the invariants being
maintained during program execution. Furthermore, the code may maintain
limitations on how their fields’ state changes and this can be captured using
history constraints.

17

3. Uses of static initialisation

Static fields may contain mutable or immutable data. Immutable data is
initialised to store shared values. After initialisation, these values are read
by other parts of the code. In the code bases we looked at, immutable data
was usually of primitive type, and then it is sufficient to declare the fields
as static final to make them immutable. In the Java Standard library, this
pattern can be found, among other things, in the class Character, which
defines an immutable static char MIN VALUE that holds the smallest value of
type char, or in the class Boolean, where an immutable static field stores a
version number. Some classes define even immutable non-primitive static
fields. For example, the class Calendar defines a read-only set using the
unmodifiableSet() method from the java.util.Collections class. This set
stores all available calendar types and is used for exception throwing in the
code. Since immutable static fields cannot be modified, the invariants they
establish are trivially maintained throughout program execution and can be
assumed by everyone in the program.

In the code bases we looked at, mutable static fields are most often
used to store mutable data structures, usually sets or maps. The static
initialisers set up the static fields to satisfy the static invariant immediately
after initialisation. But this is not enough. During program execution, the
class must make sure that its static class invariant will never be violated.
This is often done by declaring these data structures as private fields and
either only accessing them inside this class (example provided in Listing
3.1) or allowing other classes to access them only through public methods
(Listing 3.2). These public methods control how others modify the private
static fields to make sure that the static class invariant is never violated. The
motivation for this additional subdivision is that these public methods enable
other classes to establish properties about the class that declares the data
structure. In Section 4.2, we will especially look at the usage where other
classes access these shared data structures inside their static initialisers and
thus their static class invariant relies on the validity of another class. Listing
3.3 exemplifies this pattern.

Initialise a shared pool A shared pool is a data structure (stored as a static
field) that holds frequently used items which are re-used during program
execution. The goal of this pattern is to reduce computation or memory
overhead. This pattern can further be subdivided depending on its primary
goal.

The first usage is to store shared objects inside a static data structure to
reduce the memory overhead. It is based on the Flyweight design pattern [33].
The data structure is called an object pool in that case. An object pool is a
data structure that contains a set of initialised objects kept ready to use, such
that they do not have to be allocated and destroyed by clients on demand. It
aims to reuse frequently used objects. Instead of creating a new object, the

18

3.2. Examples

client will request an object from the pool and perform operations on it. Data
structures containing object pools are either initialised completely inside the
static initialiser, or they are initialised during program execution on the first
use of this object. Typically, once an object is added to the pool, the classes
defining these data structures make sure that it will never be removed. This
pattern can be found, for example, in the Java Standard library, e.g., in the
classes Byte, Integer or Boolean. In the next section, an example from the
Byte class is shown in Listing 3.4.

The second usage of this pattern is to store computationally hard results
inside a shared data structure. That way, clients can utilize results from
previous computations. This usage reduces the computation overhead, thus
improving performance by eliminating redundant computations. In the next
section, this pattern is shown in Listing 3.5.

Register callback Registering a callback means passing a function pointer
to someone who can call this function in the future. An example that we
frequently saw in the Java Standard library is to register a native method.
In Java, native methods are methods written in programming languages
different from Java. Native methods can be used, for example, to link a
library written in another language to some Java code. They can also be used
to execute code written in a lower-level language for operations that require
high efficiency [29]. Native methods are usually loaded during the class’
initialisation inside the static initialiser by calling System.loadLibrary(name)
or registerNatives(). This pattern can be found for example in the classes
Object, System or Thread in Java’s Standard library.

3.2 Examples

In this section, we provide examples written in Java of usages of static
initialisation corresponding to the previously mentioned patterns. We explain
each example briefly and mention what kind of invariant the initialiser
establishes. This section includes three examples for the first pattern, two for
the second pattern, and one short example for the third pattern.

The first example corresponds to the pattern where a consistent global
state with respect to a mutable data structure is established, and the data
structure is only used inside the class. This pattern is shown in Listing 3.1
on a very simplified version of the Finalizer class from the Java Standard
library. In this example, the global state is set up during static initialisation.
All class instances assume that the global state is consistent and maintains its
consistency.

The class Finalizer defines a doubly linked list of Finalizer objects,
that are awaiting finalization. Each Finalizer object contains non-static

19

3. Uses of static initialisation

pointers next and prev, that point to the next and the previous Finalizer
objects in the list, respectively. The head of the list is stored as a static field
called unfinalized. During static initialisation, unfinalized is initialised
to null, because no Finalizer instances exist yet. Moreover, a static final
lock is defined, which synchronizes all accesses to the unfinalized list. The
invariant of this class is that unfinalized is the head of a doubly linked list of
Finalizers that are not yet finalized. Additionally, for a Finalizer f, if f.next
== f holds, then f is already finalized.

This invariant is expected and preserved by the constructor and the
method runFinalizer(). On object creation, the newly created object f, that
is not yet finalized, is set as head of the list and the next and prev pointers
are adjusted accordingly. In the end, f.next != f holds. If runFinalizer()
is called on an unfinalized Finalizer, first, it is removed from the list, and
then, it is finalized. Because all fields are private and the methods accessing
these fields preserve the class invariant, the class invariant holds throughout
program execution.

The example in Listing 3.2 also defines a mutual data structure, however,
the class allows other classes to access this data structure through public
methods. This code example is based on a class from a C++/Java framework
for robot control systems [21].

The class DataTypeBase defines a private static final map called annotation-
Map, which maps classes to its unique non-negative annotation index, and a
static final atomic integer called counter that stores the highest annotation
index used so far (this corresponds to its invariant). annotationMap is ini-
tialised to empty and the integer to zero.

The method addAnnotation() can be called with a class as an argument.
If this class is not yet in annotationMap, the counter is incremented, it gets
assigned the next lowest available index and the mapping from this class to
the index is added to the map. The method getAnnotation() retrieves the
index corresponding to the input class and returns it. No method within this
class removes entries from the map, and the map is private. Therefore, this
class also maintains the history constraint that once an entry is added to the
map, it remains there.

The last example of this pattern is shown in Listing 3.3. It is taken from
the class StackStreamFactory from Java’s Standard library. This is an exam-
ple where the static class invariant of a class (StackFrameTraverser) depends
on the invariant of another class. The class StackStreamFactory defines a
set of classes, called stalkWalkClasses. The invariant of this class is that
stalkWalkClasses contains classes, that must be excluded during stack walk-
ing. Moreover, it maintains a history constraint that once a class is added to
the set, it won’t be removed.

The class StackFrameTraverser is a nested class inside StackStreamFactory.
Inside its static initialiser, StackFrameTraverser adds itself to the set stack-

20

3.2. Examples

final class Finalizer {

// Head of doubly linked list of Finalizers awaiting finalization.
private static Finalizer unfinalized = null;

// Lock guarding access to unfinalized list.
private static final Object lock = new Object();

private Finalizer next, prev;

private Finalizer() {
// add as head of the unfinalized list
synchronized (lock) {

if (unfinalized != null) {
this.next = unfinalized;
unfinalized.prev = this;

}
unfinalized = this;

}
}

private void runFinalizer() {
synchronized (lock) {

if (this.next == this) // already finalized
return;

// remove from unfinalized list
if (unfinalized == this)

unfinalized = this.next;
else

this.prev.next = this.next;
if (this.next != null)

this.next.prev = this.prev;
this.prev = null;
this.next = this; // mark as finalized

}

finalize(this);
}

}

Listing 3.1: The class Finalizer sets up a consistent global state and forbids others to access
its static variables by declaring them as private.

21

3. Uses of static initialisation

private static class DataTypeBase{
// Lookup for data type annotation index
private static final HashMap < Class<?>, Integer > annotationMap =

new HashMap < Class<?>, Integer > ();

// Last annotation index that was used
private static final AtomicInteger counter = new AtomicInteger(0);

public void addAnnotation(Class<?> ann) {
synchronized (DataTypeBase.class) {

Integer i = annotationMap.get(ann.getClass());
if (i == null) {

i = counter.incrementAndGet();
annotationMap.put(ann.getClass(), i);

}
}

}

public Integer getAnnotation(Class<?> c) {
return annotationMap.get(c);

}
}

Listing 3.2: The class DataTypeBase sets up a consistent global state by initialising its static vari-
ables. They can only be accessed through the methods addAnnotation() and getAnnotation()
to ensure that the class invariant is not invalidated.

WalkImplClasses and thus assumes its invariant. Because of the history
constraint, StackFrameTraverser can claim that after its initialisation, it will
stay inside the set stalkWalkClasses.

An example of an object pool comes from Java’s Standard library class
Byte and is shown in Listing 3.4. The class ByteCache is a private class inside
Java’s class Byte. This class defines a final array of Byte objects as a static field.
Inside its static initialiser, this array is filled with Byte objects containing all
possible Byte values. This array acts as a cache or an object pool for Byte’s
method valueOf(). The valueOf() method is called with the primitive type
byte b and returns a Byte object containing the value b. When a client calls
this method, instead of creating a new Byte object on demand, it returns
a Byte object from the cache. That way, one can reduce the memory and
runtime overhead if the valueOf() method is often called.

The invariant of class ByteCache is that for all b ∈ {0, ..., 255}, the entry
cache[b] holds a Byte object with value b − 128. It is established by the static
initialiser. The array entries are never modified by the program, and thus
this invariant is preserved. The same pattern can often be found in the Java

22

3.2. Examples

final class StackStreamFactory {

// Stack walk implementation classes to be excluded during stack walking
private final static Set<Class<?>> stackWalkImplClasses = init();

private static Set<Class<?>> init() { ... }

static class StackFrameTraverser {
static {

stackWalkImplClasses.add(StackFrameTraverser.class);
}

}
}

Listing 3.3: The static initialiser of the class StackFrameTraverser relies on the consistent global
state, which is set up by the class StackStreamFactory.

private static class ByteCache{
private ByteCache() {}

static final Byte cache[] = new Byte[-(-128) + 127 + 1];

static{
for(int i = 0; i < cache.length; i++) {

cache[i] = new Byte((byte)(i - 128));
}

}
}

public static Byte valueOf(byte b) {
final int offset = 128;
return ByteCache.cache[(int)b + offset];

}

Listing 3.4: The private class ByteCache inside Byte.java stores an object pool containing Byte
objects.

Standard library, for example, in the private class IntegerCache inside the
class Integer.

The second usage of the second pattern was to share computationally
hard results. This is shown in Listing 3.5 on a class called DemoImages from
the Java Standard library. This class defines two static fields. The first one is
an array called names containing the names of demo images. The second field
provides a mapping from these image names to Image objects and is called
cache. Once the method newDemoImages() is called, this map is initialised.

23

3. Uses of static initialisation

public class DemoImages {
// names of the demo images
private static final String[] names = {...};
// mapping from names to images
private static final Map<String, Image> cache =

new ConcurrentHashMap<String, Image>(names.length);

// initialise cache to a mapping from names to frequently used images
public static void newDemoImages() {

DemoImages demoImages = new DemoImages();
for (String name : names) {

cache.put(name, getImage(name, demoImages));
}

}

public static Image getImage(String name, Component cmp) {
Image img = null;
if (cache != null) {

if ((img = cache.get(name)) != null) {
// return image from cache
return img;

}
}

img = // load image called 'name' using cmp
return img;

}
}

Listing 3.5: The class DemoImages uses the pattern, where a shared pool is stored as a static
field to increase the performance of the program.

The method getImage() returns the image corresponding to the input name.
If it exists inside cache, it is retrieved from there. Otherwise, the image is
loaded and returned. Using the cache increases the performance of this
program if the method getImage() is often called with an input name inside
names under the assumption that loading images is computationally hard.
The invariant of DemoImages is that cache is either empty or the entries of
cache are of the form (img name, img), where img name is an entry of the
array names and img is the corresponding loaded image of type Image.

The last example in Listing 3.6 shows the pattern used to register a
callback in the class Object from Java’s Standard library. The native method
registerNatives() is declared in the class and is called inside Object’s static
initialiser. What invariant is established depends on the contents of the native

24

3.2. Examples

public class Object {

private static native void registerNatives();
static {

registerNatives();
}
...

}

Listing 3.6: Inside the static initialiser of the class Object a native method is registered.

code, and its verification is out of scope for this thesis.

25

Chapter 4

Basic methodology

As mentioned in Chapter 2.2, the implementation of static initialisers varies
strongly between different programming languages. However, the implemen-
tations of static initialisers that we are aware of satisfy the key properties
listed in Chapter 1. In this chapter, we introduce the programming language
Baum, a toy language used to model the behaviour of static initialisers as
found in many mainstream programming languages. This programming
language provides support for modules, static initialisers, and heap-allocated
data structures. The language Baum imposes no restrictions on the initiali-
sation process other than Property 1 and Property 2 introduced in Chapter
1 and additionally, Property 3, which we add below specifically to help us
model languages with subclassing. Because of that, it may be used as a
model for many different programming languages. Furthermore, we pro-
vide a sound and modular specification and verification technique for the
language Baum. The following are the initialisation rules of the language
Baum:

Property 1 Each static initialiser runs to completion before any access to the
static variables that are declared in its class, as long as there are no
cyclical initialisation dependencies. Accesses to its own static variables
inside the static initialiser are excluded from that.

Property 2 Each static initialiser runs at most once.

Property 3 The static initialiser of a subclass runs after the class it extends is
initialised.

In this language, the initialisation of a module can start at any time during
program execution, as long as the three properties above hold. The initiali-
sation of a module A is modelled as spawning a new initialisation thread A,
that runs concurrently to the main thread and possibly other initialisation
threads. To satisfy Property 1, other threads are only allowed to access static
fields declared in module A after thread A has completed the initialisation.

27

4. Basic methodology

If access to a static field by a thread different from its initialisation thread
occurs before the class is initialised, the language semantics guarantees that
the access blocks until initialisation has been completed.

As seen in Chapter 2.2, under the assumption that no cyclical initialisation
dependencies are present in the program, the first two properties hold for
most mainstream programming languages. Property 3 holds in languages
like Java or C# [11]. This general methodology applies to any programming
language that satisfies the three properties. Because the initialisation order in
this language is only vaguely specified, the set of possible executions for a
program in this language is an over-approximation of the possible executions
in a real programming language that satisfies the three properties.

From now on, the set of allowed programs is restricted to programs
that do not contain cyclical dependencies between static initialisers. The
reason for this restriction is that we did not find any interesting usages of
mutual dependencies in static initialisers of different modules. Furthermore,
in languages like Java, C#, or Scala, whenever we discovered a bug report
related to this (usually resulting in deadlocks), the developers decided to
break the mutual dependency. Examples of this issue can be found on GitHub
in a project called Netty [8], a Java API called JavaPoet [6] or in Scala bug
tracker [10]. A cyclical initialisation dependency always seemed undesirable
because it may lead to deadlocks or reading uninitialised data, and in some
languages Property 1 only holds in the absence of cyclical dependencies. As
such, we opted to disallow it in this thesis.

