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Abstract

Static fields, also known as class variables, have long been part of object oriented programming
languages and are widely used in libraries and applications. Especially in the field of unit testing
their reputation of being inherently hard to test precedes them. A recent approach to software
testing is Dynamic Symbolic Ezxecution, a form of white-box testing, to generate test cases by
exploring the method under test automatically. This thesis looks at the results of combining static
fields and Dynamic Symbolic Execution for the concrete case of the Microsoft .NET-Framework
and Pex, an automated testing tool developed by Microsoft Research.

In the core part, the focus is on extending the support for static fields and initializers by Pex.
Additionally analysis approaches for eager initialization and detecting dependencies between types
are introduced. Afterwards the utility of the new analysis features is evaluated on a set of open
source projects and the evaluation concludes by presenting general usage patterns of static fields
and initializers that emerged in the process.

Chapter 1 introduces the basic concepts and gives an overview of Dynamic Symbolic Execution
allowing people without prior experience with Pex to follow the rest of this report. Chapter 2
describes a set of extensions for the testing tool Pex aiming towards the full support for static fields
and initialization. Chapter 3 continues by presenting a newly developed tool for determining the
effectiveness of the extensions while the results of this evaluation are found in Chapter 4. Chapter
5 mentions related work and this report concludes by summarizing the findings in Chapter 6
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Chapter 1

Introduction

1.1 Static Fields and Initializers

Static fields are variables that keep their value for the complete lifetime of a process'. Since
static fields are normal members of a class, they are subject to the same visibility checking as
instance fields. In contrast to an instance field, where every instance can store a different value,
the value of static fields is shared between all instances of the declaring type and all its subtypes.
This property of static fields allows the implementation of classes as seen in Listing 1.1.

class Uniqueld {
static int maximumId;
int instanceld;

public Uniqueld () {
instanceld = ++maximumIld;
}

public Instanceld { get { return instanceld; } }
public static MaximumId { get { return maximumId; } }

}

var a = new UniqueId();

var b = new UniqueId();

Console.WriteLine (a.Instanceld); // Output: 1
Console.WriteLine (b.Instanceld); // Output: 2
Console.WriteLine (UniqueId.MaximumId); // Output: 2
var ¢ = new Uniqueld();

Console.WriteLine (Uniqueld.MaximumId); // Output: 3

Listing 1.1: Class with a static and an instance field

The class Uniqueld assigns a unique numeric identifier to all its instances by keeping a common
counter variable in form of a static field. Each time an new instance is created, the counter is
incremented by one and the new value is copied into the instance field instanceld. Because static

1This is not entirely true for programs that use the CLI, there the lifetime of a static field is limited by the
lifetime of the AppDomain[15]. However, most applications only use a single AppDomain where the lifetime of the
AppDomain is the same as the lifetime of the process.
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members are shared between all instances of a class, no instance must be provided when referring
to a static member. To provide the lexical scope when a static member is referenced outside of a
method of its declaring type, the class name is used.

Most languages initialize the value of a static field to the default value of the respective type
(in case of the example the type is int with a default value of 0). If the initial value of a static
field should be different from its default value, a piece of code must run before the field is accessed
that assigns the correct value first. This piece of code is usually referred to as a type initializer,
static initializer or static constructor. For this thesis static initializer will denote the code that is
executed while static constructor is the name used for the method that contains the static initializer
for a type.

Depending on the language, static fields can be initialized in two ways: inline and by writing
an explicit static constructor. The C# language supports both inline and explicit initializers as
illustrated by Listing 1.2. Inline initializers are simply translated to assignments that are prepended
to the static constructor in declaration order (Listing 1.3). If no static constructor exists, an empty
one will be created in that case. If neither an inline nor an explicit initializer exist, the type will
have no static constructor. While both ways, inline and explicit, are equivalent in assigning a
value to a field, an explicit static constructor changes the semantics of when the declaring type is
initialized. This is discussed in depth in Section 1.2.

class A { class A {
static int Foo = 42; // Inline static int Foo;
// Inline computation static int Bar;
static int Bar = Foo + 10; static int Baz;
static int Baz; static A() {
Foo = 42;
static A() { // Explicit Bar = Foo + 10
Baz = 256; Baz = 256;
} }
} }

Listing 1.2: Static Initializers Listing 1.3: Output produced by compiler

From the compiler transformation seen in Listing 1.3 follows automatically that the finest
granularity in which fields can be initialized is per type. If one field of a type has to be initialized
the runtime calls the static constructor if it exists. In turn the static constructor initializes all the
static fields of its declaring type and returns the control to the runtime.

class A {
public static int Foo = 42;
public static int Bar = 101;

static A() {
Console.WriteLine ("A initialized.");
}
}

Console.WriteLine ("Start");
Console.WriteLine(A.Foo); // The initializer is called before this line.
Console.WriteLine(A.Bar); // A is initialized, only Bar is printed.

Listing 1.4: Static initializer runs only once
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The static initializer of a type is only executed once in the lifetime of the fields that it initializes.
To ensure that, the runtime internally stores a flag for each type that indicates whether is has
been initialized or not. Additionally the access to this flag is locked with a monitor to provide this
behavior even in multi-threaded applications. Therefore the code in Listing 1.4 has the following
lines as output “Start”, “A initialized.”, “42”, “101”.

1.2 Type Initialization Semantics in the CLI

Consider the class definitions in Listings 1.5, 1.6 and 1.7. Despite looking nearly identical the
type initialization semantics of class A is different from the semantics of B and C.

class A { class B { class C {
static int Foo = 42; static int Foo; static int Foo = 42;
} static B() { static C() { }
Foo = 42; }

Listing 1.5: Inline initializer }
} Listing 1.7: Inline initializer with

empty static constructor

Listing 1.6: Explicit initializer

While classes B and C share the default type initialization semantics, class A has BeforeFieldInit
semantics. The exact differences can be found by consulting the ECMA Standard for the Common
Language Infrastructure (CLI)[5, 1.8.9.5 p. 43]:

e Default semantics: The type initializer is executed exactly at the first access to any member
of that type.

e BeforeFieldInit semantics: The type initializer is executed at, or some time before, the
first access to any static field defined for that type.

Noteworthy is, that with the default semantics the type initialization is triggered by an
instruction while the BeforeFieldInit semantics allow the runtime to initialize the type at any point
in time before the first field access making it impossible to predict the location where the static
initializer will run.

To determine the actual characteristics of the CLR? the test program in Listing A.1 was used.
The results can be seen in Table 1.1. The right half of the table is not surprising, since this behavior
is dictated by the standard. The eager initialization of a field in a type with BeforeFieldInit
semantics can be explained by performance reasons. By eagerly initializing the type, the locations
in code where the field is accessed must not be guarded to call the static initializer beforehand
resulting in less and better optimizable code. Looking at the case where a static method of a
BeforeFieldInit type is called, we can see that the initialization behavior has indeed changed
between version 2.0 and 4.0 of the CLR. While version 2.0 initialized the type even if no field was
accessed, the CLR4.0 is now truly lazy by not running the initializer at all if not necessary.

As a consequence of this, applications that run on different implementations of the CLI may
experience a different runtime behavior that can in the worst-case lead to program crashes even if
all implementations adhere to the specification. An example of this can be found in Section 3.5. In
practice however, static fields and initializers are rarely used in a way that makes them susceptible
to these effects.