In this chapter, we first define the syntax and the semantics of the lan-
guage Baum. Then, we describe and illustrate our modular verification
methodology for this language.

4.1 Language

In this section, we present the syntax and the semantics of the language
Baum.

4.1.1 Syntax

The syntax of the language Baum is defined in Grammar 4.1. A pro-
gram consists of possibly multiple modules. Each module M has a unique
identifier called ID. By ID we denote the set of all module identifiers in
the program. A module might contain static variables, a static initialiser and
some methods. Some mainstream programming languages allow a module
to have multiple static initialisers. However, since static initialisers in the

28

4.1. Language

Type := Int | Pointer to Int
P := M∗ Program
M := ID extend? svar decl∗ sinit? m decl∗ Module
sinit := static {Stmt} Static initialiser
svar decl := static Type id := Expr
extend := extend ID
m decl := static m(Arg∗) Type {Stmt; return Expr} Static method
Arg := Type id Method argument

Grammar 4.1: Grammar for language Baum

same module are usually executed in textual order1, merging them does not
change the semantics of the program. Each static variable has an identifier id
unique within its module. The identifier m ranges over all possible method
identifiers and is also unique within its module. Only one method in the
whole program can contain the main method identifier. There are only two
possible types, so each variable can either store an integer or a pointer to an
integer.

For simplicity’s sake, in Baum a module might extend at most one other
module. The extends relation must be a partial order, thus acyclic. Note that
the extends relation that we defined for the language Baum is different from
inheritance known from for example Java. Here, a module does not inherit
all methods and fields from the module it extends. The only restriction we
added for subclasses is Property 3 regarding the initialisation order. We
define the helper function extends : ID → P(ID), which for a module
returns the set of modules that it transitively extends.

Grammar 4.2 defines the statements and expressions that our language
contains. The language consists of six different expressions that contain
reads from local, static, and heap-allocated variables. The type checking
for the expressions and statements follows the standard definitions. For
example, the expressions in e1 binop e2 and unop e must be integers, while
the expression e in pderef e must be a pointer. However, a local variable can
be of either type.

The statements include method calls, conditional statements, and various
types of stores. For example, the statement pstore e1 e2 means storing the
value of e2 into the location where e1 points to. We did not include iteration
statements in our grammar, but they can be modelled using recursive calls.
The grammar can easily be extended to contain an iteration statement.

1This holds for Java and Go. Other languages presented in Section 2.2 do not allow for
multiple static initialisers in the same module.

29

4. Basic methodology

Expr := numeral Integer
| Expr binop Expr Binary expression
| unop Expr Unary expression
| pderef Expr Heap variable read
| sread ID.id Static variable read
| x Local variable read

Stmt := x := ID.m(Expr∗) Method call
| if(Expr) then Stmt else Stmt If-statement
| sstore ID.id Expr Static variable store
| pstore Expr Expr Pointer store
| x := Expr Local variable store
| x := pinit Expr Allocate memory on heap
| var Type x := Expr Local variable declaration
| return Expr Return from function call
| Stmt; Stmt Statement composition

Grammar 4.2: Statements and expressions for language Baum

4.1.2 Semantics

In this subsection, we present the semantics of the language Baum.

Helper function access We define a helper function access : Expr∪ Stmt →
P(ID) for language semantics. It is defined in Listing 4.1 as pseudocode
using OCaml syntax.

This function takes as input a statement or an expression and returns a
set of modules whose static variables are accessed by the input. Property 1
specifies that each static initialiser runs to completion before any access to
the static variables that are declared in its module. Thus, the function access
returns the set of modules that need to be initialised before the expression
can be evaluated, or the statement can make a step, i.e. a derivation rule can
be applied. For example, the statement Sstore ID.id 0 can only make a step
after the module ID is initialised. Note that the output of the function access
given an if-statement as input only depends on the condition expression of
the if-statement and not on the statements inside its branches. This is because
we do not want to enforce the initialisation of a module if its static variables
are only read from or written to inside an unreachable branch and thus will
never be accessed during program execution. Therefore, we can make a step
with an if-statement if we can evaluate the condition but can’t fully execute
one of the branches yet. The same applies to sequential composition. A step
can be made independently of the initialisation state of all modules.

In contrast to Java, where a method from some class A is only called
after A has been initialised, here, this is not required. The only statements, or

30

4.1. Language

let rec access expr : (ID set) =
begin match expr with
| (Numeral _) | (Var _) -> {}
| (Binop e1 e2) -> union (access e1) (access e2)
| (Unop e) -> access e
| (Sread ID.id) -> union (extend ID) {ID}
| (Pderef e) -> access e
end

let rec access stmt : (ID set) =
begin match stmt with
| (x := ID.m(e1,...,en)) -> union (access e1) ...(access en)
| (If e then s1 else s2) -> access e
| (Sstore ID.id e) -> union (access e) (extend ID) {ID}
| (Pstore e1 e2) -> union (access e1) (access e2)
| (x := e) | (x := pinit e) | (var x := e) | (Return e) ->
access e

| (s1; s2) -> {}
end

Listing 4.1: The function access returns a set of IDs whose initialisation must be completed
before the execution of the given expression or statement.

expressions, that require A to be fully initialised to execute are reads from or
writes to A’s static variables.

The used helper function union unifies an arbitrary amount of sets into
one. extend is the previously defined function that returns for a module ID
the set of modules that it transitively extends.

Program state The current program state is represented by the triple σ =
(σh, σm, σl). σh is a partial function that maps allocated heap addresses
to the values they are holding. The second item, σm, maps each module
identifier to a tuple containing a function that maps the module’s static
variables to their values and the module’s current initialisation state. There
are three initialisation states: not init, init and ongoing. A module is in
the initialisation state not init if its initialisation has not yet begun, init
if it has been fully initialised and ongoing if its initialisation is currently
ongoing. The last item, σl , is a partial function that associates a value with
each local variable. After a local variable is declared, the mapping from the
local variable to its value is added to σl .

Our semantics includes two types of configurations. The first type takes
the form ⟨s, σ⟩, where s is an instruction, and the instructions s′ in s are
annotated as follows: ≀s′≀A, where A is the thread that will execute this

31

4. Basic methodology

instruction. ≀s′; s′′≀A stands for ≀s′≀A ; ≀s′′≀A, i.e. thread A will first execute
instruction s′ and then instruction s′′. The exact meaning of the subscript is
explained below. ⟨s, σ⟩ means that s is to be executed in state σ. The second
type of configuration, σ, represents a final state.

The starting configuration of our program is ⟨≀x := A.main()≀T, (σ0
h , σ0

m, σ0
l)⟩.

The execution of the program starts by calling the main method in the class
which defines it, here called A. The subscript T on the right of the statement
is a fresh ID that does not occur in the set ID in our program. We will refer
to T as the main thread because T will be executing the main method. x is a
local variable never used in the program. σ0

h is a partial function that does
not yet map any address to a value. Similar to σ0

h , σ0
l does not map any

local variables to values yet. For all ID, the first entry of σ0
m(ID) maps all

static variables to the zero value, so 0 for integers and null for pointers. The
second entry of the tuple σ0

m(ID) stores the initialisation state not init.

Small-step semantics This paragraph defines the small-step semantics for
the execution of the statements. The state (σh, σm, σl) is often abbreviated
by σ. The functions fst and snd return the tuple’s first and second entries,
respectively. The semantic function A takes as input an expression e from
the language Baum and a state σ of the form described above. It returns the
value of e evaluated under the state σ, which is represented as AJeKσ.

In our execution model, we have defined that the initialisation of module
A can start at any time if both conditions listed below hold:

• A is in initialisation state not init.

• If A extends module B, then B is in initialisation state init.

The first point follows from Property 2 and the second one from Property 3.

The initialisation in this language is modelled as a concurrent program.
If both listed conditions hold, thread A can spawn and start the initialisation
of module A in parallel to the main program executed by the main thread
T or other initialising threads. Multiple threads can be initialising multiple
modules concurrently, and each module has its corresponding initialisation
thread. The subscript next to the statement denotes which thread is executing
it. If a statement has subscript A different from T, it means that either this
statement is inside A’s initialiser or this statement is in a method which was
invoked from inside A’s static initialiser. So the initialisation of module A
is ongoing at that moment. How initialisation is modelled in the language
Baum is shown in the following rule with snd σm(ID) = not init and
snd σm(B) = init for all B ∈ extend(ID) as the side condition (∗∗).

(∗∗)
⟨s, σ⟩ →1 ⟨ ≀s′ ≀ID ∥ s, (σh, σm[ID 7→ (fst σm(ID), ongoing)], σl)⟩

(Init)

32

4.1. Language

The statement s′ above stands for sdecl(ID); sinit(ID); f inishID. sdecl(ID)
and sinit(ID) are the static variable declarations and the static initialiser code
of the module with ID ID, respectively.

The statement s1 ∥ s2, where s1 and s2 are statements, is introduced for
internal use only and cannot be used in the source program. s1 ∥ s2 en-
codes concurrent execution of s1 and s2, this means, their execution can be
interleaved at the granularity of one step defined by →1.

Another internally introduced statement is finish A. This statement
marks the end of A’s initialisation and on execution, sets A’s initialisation
state to init.

⟨≀ f inishA≀A, σ⟩ →1 (σh, σm[A 7→ (fst σm(A), init)], σl)
(Finish)

In general, the execution of a statement works as follows: a statement,
which is executed by thread A, can only make a step if all modules that it
uses (except for module A if A is an initialiser thread) are fully initialised.
The function access returns a set of IDs of modules that must be initialised
such that the execution of the statement is allowed according to Property
1. Given a state of the form ⟨≀s≀A, σ⟩ we introduce a second side condition.
All configurations of the form ⟨≀s≀A, σ⟩ having (∗) on top of the rule can
only be executed if the below-mentioned side condition holds. The side
condition has two versions, depending on whether A is the main thread T or
an initialisation thread of some module A. If A ̸= T, the side condition looks
as follows:

for all ID ∈ access(s) \ {A} holds snd σm(ID) = init (∗)

From the subscript A next to the statement s follows that A is initialising
module A at that moment by initialisation thread A. A statement with
subscript A is always allowed to read from or write to A’s static variables.
However, it is only allowed to access B’s static variables if B is fully initialised,
for some module B ̸= A. This allows A to access its own static variables
during the initialisation of A, but it forbids reading variables declared in other
classes if they have as initialisation state ongoing or not init, such that no
uninitialised data is read. If A is the main thread T, then the side condition
(∗) changes to

for all ID ∈ access(s) holds snd σm(ID) = init (∗)

This is because the main thread is not initialising any module. The semantics
of the remaining statements will now be presented. In all rules, A is a
placeholder for any thread, i.e., it can be an initialiser thread or the main
thread.

33

4. Basic methodology

First, we look at the execution of the method call x := ID.m(e1, ..., en),
where the method declaration m decl of ID.m is m(x1, ..., xn){s; return eret}.
The corresponding rule has the above-defined side condition (∗). Therefore,
this statement can only make a step after all modules, whose static variables
are accessed by the methods arguments, are initialised. As long as this is
not the case, execution stalls. The local variables used by the caller and the
callee must be distinct from each other such that no variables are captured.
The execution of the method call x := ID.m(e1, ..., en) starts by executing the
method body in a state, where the values of the arguments are assigned
to the method’s local variables. In the end, the return value is assigned to
the local variable x. After the method call, the old local state of the caller
must be restored. To do so, a restore(σl , x) statement is introduced. The
first argument is the local variable state from before the call, and the second
argument is the local variable to which the return value of the method call is
assigned. The restore statement is used internally by the semantics, but it
must not appear in the source code.

(∗)
⟨≀x := ID.m(e1, ..., en)≀A, σ⟩ →1 ⟨≀s; x := eret ; restore(σl , x)≀A, σ′⟩ (Method)

We used the abbreviation σ′ = (σh, σm, σ′
l), where σ′

l := σ0
l [x1 7→ AJe1Kσ, .., xn 7→

AJenKσ]. σ0
l is the function defined before, that does not map any local vari-

ables to values.

The restore(σl , x) statement restores the values of the local variables in
σl from before the call and leaves x’s value, which holds to the method’s
return value, unchanged.

⟨≀restore(σ′
l , x)≀A, σ⟩ →1 (σh, σm, σ′

l [x 7→ σl(x)])
(Restore)

The conditional statement if (e) then s1 else s2 is executed as follows:
if e holds in the current state (evaluates to a non-zero value), then s1 is
executed, else s2 is executed.

(∗), AJeKσ ̸= 0
⟨≀i f (e) then s1 else s2≀A, σ⟩ →1 ⟨≀s1≀A, σ⟩

(I f1)

(∗), AJeKσ = 0
⟨≀i f (e) then s1 else s2≀A, σ⟩ →1 ⟨≀s2≀A, σ⟩

(I f2)

Executing the statement sstore ID.id e writes e’s value into the static
variable id in module ID. The module’s initialisation state fst σm(ID)[id 7→
AJeKσ] is abbreviated by σm, f st.

(∗)
⟨≀sstore ID.id e≀A, σ⟩ →1 (σh, σm[ID 7→ (σm, f st, snd σm(ID))], σl)

(Sstore)

34

4.1. Language

Executing the statement pstore e1 e2 writes e2’s values to the heap
location whose address is given by evaluating e1.

(∗), AJe1Kσ = Addr
⟨≀pstore e1 e2≀A, σ⟩ →1 (σh[Addr 7→ AJe2Kσ], σm, σl)

(Pstore)

The statement x := pinit e allocates a fresh memory location Addrx on
the heap, writes e’s value into this location, and lets x point to it.

(∗), Addrx ̸∈ Dom(σh)

⟨≀x := pinit e≀A, σ⟩ →1 (σh[Addrx 7→ AJeKσ], σm, σl [x 7→ Addrx])
(Pinit)

The statement x := e overrides the value of the previously declared local
variable x in σl by e’s value.

(∗)
⟨≀x := e≀A, σ⟩ →1 (σh, σm, σl [x 7→ AJeKσ])

(Lstore)

The statement var x := e extends the local variable store σl by the
mapping from the fresh variable x to e’s value.

(∗), x ̸∈ Dom(σl)

⟨≀var x := e≀A, σ⟩ →1 (σh, σm, σl [x 7→ AJeKσ])
(Ldecl)

The four rules listed below represent parallelism. A distinction is made
between whether s1 or s2 are executed entirely in one step or not.

⟨s1, σ⟩ →1 ⟨s′1, σ′⟩
⟨s1 ∥ s2, σ⟩ →1 ⟨s′1 ∥ s2, σ′⟩ (Par1)

⟨s2, σ⟩ →1 ⟨s′2, σ′⟩
⟨s1 ∥ s2, σ⟩ →1 ⟨s1 ∥ s′2, σ′⟩ (Par2)

⟨s1, σ⟩ →1 σ′

⟨s1 ∥ s2, σ⟩ →1 ⟨s2, σ′⟩ (Par3)
⟨s2, σ⟩ →1 σ′

⟨s1 ∥ s2, σ⟩ →1 ⟨s1, σ′⟩ (Par4)

The last two rules model sequential composition.

⟨≀s1≀A, σ⟩ →1 σ′

⟨≀s1; s2≀A, σ⟩ →1 ⟨≀s2≀A, σ′⟩
(Seq1)

⟨≀s1≀A, σ⟩ →1 ⟨≀s′1≀A, σ′⟩
⟨≀s1; s2≀A, σ⟩ →1 ⟨≀s′1; s2≀A, σ′⟩

(Seq2)

35

4. Basic methodology

4.2 Specification and Verification

This section introduces the methodology obtained for the language Baum.

In this methodology, each class contains a static class invariant and may
additionally contain a history constraint (introduced in a paragraph below).
A static class invariant is a predicate, which can specify properties of static
fields. The static class invariant is not limited to its static fields only, it can
also specify properties about static fields declared in other classes. Each static
class invariant is enforced at the class level and is established by executing the
static variable declarations and the static initialiser of the corresponding class
(provided they terminate). After the initialisation of the class, its invariant
must hold until program termination and can be assumed from everywhere
in the program.

Open/close block To allow a class invariant to be assumed in the program,
we introduce the instructions open A and close A for some module A. Together
with the statements between these instructions, they form an open/close
block. This block is only used for verification purposes, and the open A and
close A instructions are ghost code. It gives the statements inside the block
access to the static class invariant of class A. The meaning of open A and close
A (for some class A) is the following: Upon open A, A’s invariant is inhaled.
This means, the permissions specified in the invariant are added to the state,
and the value constraints are assumed. On close A, A’s class invariant is
checked to hold again, and the permissions are given away. If A’s invariant is
broken, verification fails. At any program location, which is not inside the
open A/close A block, and after A has been initialised, one is allowed to open
A and thus assume its invariant. The idea of the open A/close A block is
that, inside this block, the invariant of class A might be temporarily violated,
but has to hold again on exit. However, because we have defined a very
general language, allowing the class invariant to be broken would lead to an
unsound methodology. A problem in this model is that the initialisation of a
class might start at any time as long as Property 1 and Property 3, previously
defined in this chapter, hold. The initialisation of a class could start running
while concurrently another thread is inside the open A/close A block, so
when A’s invariant might be violated, for some class A. However, the running
static initialiser may rely on the invariant of A. The code example in Listing
4.2 demonstrates this problem.

There are two classes in this example, both containing a static variable.
The predicates inv A and inv B represent A’s and B’s static class invariants,
respectively. As explained in Section 2.4, acc(A.x) denotes write permissions
to A’s static field x and allows everyone holding this permission to read from
and write to A.x. In our methodology, one is allowed to assume the invariants
of all classes that have been initialised. Given that A.x is accessed inside

36

4.2. Specification and Verification

public class A {
// inv_A: acc(A.x) && A.x >= 1

static int x = 1;
static int m() {

// open A
A.x = A.x - 2;
// A's inv. violated
A.x = A.x + 2;
// close A
return 0;

}
}

public class B {
// inv_B: acc(B.y) && B.y >= 3

static int y;

static {
// open A
y = 3*A.x;
// close A

}

}

Listing 4.2: This code example demonstrates why statements between open A and close A must
be atomic. Our methodology rejects this example.

the method m(), it can be inferred that A’s initialisation did finish before the
execution of A.x = A.x - 2 and m() can assume A’s invariant. Note that in
contrast to Java, in this language calling a method defined in class A does
not require A to be initialised. Inside the open A/close A block, m() first
violates A’s invariant and then establishes it again. In a sequential execution,
this would not yield any problems. However, here, the initialisation of
class B, whose initialiser relies on the validity of A’s invariant, might be
running concurrently to the execution of m(), in the worst case, between the
instructions A.x = A.x - 2 and A.x = A.x + 2, when A’s invariant does not
hold. This would lead to assuming an invariant while it is violated.

Since the time at which static initialization occurs is not deterministic in
the Baum language, we cannot accept any invariant to be violated after it
has been established. To resolve this problem, we have made the following
restriction:

Rule Between open A and close A instructions, one can only place a physi-
cally atomic statement and possibly multiple ghost code instructions.

Because static initialisation may happen at any time, and we don’t want
to track for each module if its invariant holds at the moment, it would be
unsound to allow class invariants to be broken. If only one atomic instruction
can be placed inside the open/close block, its class invariant can never be
broken, because it has to hold again on close. With this restriction, it is
always sound to assume the invariant of a class after it has been established.

In our small-step semantic model as defined in Section 4.1, every state-
ment that requires exactly one step to execute is atomic. Statements, that can
be placed inside an open/close block are pinit, ldecl, sstore, lstore and

37

4. Basic methodology

pstore. In Chapter 5, this restriction is weakened for a language with a more
restrictive specification for when static initialisation occurs.

Instructions inside the static initialiser In contrast to statements between
open A and close A instructions, the statements inside the static initialiser of
a module A do not need to be atomic. This is because a thread different from
A’s initialisation thread can only use a static field of module A or assume its
invariant after the initialisation of A is completed. The thread has to wait
for A’s static initialiser to run until completion, such that A’s initialisation
state changes to init. As a result, a thread different from A’s initialisation
thread can’t encounter a partially initialised state of module A during the
initialisation of A.

We do not, however, allow method calls inside a static initialiser. A
method called from within A’s initialiser could rely on A’s invariant, and be-
cause it is executed by A’s initialisation thread, it would be allowed to access
A’s fields even though A’s initialisation state is ongoing. To preserve modular-
ity, we do not want to require methods to reveal which module’s invariants
they rely on, so we simply forbid method calls inside static initialisers.

In our methodology, accessing static variables requires permissions. Be-
fore its execution, the static initialiser is given full permissions to all static
variables it declares and is therefore allowed to access them. The only way to
transfer these permissions to the rest of the program is via its class invari-
ant. If a static variable should stay mutable, the full permissions must be
transferred into the static class invariant, so that others have the opportunity
to write this variable. For immutable static variables, fractional permissions
can be passed into the static class invariant. If an invariant contains full
permissions to a static variable, opening the invariant transfers the permis-
sions temporarily to the client and allows them to write to that static variable.
These permissions must be returned on closing the invariant.

History constraints History constraints are predicates that describe how
objects evolve. They do so by specifying relationships between some older
states and some newer states. In our methodology, a history constraint of a
class A must hold over all pairs of states sold, snew, such that sold precedes snew
and neither sold nor snew are states within an open A/close A block. Therefore,
both states sold, snew satisfy A’s invariant. An example of a class containing
a history constraint is shown in Listing 4.3. The history constraint specifies
that the value of counter must be monotonically increasing.

History constraints must be reflexive and transitive. Additionally, a
history constraint defined in class A must be framed by A’s class invariant,
i.e., the history constraint must not refer to the values of heap locations or
static variables for which the invariant does not contain the permissions.

38

4.2. Specification and Verification

public class ObjectCounter {
// inv_ObjectCounter: acc(counter) && counter >= 0
// history_ObjectCounter: old(counter) <= counter

static int counter = 0;
ObjectCounter() {

// open ObjectCounter
counter = counter + 1;
// close ObjectCounter

}
}

Listing 4.3: For presentation purposes, we are extending our grammar by a constructor. The
class ObjectCounter contains a static variable counter, that counts the number of objects of this
class, i.e., how often the constructor is called. Its invariant specifies that the value of counter is
always greater than or equal to 0. The class additionally contains the history constraint that the
value of counter must be monotonically increasing.

Once upon a time Static variables can not only be accessed inside the
static initialiser of the module that defines them. If one can get permissions
(through opening an invariant) to static variables, one can read from and
write to these fields as long as it does not break the opened class invariant.
The invariant can be opened inside a static initialiser of another class or
inside a method. Inside the open/close block, some property regarding these
static fields might be established. As seen in Chapter 3, the pattern where
static initialisers establish properties with respect to static fields defined in
other classes is used in the Java standard library. In Listing 4.4, this pattern
is demonstrated in a simple example. The initialiser of class A receives the

public class A {
// inv_A: acc(m)

Map<K,V> m = new Map<K,V>();

}

public class B {
// inv_B: A.m[K] == 1

static{
// open A
A.m.put(K,1);
// close A

}}

Listing 4.4: The static initialiser of class B modifies a static map, which is defined in another
class. The invariant inv B is invalid.

permissions for its static map m and initialises it to an empty map. After the
initialisation, A transfers the permission acc(m) into its class invariant and
thus allows others to modify this map. For demonstration purposes, we are
extending our grammar defined in Section 4.1 by a map data structure on
the heap and assume that inserting or deleting key/value pairs from the

39

4. Basic methodology

map can be done atomically (e.g., using ConcurrentMap [28] in Java). The
initialiser of class B receives the permissions to A.m by opening A’s invariant,
inserts the element (K,1) for some key K into the map and then transfers the
permissions back to A’s invariant.

The first problem in this example is that B’s static initialiser must transfer
the full permission to A.m back into A’s invariant. Thus, B’s static class
invariant cannot contain any permissions to A.m, however, we may still want
to add information about A.m to B’s invariant. We call a predicate that is
established concerning static fields in class A a once-upon-a-time (OUAT)
predicate with respect to A. The predicate A.m[K] == 1 that B established, is
not framed by the permissions in B’s invariant, so it cannot be placed directly
inside B’s invariant.

This problem is resolved by creating an assertion OUAT(A.m[K] == 1).
This assertion is assumed to hold after the OUAT predicate is established.
It acts as a proof that this predicate was established. OUAT predicates can
be established everywhere in the code. If we establish it inside B’s static
initialiser, the assertion can be transferred into B’s class invariant to show
others that the corresponding OUAT predicate was established.

A bigger problem comes from the fact that A.m is mutable, and thus its
entries can be modified from all program locations. After B’s initialisation is
completed, another class might simply open A like B did, modify the mapping
K 7→ 1 to for example K 7→ 3 and thus invalidate what B has established. Even
though B can claim that once upon a time it inserted the key-value pair (K,1)
into the map, without additional constraints, it cannot be concluded that this
property is preserved. This is where history constraints come into play. As
previously stated, history constraints φ(sold, snew) relate an older state sold to a
newer state snew. If a class A contains a history constraint φ, φ(sold, snew) must
hold for all states where sold comes before snew and the module invariant
is not opened in either sold or snew. Given some history constraint φ and a
predicate p, if the validity of both p in state sold and φ(sold, snew) imply that
p holds in snew for arbitrary states sold and snew, then p is said to be stable
under the history constraint φ. In our methodology, the history constraint
(if provided) is checked on close, where the older state is the state before
opening the invariant.

Back to our example: A can specify as a history constraint that once the key
K is in the map m, and it maps to 1, the mapping K 7→ 1 cannot be removed.
Under this history constraint, if the property A.m[K]==1 is established, it
cannot be undone. Thus, the property established by B is stable under this
history constraint.

To specify that a OUAT predicate p w.r.t. class A is established, the
verification statement close A establishing p is introduced. If p was
established, A’s invariant and history constraint are not violated, and the

40

4.2. Specification and Verification

above-mentioned conditions hold, on close A establishing p, the assertion
OUAT(p) is assumed and directly afterwards A is closed. The predicate p
must be framed by A’s class invariant. Moreover, p must be stable with
respect to A’s history constraint, and it must be duplicable. A predicate
is said to be duplicable if duplicating it won’t change its meaning. For
example, duplicating the read permission acc(o. f , 1/2) for some field f
of object o gives us write permission to o. f and thus changes its meaning.
Thus, the shown predicate is not duplicable, however, o. f == 3 without any
permissions is. To enforce OUAT predicates to be duplicable, we disallow
them to contain any permissions.

In Listing 4.5, the previous example is encoded using the obtained
methodology. OUAT(A.m[K] == 1) is proof that A.m[K] == 1 held at some
point while the invariant was closed. Moreover, A.m[K] == 1 is duplicable
and stable under A’s history constraint, so the assertion is also a proof that
A.m[K] == 1 will still hold when A’s invariant is opened again.

public class A {
// inv_A: acc(m)
// history_A: (k in dom(old(m)) => k in dom(m)) &&
// (old(m)[K] == 1 => m[K] == 1)

Map<K,V> m = new Map<K,V>();
}

public class B {
// inv_B: OUAT(A.m[K] == 1)

static{
// open A
A.m.add(K,1);
// close A establishing A.m[K] == 1

}
}

Listing 4.5: The same code example as in Listing 4.4, but now the invariant of class B contains
the assertion OUAT(A.m[K] == 1) as a placeholder for the established OUAT predicate A.m[K] ==
1, which is received from the instruction close A establishing A.m[K] == 1. Moreover, class
A contains a history constraint under which A.m[K] == 1 is stable.

After a OUAT predicate p w.r.t. class A is established, from opening B, the
corresponding assertion OUAT(p) can be assumed. The body of the OUAT
predicate, however, can only be assumed inside an open A/close A block,
because it might not be self-framing on its own. We can only assume the
body of a OUAT predicate where A’s invariant is closed because the history
constraint does not make any guarantees about the states inside an open
A/close A block. This is demonstrated in Listing 4.6. This example uses the

41

4. Basic methodology

same classes as in Listing 4.5. In this example, you can see that we cannot

// open A
A.m.delete(K);
// open B
assert false; // succeeds
// close B
// close A

Listing 4.6: The OUAT predicate A.m[K] == 1 is assumed at a point, where A’s history constraint
is violated and the OUAT predicate is broken. This would allow us to assert false. Note that
all instructions except for A.m.delete(K) are ghost code, thus the statement inside the open
A/close A block is still atomic.

assume the body of the OUAT predicate while A’s invariant is opened. To
solve this problem, asserting OUAT(p) and assuming both p and A’s invariant
are combined into one verification statement: open A using p. This statement
can only be executed if p is a logical consequence of a OUAT predicate w.r.t.
A, for which the assertion holds. To assume the body of the predicate, on
open A using p the knowledge that OUAT(p) holds must be ready.

There are several possibilities to get this knowledge. Since OUAT(p) is an
assertion, it can be received by previously establishing the corresponding
OUAT predicate inside the same class member or inside a function that is
called there (if this function puts this assertion in its postcondition). Inside
a method, the assertion can be received from its precondition. Another
possibility is to inhale OUAT(p) from a class invariant of a class B using the
following pattern:

// open B
assert OUAT(p)
// close B

To learn that OUAT(p) holds, we open B before opening A. Because OUAT(p)
is an assertion, the knowledge about it gained through opening B stays after
closing B. After that, the OUAT predicate p can be assumed using open A
using p. Note that opening B only assumes the assertion but it does not
assume the body of the corresponding predicate.

To summarise, static initialisers or methods can specify that they have
established a OUAT p with respect to class A by writing close A establishing
p and assuming the assertion corresponding to p. If inside a static initialiser,
this assertion can be put inside its static class invariant. The established
OUAT predicate p must be stable with respect to A’s history constraint. If the
assertion is inside B’s class invariant, it can be assumed by opening B. Then,
using open A using p, the predicate body p can be assumed.