2The Common Language Runtime (CLR) is the specific implementation of the CLI standard that is used in the
Microsoft .NET Framework
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BeforeFieldInit Default
CLR2.0 CLR4.0 CLR2.0 CLRA4.0
Field
not accessed Eager Eager None None
accessed Eager Eager Lazy Lazy
Method
not called None None None None
called Lazy None Lazy Lazy

Table 1.1: Initialization behavior in release mode

1.3 Dynamic Symbolic Execution

The roots of Dynamic Symbolic Ezxecution lie in a technique called “fuzzing” where the inputs
of a program (e.g. a file or the parameters of a function) are modified randomly or with heuristics
to provoke software errors[l 1, 2, 29]. This is also called “black-box fuzzing” since it does not take
the code of the program being tested into account. Dynamic Symbolic Ezecution uses the same
idea but takes a different approach to generating input values. The code is executed with a set of
concrete values but simultaneously these values and their usage are tracked symbolically, indicating
to the testing tool how to change the values to provoke different execution paths in the code under
test.

As a concrete example consider Listing 1.8. Assume the first execution uses parameter values a
= 0; b = 0;. Thetesta > 10 will return false and the method returns. The symbolic execution
engine observes all branch conditions and generates a path condition that constrains the input
values, so that for all input values that satisfy the constraint the same execution path will be taken.
For our concrete example the path condition for the first run is a < 10.

In order to explore more parts of the method, the path condition is modified (normally the last
conjunction is inverted) and by using a constraint solver, new values for the inputs are found. In
our example the new path condition would be a > 10 and we assume that the constraint solver
returns @ = 11. b is not modified and still uses its start value of 0. For the next run, the first test
holds and the then branch is executed, containing a second condition. The second condition will
evaluate to false for this run and the method returns. The symbolic execution engine provides
the new path condition a > 10 A b < a * 2. We invert the last part of the path condition resulting
ina > 10Ab > a* 2 for which the constraint solver returns the values a = 11; b = 23;. We run
the method with this input and the exception is thrown.

void Test(int a, int b){
if (a > 10) {
if (b > ax2)
throw new Exception("Unexpected Error");

Listing 1.8: Example code for Dynamic Symbolic Execution

Using this technique, the testing tool tries to maximize branch coverage and find input values
for which the method behaves unexpectedly.
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Listing 1.9 contains the basic algorithm in pseudo-code. solve runs the constraint solver to
find concrete values that satisfy the given condition. execute runs the method under test with
the given input values and returns the path condition that was generated in this run.

void explore (IEnumerable <Term> pathCondition) {
values = solve(pathCondition);
if (pathCondition is satisfiable) {
newPathCondition = execute(values);
for(int i = |pathCondition|; i <= |newPathCondition|; i++) {
var prefix = newPathCondition[l..i];
prefix[i] = —prefix[i];
explore(prefix);

Listing 1.9: Dynamic Symbolic Execution Algorithm (Pseudo-Code)
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Chapter 2

Core Analysis

2.1 Introduction

The default behavior of Pex provides very little support for testing static fields and initializers.
The root cause is that Pex does not control the type initialization manually. Therefore the static
initializers will run only once for an entire test suite and the timing of the initialization is left
to the CLR. This introduces a conflict with the requirement of the dynamic symbolic execution
engine to be able to run a piece of code multiple times. As a result the instrumentation of type
initialization code would not provide any meaningful data but in some cases even lead to wrong
results. To avoid this problem, Pex does not instrument type initialization code by default making
it invisible for the dynamic symbolic execution engine. The only option that Pex currently provides
to deal with type initialization code is to ignore it completely (i.e. never execute it), which is also
not a satisfactory solution.

A second major problem area is found when combining the current handling of type initialization
with static fields. Pex currently treats the contents of static fields before a test runs as literal values.
They are not considered as input and therefore cannot be part of the symbolic path condition.
Additionally, static fields keep their values between test runs making the behavior of the test
method dependent on the order the test methods are run as well as the order that Pex exercises
the different execution paths. The effects of this are undesirable resulting in low branch coverage
or, in a worst-case, the generation of invalid tests.

The objective of the core part is to extend the Pex default behavior, take type initializers and
static fields into account and to provide solutions for the concrete problems described in the next
section.

2.2 Problem Statement

The decision not to interfere with the type initialization behavior and its consequences lead
to a number of scenarios where the outcome of a test suite is non-deterministic, bugs are missed
completely or in the worst case wrong tests are generated by Pex. The following paragraphs
illustrate the previously described problems with concrete examples.

e Initialization order matters. The code in Listing 2.1 illustrates the case where the
outcome of the test suite depends on the order in which Pex runs the two test methods. There

7
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are of course more compact ways to provoke this error, however the code for this example is
taken from a real-world project and then simplified.

class SerializerRegistry {
public static readonly Dictionary <Type, ISerializer> Serializers = new
Dictionary <Type, ISerializer >();
}

class PrimitiveTypeSerializers {
static PrimitiveTypeSerializers () {
SerializerRegistry.Serializers[typeof(int)] = new Int32Serializer();
}

public static ISerializer Int32Serializer {
get { return SerializerRegistry.Serializers|[typeof(int)]; }
}
VA Y
}

class MyCustomType {
static MyCustomType {

SerializerRegistry.Serializers|[typeof (MyCustomType)] = new
MyCustomTypeSerializer (SerializerRegistry.Serializers[typeof (int)
1)

}
public static ISerializer MyCustomTypeSerializer {
get { return SerializerRegistry.Serializers]|[typeof (MyCustomType)l]; }
}
VA Y
}

[PexClass ]
class Tests {
[ PexMethod]
public void TestIntSerializer () {
var s = PrimitiveTypeSerializers.Int32Serializer;
/* oo */
}

[ PexMethod]
public void TestMyCustomSerializer () {
var s = MyCustomType.MyCustomTypeSerializer;
/x oo */
}
}

Listing 2.1: Example where initialization order matters

We look at two possible cases:

1. If Pex decides to run the TestIntSerializer test first, the initializer of the type
PrimitiveTypeSerializers will run adding the serializer for the type int to the
SerializerRegistry.Serializers. When later the TestMyCustomSerializer meth-
ods runs, the static initializer of MyCustomType finds the serializer for int in the
dictionary and all tests pass.

2. In the case where the tests are executed in the reverse order (TestMyCustomSerializer
runs first), the lookup for the type int in the static initializers of MyCustomType will
fail.
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If the second test fails, the underlying cause of the problem is revealed: While semantically the
class MyCustomType depends on the class PrimitiveTypeSerializers this is not expressed
directly in the code. Depending on the test execution order, this dependency is resolved in
the correct way (first case) or not (second case). If this code went out into production the
occurrence of this bug could depend on user input, making this a hard error to find.

e Static fields are not considered input. The contents of static fields is not considered
input to a test method like argument values and instance fields are. As a consequence static
fields are not part of the path condition and therefore no automatic values will be generated.
This can lead to very low branch coverage and essentially false negatives as the Listing 2.2
shows. Even though the condition is easily flipped, Pex does not attempt it because Active is
a static field.

[ PexClass]
class GuardedMethod {
public static bool Active = false;

[ PexMethod]
public static void Test () {
if (Active)
PexAssert.IsTrue (false);
}
}

Listing 2.2: False negative by guarding a method with a static field

e Retaining state between test runs with static fields. The possibility to keep state
between test runs has multiple disadvantageous effects. One case where this plays a role
was the first example in this list. Another effect that can be triggered is the generation of
invalid test cases as seen in the Listing 2.3. The root cause is the assumption of the dynamic
symbolic execution engine that running a method twice with the same input will result in the
same execution path. This is based on the premise that, when running deterministic code
from the same state twice it will result in the same end state. This premise is violated by
not considering the static fields as part of the state and therefore not being able to run the
method from exactly the same state (i.e. there exists a subset of state information that is
invisible to the dynamic symbolic execution engine). By exploiting the former assumption
Pex can be tricked into generating an invalid test case. In the example, Pex assumes that
the exception was caused by the modified parameter values. Looking at the method we can
see that the exception and the parameter are completely unrelated, but the exception was
indeed caused by the part of the state information that is not visible to Pex.