42

4.2. Specification and Verification

An invariant can only be established after class’ initialisation As previously
mentioned, one can only assume the invariant of a class after it is initialised.
Thus, the statements open A and open A using p can only be executed if A is
initialised at that point.

Why this rule is necessary is shown using the previously used example in
Listing 4.5. The key-value pair (K,1) is only added inside B’s static initialiser.
If the static initialiser of B did not run, then B’s class invariant might have
never been established. Using the map A.m only triggers the initialisation of
class A (and classes that A extends) but not the initialisation of class B, so one
cannot assume that (K,1) is in the map A.m when using A. Thus, open B can
only be executed and the assertion can only be inhaled after B’s initialisation
is completed.

If we extended our language syntax by a while statement, the example in
4.7 would even be possible. Since the static initialiser will never terminate, it

public class A {
// inv_A: false

static {
while(true) {}

}
}

Listing 4.7: A non-terminating static initialiser establishes false as its static class invariant.

is possible to establish false as its invariant. However, in our methodology,
since it never terminates, we are not allowed to assume its static class invariant
anywhere in the program.

In our small-step semantic model, the initialiser thread of a module A can
access static variables from modules different from A only if their initialisation
is completed. So the access to a static variable of some module B (A ̸= B)
suffices as proof that B is initialised. However, A’s initialiser thread can always
access A’s static variables. As a result, accessing A’s static variable inside A’s
static initialiser does not prove that A’s initialisation is completed. To resolve
this problem, we disallow assuming A’s static class invariant there.

In our methodology, method calls from inside a static initialiser are
disallowed. Therefore, if we are inside a method, we know that this method
is executed by the main thread. The main thread can access a static variable
only after the class that declares it has been initialised. From that follows
that within a method, access to a static variable is always sufficient as proof
of initialisation.

The statements open A and open A using p (which must not be inside A’s
static initialiser) can only be executed if one of the following holds:

43

4. Basic methodology

• A previous statement inside this method or static initialiser accesses a
static variable declared by module A.

• The statement inside the open/close block accesses a static variable
declared by module A.

The first point is straightforward. Regarding the second point, we know
that the statement inside the open/close block cannot be executed until A
has been initialised. Even though the statement placed after open A triggers
A’s initialisation, because open A and open A using p are just verification
instructions, the program can be thought of as moving the open A statement
between the initialisation of A and the execution of the enclosed statement.
Then it again holds that the invariant of class A is only assumed after A’s
initialisation.

Summary To summarise, these are the assumptions of our methodology:

• The program does not contain any cyclical dependencies.

• Each module must define a static class invariant and might also define
a history constraint.

• Everything that is opened must be closed.

• We can open an invariant for a physically atomic instruction everywhere
where we know that the initialiser has run (or if the instruction inside
the open block has a use of this module). From that follows that the
statements open A and open A using p cannot be placed inside the
static initialiser of A.

• Opening invariants can be nested. However, one can never nest opening
the same module.

These are the guarantees our methodology gives:

• The static initialiser of module A must establish its static class invariant
(if it terminates).

• After initialisation, invariants and history constraints cannot be broken.

Examples Two examples are encoded using the obtained methodology and
presented here.

The first example in Listing 4.8 is ByteCache introduced in Section 3.2.
Its invariant is that for all i ∈ {0, ..., 256}, the entry cache[i] contains a
Byte object holding value i − 128. The static initialiser, which does not
have to be atomic in this methodology, establishes the class invariant inside
the for-loop. The method valueOf() in the class Byte uses ByteCache’s class
invariant to retrieve its result from the cache. Array lookup can be done atom-
ically. Because the static field cache is used inside the open ByteCache/close

44

4.2. Specification and Verification

ByteCache block, opening the invariant of ByteCache is safe there. This code
example verifies successfully with respect to the specified class invariant.

private static class ByteCache{
// Inv_ByteCache: acc(cache, wildcard) && (forall i:Int :: 0 <= i &&
// i < |cache| ==> acc(cache[i].value) && cache[i].value == i-128)

static final Byte cache[] = new Byte[-(-128) + 127 + 1];
static{

for(int i = 0; i < cache.length; i++) {
cache[i] = new Byte((byte)(i - 128));

}
}

}

public static Byte valueOf(byte b) {
final int offset = 128;
// open ByteCache
Byte B = ByteCache.cache[(int)b + offset];
// close ByteCache
return B;

}

Listing 4.8: The ByteCache example from Section 3.2 encoded using the obtained methodology.
The invariant of the class ByteCache is assumed in Byte’s method valueOf(). From this invariant
follows that B is a Byte object holding the value b.

The second example in Listing 4.9 is a class called Fib that computes the
Fibonacci numbers efficiently using a shared cache to reduce the computation
overhead. During initialisation, a private static map cache is created. The
cache provides a mapping from natural numbers to their corresponding
Fibonacci number. It is initialised lazily, i.e., a mapping is only added after
the result has been requested. The invariant of Fib is that the entries of
cache are of the form (n, FibPure(n)) for natural numbers n, where FibPure
is a mathematical function returning the corresponding Fibonacci number
and the entries (0, 0) and (1, 1) are in the map (and serve as base cases).
Additionally, the history constraint specifies that once a key is in cache, it
will never be removed and the value to which it maps stays unchanged. For
the sake of readability, the invariant and the history constraint of Fib are
defined using mathematical notation.

InvFib : acc(cache)∧ {0, 1} ⊆ dom(cache)∧
∀i ∈ Fib().cache (i ≥ 0 =⇒ Fib().cache[i] == FibPure(i))

HistoryFib : ∀i (i ∈ old[sold](Fib().cache) =⇒ old[snew](Fib().cache))

45

4. Basic methodology

The static initialiser establishes the static class invariant by initialising cache
to contain the entries (0, 0) and (1, 1). The static class invariant is used inside
the method fib(). Because here, instructions inside an open/close block
must be atomic, the method fib() must open and close the invariant three
times. On the first open Fib instruction, the method checks if the key n is
inside the map. On close Fib, it establishes the OUAT predicate b ==> n
in Fib().cache, which is stable w.r.t. Fib’s history constraint. Inside the
if-branch, from the established OUAT predicate and Fib’s history constraint,
we can conclude that if b was true before, then n must be inside Fib().cache
now. In this case, the corresponding value v can safely be read. From Fib’s
invariant follows that v == FibPure(n). In the else-branch, the fib() function
is called twice outside the open Fib/close Fib block and afterwards, the
result is put into the cache inside the last open Fib/close Fib block. This
code example verifies successfully given the provided specification.

46

4.2. Specification and Verification

public class Fib {
// Inv_Fib
// History_Fib

public static Map<Integer, Integer> cache;
static {

cache = new HashMap<Integer, Integer>();
cache.put(0,0);
cache.put(1,1);

}

static int fib(int n) {
// open Fib
bool b = cache.contains(n);
// close Fib establishing b ==> n in Fib().cache
int v = 0;
if (b) {

// open Fib using b ==> n in Fib().cache
v = cache.get(n);
// close Fib

}
if (!b) {

v = fib(n-1) + fib(n-2);
// open Fib
cache.put(n,v);
// close Fib

}
return v;

}
}

Listing 4.9: Fib example from Section 3.2 encoded using three open/close blocks. The OUAT
predicate b ==> n in Fib().cache is established and assumed inside the method fib().

47

Chapter 5

Methodology for Java

This chapter provides a verification methodology for the Java language. The
language defined in Section 4.1 imposes only the most general restrictions
on static initialisation. Because of that, the obtained methodology is quite
restrictive. This chapter deals with a simplified version of the Java language.
The syntax and semantics of this language are based on Java. One difference
between our general model and the Java model is that Java uses lazy initiali-
sation. A static initialiser only runs directly before the first use of the class.
Thus, if a statement does not have a use of a class or only uses of classes that
are already initialised, we can be sure that it will not trigger its initialisation
on execution. Moreover, static initialisation does not run concurrently with
the program execution. The methodology for the Java language model allows
us to include more than one statement inside the open/close block. Listing
5.1 provides an example that is valid in the Java setting, but not in our general
model.

public class B {
// inv_B: x >= 0
int x = 0;

static void main() {
// open B
B.x = B.x - 5; // (1)
B.x = B.x + 5; // (2)
// close B

}
}

public class C {
// inv_C: true

static{
// open B
B.x = 3 * B.x;
// close B

}

}

Listing 5.1: In contrast to the methodology for the language Baum, the Java language allows
us to place multiple instructions inside the open B/close B block.

49

5. Methodology for Java

In this example, you can see that the main method in class B contains two
statements between the open B and close B instructions. The statement (1)
breaks B’s invariant and (2) establishes it again. In the methodology for the
language Baum, we do not allow this code example, because the instructions
inside the open B/close B block are not atomic. The initialisation of module
C, a module, that relies on the invariant of class B, could happen between
instructions (1) and (2). So, C’s static initialiser could assume B’s invariant at
a point where it does not hold.

However, in the single-threaded Java setting, we can allow this exam-
ple, since we can prove that no code that relies on B’s invariant may run
between statements (1) and (2). Statements (1) and (2) may only trigger the
initialisation of class B. Since B is already initialised before the execution of
main() before opening B, no class will be initialised in between. Since static
initialisation is more strongly defined in Java than in the Baum language, it
allows us to lift the restriction about atomicity and define a methodology
that accepts a larger set of programs.

This methodology may only be applied to programs that do not contain
cyclical initialisation dependencies. While this is not true for all programs
in Java, we also provide a modular way of proving the absence of cyclical
initialisation dependencies using static levels, which we introduce in Section
5.2.

First, in Section 5.1, we define the language used in this chapter. Then, we
present a verification methodology catered to this language. In the end, we
provide an encoding of our methodology into Viper and explain the design
choices.

5.1 Language

In this section, we present the definition of our Java-like language. The syntax
of this language is identical to the one of Baum defined in Subsection 4.1.1.
We refer to Grammar 4.1 and Grammar 4.2 for its definition.

Next, we define the semantics of this language. The implementation of
static initialisation in Java varies significantly from the semantics defined in
Subsection 4.1.2.

Helper function trigger init Similar to the helper function access from
Section 4.1, we define a helper function trigger init : Expr∪Stmt → ID list.
In contrast to the return type of the function access, which is a set of IDs, the
return type of this function is a list of IDs. The function trigger init returns
a list of modules whose initialisation the input statement may trigger (if this
module is not initialised yet), and the initialisation is triggered according
to the order defined in the list. The ordering is defined according to the

50

5.1. Language

evaluation order in Java. For example, binary expressions are evaluated
from left to right in Java. This means that the binary expression A.a + B.b,
where A and B are classes containing the static fields a and b respectively,
triggers first A’s initialisation, then B’s. And the method call A.m(B.b) to
static method m in class A triggers first the initialisation of the class of its
argument (in this case, B) and then the one of its base class (here, A) [26]. If
for example the static initialisers of both classes A and B write to the same
static variable of a different module, the order of initialisation has an impact
on the outcome of the program. The function trigger init is defined in
Listing 5.2 as pseudocode using OCaml syntax.

let rec trigger_init expr : (ID list) =
begin match expr with
| (Numeral _) | x -> []
| (Binop e1 e2) -> remove_dupl ((trigger_init e1) @ (trigger_init e2))
| (Unop e) -> trigger_init e
| (Sread ID.id) -> (extend ID) @ [ID]
| (Pderef e) -> trigger_init e
end

let rec trigger_init stmt : (ID list) =
begin match stmt with
| (x := ID.m(e1,...,en)) -> remove_dupl ((trigger_init e1) @ ... @

(trigger_init en) @ (extend ID) @ [ID])
| (If e then s1 else s2) -> trigger_init e
| (Sstore ID.id e) -> remove_dupl ((trigger_init e) @ (extend ID) @ [ID])
| (Pstore e1 e2) -> remove_dupl ((trigger_init e2) @ (trigger_init e1))
| (x := pinit e) | (Return e) | (x := e) -> trigger_init e
| (s1; s2) -> []
end

Listing 5.2: The function trigger init returns a list of IDs that must be initialised before the
expression can be evaluated, or the statement can make a step.

The used helper function extend : ID → ID list returns for a module ID
the list of modules which it transitively extends. If ID1 precedes ID2 in the
list, then it is a superclass of ID2. We defined it this way because, in Java,
superclasses are initialised before the classes they extend [25]. Another helper
function is remove dupl. It takes a list and returns a list with all duplicate
elements removed except for the first one, while keeping the element order
intact (e.g. remove dupl [1,2,3,2] = [1,2,3]).

Program state The definition of a program state here is identical to the
one defined in Subsection 4.1.2. Our semantics again includes the two types

51

5. Methodology for Java

of configurations: ⟨s, σ⟩ and σ for a statement s and state σ. However, the
statement s is now not annotated with any thread name. This is because our
semantics rely on Java’s static initialisation procedure, where in a sequential
program initialisation occurs sequentially. In this chapter, all programs are
executed by only one thread, so the annotation ≀.≀A of statements for some
thread A is omitted.

As previously, the starting configuration of our program is ⟨x := A.main(),
(σ0

h , σ0
m, σ0

l)⟩. The mappings σ0
h , σ0

m and σ0
l are defined like in Subsection 4.1.2.

Small-step semantics The execution of the statements proceeds differently
than in the language Baum. Apart from the program execution being se-
quential, Java uses lazy initialisation. This means classes are initialised on
their first use. In our language, a module A is considered used by statement s
if s contains an access to a static variable declared in class A (using sacc or
sstore) or if it is a call to a method defined in A. The execution of a statement
s works as follows: before s is executed, it triggers the initialisation of all
modules it uses that are not initialised yet. The initialisation is triggered
according to the order given by trigger init(s). So, the class that is at the
top of the list and is not yet initialised is selected, and its initialisation is
started. The execution of s follows. This is defined in the following rule:

(∗∗)
⟨s, σ⟩ →1 ⟨ s′; s, (σh, σm[ID 7→ (fst σm(ID), ongoing)], σl)⟩

(Init)

The side condition (∗∗) specifies that ID is an entry of trigger init(s)
such that snd(σm(ID)) = not init and snd(σm(ID′)) ̸= not init for all ID′

that come before ID in the list trigger init(s). According to the JLS, the
initialisation of a module whose initialisation state is ongoing is not triggered.

The statement s′ is defined as s′ := sdecl(ID); sinit(ID); f inishID, where
sdecl(ID) and sinit(ID) are the static variable declarations and the static
initialiser code of the module with ID ID, respectively.

According to the JLS, a statement s can only be executed after all modules
it uses are initialised, or their initialisation is ongoing (by the same thread),
this means if their initialisation states are either init or ongoing. The uses
of a statement s are computed by trigger init(s). Given a state of the
form ⟨s, σ⟩, we introduce a second side condition, which summarises what is
written above:

for all ID ∈ trigger init(s) holds snd σm(ID) ∈ {init, ongoing} (∗)

All configurations of the form ⟨s, σ⟩ having (∗) on top of the rule can only
be executed if the above-mentioned side condition holds.

The remaining rules are very similar to those defined in Section 4.1,
except that everything is executed by the same thread. Thus, rules for

52

5.1. Language

parallel composition are no longer necessary. All rules are listed below.

⟨ f inishA, σ⟩ →1 (σh, σm[A 7→ (fst σm(A), init)], σl)
(Finish)

(∗)
⟨x := ID.m(e1, ..., en), σ⟩ →1 ⟨s; x := eret ; restore(σl , x), (σh, σm, σ′

l)⟩
(Method)

We use the abbreviation σ′
l := σ0

l [x1 7→ AJe1Kσ, .., xn 7→ AJenKσ]. The method
declaration of ID.m is m(x1, ..., xn){s; return eret}

⟨restore(σ′
l , x), σ⟩ →1 (σh, σm, σ′

l [x 7→ σl(x)])
(Restore)

(∗), AJeKσ ̸= 0
⟨i f e then s1 else s2, σ⟩ →1 ⟨s1, σ⟩

(I f1)
(∗), AJeKσ = 0

⟨i f e then s1 else s2, σ⟩ →1 ⟨s2, σ⟩
(I f2)

(∗)
⟨sstore ID.id e, σ⟩ →1 (σh, σm[ID 7→ (fst σm(ID)[id 7→ AJeKσ], snd σm(ID))], σl)

(Sstore)

(∗), AJe1Kσ = Addr
⟨pstore e1 e2, σ⟩ →1 (σh[Addr 7→ AJe2Kσ], σm, σl)

(Pstore)

(∗), Addrx ̸∈ Dom(σh)

⟨x := pinit e, σ⟩ →1 (σh[Addrx 7→ AJeKσ], σm, σl [x 7→ Addrx])
(Pinit)

(∗)
⟨x := e, σ⟩ →1 (σh, σm, σl [x 7→ AJeKσ])

(Lstore)

(∗), x ̸∈ Dom(σl)

⟨var x := e, σ⟩ →1 (σh, σm, σl [x 7→ AJeKσ])
(Ldecl)

⟨s1, σ⟩ →1 σ′

⟨s1; s2, σ⟩ →1 ⟨s2, σ′⟩
(Seq1)

⟨s1, σ⟩ →1 ⟨s′1, σ′⟩
⟨s1; s2, σ⟩ →1 ⟨s′1; s2, σ′⟩

(Seq2)

53

5. Methodology for Java

5.2 Methodology

In this section, we provide a methodology for the simplified Java language
defined in Section 5.1. This methodology is strongly based on the one
defined in Chapter 4 for the general language, however, it has much weaker
restrictions. We extend the syntax of our language by constructors that allow
us to create objects and by non-static methods. The non-static methods of
a superclass are inherited by the classes that extend it. As a simplification,
static fields are not inherited here. Additionally, methods can have void as
return type.

In this methodology, as in the previous chapter, each class must define a
static class invariant and may also specify a history constraint. Again, OUAT
predicates with respect to other classes can be established in the code. During
the static initialisation of a class, the static class invariant is established.

Verification statements The verification statements open A, close A, close
A establishing p and open A using p for some class A and predicate p
defined in Section 4.2 are reused, and its semantics remain the same. The
actions that are taken on their execution are summarised here:

open A The invariant of class A is assumed.

close A The invariant and, if present, the history constraint of A are checked
to hold. The history constraint is checked between the states on open A
and on close A.

close A establishing p The OUAT predicate p is asserted to hold. The
assertion OUAT(p) is assumed to hold and immediately afterwards A is
closed.

open A using p If p is a logical consequence of a OUAT predicate p′ w.r.t. A
and OUAT(p′) holds, then A’s invariant and p are assumed to hold.

The greatest difference to the previous methodology is that in this metho-
dology, static class invariants are allowed to be broken temporarily after
they have been established. We allow multiple statements to be placed
inside an open/close block. These statements may break the invariant in-
side the open/close block, but they must re-establish it on close. Inside a
static initialiser, multiple instructions are still allowed. Additionally, method
calls from static initialisers or open/close blocks that satisfy the static level
restrictions are now accepted, as explained later.

As previously said, the statement close A establishing p is reused
from the previous chapter. Here, it is even more important that asserting p
and closing A are summarised into one statement. This is because multiple

54

5.2. Methodology

statements are now allowed within the open A/close A block. If asserting p
and assuming OUAT(p) would be implemented as a single instruction and not
combined with closing A, the established predicate could be violated before A
is closed but after OUAT(p) was assumed. Because the history constraint of
A is only checked between opening and closing A, closing A would succeed.
This would result in an unsound methodology. In our methodology, if p
holds while closing A, and p is stable w.r.t. A’s invariant, it will hold until
program termination.

Static levels We wanted to weaken the restriction from Chapter 4 which
disallows method calls inside a static initialiser or an open/close block. The
first idea was that each method must be annotated with the names of all
classes whose invariants it assumes or whose initialisation it might trigger.
However, this would reveal too many implementation details and thus break
information hiding. So, to allow for method calls inside an open/close block
and still hide the implementation of a method, we introduce static levels. The
idea comes from the fact that methods called from inside a static initialiser
are often helper functions that do not access static fields or assume anything
about the class that called them, such as Java’s HashMap.put() method.

In our methodology, each statement, method, constructor, and static
initialiser must be annotated with a static level, which is a non-negative
integer. The static level of a class refers to the static level of its static initialiser.
The main idea of static levels is the following: If something has a static level
of a, it can only trigger the initialisation or assume the invariant of classes
whose static level is less than or equal to a. A class having a static level of a
means that triggering the initialisation of this class and executing its static
initialiser can only trigger the initialisation or assume the invariant of classes
with a static level less than or equal to a. This means that the execution of a
statement with static level a does not lead to assuming the invariant of classes
with a static level strictly greater than a. Then, at a program point where the
invariant of a class A with static level a is violated, everything having a static
level strictly smaller than a won’t produce any problems because it does not
rely on A’s invariant (and invariants of other classes having static level ≥ a).
Two such points, at which the invariant of class A might not hold are inside
an open A/close A block and inside A’s static initialiser.

// open A
// only statements with
// static level < a allowed
// close A

public class A {
static{

// only statements with
// static level < a allowed

Now, we will explain the static level constraints. These constraints provide
inequalities for all statements, methods, constructors, and classes. They have

55

5. Methodology for Java

to be resolved to get valid static levels. We will check in Viper as described in
Section 5.3 if a static level assignment is valid. If no valid assignment of static
levels under the given constraints is found, the program will be rejected.

The static level of open A and open A using p equals the static level of
class A because these instructions assume A’s invariant. The static level of
close A and close A establishing p are set to 0.

The static level of all statements not having any use of a class is set to 0,
because they neither assume a class invariant nor do they trigger any class
initialisation.

Let s be a statement that is neither a method call nor does it create an
object, but it reads from or writes to static variables. Because accessing a static
field might trigger the initialisation of the class that declares it, executing
s might lead to the execution of the code inside its static initialiser, which
might assume some invariants. This might be problematic if the statement is
inside an open/close block. So, the static level of the class’ static initialiser
must be taken into account. The static level of s is at least as big as the static
level of all classes whose static variables it accesses if it cannot be proven that
the initialisation of this class is ongoing or already finished (and thus won’t
be triggered any more).

However, for all these classes whose static variables s accesses, it actually
can be proven, that s does not trigger its initialisation inside an open/close
block1. In the presented methodology, each class receives the permissions to
the static fields it declares at the beginning of its static initialiser. To enable
reads from or writes to its static fields outside this static initialiser, these
permissions must be transferred into its static class invariant because a static
initialiser cannot leak permissions otherwise. Inside the static initialiser, we
know that the initialisation of this class is already ongoing (and thus will
not be triggered any more). Outside the static initialiser, a static variable
can only be accessed if the necessary permissions are held. Since initially
these permissions were put into the class invariant of that class, they can
only be received if the class was previously opened at least once. And the
methodology only allows opening a class after its initialisation. Thus, if a
statement contains reads from or writes to a static variable, it can be proven
that the initialisation of all the classes whose static variables it accesses is
ongoing or has already finished. That is why the static level of s is set to 0.

Let s be a method call to the static method A.m() (a call to a constructor of
class A, so the statement new A(), is treated like a call to a static method). The

1s can trigger the initialisation of some classes. However, in a successfully verified
program, such a statement s can only be the first statement within the open/close block, as
explained later. In this case, the initialisation can take place before the open statement. This
means that it happens outside the open/close block, which is not problematic. No class is
initialised between the open statement and s.

56

5.2. Methodology

static level of s is greater than or equal to the static level of the method A.m().
How static levels of methods are defined is described below. The reason for
this is that if the code inside a method assumes some invariant, then calling
this method will also lead to assuming this invariant.

The static level of s is additionally greater than or equal to the static level
of class A if we cannot prove that executing s does not trigger A’s initialisation.
This is because calling A.m() is a use of class A and thus may trigger the
execution of A’s static initialiser. So, its level must be taken into account.
The static level of a method call is independent of the methods’ arguments
because they have a static level of 0.

Let s be a method call to a non-static method o.m(), where the object o
has static type A. The static level of s is greater than or equal to the static level
of m() defined in class A. In contrast to static method calls, the static level of s
is independent of the static level of class A. This is because, for the method
call to succeed, o cannot be null. Let o be an object of dynamic type B, for
some subtype B of A. The object o had to be created via new B(), which is a
use of class B and might trigger B’s initialisation. And since A is a superclass
of B, it must be initialised before B. So the call o.m(), for a non-null object,
never triggers A’s initialisation.

The static level of a static method is the maximum over the static levels of
all statements it contains.

The static level of a non-static method is greater than or equal to the
maximum over the static levels of all statements it contains. An additional
constraint comes from behavioural subtyping. If the method overrides an-
other method, its static level must be less than or equal to the static level of
the method it overrides.

Let class B extend class A and both define a method m(). The previous
constraint is necessary because if we call a non-static method o.m() on some
an object o with static type A, the method m() in class B might be executed
(if o has dynamic type B). However, since statically we only know for sure
o’s static type, the static level of this method call statement is set to the
static level of method m() in class A, which corresponds to o’s static type. So,
since instead of m() from class A, the overriding method might be called, this
method can’t have a static level greater than m()’s in class A. By the same
reasoning, overriding methods of subtypes can have weaker preconditions
and stronger postconditions than their corresponding supertype methods.
Even though the grammar does not support object creation or subclassing, it
can be easily extended to do so.

The static level of a static initialiser in class A must be strictly greater than
the static levels of all statements it contains (using the knowledge that no
statement there might trigger A’s initialisation, since it is already ongoing)
and it is also greater than or equal to the static level of a class it extends, if

57

5. Methodology for Java

there is one.
The reasoning behind the strict inequality in the first condition is that

inside a static initialiser of class A, the invariant of A does not hold. So, no
statement is allowed to assume it. Additionally, the strict inequality forbids
cyclical static initialisation dependencies. It is not possible to assign valid
static levels if two static initialisers mutually depend on each other. This is
exemplified in Listing 5.3.

class A {
// Inv_A: acc(a)

static char a = 'a';
static {

// open B
a = B.b;
// close B

}
}

class B {
// Inv_B: acc(b)

static char b = 'b';
static {

// open A
b = A.a;
// close A

}
}

Listing 5.3: Let SLA and SLB refer to A’s respectively B’s hypothetical static levels. The
instruction open B has static level SLB. Since it appears inside A’s static initialiser, SLA > SLB
must hold. The same argument for B’s static initialiser gives the constraint SLB > SLA. It can
be seen, that in this example, no valid assignment of static levels is possible.

The second constraint (which says that the static level of a superclass
must be less than or equal to the static level of the subclass) follows from
the property that the initialisation of superclasses is triggered before the
initialisation of the classes that extend them. A statement s, that has a use of
class A, can be viewed as a statement that not only has a use of A, but also a
use of its superclass. Therefore, executing s must take into account the static
level of the superclass. Strict inequality between the static level of a subclass
and the class it extends is not required. This is because the initialisation of
the class and its superclass run sequentially, and the superclass does not see
a partially initialised state of the subclass, so, it is different from triggering
the initialisation of the superclass from within the static initialiser of the
superclass.

Given a valid static level assignment, the restriction that method calls are
not allowed inside static initialisers or open/close blocks can now be lifted.
Static levels not only rule out cyclical initialisation dependencies. Instructions
inside an open A/close A block are allowed if their static level is strictly less
than the static level of class A. A direct consequence of this is that an invariant
can never be opened twice without being closed in between.

58

5.2. Methodology

An invariant can only be established after class’ initialisation As in the
previous chapter, we are only allowed to assume an invariant of a class after
it is established. The reason is again that the invariant is established by its
static initialiser, so we cannot assume that an invariant holds before the static
initialiser runs.

Before, the language semantics guaranteed that a thread different from
A’s initialisation thread, for some class A, can only access A’s static variables
when A’s initialisation state is init. Here, however, we are using Java’s
language semantics. A thread is allowed to read static variables declared
in class A not only if A’s initialisation state is init but also if it is ongoing
(by the same thread). As was shown in Listing 1.1, in Java, it is possible
to read uninitialised variables. Thus, in an arbitrary program, a statement
outside A’s static initialiser, which accesses a static variable or calls a method
(a constructor is treated like a static method) defined in class A, cannot be
taken as proof that A is initialised.

However, in a program with valid static level assignments, if a method
or a static initialiser different from A’s contain a statement s, which has a
use of class A, and they contain an open A statement, then it holds that the
initialisation of class A is completed directly before the execution of s. The
same applies to open A using p but is omitted here for presentation purposes.
Then, we can use s to prove that opening A is sound. This holds because of
static level constraints.

The reasoning is the following: when an open A statement is inside a
method or a static initialiser, the static level of this class member must be at
least as big as A’s static level. Therefore, no such method can be called and no
such static initialiser can be triggered from inside A’s static initialiser. Also,
no method or constructor called or triggered from inside A’s static initialiser
is allowed to call or trigger this class member. Moreover, open A cannot be
placed inside A’s static initialiser. Thus, since this class member cannot be
executed while A’s initialiser is running, and we are dealing with sequential
programs, it must run after the initialisation is completed.

That is why if a class member contains open A and a statement s that uses
A, we know that if all static level assignments are valid, A’s initialisation must
be completed before s is executed.

If a statement s can be seen as a proof of initialisation depends on its
relative position to the open A statement. The first option for s being a proof
of initialisation is if s lies before open A, and the second option is that s is the
first (not ghost code) statement inside the open A/close A block. Again, if s
is the first instruction after open A, since open A is just an annotation, it can
be executed directly before the execution of s and after the initialisation of A.