As a note, Pex will emit a warning for this example that a static field has been modified,
hinting that the outcome of the test might not be correct. However the possibility to generate
a correct test case would still be desirable.
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[ PexClass ]
class StatePreservation {
static int x = 0;

[ TestMethod]

[ PexGeneratedBy ( typeof (
StatePreservation))]

[ PexRaisedException (typeof (

[ PexMethod] Exception))]
public static void Test (bool arg public void TestThrowsException948
) { ()
X++; {
if (x = 2) StatePreservation.Test (

throw new Exception();

PexSafeHelpers . ByteToBoolean

((byte)2));

Listing 2.4: Generated testcase

if (arg)
{ /*

*/ }

Listing 2.3: Example that provokes a wrong test to
be generated

S}
-

From the introduction and the examples the problem statement can be summarized by the
following subproblems:

1. Multiple type initialization orders should be exercised.

2. Static fields should be considered part of the input, part of the path condition and automatic
value generation process.

3. The static initialization code should be a normal part of a test run. Particularly, this requires
the ability to execute a static initializer multiple times.

4. Tt should not be possible to keep state between test runs. The contents of static fields should
be considered part of the state and be properly reset between runs.

2.3 Approach

To consider all type initializers and static fields in the application domain is not feasible and
also not beneficial because only a very limited subset of types and static fields will be used for
a specific test method. Therefore a way of detecting the set of type initializers that potentially
run and static fields that may be accessed had to be found. A naive, static algorithm that would
have been based on analysis of the IL instructions was considered but dismissed because of its
inaccuracy. The static analysis would have to be over-approximating and therefore include all
potential callees in case of dynamic dispatching. This would yield too large result sets that could
not have been handled.

The taken approach uses the dynamic symbolic execution engine that Pex already provides to
dynamically discover types and fields while Pex is trying to maximize branch coverage. Using this
algorithm the discovered sets are very accurate but because of the mere number of types and static
fields in the BCL! still to large. As a solution the user can provide inclusion and exclusion rules
based on the name and namespace of a class for a specific test. The default settings are to include
all types and fields except from the ones in the System namespace. The evaluation has shown
that this default is sufficient for nearly all evaluated projects. The justification for excluding the

IThe BCL (Base Class Library) is the collection of libraries that is installed by default when the .NET Framework
is available on a computer
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System namespace can be found in the fact that the BCL is not the code under test and we can
assume it to be correct. Along with the in-/exclusion of types and fields, the additional analysis
can be disabled on a per-method basis or restricted to only simulating the static initializers but
not generating values for static fields.

As the number of possible permutations to run the static initializers grows exponentially it is
again not feasible to do an exhaustive enumeration of all possible initialization orders. The tool
will try to find initialization orders that include the minimal and the maximal numbers of types
that need/can be initialized for a certain execution path to be taken. In particular it exercises the
test under the condition that none and all of the potentially involved types are initialized.

Listing 2.5 describes the algorithm used by our approach to find all the type initializers and
static fields involved in the execution of a method and the different orders in which to run the
static initializers in pseudo-code. The approach uses a fix-point algorithm that stops when no new
types (and therefore no new fields) can be detected anymore. The lines marked with x can be
ignored for now, their importance is explained in Section 3.6.

todo = {{}}

done {}

typesToModifyFields = {}

x swapList = [initialized from attribute]

do

{
types = pickAndRemove (todo)

foreach (type in types)
{

runInitializer (type)

if (type in typesToModifyFields)
setGeneratedValuesForStaticFields (type)

typesToModifyFields += type
}

newlyDetectedTypes = run()

for (newType in newlyDetectedTypes)
todo += { types + { newType } }

foreach ((first, second) in swaplList)
{
foreach(seq in [duplicate of todo])

{
if (seq.Contains(first) && seq.Contains (second))
todo += [seq with the position of first and second swapped]

* X K X ¥ X ¥ X

}

done += todo
} while [done or typesToModifyFields changed in this iteration]

Listing 2.5: Pseudo-code for detecting all fields and exercising different initialization orders




12 2 Core Analysis

The method runInitializer resets the contents of the static fields of the given type to
their respective default values and subsequently calls the static constructor if it exists. The
setGeneratedValuesForStaticFields requests values for the fields in the given type from the
value provider that is also used to find values for method arguments and assigns the values to the
fields. The main activity is inside the run method where Pex completes one concrete execution
of the method under test and as a result returns the newly detected types that were used by the
method. {} is an empty ordered set and the + operator the union of two sets where the new
elements of the right hand set are appended to a copy of the left hand set.

2.4 Implementation

This section explains the concrete implementation details for the subproblems described at the
end of Section 2.3.

The solution for subproblem 1 is less of an implementation problem and more a conceptual one
of finding a good way to prune the huge space of possible initialization orders. This was already
discussed in Section 2.3.

The implementation of subproblem 2 relies heavily on the value finding algorithm that Pex
already provides. The value finder allows to register Additional Root Symbols that can be part of the
path condition and the value finding process. For each detected static field a Root Symbol is added
and symbolically assigned to the respective field before the test runs. Additional modifications
were not necessary.

The technically most challenging part was subproblem 3 that requires to ability to replace
the type initialization, a task that normally the runtime system performs, with our custom
implementation. Replacing the default type initialization implementation consists of three tasks:
(1) Intercepting the execution when a type initialization is necessary, (2) then running the static
initializer at that moment, (3) and preventing the default implementation of doing the same.

The idea how to run the initialization code at the correct points in the test method is straight
forward: We intercept the execution before a type is potentially initialized and keep an internal
table with which types are initialized. If we decide after a lookup in this table that an initialization
is necessary we call the static constructor with active instrumentation. The initialization is then
a normal method call and Pex takes the path condition generated by the static constructor into
account. Two problems arose when we implemented this: First, Pex does not instrument the static
constructors by default. However, this can be changed by modifying a flag that is passed to the
instrumentation engine. Second, normal callbacks cannot be used for that purpose (i.e. before a
static field is loaded) because they do not provide a way to inject the call to the static constructor.
Inside the callback the instrumentation is disabled, so we need to leave the callback before calling
the static initializers. The solution was to modify the generated instrumentation code to insert a
new type of callback that is invoked before a type is potentially initialized and allows to inject an
instrumented method call. The Listings 2.6 and 2.7 illustrate how the methods are instrumented
with the new callback:
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public class Foo [ PexClass]
{ public class Bar()
public static Foo StaticField; {
[ PexMethod]
public static void StaticMethod ( public static void Baz()
Foo f) { } {
public void InstanceMethod () { } ITypeInitializer i;
}
i = Beforelnit (typeof(Foo));
[PexClass] if (i !'= null)
public class Bar i.Run();
{
[ PexMethod] Foo f = Foo.StaticField;
public static void Baz() f. InstanceMethod () ;
{
Foo f = Foo.StaticField; i = Beforelnit (typeof(Foo));
f.InstanceMethod () ; if (i !'= null)
Foo.StaticMethod (f); i.Run();
} Foo.StaticMethod (f);
} }

Listing 2.7: Rewritten method

Listing 2.6: Marking a type as initialized

The static constructor is a normal method with the following restrictions: The name must be
“.cctor” with the “specialname” flag set, have zero parameters and no return value. [5, 11.10.5.3 p. 151].
The C# language does not provide a syntax to call the static constructor manually. However by
using the DynamicMethod[20] class it is possible to emit IL code at runtime to call the static
constructor. In contrast to the normal MethodBuilder, the DynamicMethod class allows us to
circumvent the visibility checks, which is required because static constructors created by the C+#
compiler are always private. Listing 2.8 shows the method that creates a delegate for invoking
the static constructor of a type:

public static Action GetCctorDelegate(Type type)
{

Contract.Requires (type != null);

if (type.Typelnitializer != null)