Note that the remaining statements inside the block are not taken into
consideration. Why this is the case is shown in Listing 5.4. Inside the main()

59

5. Methodology for Java

public class B {
// inv_B: x >= 0

int x = 0;

static void main() {
// open B
B.x = B.x - 5; // (1)
C.f();
B.x = B.x + 5; // (2)
// close B

}
}

public class C {
// inv_C: true

static {
// open B
B.x = 3 * B.x;
// close B

}

public static void f() {
return;

}
}

Listing 5.4: The instruction C.f() triggers the initialisation of class C inside the open B/close
B block.

method, there is an open B/close B block. Since the first instruction inside
the block accesses a static variable defined in class B, we can assume that B is
initialised, and open B. Inside the block, the statement (1) breaks B’s invariant.
Because C is not initialised yet, the statement C.f() triggers its initialisation.
This causes the static initialiser of C to assume a violated invariant. In the
end, B.b holds the value -10.

It would be unsound to assume that C’s initialisation happened before
open B and thus before the execution of B.x = B.x - 5. We see that this
would result in B.b holding a different value than in a correct execution.

Now, since we cannot prove that C is initialised, the static level of C.f()
is not only greater than or equal to the static level of the method f() in C
(which is 0) but also greater than or equal to C’s static level. Since the open B
statement is inside C’s static initialiser, its static level is strictly greater than
B’s. Thus, C.f() cannot be placed inside this open B/close B block. Note that
if C were already initialised before the open B instruction, our methodology
would allow placing this statement inside an open B/close B block.

In this methodology, there is also another way to prove that a class is
initialised. In this semantics, calling a method A.m() defined in class A triggers
A’s initialisation, so A’s initialisation state has definitely started before this
method is executed. If additionally A.m() contains an open A/close A block
inside its body, then it can be proven that A is initialised before the execution
of this method. Again, this only holds if a valid static level assignment exists
for the program. We know that the static level of A.m() is at least as big as
A’s static level since the method’s body contains an open A statement. As a
result, from inside the static initialiser, we cannot call A.m(). Thus, the call to
A.m() must happen after A’s initialisation. As a result, in Listing 5.4, it even

60

5.2. Methodology

holds that A is initialised before the execution of the main() method.

Consistency criteria This paragraph lists the criteria that must apply for an
annotated Java program so that it can be encoded to Viper according to the
translation in Section 5.3.

• Each class must contain a self-framing (explained in Section 2.4) static
class invariant.

• A OUAT predicate w.r.t class A must be pure (i.e., not contain permis-
sions to any resources) and framed by A’s class invariant, but it does
not have to be self-framing on its own.

• A history constraint of class A must be framed by A’s class invariant.

• If a OUAT predicate w.r.t. B is claimed to be established, then B must
contain a history constraint.

• The open/close instructions form a block. Thus, each open A must be
followed by a matching close A instruction.

• Each static initialiser, method, and constructor must be annotated with
a static level.

Examples Here, we present three code examples written in Java and anno-
tated with our methodology.

The first example in Listing 5.5 we provide to demonstrate static level
assignments. In this example, class A establishes its invariant under the
assumption of B’s invariant. The problem in this example is that inside the
method B.m(), the method A.n(), which might trigger the initialisation of A,
is called while B’s invariant is violated. As a result, the static initialiser of
class A might assume B’s invariant while it does not hold. Our methodology
rejects this example due to static levels.

Let SLA, SLB, SLA,n, and SLB,m denote the static levels of classes A,
and B and methods A.n() and B.m() respectively. As explained above, the
statements b = 3, A.a = B.b, B.b-- and B.b++ all have static level 0. The
statement open B, since it assumes B’s invariant, has static level SLB. Thus,
the static initialiser of class A, and therefore also class A, have a static level
strictly larger than SLB (SLA > SLB). By the same reasoning, SLB,m ≥ SLB
must hold. Since in this example, it cannot be proven that A is initialised
before the open A/close A block in method m(), the statement A.n() has
static level SLA,n ≥ max(SLA,n, SLA) > SLB. Because all instructions inside
an open B/close B block must have a static level strictly smaller than SLB,
the statement A.n() cannot be placed there and the verification fails.

The example in Listing 5.6 is a simplified version of the example intro-
duced and explained in Section 3.2. Because we are only looking at sequential

61

5. Methodology for Java

class A {
// inv_A: acc(A.a) && A.a == 3

static int a;
static {

// open B
A.a = B.b;
// close B

}

public static void n() {}
}

class B{
// inv_B: acc(B.b) && B.b == 3

static int b = 3;

public static void m() {
// open B
B.b--;
A.n();
B.b++;
// close B

}
}

Listing 5.5: Code example whose verification fails, because A.n() cannot be placed inside an
open B/close B block.

programs, we removed the synchronisation and modified the atomic inte-
ger to a regular integer. For the sake of readability, the invariant of class
DataTypeBase is defined here using mathematical notation.

InvDataTypeBase : acc(counter)∧ acc(annotationMap)∧ counter ≥ 0 ∧
(∀c ∈ annotationMap acc(getAnnotation(c)) ∧ getAnnotation(c) < counter) ∧
(∀c1, c2 ∈ annotationMap c1 ̸= c2 =⇒ getAnnotation(c1) ̸= getAnnotation(c2))

During the static initialisation of DataTypeBase only static variables of its
class are accessed, and DataTypeBase does not extend any class. Thus, its
static level can be set to any positive number. We set its static level to
1. Since the methods addAnnotation() and getAnnotation() are inside the
class DataTypeBase, its invariant can be safely assumed. Inside both open
DataTypeBase/close DataTypeBase blocks, all instructions have static level 0,
so they are also allowed. Because both methods open DataTypeBase, their
static level must be at least 1. Inside the method addAnnotation(), a class is
assigned the lowest available annotation index and this mapping is added

62

5.2. Methodology

private static class DataTypeBase {
// SL_DataTypeBase: 1
// Inv_DataTypeBase

private static final HashMap < Class<?>, Integer > annotationMap =
new HashMap < Class<?>, Integer > ();
private static int counter = 0;

public void addAnnotation(Class<?> ann) {
// SL_DataTypeBase_addAnnotation: 1

// open DataTypeBase
Integer i = annotationMap.get(ann.getClass());
if (i == null) {

annotationMap.put(ann.getClass(), new Integer(counter));
counter++;

}
// close DataTypeBase

}

public Integer getAnnotation(Class<?> c) {
// SL_DataTypeBase_getAnnotation: 1

// open DataTypeBase
Integer i = annotationMap.get(c);
// close annotationMap.get(c)
return i;

}
}

Listing 5.6: A sequential version of the class DataTypeBase from Section 3.2 encoded using our
obtained methodology

into the annotationMap. The method getAnnotation() assumes the invariant
of DataTypeBase and returns the annotation index corresponding to the input
class.

The last example in Listing 5.7 is a design pattern called Singleton [33].
A class using the Singleton pattern defines one static field called instance.
This static field holds the only instance of this class. To achieve that at most
one instance of the class exists, the constructor is hidden. There are two
possibilities to implement this pattern. In the first one, instance is already
initialised during class initialisation. Here, we present the second one: the
static field instance is not initialised until getInstance() is called.

The invariant of this class contains the permissions to the static field
instance. The class contains the history constraint, which specifies that once
the field instance is not null, it will not be modified. When getInstance()
is called for the first time, a freshly created Sigleton object is assigned to

63

5. Methodology for Java

class Singleton {
// SL_Singleton: 1
// Inv_Singleton: acc(instance)
// History_Singleton: old[start](instance) != null ==>
// old[start](instance) == old[end](instance)

private static Ref instance = null;

private Singleton() {} // SL_Singleton_cons: 0

public static Ref getInstance() {
// SL_Singleton_getInstance: 1

// open Singleton
if (Singleton.instance == null) then

Singleton.instance = new Singleton()
Ref instance = Singleton.instance;
// close Singleton
return instance

}
}

Listing 5.7: Class implementing the Singleton pattern encoded using our methodology.

instance. This is done inside an open Sigleton/close Sigleton block. The
constructor is empty, so its static level can be set to 0. The static level of
the Singleton class can be set to a number higher than 0, for example to 1,
then a Singleton instance can be created inside the open Singleton/close
Singleton block. This example verifies successfully.

5.3 Viper encoding

In this section, we explain the translation of an annotated and type-checked
Java program into a Viper program. The core idea is to translate all Java
methods and static initialisers as Viper methods and the static class invariants
as Viper predicates. At the end of each static initialiser, we check using the
fold statement if the class invariant was established. On open A, the invariant
of class A is assumed using the inhale and unfold statements, in between
it might be violated, and on close A it is checked to hold again (fold and
exhale). Static level checks precede the Java statements. They make sure
that the static level assignment is valid and that no cyclical initialisation
dependencies between classes exist. To not run into naming issues, we
assume that no signature of a method or constructor contains an underscore.

64

5.3. Viper encoding

A restriction that is made inside this section is that OUAT predicates can
only be established inside a static initialiser and a class can establish at most
one OUAT predicate w.r.t. one particular class (but might establish multiple
OUAT predicates w.r.t. different classes). With this restriction, an injective
mapping from pairs of classes to established OUAT predicates can be defined.
This makes the translation easier.

A new verification statement open A using p from B is introduced here,
which replaces the statement open A using p. The new statement combines
opening B, learning that the predicate was established, closing B and then
using the statement open A using p to assume p and A’s class invariant and
assert that the OUAT predicate was established into one. It can only be used
if B established a OUAT predicate w.r.t. A of which p is a logical consequence.
Writing open A using p from B makes it clear which OUAT predicate was
intended.

Now, the precise translation is explained. For most bullet points, a
detailed paragraph is provided below. For each class A, the following must
be created:

• For all static fields of class A, a Viper field is added. E.g. field a : Int,
if A contains an integer field called a.

• Abstract function A() : Ref. It returns a reference that represents
class A. A static field a of class A can be accessed by A().a if the necessary
permissions are held.

• Abstract function A_init () : Bool, which returns true if the ini-
tialisation of class A has started or is already finished (and thus won’t
be triggered any more).

• function SL_A() : Int {s}, where s corresponds to A’s static level
(a non-negative integer), defined according to Section 5.2.

• If the static initialiser of A does not establish any OUAT predicate,
create predicate invariant_A () with A’s invariant (a self-framing
predicate) as its body.

• Else, for each class B, such that A’s static initialiser establishes a OUAT
predicate p with respect to B (this holds, if the annotation close B
establishing p can be found in A’s static initialiser):

– Create abstract function ouat_A_B () : Bool. It represents the
assertion that specifies whether the OUAT predicate was estab-
lished. The function returns true if the OUAT predicate with
respect to class B was established by A’s static initialiser.

– Create the macro define OUAT_A_B (p), which replaces OUAT A B
by the actual contents of the predicate.

65

5. Methodology for Java

– Create method check_stability_OUAT_A_B (), which checks the
stability of A’s OUAT predicate w.r.t B’s history constraint. The
body of this method is provided in a paragraph below.

– Once, create predicate invariant_A () whose body is A’s in-
variant. There, replace all assertions corresponding to OUAT
predicates OUAT(p) with the corresponding functions ouat A B().

• If A contains a history constraint, create a macro with signature define

history_A(start , end) that acts as a placeholder for the actual
history constraint of class A. Create method check_history_A (), a
method, that checks if this history constraint is reflexive and transitive.
This method is defined below.

• method initialise_A () contains all static variable initialisations of
class A and the code from A’s static initialiser. The details are provided
in a paragraph below.

• Create method A_m (...) for each (static or non-static) method m of
class A. The exact translation of the method is described below. Addi-
tionally, create the function function SL_A_m () : Int {s} returning
A.m()’s static level s.

• For each non-static method m() in class A that directly overwrites the
method m() defined in A’s subclass B, create method check_A_B_m ().
This method checks if m() adheres to the rules of behavioural subtyping.

• If A contains a constructor, create method constructor_A () returns

(A_instance:Ref). Without loss of generality, we assume that A con-
tains only one constructor without parameters. Additionally, create the
function SL_A_con () : Int {s}, which returns the static level s of
A’s constructor.

Static level checks The integer sequence SL bound stack is used to mech-
anize static level checks. It can be viewed as a stack, on which we push
and pop static levels during the execution. The element inserted last into
SL bound stack is referred to as the top of SL bound stack and can be read
using SL bound. The following macro, once defined in the program, sets
SL bound as a placeholder for the top of SL bound stack.

define SL_bound(SL_bound_stack [| SL_bound_stack |-1])

A program invariant is that SL bound corresponds to an integer, such that
all statements must have a static level which is strictly less than the current
value of SL bound. During program execution, the value of SL bound might
change. Each class member initialises SL bound stack at the beginning of
the corresponding Viper method. Since inside the static initialiser of some
class A all statements must have a static level strictly smaller than SL A(), in

66

5.3. Viper encoding

the beginning of the static initialiser, the integer SL A() is pushed onto the
empty stack SL bound stack. In a method m() (constructors are treated like
methods) defined in class A, all statements must have a static level smaller
than or equal to SL A m(). Since for all integers a, b, a ≤ b is equivalent to
a < b + 1, in the method m(), SL bound is initialised to SL A m()+1.

The sequence SL bound stack is extended upon entry of each open/close
block. Inside the open A/close A block, additionally, each statement must
have a static level strictly smaller than SL A(), so strictly smaller than
min(SL A(), SL bound). Because, like all statements, open A (which has static
level SL A()) must have a static level strictly smaller than SL bound, the integer
min(SL A(), SL bound) equals SL A(). Therefore, it is sufficient to push SL A()
onto SL bound stack. On close A, the top of SL bound stack is popped,
because the additional static level constraint no longer holds.

On close, the old static level bound must be recovered. Because open/
close blocks can be nested, and the depth of open/close blocks is only
limited by the number of classes in the program, the static level bound must
be represented by a sequence that can be extended an arbitrary number of
times.

function A init() This abstract function returns a boolean that indicates
if the initialisation of A has started and thus won’t be triggered any more.
It is used to prove that the execution of any statement will not trigger A’s
initialisation if A init() returns true. A init() is assumed to return true
after each statement that has a use of class A.

Another usage of this function is that one is only allowed to assume the
invariant of class A after the initialisation of A is completed. In a successfully
verified program (concerning the methodology defined in this chapter), if
a method or a static initialiser contains the statement open A and A init()
returns true, then it holds that the initialisation of class A is completed at
that point. The reasoning behind this is explained in Section 5.2. Thus, if
A init() holds in a class member containing open A, then A’s initialisation
did not only start but is completed. Thus, it is sufficient to check if A init()
returns true before assuming A’s invariant.

method check history A() The macro history A(start, end) is a place-
holder for A’s history constraint, which relates the state at the label start
to the state at the label end. Each history constraint must be reflexive and
transitive. By definition, the history constraint PA is reflexive if PA(l, l) holds
in all states l. It is transitive, if for all states l1, l2, l3, PA(l1, l2) and PA(l2, l3)
implies PA(l1, l3).