{

var dynamicMethod = new DynamicMethod ("[Type Initialization]", typeof(
void), Type.EmptyTypes, type.Module, true);

var il = dynamicMethod . GetILGenerator () ;

il.Emit (OpCodes.Call, type.Typelnitializer);

il.Emit (OpCodes .Ret);

return (Action)dynamicMethod . CreateDelegate (typeof (Action));
}

else
return new Action (() => {});
}

Listing 2.8: Method for creating a delegate for a static constructor

To fully control the times when a static constructor is called, a way to prevent the CLI from
calling it had to be found. The implemented solution inserts an additional instrumentation callback
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that allows to skip the body of a static constructor as described by Listing 2.10. If the CLI
initializes the type while it is in the SkipInitializerList, no real action is performed but the
CLR-~internal flag that the type is initialized will still be set. However, the skipping mechanism
cannot distinguish a call from the runtime and a manual call which should really execute the body
of the static constructor. The solution is to manually trigger the initialization of the type (and
therefore prevent the CLI from calling the static constructor ever again later) while skipping is
active and then remove the skipping flag so that manual calls become possible. The initialization
is triggered by calling the static constructor manually as shown in Listing 2.9. The single call
instruction to the static constructor may result in two actual calls: The first call by the runtime
to initialize the type and second because we called the static constructor manually. However,
both times the body of the static constructor is skipped and from this point in time the runtime
considers the type to be initialized and does not automatically call its initializer anymore. The
type is then removed from the internal list to allow manual calls.

public static Action class RewrittenCctor
MarkTypeAsInitialized (Type type) {

{ static RewrittenCctor ()
Contract.Requires (type != null);
SkipInitializerList.Add (type); if (SkipInitializerList.Contains
Action cctor = GetCctorDelegate ( (typeof (RewrittenCctor)))

type); return;

cctor();
SkipInitializerList.Remove (type); /* Code of the original static

} initializer is inserted here x/

}

Listing 2.9: Marking a type as initialized }

Listing 2.10: Rewritten static constructor

A limitation of this approach is that if the type has BeforeFieldInit semantics, it can be
initialized at any point before its first use, so we cannot be certain that the static initializer did not
already run. The changes to the type initialization behavior in version 4.0 of the CLR alleviates the
problem but does not completely remove it because direct field accesses still use eager initialization.

To solve subproblem 4 again the DynamicMethod class was used. The Listing 2.11 shows
how to implement a method that resets the static fields of a type to their default value. The
approach is straight forward: Using reflection the list of static fields of a type is enumerated. A
DynamicMethod is created that, for each field, assigns the return value of the helper method
Default<T> to the field. The Default<T> method is generically instantiated with the type of
the field value. The helper method simply returns the default value for the generic parameter T.
Using the helper method simplifies the generated IL because generating the default value of a type
depends on if the type is a value or reference type. However assigning the return value of a method
is uniform for all types.
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public static Action GetTypeResetMethod (Type type)
{
Contract.Requires (type != null);
DynamicMethod dynamicMethod = new DynamicMethod ("ResetStaticFields", typeof
(void), Type.EmptyTypes, Type.Module, true);
var il = dynamicMethod.GetILGenerator () ;
var defaultMethod = typeof(InitializerService).GetMethod ("Default",
BindingFlags.Static | BindingFlags.NonPublic);

foreach (var field in type.GetFields (BindingFlags.Static | BindingFlags.
Public | BindingFlags .NonPublic))

{
if (!field.IsLiteral)
il.EmitCall (OpCodes.Call, defaultMethod.MakeGenericMethod (field.
FieldType), null);
il.Emit (OpCodes .Stsfld, field);
}
}

il.Emit (OpCodes .Ret);

return (Action)dynamicMethod . CreateDelegate (typeof (Action));
}

private static T Default <T>() {
return default(T);
}

Listing 2.11: Method for creating a method that resets the static fields of a type

2.5 Compatibility with existing test suites

A possible manual solution to test static fields is to use a test setup and cleanup method. The
setup method would initialize the static fields to a specific state and the cleanup method can ensure
that no state information is leaked between test runs. If one would use this technique together
with the extension presented in this chapter, by default, it would overwrite the manually prepared
values of the static fields and the test might stop working. To prevent this a compatibility mode
has been included that disables the automatic type initialization and value generation for the fields
that are being set up manually. Additionally it detects if the setup and cleanup method do not
completely prevent the keeping of state between test runs and reports a warning. The Listing 2.12
illustrates this.

This test class uses a test initializer that sets the value of i to 10 and thus prevents the exception
in the Test method. Without the compatibility mode, the extension would simply replace the
contents of 1 and Pex would find a way to raise the exception, therefore signaling a false positive.
However, the current setup also keeps the value of the j field over multiple test runs. This is
detected by the extension and a warning for j is reported. By adding the cleanup method from
Listing 2.13 the problem is fixed and the warning disappears. The set of fields that possibly keep
state between two test runs Fp .. is calculated using the formula:

Freak = ( U StaticFieldsOnype(t)) N Frest \ Foieanup

t€Tnit



16 2 Core Analysis

where T+ is the set of types which are potentially initialized by the TestInitialize method,
Frest the set of fields modified by the test method itself and Fjeanup the fields modified by the
TestCleanup method.

[ PexClass] [TestCleanup]
[TestClass] public void Cleanup ()
public class ManualSetupCleanup { {
[TestInitialize] Foo.j = 0;
public void Initialize() { }
Foo.i = 10;
)
[ PexMethod]

public void Test() {
if (Foo.i != 10)
throw new Exception();

Foo.j++;

}

private class Foo {
internal static int i;
internal static int j;

}

Listing 2.12: Manual test setup and missing cleanup
method

2.6 Limitations

In the process of reinitializing a class only managed resources are taken into consideration. If the
static constructor allocates unmanaged resources (e.g. an unmanaged memory buffer) the handle
to this buffer will be lost in the reset process and a new buffer is allocated when the initializer
runs again. Because this operation is potentially repeated several times the process may run out of
resources. A possible solution is to wrap the unmanaged resource in a managed object with the
corresponding finalizer that will release the resource when the object is garbage collected.

The CLR gives strong guarantees about the thread-safety of static initializers in multi-threaded
applications. If a test starts multiple threads the correctness of the results cannot be guaranteed
anymore.

Finally, the simulated initialization behavior of BeforeFieldInit classes, while still being inside
of the specification boundaries, differs from behavior of CLR2.0 and CLR4.0. The CLR initializes
BeforeFieldInit types eagerly during JIT compilation, however the simulation is always lazy. The
parts of the code that are dependent on implementation details of the runtime can be detected by
the analysis introduced in Section 3.5 and subsequently fixed.



Chapter 3

Enhanced Analysis

3.1 Overview

The extension presented in Chapter 2 allows the use of Pex to find bugs related to type
initialization and static fields. However, the technique used by Pex does not allow checking large
codebases to determine if the new additions would allow to find more bugs in real world code. The
focus of Pex lies on detailed analysis of a small number of methods and is therefore too slow and
expensive in terms of resources to run it for example on all methods in a project. Additionally it
is not possible to gather statistical information about the usage and frequency of occurrence of
static initializers and static fields. To find answers to these questions Chapter 3 introduces a tool
that uses a fast, coarse-grained analysis to find methods where the newly developed extensions for
Pex are expected to make a difference and collect statistical information about the usage static
intializers and fields.

This chapter first describes the approach and implementation that is common for all kinds of
analyses and then discusses the specifics of each analysis separately.

3.2 General Approach

As a first step towards designing such a tool, the fundamental decision on the type of input
format over which the analysis will be performed had to be made. We chose to do our analysis on
the IL level as opposed to directly on the source code because this allowed us to focus more on the
analysis aspect and leave the parsing etc. to the compiler. To open and read the assembly files
the open-source project Mono.Cecil[7] was chosen over the ExtendedReflection module that Pex
uses because of its intuitive and comprehensive API and to avoid dependencies to proprietary code.
As a result of this decision process the tool takes a list of CIL assemblies as input and generates
the output by statically analysing the IL code in the input assemblies. We denote a set of input
assemblies as the Analysis Context. The Analysis Context must be self-contained, i.e. contain all
referenced assemblies and therefore almost always the core assemblies of the BCL.

To simplify the evaluation process of the Pex extensions, the first task was to find methods
inside the Analysis Context that would benefit from the newly added extension. An initial naive
approach was to search the body of all methods for instructions that read and write static fields.
While this method is simple and fast, there are strong disadvantages in terms of accuracy and
detail. This naive analysis returns only a single boolean value per method and there is no indication
about the usage of the static fields. Since this kind of analysis could not be improved to provide
more detail, a more elaborate approach was chosen next.

17
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The new approach is to use a static symbolic execution engine. The symbolic execution trace can
easily provide the list of read/write effects on static fields as well as their usage in form of symbolic
expressions. Additionally it allows inter-procedural analysis and works in the presence of simple
pointer operations, which occur in verifiable managed code when using ref and out parameters.
The static symbolic execution is still fast enough and fits well with the kind of information that we
wanted to gather, therefore this is also the approach in the final version of the tool.

3.3 Implementation

The basis for all the analyses that are performed by the tool is the symbolic execution trace of a
method. The symbolic execution trace is the result of symbolically executing the CIL instructions
of a method, simulating the execution stack, local variables, argument values etc. Concretely the
output is a control flow graph where the vertices are basic code blocks (i.e. sequences of instructions
that will never be interrupted with the exclusion of exceptions) and the edges are transitions between
these blocks annotated with a condition that states under which circumstances the transition can
be taken. The basic blocks consist of symbolic instructions that are higher-level than CIL but
lower-level than C#. The symbolic instructions are in turn built of symbolic expressions (Terms).

The symbolic execution trace is built by interpreting the CIL instructions. To track the values
that the instructions can reference, a state object is used that contains symbolic representations of
the values of the evaluation stack, local variables, arguments, path condition, exception state etc.
The single instructions are combined into increasingly complex expression trees and finally into
symbolic instructions that look similar to C# code. The interpretation works block wise: Each
basic block has a start state, which is then transformed by applying the CIL instructions. If an
instruction has more than one possible result state (e.g. branch) the final state for the basic block
is stored and the process restarts for all the target basic blocks.

If a basic block has multiple entry transitions, consequently it has multiple start states. These
states are then merged into a single new start state for the basic block. If an expression has
different values in the two entering states, these values are combined into a multi value term. The
semantics of a multi value term is that it represents an arbitrary but fixed value out of a set of
possible values. This approach deliberately loses information' when combining multiple values,
but by doing that circumvents the exponential state space explosion when code contains many
branches. To avoid infinite simulation when interpreting loops, the state is only recalculated once
for every entry transition on the basic block.

A shortcoming of this approach is that inter-procedural analysis is not provided by the symbolic
execution engine but must be handled by each subsequent analysis separately. A limitation specific
to this implementation is that complex constructs like arrays or object instances are not simulated
symbolically by the engine to reduce complexity and increase speed. However since the main focus
is on static fields, the analysis results are rarely affected by this. Futhermore some instructions
and prefixes (tailcall, TypedReference, unsafe code) are not supported by the engine. However,
these features are unused by the current C# compiler (tailcall), only used by mscorlib (a hidden
C+# language feature: TypedReference) or not very common (unsafe code).

Listing 3.1 contains a C# version of the classical iterative Euclidean algorithm to compute the
greatest common divisor and Figure 3.1 a visualization of the symbolic execution trace.

1As an example: If two variables a and b contain a = 1 and b = 2 in one input state and @ = 3 and b = 4 in
another input state, combinations like a = 1 and b = 4 are not possible, however the model does not reflect this.
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Listing 3.1: Classical Euclidean Algorithm (iterative)

Figure 3.1: Graphical visualization of the Sym-
bolic Execution Trace

3.4 Finding methods for the evaluation

The first objective of the tool was to generate a list of methods that would be suitable for
evaluating the extensions for Pex developed in Chapter 2. The taken approach assigns a score to
each method based on the information that can be retrieved from the symbolic execution trace.
The score is a number that indicates the likeliness of there being a bug related to static fields in a
method. The output of the analysis is a list of methods, ordered by the score, on which then Pex
can be applied for evaluation purposes. To keep the number of methods feasible minimal score
threshold can be specified.

The assignment of a method score is done in two steps. In the vulnerability analysis the body of
a method is inspected for usages of static fields that can result in unexpected exception or assertion
errors. The second step, internally referred to as accessibility analysis determines whether the
static fields that have a potential error are modifiable from the public API to reduce the number of
false positives.

3.4.1 Vulnerability analysis

The vulnerability analysis is carried out by scanning the symbolic execution trace of a method
for expressions that could result in a runtime exception if the code were executed. The following
types of expressions are considered in the scan:

e Dereferences because of their potential for a NullReferenceException.

The arguments in calls to the assertion methods Debug.Assert, Contract.Assert, Contract.Ensures,
Contract.Invariant, Contract.Requires (only for nested method calls)

In case of a throw instruction, the path condition.

e Expressions that could result in one of the exceptions that are thrown by the execution engine
like DivisionByZero, ArithmeticException, OverflowException

Each of the matching expressions is searched for static field references to determine if a static
field could be the cause of the potential exception. For each occurrence of a static field reference
in an expression a Vulnerability is reported. A Vulnerability is defined as a triple consisting of
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the instruction that potentially fails, the static field that is responsible for the failure and a score
between 0 and 100 that describes how close the relation between the field and the potential failure
is. The score is calculated as the inverse of the depth of the static field reference in the offending
expression and then scaled to a value between 0 and 100. This is based on the observation that in
general the influence of an subexpression to the total result decreases with its nesting level.

The list of vulnerabilities is generated on a per method basis. However direct and indirect
callees of the method are taken into account when running the analysis. As an example, if a static
field is used as an argument to a method and the callee does a null check on its parameter, this
is reported as a potential vulnerability. An exception from this are calls into mscorlib.dll and
System.dll where only the direct callee is taken into account, but nested calls are ignored. This
is done to avoid the great number of non-analysable methods in the internals of these libraries
and to improve performance. The impact of this limitation is relatively small because most of the
public methods immediately validate their arguments before passing them on to internal methods.
Combined with the fact that not the BCL but the project itself should be tested puts the effects of
this limitation in perspective. A second limitation are recursive calls, which are ignored by the
vulnerability analysis to avoid infinite recursion.

3.4.2 Accessibility analysis

The vulnerability analysis yields many false positives, because all static fields are treated equally,
even if they are private or only written once. To account for this, a per field-analysis is performed
to determine how easy or difficult it is to modify a static field from the public API. This idea is
based on the observation that most of the time the public API of a software component is tested,
not the internals and therefore reduces the number of false positives.

The result of the analysis is a score between 0 and 100 that describes how accessible the field is
from the public API where 0 indicates that no way to change the field was found and 100 that the
field is directly writeable because it is public or there exists an accessor method for it (e.g. property
setter). Other values indicate that the value cannot be directly set but somehow be influenced by
using methods from the public API.