The code below checks both properties of the history constraint of class A.
Note that the states l1 and l4 are equal since the verification statement label

67

5. Methodology for Java

l does not modify the state.

method check_history_A () {
inhale invariant_A ()
unfold invariant_A ()
label l1
label l4
assert history_A(l1, l4) // reflexivity
fold invariant_A ()
exhale invariant_A ()

inhale invariant_A ()
unfold invariant_A ()
label l2
fold invariant_A ()
exhale invariant_A ()

inhale invariant_A ()
unfold invariant_A ()
label l3
assume history_A(l1, l2) && history_A(l2, l3)
assert history_A(l1, l3) // transitivity

}

method check stability OUAT A B() OUAT A B(L) refers to the OUAT pred-
icate at the label L. Therefore, it is the same as A’s OUAT predicate with
respect to B with the exception that all field accesses and calls to heap-
dependent functions, e.g. o.f, are replaced by expressions that refer to
the heap access of that field or heap-dependent function at label L, i.e.
old[L](o.f).

As explained in Section 4.2, a OUAT predicate with respect to class
A must be stable with respect to A’s history constraint such that it cannot
be invalidated once it has been established. The definition of stability of
OUAT A B with respect to A’s history constraint is that if OUAT A B holds in state
start and the history constraint holds between start and end, then OUAT A B
must hold in state end. This means, that whenever the history constraint of B
holds, once OUAT A B is established, it cannot be invalidated. The code below
verifies this property.

method check_stability_B_OUAT_A () {
inhale invariant_B ()
unfold invariant_B ()
label start
fold invariant_B ()
exhale invariant_B ()

68

5.3. Viper encoding

inhale invariant_B ()
unfold invariant_B ()
label end
assume history_B(start , end)
assume OUAT_A(start)
assert OUAT_A(end)

}

method initialise A() This paragraph explains and provides the translation
of the static initialisation logic. The encoding is explained first.

The meaning of the sequence SL bound stack is explained in the para-
graph on static level checks. In the static initialiser of class A, it can be proven
that the initialisation of class A has begun, so A init() is inhaled. Moreover,
in Java, a subclass is initialised after the class it extends. Thus, on execution
of the static initialiser of class A, the initialisation of all its superclasses has
already started (if there are no cyclical initialisation dependencies, it can be
proven, that the initialisation actually is completed). That is why C init() is
inhaled for all classes C that A transitively extends. assert SL C() <= SL A()
makes sure, that the static level constraint, that the static level of a subclass
is greater than or equal to the static level of the superclass, holds. If A does
not extend any class, these statements can be left out. The static initialiser
receives full permissions to all static fields declared in its class at the begin-
ning of its execution. The comment ”initialisation code” is a placeholder for
all static variable definitions of class A and the code from A’s static initialiser.
These Java instructions are translated according to the paragraph below on
translating statements into Viper. Since the static initialiser of class A must
establish A’s invariant, in the end, we check if invariant A() holds by folding
the predicate.

The encoding of method initialise A() now follows.
method initialise_A () {

var SL_bound_stack : Seq[Int] := Seq(SL_A ())

inhale A_init ()
// for all classes C that A transitively extends:
inhale C_init ()
// for class C that A directly extends:
assert SL_C() <= SL_A()

// for all static fields a of A:
inhale acc(A().a)

// initialisation code

fold invariant_A ()
}

69

5. Methodology for Java

method A m(...) The method’s arguments and return type are set according
to Java’s method definition. The encoding below is provided for a method
without input and output parameters. The method might contain arbitrary
pre- and post-conditions. They are translated into Viper using the requires
and ensures keywords.

Inside A m(), A init() is inhaled, since calling a method declared in
class A triggers A’s initialisation. Because superclasses are initialised before
subclasses, C init() is inhaled for all classes C transitively extended by A
(if any). The meaning of the sequence SL bound stack is explained in the
paragraph on static level checks. The instructions from method m() are
translated according to the paragraph on translating statements.

method A_m() {
// A_m might have a non -void return type and arguments
var SL_bound_stack : Seq[Int] := Seq(SL_A_m () +1)

inhale A_init ()
// for all classes C that A transitively extends:
inhale C_init ()

// translated instructions from method m()
}

method check A B m() The method below checks if m() adheres to the
rules of behavioural subtyping.

From behavioural subtyping follows that overriding methods of subtypes
may have weaker pre-conditions and stronger post-conditions than its corre-
sponding supertype methods. Let A extend B. We check the previously stated
conditions by invoking method A m() inside the method check A B m(), which
has the same pre- and post-conditions as B m(). ppre and ppost denote the
pre- respectively post-condition of method m() in class B. If verification suc-
ceeds, then A m() must have a weaker precondition than ppre and a stronger
postcondition than ppost. The method check A B m() additionally checks, if
the static level of A m() is smaller than or equal to the static level of method
B m(). The reasoning behind these checks is explained in Section 5.2 in the
paragraph on static levels.

method check_A_B_m ()
requires p_pre
ensures p_post

{
assert SL_A_m () <= SL_B_m ()
A_m()

}

70

5.3. Viper encoding

method constructor A() The translation of a constructor is very similar to
the translation of a static method. The only difference is that a constructor
returns a newly created non-null instance. The translation is provided below.
method constructor_A () returns (A_instance:Ref)
ensures A_instance != null
{

var SL_bound_stack : Seq[Int] := Seq(SL_A_cons () +1)

A_instance := new()

inhale A_init ()
// for all classes C that A transitively extends:
inhale C_init ()

// translated instructions from A's constructor body
}

Translating opening and closing A First, the simple case is explained, which
corresponds to the following annotated Java code:

// open A
instructions I
// close A

This paragraph explains the Viper code provided below. Let I be the state-
ments within the open A/close A block. Our methodology says that assuming
the static invariant of class A is only allowed if A is initialised. Because of
that, assert A init() is inserted before A’s invariant is inhaled. However,
if the first statement of I (ignoring ghost code) contains a use of class A,
the initialisation of A happens certainly before the instructions I. That’s
why instruction (1) in the code below is not necessary in that case. If the
first statement of I contains a use of class A, we replace instruction (1) by
inhale A_init () && C_init () for all classes C that A transitively extends.
After the static level check succeeds and the new lowest static level is pushed
onto the stack, A’s static class invariant is assumed using the inhale and
unfold statements.

The instructions marked with (2) are only necessary if A contains a
history constraint. They assert that the history constraint was not violated
between the open A and close A instructions. The index at both labels is an
integer guaranteed to be unique across the whole program, so no labels are
duplicated. The first 6 instructions correspond to opening A and the last 5
instructions correspond to closing A. Instructions I′ are to the instructions I
modified according to the section on translating statements.

Before closing A, the most recently added static level is removed from
SL bound stack. Folding and exhaling the invariant asserts that A’s invariant
holds on close A.

71

5. Methodology for Java

assert A_init () // (1)
assert SL_A() < SL_bound
SL_bound_stack := SL_bound_stack ++ Seq(SL_A ())
inhale invariant_A ()
unfold invariant_A ()
label openA_index // (2)

// instructions I'

label closeA_index // (2)
assert history_A(openA_index , closeA_index) // (2)
SL_bound_stack := SL_bound_stack [0..(| SL_bound_stack |-1)]
fold invariant_A ()
exhale invariant_A ()

Translating opening A using a OUAT predicate Next, the translation of
open A using p from B, where p is a boolean expression, is explained. The
code is presented below. The matching close A statement is translated exactly
like shown in the previous paragraph, so its translation is left out here. Let I
be the instructions that follow open A using p from B in the Java code.

open A using p from B is translated as first opening and closing B with
no instruction in between. Because the functions corresponding to OUAT
predicates are pure, the knowledge about its output gained from opening B
still exists after closing B. The open B and close B instructions are translated
as explained in the previous paragraph, however, since no instructions are
in between, the history check and extending the SL bound stack are not
necessary. Again, the statement marked with (1) in the code below is only
necessary if the first statement of I does not contain a use of B. Otherwise,
it is replaced by inhale B_init () && C_init () for all classes C that B
transitively extends. From open B, we learn that ouat B A() returns true,
which means that the OUAT predicate OUAT B A was established.

Then, A is opened. No assert A init() and assert SL A() < SL bound
checks are necessary because for the OUAT predicate w.r.t. A to be established
by B, the invariant of A must be opened inside B’s static initialiser. And this
can only be done if A is initialised at that point, and has a static level strictly
smaller than SL B(). The boolean expression p must be a logical consequence
of the OUAT established by B with respect to A. Also, B must have ouat B A()
in its invariant, which tells that it has established this predicate. If that all
holds, p can be assumed to hold. From the consistency criteria follows that
if there exists a class that has a OUAT predicate with respect to A, A must
define a history constraint. So the statements, that are marked with (2) in
the previous paragraph, are now necessary.

assert B_init () // open B, (1)
assert SL_B() < SL_bound
inhale invariant_B ()

72

5.3. Viper encoding

unfold invariant_B ()

fold invariant_B () // close B
exhale invariant_B ()

SL_bound_stack := SL_bound_stack ++ Seq(SL_A ())
inhale invariant_A ()
unfold invariant_A ()
label openA_index
assert ouat_B_A () && (OUAT_B_A ==> p)
inhale p

Translating closing A establishing a OUAT predicate Finally, the translation
of close A establishing p in B’s static initialiser, where p is a boolean
expression, is explained. The translation of the corresponding open A equals
the one explained in the paragraph on translation opening and closing A.
The only difference between close A establishing p and a regular close A
statement are the statements marked with (∗). Directly before closing A, the
boolean expression p, that B claims to have established, is asserted to hold.
If this assertion succeeds, the function ouat B A() is inhaled. This must be
done because B’s invariant contains ouat B A().

assert p // (*)
inhale ouat_B_A () // (*)
label closeA_index
assert history_A(openA_index , closeA_index)
SL_lt := SL_lt [0..(| SL_lt |-1)]
fold invariant_A ()
exhale invariant_A ()

Translating statements Some Java statements are preceded by static level
constraints, as explained in Section 5.2 in the paragraph on static levels.
Moreover, after a statement, that has a use of some module A, init A() can
be assumed.

Each Java statement s is translated into Viper as follows:

• s is a method call to the static method B.m(...) (we treat the constructor
like a static method):

1. assert (B_init () || SL_B() < SL_bound) && SL_B_m () <

SL_bound

2. call B_m()

3. inhale B_init () && C_init () for all classes C that B transi-
tively extends

73

5. Methodology for Java

• s is a method call a.m(...) to a non-static method, where a has static
type B:

1. assert SL_B_m () < SL_bound && a != null

2. call B_m()

• All other Java statements are translated directly into Viper without
additional asserts and inhales surrounding them because they do not
trigger the initialisation of any class and do not assume any invariants.

74

Chapter 6

Evaluation

In this chapter, we evaluate the methodology described in Chapter 5. To
evaluate it and the Java to Viper encoding, we manually translated some
annotated Java examples to Viper using the rules defined in Section 5.3 and
verified the encoding there. Some of these code examples were presented
in earlier sections of this thesis. All of them were verified successfully.
The translated examples can be found on GitHub [17]. The corresponding
annotated Java programs are provided as a comment at the beginning of
each file. We discuss some interesting properties of the examples later in this
chapter.

Table 6.1 includes the annotation and verification overhead and the
verification time of all encoded examples. We obtained these benchmarks on

Name Lines of code
Lines of

annotation
LOC

encoding
Verification

time (s)
byte cache (List. 3.4) 13 21 62 1.64
clients 8 18 71 1.7
cond perm (List. 6.2) 22 33 65 1.2
cyclic dep (List. 1.1) 8 12 48 0.94
Fib (List. 4.9) 17 25 90 2.04
inheritance 19 27 61 1.06
OUAT (List. 4.4) 14 27 114 1.72
service 15 24 61 1.54
singleton (List. 5.7) 10 17 73 1.32
SL check 22 36 78 1.1

Table 6.1: This table contains the data corresponding to the examples on GitHub.

a machine running Windows 10, having an Intel(R) Core(TM) i7-8550U CPU
processor and 16.0 GB of RAM. The encoding was verified using the Viper
version 24.01 and Viper’s verifier Silicon. The number of lines of annotation

75

6. Evaluation

refers to the total number of lines of code of the examples annotated with
our methodology for Java, including static level annotations. LOC encoding
refers to the number of lines of Viper code. The verification time is averaged
over five runs and was measured on Visual Studio Code. It can be seen in
Table 6.1 that the verification time is low in all encoded examples.

Limitation In this thesis, we have defined static level constraints, which
once resolved, provide a valid static level assignment. Static levels allow
certain method calls inside a static initialiser or an open/close block, without
the method having to specify which invariants it assumes and which class’s
initialisation it might trigger. They resolve the challenge that while an
invariant is broken, no code can be executed that relies on the validity of
this invariant. The only restriction we make on instructions inside a static
initialiser or an open/close block comes from static level constraints. Inside
a static initialiser, we do not allow calls to functions that rely on the invariant
of the static initialiser. That prevents us from reading uninitialised data. In
some cases, this might be restrictive, because the other class or the called
method might only rely on already initialised parts of the class invariant.
This is exemplified in Listing 6.1. The method f() only relies on the static

public class A {
// inv_A: acc(i) && i == 6 && acc(j) && j == 6

static int i = 6;
static int j = A.f(); // 6

public static int f() {
return A.i;

}
}

Listing 6.1: This example cannot be verified in our methodology. The function f(), which relies
on A’s invariant, cannot be called from within A’s static initialiser.

variable A.i, which is placed in the code above the function call and thus
acc(i) && i == 6 is already established at the time when f() is called.
Therefore, no uninitialised data is read in this case and f() could assume
the first part of A’s static class invariant. However, this example cannot be
verified in our methodology, because we make no distinction on which parts
of the invariant are assumed.

Challenging examples The file cyclic dep.vpr shows an example of two
classes having a cyclical initialisation dependency. Static levels provide a
way to rule out all programs containing cyclical dependencies. Inside a static
initialiser, all instructions must have a static level strictly smaller than the

76

class’s level. Because of this constraint, in a program with cyclical initialisa-
tion dependencies, one cannot generate correct static levels. Independent of
the static level assignment, given a cyclical dependency, at least one static
level constraint will be violated, and this constraint will be detected by our
encoding in Viper.

Another program rejected by our methodology is presented in the file
SL check.vpr. There, a method is called inside an open B/close B block,
which could trigger the initialisation of a class that assumes B’s invariant
inside its static initialiser. This would lead to re-opening an already opened
invariant. Static levels enforce that an invariant is never assumed while it may
be violated by only allowing instructions with a static level strictly smaller
than B’s inside an open B/close B block.

In a program with no static initialisers or static class invariants, all
static levels can be set to 0. This is, because only open/close blocks and
static initialisers introduce strict inequality constraints. The other static level
constraints provide no strict inequalities. Without strict inequalities, all static
levels can be the same, so can be set to 0 and all static level checks become
trivial.