The score is determined by inspecting all write effects that were found on this static field. For
each write effect a score is determined that expresses the accessibility of the field through that
write effect. The maximum score across all write effects is then used as the accessibility score of
the field.

3.4.3 Method score calculation

After the results of both the vulnerability and accessibility analysis are available, each method
receives a score between 0 and 100 where 0 means that the analysis could not find a way to provoke
an exception using static fields in a method and 100 that there exists the possibility to provoke
an exception by writing certain values into static fields before calling the method. Other values
express the certainty of there being a potential bug.

The score is calculated by multiplying the score of each vulnerability with the accessibility score
of the offending field, normalizing the values again to a range between 0 and 100 and taking the
maximum.

score(v) * score(field(v))
4 Methods. =
m € Methods. score(m) Ue{g%ﬁm) 10000

Using this formula the method receives the score of the most exploitable vulnerability scaled
with accessibility score of the static field that is required for exploiting the vulnerability.
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3.5 Testing the effects of eager initialization

As stated in Section 1.2 the location where a static initializer is run in case of eager initialization
cannot be predicted. As a result, the initialization behavior of the type initializer system developed
in Chapter 2 is different from the normal behavior. Hence, static initializers might run at different
points during testing and production or even depend on the version of the CLR.

Consider the code in Listing 3.2. Running the test method once will work on the CLR 2.0 and
4.0, however always fail when running under Pex with the extensions. When the Test method
is called running on the CLR it will set i to 0. To execute the call to the Trigger method, the
JIT compiler first has to translate it. Since the field j is referenced in that method and Foo
has BeforeFieldInit semantics the runtime will eagerly initialize Foo which results in i being
incremented. The condition in the if statement evaluates to false, leaving the field j unchanged.
The assertion holds because the JIT compilation of Trigger eagerly initialized type Foo. A second
call to Test will fail because Foo can only be initialized once. The Pex type initializer however is
truly lazy in all cases, because it is unaware of the JIT process. Since the field j is never actually
accessed, Foo would never be initialized and the assertion always fails. The code in Listing 3.3
works on CLR 2.0 but the assertion fails under CLR 4.0 or Pex.

public static class Eager { public class Clr20vs40 {
static int 1i; static int 1i;
public static void Test() { public static void Test() {
i=0; i=0;
Trigger(); Foo.Greet () ;
Debug.Assert (i = 1); Trace.Assert (i = 1);
} }
static void Trigger () { static class Foo {
if (i == 1000) static int j = i++;
Foo.j++; public static void Greet () {
} Console.WriteLine ("Hi!");
}
static class Foo { }
public static int j = i++; }
}

} Listing 3.3: Lazy or truly lazy?

Listing 3.2: Eager initialization in the CLR

Bugs of this kind are very hard to find because they depend on the runtime and build
configuration. Because the initialization behavior and performance are related, these differences
can only be detected when running in release mode when its already to late. To determine whether
real-world projects are susceptible to these bugs, the existing analysis tool was extended to cover
this problem area.

Listing 3.4 shows the sample that will be used to explain the approach and implementation of
the eager initialization effect analysis. In the example the assertion will fail if the static initializer
runs between the assignment of 0 to i and the call to Trace.Assert. Note that it is never the case
if the code was run on the CLR 2.0, 4.0 or Pex but the assertion is breakable in theory according
to the specification.
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public class EagerInitialization {
static int i;

public static int Test() {
i=0; // If Foo is initialized after this line
Trace.Assert (i == 0); // this assertion fails.
return Foo.j; // The reference to Foo.j is required to have a connection
between the Test method and class Foo

}

static class Foo {
public static int j = i++;

}

Listing 3.4: Eager initialization example used as illustration

3.5.1 Approach

The basic concept to detect eager initialization effects is to find the instructions in a method,
where the outcome of the method differs if a static initializer runs before or after the instruction.
A naive approach would be to generate two test cases for each instruction and each type with
BeforeFieldInit semantics in the AppDomain. In first test case the initializer would run before and
in the second after the instruction. While this brute-force technique is simple to implement, the
number of test cases would be far from realistic even for short methods. In order to reduce the
number of test cases, both the list of instructions and types must be shortened drastically.

The idea is to build a list of critical points where a critical point is defined as a triple of an
instruction 4, a field f and a type ¢t. A critical point is evidence that the field f is accessed by both,
the instruction ¢ and the static initializer of ¢ in a conflicting way (i.e. at least one of them writes
to the field). Each critical point describes the potential for a different outcome based on the order
in which instruction ¢ and the static initializer of ¢ are executed.

The approach to shorten the list of types to consider is based on the assumption that the
runtime will not eagerly initialize arbitrary types that are completely unrelated to the method, but
only types that the method would potentially initialize anyway. Therefore the set of types that
needs to be considered (prospect(i)) for an instruction i is the set of types that are potentially
initialized by the method minus the set of types that must have been initialized to reach the
instruction 4. Formally expressed:

Let T be the set of all types in the AppDomain, m the sequence of instructions of the method
being analyzed and E the set of all finite execution paths in method m where an execution path is
a sequence of instructions. We define the set force(i) to contain all types that must have been
initialized after instruction ¢ has been executed:

Viem,t €T :t € force(i) < Instruction ¢ forces the initialization type ¢

Now we define inity(e) which contains the types that must have been initialized after executing
k instructions in execution path e recursively over the number of steps:

Ve € E,inity(e) := &

Ve € E,0 < k < |e| : initg(e) := inity_1(e) U force(if,)

where 47 is the kth instruction in execution path e.
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Based on this we define init(i) to be the set of types that must have been initialized on every
path that reaches instruction i:

Vi e m :init(i) := N inity(e)
Ve€ E,keN:if =i

To get the set init(m) of all types that are potentially initialized by a method we build the
union over the types that must be initialized to reach an arbitrary instruction in m

init(m) := | init(i)

iEm
And finally we can define the set of prospect types for an instruction ¢ as

Vi € m.prospect(i) = (init(m) \ init(i)) U force(i)

For each instruction 4 that reads a static field f, we calculate the union of all write effects of
the static initializers of the types in prospect(i). For each write effect of type t to field f, add a
critical point(i, f,t) to the list. For each instruction i that writes static field f, calculate the union
of all read and write effects of the static initializers of the types in prospect(i). Again add for each
read or write effect of type ¢ to field f, critical point(i, f,t) to the list.

A limitation of this approach is that the analysis only takes accesses to static fields into account.
However, because of aliasing other instructions could be critical as well and those are currently
missed by the tool. Trying to solve this problem would increase the complexity drastically, especially
when considering access paths that include multiple indirections.

3.5.2 Implementation

The list of critical points is generated according to the definition given in Subsection 3.5.1.
Using an IL rewriter, markers are inserted into the code before and after each critical instruction for
each critical type. Listing 3.5.2 shows the rewritten method after the markers have been inserted.

public static int Test() {
Critical (typeof (Foo));
i=0;
Critical (typeof (Foo));

Critical (typeof (Foo));
Trace.Assert(i = 0);
Critical (typeof (Foo));

return Foo.j;

After that, Pex runs over the method and injects the call to the static constructor at a different
marker on each run. If a change in program behavior (i.e. control flow or throwing an exception) is
detected, Pex will automatically explore these different execution paths. For the concrete example,
the Test method is run four times. In the first run Foo will be initialized before the assignment
to 1, on runs two and three between the assignment and the assertion and on run four after the
assertion. The tool detects the assertion errors in run two and three and reports to the user the
exact IL instruction offset where an invocation of the static initializer would be problematic.
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3.6 Dependencies between static initializers

A common property of many of the introduced examples of unstable static field code is the
use of two classes with static initializers that reference the same static fields in a conflicting way.
Conflicts can be introduced if at least one of the static initializers writes to a static field and
another static initializer reads or writes to the same static field. In that case the program behavior
may be different based on the initialization order of these types. To build statistics on how common
this situation in real world code is, an analysis was included that calculates all these conflicts based
on the read and write effects of the static initializers of the types whose initialization can be forced
by a method.