We added support to our methodologies, such that in both of them,
classes can establish properties not only concerning their own static fields
but also static fields declared in other classes. Methods can also establish
properties related to static fields. We call these properties OUAT predicates.
An encoded example can be found in the file OUAT.vpr, where the class B
establishes a OUAT predicate with respect to class A.

The file cond perm.vpr presents an encoding of two classes, where an
invariant even contains permissions to a static field defined in the other class.
The corresponding code example is shown in Listing 6.2. B’s static initialiser
negates A.b, writes to A.m and transfers the full permission to A.m inside its
invariant if A.b was previously true. That way, B can hold write permissions
to A.m inside its invariant.

All the examples introduced in Chapter 3 (except for registering native
code, which is out of scope for this thesis) can successfully be verified using
the methodology for Java in Viper concerning the specifications explained in
that chapter. Thus, this methodology seems to apply to all typical applications
of static fields found in Java programs.

77

6. Evaluation

class A{
// SL_A: 0
// inv_A: acc(A().b) && (A().b
// ==> acc(A().m) && A().m == 42)

static bool b = true;
static int m = 42;

}

class B {
// SL_B: 1
// inv_B: acc(B().b) && (B().b
// ==> acc(A().m) && A().m == 43)

static bool b;
static {

// open A
B.b = A.b;
if(B.b) {

A.b = false;
A.m++;

}
// close A

}
}

Listing 6.2: Class invariant of class B contains permissions to static fields declared in class A.

78

Chapter 7

Conclusion

In this thesis, we collected and analysed the uses of static initialisers in large
code collections like the Java standard library. For each use, we presented
examples that challenge the state of the art. Moreover, we found that cyclical
static initialisation dependencies are very problematic in practice and are
often indicative of bugs.

We examined how static initialisation is implemented in various pro-
gramming languages, with a particular focus on Java. Additionally, we
analysed the implementations of static initialisation in various programming
languages based on two features, namely whether they do lazy or eager
initialisation and whether cyclical initialisation dependencies are rejected.
We discovered two properties, Property 1 and Property 2, that the majority
of the programming languages possess. Based on these two properties, we
defined the programming language Baum. This language imposes minimal
restrictions on static initialisation, thus it can be used to model the static
initialisation procedure of many programming languages.

Our second language is based on Java and thus uses lazy initialisation. For
each language, we presented a modular verification methodology for proving
static class invariants, which are expressed in a specification language that
extends separation logic. Both languages not only allow static initialisers
to establish properties concerning the static fields defined in their class, but
static initialisers and methods can establish properties concerning all static
fields in the program, which was not supported in previous work. Apart
from registering a callback, the methodology for Java covers all the typical
uses of static initialisation that we found before. The methodologies make
the restriction that there are no cyclical dependencies in the program. In
practice, we find this restriction to not be problematic at all, given that, in
our experience, cycles are always indicative of latent bugs. We believe that
both methodologies are sound. A formal proof of soundness is left for future
work.

79

7. Conclusion

In the end, we provided an encoding from an annotated Java program
into Viper. Using this encoding, we implemented some test cases into Viper
and evaluated our approach. All translated examples were verified correctly.

Future work In this thesis, we are only looking at sequential programs.
In the future, we will also consider concurrent programs. For the class
invariants, we used a specification language that extends separation logic,
such that the extension to concurrent programs should be feasible.

In this thesis, we developed a verification methodology for Java, a
language that uses lazy initialisation. In the future, one could extend the
general methodology for the language Baum to a methodology catered to
languages that use eager initialisation.

Another possible direction consists of automating the translation from
an annotated Java program to a Viper program using the translation steps
defined in Section 5.3.

To facilitate the encoding, we introduced the restriction that only static
initialisers can establish OUAT predicates. Moreover, each class can establish
at most one OUAT predicate with respect to a different class. This restriction
can be dropped by introducing a different mapping between the OUAT
predicates and abstract functions in Viper.

A design choice that we made in the methodology was to treat the
open and close instructions and all instructions enclosed by them as a block.
That way, the rule that each open must have a matching close is directly
enforced during type checking. However, one could consider the opening
and closing not as a block but as two separate instructions. The semantics of
these instructions would stay the same. A code example is shown in Listing
7.1. In the example on the left, there are two close A statements, however, A’s
invariant is opened only once. Therefore, they do not form a block. But still,
on each execution path, the open A statement is eventually followed by close
A. This example could not be verified directly by our methodology. However,
on the right, we show how the separate open and close instructions can be
rewritten into a block form. Using open and close as separate instructions
and not as a block makes the check that all opened invariants are eventually
closed less straightforward. It must be checked that, on each execution path,
an open instruction is followed by a corresponding close. This check can
be implemented using obligations [14]. Obligations are separation logic
resources that must be consumed before the end of the program. On open
A, an obligation specific to A is created. This obligation specifies that A’s
invariant must eventually be closed. close A can only be executed if the
obligation corresponding to open A is held, and it consumes this obligation.
As a result, it is not possible to close an invariant twice without opening it in
between, and each open A is eventually followed by a close A.

80

class A {
// inv_A: acc(A.a) && A.a >= 0
// && acc(A.b)

static int a = 0;
static bool b = false;

static int m(int d) {
// open A
if(A.b) {
A.a = d*d;
// close A
return 7;

}
else {
A.a = A.a + d*d;
// close A
return 0;

}
}

}

static int m(int d) {
// open A
int temp = A.b;
if(temp) {
A.a = d*d;

}
else {
A.a = A.a + d*d;

}
// close A

if(temp) {
return 7;

}
else {
return 0;

}
}

Listing 7.1: The code example on the left shows an extension of our methodology, where open A
and close A instructions are used as two separate instructions and not as a block. The code
example on the right shows how the method m() can be rewritten, such that it can be verified in
our methodology.

81

Bibliography

[1] Adoptopenjdk. https://github.com/AdoptOpenJDK/openjdk-jdk11/
tree/master/src/java.base/share/classes/java/lang. Accessed:
2024-02-19.

[2] Ca1810: Initialize reference type static fields inline. https:
//learn.microsoft.com/en-us/dotnet/fundamentals/code-analysis/
quality-rules/ca1810. Accessed: 2024-02-04.

[3] Crate lazy init. https://docs.rs/lazy-init/latest/lazy init/. Ac-
cessed: 2024-02-08.

[4] The go programming language specification. https://go.dev/ref/
spec#Program initialization and execution. Accessed: 2023-09-17.

[5] Initialization - cppreference.com. https://en.cppreference.com/w/cpp/
language/initialization. Accessed: 2024-01-28.

[6] Java api. https://github.com/square/javapoet/issues/637. Accessed:
2024-03-04.

[7] Lazy vals initialization. https://docs.scala-lang.org/scala3/
reference/changed-features/lazy-vals-init.html#. Accessed: 2024-
02-08.

[8] The netty project. https://github.com/netty/netty/issues/5720. Ac-
cessed: 2024-03-04.

[9] The rust reference - static items. https://doc.rust-lang.org/
reference/items/static-items.html. Accessed: 2024-02-08.

[10] Scala 2 bug tracker. https://github.com/scala/bug/issues/7646?
orig=1. Accessed: 2024-03-04.

83

https://github.com/AdoptOpenJDK/openjdk-jdk11/tree/master/src/java.base/share/classes/java/lang
https://github.com/AdoptOpenJDK/openjdk-jdk11/tree/master/src/java.base/share/classes/java/lang
https://learn.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1810
https://learn.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1810
https://learn.microsoft.com/en-us/dotnet/fundamentals/code-analysis/quality-rules/ca1810
https://docs.rs/lazy-init/latest/lazy_init/
https://go.dev/ref/spec#Program_initialization_and_execution
https://go.dev/ref/spec#Program_initialization_and_execution
https://en.cppreference.com/w/cpp/language/initialization
https://en.cppreference.com/w/cpp/language/initialization
https://github.com/square/javapoet/issues/637
https://docs.scala-lang.org/scala3/reference/changed-features/lazy-vals-init.html#
https://docs.scala-lang.org/scala3/reference/changed-features/lazy-vals-init.html#
https://github.com/netty/netty/issues/5720
https://doc.rust-lang.org/reference/items/static-items.html
https://doc.rust-lang.org/reference/items/static-items.html
https://github.com/scala/bug/issues/7646?orig=1
https://github.com/scala/bug/issues/7646?orig=1

Bibliography

[11] Static constructors (c# programming guide). https://learn.microsoft.
com/en-us/dotnet/csharp/programming-guide/classes-and-structs/
static-constructors. Accessed: 2024-02-04.

[12] Static initialization order fiasco. https://en.cppreference.com/w/cpp/
language/siof. Accessed: 2023-09-25.

[13] Egon Börger and Wolfram Schulte. Initialization problems for java?
Softw. Concepts Tools, 19(4):175–178, 2000.

[14] Pontus Boström and Peter Müller. Modular verification of finite blocking
in non-terminating programs. 07 2015.

[15] John Boyland. Checking interference with fractional permissions. In
Radhia Cousot, editor, Static Analysis, pages 55–72, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

[16] Go developers. Go standard library. https://github.com/golang/go/
tree/master/src. Accessed: 2024-03-04.

[17] Patricia Firlejczyk. Verifying static initialisation. https://github.com/
pfirlejczyk/Verifying-static-initialisation. Accessed: 2024-03-05.

[18] Python Software Foundation. The import system. https://docs.python.
org/3/reference/import.html. Accessed: 2024-02-08.

[19] Simon Fritsche, Malte Schwerho, and Peter Müller. Verifying scala’s vals
and lazy vals, 2014.

[20] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, oct 1969.

[21] Robotics Research Lab. Datatypebase.java. https://www.finroc.org/
browser/rrlib serialization-java/rtti/DataTypeBase.java?rev=21.
Accessed: 2024-02-21.

[22] K. Rustan M. Leino and Peter Müller. Modular verification of static class
invariants. In John S. Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki,
editors, FM 2005: Formal Methods, International Symposium of Formal
Methods Europe, Newcastle, UK, July 18-22, 2005, Proceedings, volume 3582
of Lecture Notes in Computer Science, pages 26–42. Springer, 2005.

[23] Fengyun Liu, Ondřej Lhoták, David Hua, and Enze Xing. Initializing
global objects: Time and order. Proceedings of the ACM on Programming
Languages, 7:1310–1337, 10 2023.

84

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/static-constructors
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/static-constructors
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/static-constructors
https://en.cppreference.com/w/cpp/language/siof
https://en.cppreference.com/w/cpp/language/siof
https://github.com/golang/go/tree/master/src
https://github.com/golang/go/tree/master/src
https://github.com/pfirlejczyk/Verifying-static-initialisation
https://github.com/pfirlejczyk/Verifying-static-initialisation
https://docs.python.org/3/reference/import.html
https://docs.python.org/3/reference/import.html
https://www.finroc.org/browser/rrlib_serialization-java/rtti/DataTypeBase.java?rev=21
https://www.finroc.org/browser/rrlib_serialization-java/rtti/DataTypeBase.java?rev=21

Bibliography

[24] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A
verification infrastructure for permission-based reasoning. In Barbara
Jobstmann and K. Rustan M. Leino, editors, Verification, Model Check-
ing, and Abstract Interpretation, pages 41–62, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[25] Oracle. Expressions. https://docs.oracle.com/javase/specs/jls/
se11/html/jls-15.html. Accessed: 2024-03-06.

[26] Oracle. Initialization of classes and interfaces. https://docs.
oracle.com/javase/specs/jls/se8/html/jls-12.html#jls-12.4. Ac-
cessed: 2024-03-06.

[27] Oracle. Initializing fields. https://docs.oracle.com/javase/tutorial/
java/javaOO/initial.html. Accessed: 2024-02-07.

[28] Oracle. Interface concurrentmap<k,v>. https://docs.oracle.com/
javase/8/docs/api/java/util/concurrent/ConcurrentMap.html. Ac-
cessed: 2024-02-16.

[29] Oracle. Java native interface specification. https://docs.oracle.com/
javase/7/docs/technotes/guides/jni/spec/jniTOC.html. Accessed:
2024-02-21.

[30] Oracle. Loading, linking, and initializing. https://docs.oracle.com/
javase/specs/jvms/se8/html/jvms-5.html#jvms-5.5. Accessed: 2024-
02-03.

[31] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In 17th IEEE Symposium on Logic in Computer Science (LICS
2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings, pages 55–74.
IEEE Computer Society, 2002.

[32] Alok Sanghavi. What is formal verification? EE Times Asia, 2010.

[33] Alexander Shvets. Dive Into Design Patterns. Refactoring.Guru, 2018.

[34] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames.
ACM Trans. Program. Lang. Syst., 34(1), may 2012.

[35] Minecraft Developer Team. Minecraft-hack-client-1.8. https:
//github.com/CrxsCode/Minecraft-Hack-Client-1.8/tree/
ea2901180d51806c432d7acd85ecf430f9a6167c. Accessed: 2024-03-
04.

[36] Bill Venners. The lifetime of a type. https://www.artima.com/
insidejvm/ed2/lifetype.html. Accessed: 2023-09-20.

85

https://docs.oracle.com/javase/specs/jls/se11/html/jls-15.html
https://docs.oracle.com/javase/specs/jls/se11/html/jls-15.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-12.html#jls-12.4
https://docs.oracle.com/javase/specs/jls/se8/html/jls-12.html#jls-12.4
https://docs.oracle.com/javase/tutorial/java/javaOO/initial.html
https://docs.oracle.com/javase/tutorial/java/javaOO/initial.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.5
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.5
https://github.com/CrxsCode/Minecraft-Hack-Client-1.8/tree/ea2901180d51806c432d7acd85ecf430f9a6167c
https://github.com/CrxsCode/Minecraft-Hack-Client-1.8/tree/ea2901180d51806c432d7acd85ecf430f9a6167c
https://github.com/CrxsCode/Minecraft-Hack-Client-1.8/tree/ea2901180d51806c432d7acd85ecf430f9a6167c
https://www.artima.com/insidejvm/ed2/lifetype.html
https://www.artima.com/insidejvm/ed2/lifetype.html

Bibliography

[37] ZanXusV. java-design-patterns. https://github.com/ZanXusV/
java-design-patterns/tree/master. Accessed: 2024-03-04.

[38] ETH Zürich. Viper tutorial. https://viper.ethz.ch/tutorial/
#predicates. Accessed: 2024-02-10.

86

https://github.com/ZanXusV/java-design-patterns/tree/master
https://github.com/ZanXusV/java-design-patterns/tree/master
https://viper.ethz.ch/tutorial/#predicates
https://viper.ethz.ch/tutorial/#predicates

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

	Contents
	Introduction
	Background
	Static initialisation in Java
	Characterisation of static initialisers
	Verification
	Viper
	Related work

	Uses of static initialisation
	Characterisation of uses of static initialisation
	Examples

	Basic methodology
	Language
	Syntax
	Semantics

	Specification and Verification

	Methodology for Java
	Language
	Methodology
	Viper encoding

	Evaluation
	Conclusion
	Bibliography