The Pex extension implemented in Chapter 2 supports the manual specification of a list of
type pairs (t1,t2), that ensures that there is at least one test which initializes first ¢; and then to
and one test in which the initialization order is reversed. The lines of the algorithm in Listing 2.5
that provide this functionality are marked with . The list of conflicting types can be used to find
pairs of types where a conflict between the static initializers of the two types exists and therefore
make it interesting to test both initialization orders. When Pex is used in conjunction with the
tool introduced in this chapter, the user can annotate methods with these type pairs. An example
snippet that contains a static initialization conflict can be found in Listing 2.1.

A generalized version of the former problem is the following: If there is a conflict between any
method and a static initializer (i.e. is there a method or field that can change the behavior of
a static initializer) which was internally dubbed dependency race. The reasoning behind being,
that similarly to a race conflict in multi-threaded applications, because of eager initialization, the
outcome of a dependency race is nearly unpredictable and the correctness of an application should
not depend on the concrete execution order. An example that contains a dependency race where
the outcome depends on the version of the CLR was already introduced in Listing 3.3.

Similarly to the static initializer conflicts analysis, a check for dependency races is included
in the tool, allowing to determine for each type the set of methods where a dependency race is
present between them.



Chapter 4

Evaluation

4.1 Quantitative Evaluation

To measure the effectiveness of the presented techniques for detecting bugs related to static
fields a number of open source projects were analysed. To compare the accuracy and impact of
each of the approaches, the analysis was run multiple times using different sets of tools.

For each method the following metrics where determined:

e # Static Field Referencing Instructions (SFRI): The number of instructions in the
method that reference static fields. For more information see Section 3.2.

e # Maximum Forced Type Initializations (MFTTI): The number of distinct types that
can be forced to be initialized by a method.

e Vulnerability Score (VS): The vulnerability score as described in Section 3.4.
e # Critical Points (CP): The number of critical points as described in Section 3.5.1.

e # Static Initializer Conflicts (SIC): The number of conflicts between static initializers
of types that can potentially be initialized by the method as described in Section 3.6.

e # Dependency Races (DR): The number of dependency races of the method as described
in Section 3.6.

e Pex without the extension (BPR): The number of bugs related to static fields detected
by Pex without the extension introduced in Chapter 2.

e Pex, type initialization only (BPTIO): The number of bugs related to static fields
detected by Pex with the extension used to include static initializers in the dynamic symbolic
execution.

e Pex, with modification (BPFM): The number of bugs related to static fields detected
by Pex with the extension used to generate values for static fields.

e Pex, with modification and swap list (BPSL): The number of bugs related to static
fields detected by Pex with the extension used to generate values for static fields and using
the list of conflicts between static initializers to exercise different initialization orders.

25
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To gather further information on how widespread the use of static fields is the total number of
static fields (SF), read-only static fields (IOSF), total fields (TF'), methods that use static fields
(i.e. methods where #SFRI > 0) (SFRM) and methods (MC) in general was calculated. Finally
FA contains the number of analyses that failed and TA the number of total analyses performed.

To determine the accuracy of the various analysis techniques the normalized correlation between
the metric that the analysis provides and the real bug count was calculated. The numerical results
grouped by project can be found in Table 4.1 and Table 4.2.

The table indicates that only 9% of all fields are static and about 11% of all methods reference
static fields. These values are fairly low and a partial explanation why the number of bugs that
involve static fields is fairly low.

4.2 Usage patterns for static initializers

During the study of the open source projects a number of common usage patterns emerged.
This section describes four of the these patterns and discusses the benefits, weaknesses and dangers.

4.2.1 Static initializers to provide default values

By far the most common use of static initializers is to provide default values for static fields.
This is not surprising as it is the main purpose of static initializers as noted in [5, 11.10.5.3 p. 151].
If a static initializer only accesses static fields that belong to the same type as the static initializer
itself, this use is free of any danger to fall subject to any of the hard to find bugs introduced in the
last chapters. If a type only contains fields with primitive types this property is easily verifiable.
More complex are the cases where the value is a newly created instance, since the constructor of
that instance could contain complex code or its source code may be unavailable.

Noteworthy is the use of P/Invoke in a static initializer. If a P/Invoke method is called in a
static initializer this has many side effects that are not directly apparent. If this is the first call to
a method of a specific unmanaged library, the call will load the library from disk into the address
space of the process. On Windows systems, this leads to a call to the DllInit method which can
contain arbitrary code. Another side effect is that the value of Marshal.GetLastError() can change,
possibly masking an error. Additional information can be found at [3].

4.2.2 Public static read-only fields

In general the Microsoft Framework Design Guidelines state that instance fields should not
be public or protected[19]. No statement is made about static fields, however the use of static
read-only fields for predefined objects is emphasised[!, p. 161]. In fact, public static read-only
fields are heavily used by the BCL itself. An example of this are Dependency Properties[17] that
are widely used by the Windows Presentation Foundation[27]. Dependency Properties augment
the existing concept of properties in .NET to support styling, animation and data binding. In
particular every Dependency Property owns a set of metadata information that is stored in a
public static read-only field. In Listing 4.1 a property Text on an object TextBox is declared. The
public static read-only field TextProperty contains the metadata (in this example the default
value of string.Empty as well as name, value type and declaring type). The values of Dependency
Properties are stored in an internal dictionary where the DependencyProperty instance acts as a
key when reading and modifying the value of this property over the normal getter and setter of the
Text property.
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Table 4.2: Statistical evaluation results

Project SF  IOSF TF SFRM MC FA TA
Umbarco 8969 5381 39698 12131 117362 22802 1290982
Neqrs 3389 2214 18715 5339 56547 60 622017
Ncolony 3 0 10 3 44 0 484
FacebookClient 15 7 151 28 547 0 6017
NRefactory 1758 600 7578 3064 24321 129 267531
Bot 453 260 1725 988 4442 0 48862
MishaReader 522 240 3247 1177 9328 0 102608
Dsa 2 0 49 20 259 0 2849
DbExecutor 9 1 132 7 173 0 1903
NSynth 67 56 348 143 1464 0 16104
Boogie 255 73 2417 783 5364 0 59004
Rxx 3680 669 21719 5627 44071 8299 484781
NitoAsync 216 56 3755 964 6142 0 67562
OmegaNet 1299 605 10168 2299 29519 10 324709
Frost 688 644 4766 1540 7282 1061 80102
AutoDiff 30 0 130 31 286 0 3146
iMoreThanReader 224 142 989 539 2656 39 29216
IDComLog 82 6 1399 103 1643 0 18073
EnterpriseLibrary 910 275 5307 4319 19072 0 209792
AegisVoterList. Ul 1205 1163 4364 1024 9769 0 107459
ChaosUtil 9 2 148 13 715 0 7865
CciAst 182 38 5091 409 19129 0 210419
AegisVoterList.Digital VoterList 1198 1163 4209 1014 9551 0 105061
DarkHeresy 158 0 1138 100 2900 0 31900
Boggle 318 78 936 398 1825 0 20075
Neovolve 1226 250 4494 2182 16074 870 176814
Ling2Rest 327 182 1677 714 5813 0 63943
Mono.Cecil 302 240 1122 190 3008 0 33088
Scrabble 476 116 4429 1300 8164 0 89804
QuickGraph 498 244 5721 1066 15696 5829 172656

28470 14705 155632 47515 423166 39099 4654826
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public string Text

{
get { return (string)GetValue (TextProperty); }
set { SetValue(TextProperty, value); }

}

public static readonly DependencyProperty TextProperty =
DependencyProperty.Register ("Text", typeof(string), typeof(TextBox), new
UIPropertyMetadata (string.Empty));

Listing 4.1: Declaration of a dependency property

The readonly modifier only prevents to change the contents of the field. However, if the field
contains a reference to a mutable object, changes that object to are still possible. This is addressed
with the Code Analysis rules [18, DoNotDeclareReadOnlyMutableReferenceTypes (CA2104)] and
[16, ArrayFieldsShouldNotBeReadOnly (CA2105)]. Especially in the case of arrays this can be
confusing as Listing 4.2 shows. This is in contrast to for example the immutable keyword in the
D programming language where immutability is transitive (Listing 4.3)[12]. On the other hand,
the semantics of the readonly modifier can also be beneficial for skipping null checks when the
constructor initializes the field with a valid reference.

public class Foo { immutable char[] s = "foo";
public static readonly int[] s[0] = 'a’; // error, s refers to
MyFavoriteInts = { 2, 16, 42, immutable data
101, 9999 };

Listing 4.3: Immutability in D

public class Program {
static int Main(string[] args) {
Foo.MyFavoriteInts [0] = 10;
return Foo.MyFavoriteInts[0]; //
Returns 10
}

}

Listing 4.2: Readonly arrays are not immutable

4.2.3 Static initialization for singletons

By using the strong guarantees given about the initialization process in combination with
concurrency|5, 1.8.9.5 p. 43]static fields can be used to simplify the lazy creation of the instance
when using the Singleton Pattern[10, p. 144]. Listing 4.4 shows the implementation for lazily
creating the singleton in a multi-threaded environment without instantiating the object in the
static initializer as proposed by the Microsoft guidelines[23].
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public class MySingleton {
private MySingleton() { }

private static volatile MySingleton instance;
private static object instancelLock = new object();
public static MySingleton Instance {
get {
if (instance = null) {
lock (instancelLock) {
if (instance == null) {
instance = new MySingleton();

Listing 4.4: Classical implementation of the singleton pattern

In contrast to that, the second version in Listing 4.5 is shorter, simpler to understand and
easier to implement correctly. The locking and safeguard that only one instance will be created
is handled by the CLR. The instantiation is still lazy because of the empty static initializer that
prevents the type from having BeforeFieldInit semantics.

public class MySingleton {
private static readonly MySingleton instance = new MySingleton () ;
static MySingleton() { }
private MySingleton() { }
public static MySingleton Instance { get { return instance; } }

}

Listing 4.5: The singleton pattern leveraging static initializers

4.2.4 Public static mutable fields

As discussed in Section 4.2.2 the official Field Usage Guidelines[22] state that instance fields
should not be public or protected. Surprisingly no statement is made about static fields, even
though the same reasoning as for instance fields applies. The Static Field Naming Guidelines[25]
suggest to use static properties instead of public static fields, this is however not checked by a
Code Analysis rule[14].

A framework that makes use of public static fields is the Caliburn.Micro MVVM Framework[6].
The purpose is extensibility by offering the option to replace certain services of the framework
with custom implementations. A public static field is initialized with a reference to the default
implementation and it is open to the user to replace this reference. Listing 4.6 shows the important
parts of the ViewLocator class to illustrate this pattern. In this class the field NameTransformer
contains a reference to a service instance. The field is initialized with a default implementation
(NameTransformer class) and the AddTypeMapping method then uses the methods provided by
the NameTransformer service.
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public static class ViewlLocator {
/* .. %/
public static NameTransformer NameTransformer = new NameTransformer ();
/x o0 %/

public static void AddTypeMapping(/* ... */) {
NameTransformer . AddRule (
/% .. X%/
);
}

Listing 4.6: Parts of ViewLocator.cs

When static fields are used like this, an obvious way to trigger a NullReferenceException[24]
is by setting the NameTransformer field to null and then calling the AddTypeMapping method.
As stated in the design guidelines, public APIs should never throw a NullReferenceException[4,
p. 237]. In a single-threaded application this problem can be averted by inserting a precondition
Contract.Require(NameTransformer != null); . However, as stated in the Threading Design
Guidelines[26] static state should be thread-safe which in this example is not the case.
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Chapter 5

Related Work

Pez[28] is a white-box testing tool based on Dynamic Symbolic Ezxecution that automatically
explores methods and generates test-cases. Pex works on CIL level and is therefore applicable to
all languages that compile into CIL like C#, VB.NET and recently F#. Internally it is built on
top of the ExtendedReflection library[21] that allows to add callbacks to CIL code through which a
method can be observed and intercepted. By using these callbacks the symbolic execution engine
was realized.

Code Contracts is an specification language[3] for implementing the design-by-contract program
design approach[13]. Contracts express the requirements on the input values of a method and a
series of guarantees that the method gives on the return values as well as a set of object invariants
that must hold for the whole lifetime of each instance of that class. Code Contracts integrates with
Pex[1] allowing the use of the contract information to reduce the number of runs with invalid input
data and to empirically check if the guarantees that the method gives really hold.

As a final remark, it is worth mentioning that Clousot[9], an abstract interpretation tool for

.NET and Code Contracts assumes that static initializer have already run prior to a method
invocation.
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Chapter 6

Conclusion

As the examples have shown, static fields and initializers can lead to convoluted and nearly
impossible to find bugs. However in practice the problems introduced by static fields are minimal.
An explanation for this can be found in the following discoveries: Firstly, static fields and methods
that interact with static fields are not that common and represent only a small percentage of an
average code base. Secondly, most of the projects in the evaluation used static fields as proposed
by the official developing guidelines that prevent hard to find bugs by design.

The evaluation has shown that the vulnerability analysis introduced in Section 3.4 is the most
cost-effective analysis. The extension for Pex improves its results when the modification of fields is
allowed. However, bugs that are only based on static initializers and their execution order seem to
be very rare and the addition from Section 3.6 does not improve the results.

As a part of this thesis a number of different analysis techniques for testing static field and
initializers has been found, implemented and evaluated. Surprisingly, even coarse-grained analysis
techniques give a good starting point for detecting and eliminating bugs related to static fields.
The evaluation results can guide future efforts in refining and extending testing tools for detecting
this class of bugs. A possible extension would be the implementation of a Visual Studio plug-in
that makes the user aware of dangers when working with static fields by interactively displaying
dependency races and vulnerability points.
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Appendix A

Additional Source Code

A.1 Code to determine the initialization behavior of the
CLR.

This program was used to determine the type initialization behavior of the CLR. The results
can be found in table 1.1.

using System;

namespace InitBehaviorTester

{

class Foo

{

public static int Field = Initialized();

#if !'BeforeFieldInit
static Foo() { }

#endif
private static int Initialized ()
{
Console.WriteLine("In Foo::.cctor");
return 42;
}
public static void Log()
{
Console.WriteLine("In Foo::Log()");
}
}

class Program
{
static void Main(string[] args)
{
Console.WriteLine ("CLR Version {0}", Environment.Version);
Console.WritelLine ("Enter Program::Main");

#if Execute
if (args !'= null)
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#else
if (args == null)
#endif
#if Field
Console.WriteLine (Foo. Field);
#else
Foo.Log();
#endif
}
Console.WritelLine ("Exit Program::Main");
}
}
}

Listing A.1: Code to determine the initialization behavior of the runtime.
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