
Master's Thesis Project Description 

Testing program resilience against deviant behavior 

Patrick Emmisberger 

June 27, 2016 

1 Abstract 

With the increasing demands on software quality, testing has become an 
important part of the software development process. In particular, unit 
testing [13][2] is a widely applied technique for detecting bugs in a modular 
and repeatable way. However, developing and keeping unit tests up-to-date 
is a time-consuming and tedious activity, that even when done meticulously, 
can still miss bugs. These bugs are often edge cases that are very hard to 
detect, because they are either counter-intuitive (otherwise the programmer 
would have tested for them) or hard to reconstruct (because they involve an 
unexpected behavior of an external resource like files, sockets, etc.) 

On the other hand, dynamic test generation has been successfully ap
plied in different contexts (in particular security vulnerabilities[1][15], API 
fuzzing[5] and regression testing[16]) to find these kinds of bugs. By mod
ifying the input of a program randomly (black-box fuzzing) or analysing 
the program and deriving problematic inputs (white-box fuzzing[6] and test 
generation[16][4]), these edge cases can usually be found automatically, un
der the condition that the unit-under-test (UUT) does not exhaust the re
sources of the testing tool. However, most real-world applications are far too 
complex to be fully tested this way, as the time and memory consumption 
exceeds reasonable limits and as a result, bugs are missed (false negatives). 
Only applying dynamic test generation to methods lower in the call tree 
does not solve this problem, as it generates spurious errors (false positives). 

In this project we try to address the limitations of both approaches, by 
building a platform that allows to selectively inject values (e.g. return values 
or arguments to a function call) during the execution of the UUT. This allows 
us to explore new paths in the code, without requiring the exhaustiveness 
of unconstrained dynamic symbolic execution and the associated resource 
problems. We do this directly on CPU instruction level, without the need 
for the source code of the UUT. 

1 

Master’s Thesis Project Description

Testing program resilience against deviant behavior

Patrick Emmisberger

June 27, 2016

1 Abstract

With the increasing demands on software quality, testing has become an
important part of the software development process. In particular, unit
testing [13][2] is a widely applied technique for detecting bugs in a modular
and repeatable way. However, developing and keeping unit tests up-to-date
is a time-consuming and tedious activity, that even when done meticulously,
can still miss bugs. These bugs are often edge cases that are very hard to
detect, because they are either counter-intuitive (otherwise the programmer
would have tested for them) or hard to reconstruct (because they involve an
unexpected behavior of an external resource like files, sockets, etc.)

On the other hand, dynamic test generation has been successfully ap-
plied in different contexts (in particular security vulnerabilities[1][15], API
fuzzing[5] and regression testing[16]) to find these kinds of bugs. By mod-
ifying the input of a program randomly (black-box fuzzing) or analysing
the program and deriving problematic inputs (white-box fuzzing[6] and test
generation[16][4]), these edge cases can usually be found automatically, un-
der the condition that the unit-under-test (UUT) does not exhaust the re-
sources of the testing tool. However, most real-world applications are far too
complex to be fully tested this way, as the time and memory consumption
exceeds reasonable limits and as a result, bugs are missed (false negatives).
Only applying dynamic test generation to methods lower in the call tree
does not solve this problem, as it generates spurious errors (false positives).

In this project we try to address the limitations of both approaches, by
building a platform that allows to selectively inject values (e.g. return values
or arguments to a function call) during the execution of the UUT. This allows
us to explore new paths in the code, without requiring the exhaustiveness
of unconstrained dynamic symbolic execution and the associated resource
problems. We do this directly on CPU instruction level, without the need
for the source code of the UUT.

1



2 Core tasks 

Unit tests typically cover frequently-exercised, non-failing paths, i.e. they 
ensure that given valid inputs, the program generates correct results. From 
the existing unit tests we get deep coverage (in terms of the call tree) di
rectly, without any exploration. By only concentrating on certain inputs, we 
reduce the potential for resource exhaustion, but are still able to expand the 
execution from the successful path towards paths that may contain errors. 

The central issue is the selection of the values that we want to manip
ulate. As a starting point, we will be focusing on the simulation of failing 
system calls. We inject artificial errors into system calls by returning an 
error, even if the system call was successful. This forces the unit test to de
viate from the happy path and deal with different types of errors. This idea 
is particularly interesting, as it allows to test code, which typically would 
require the use of mocks or a complex test infrastructure (e.g. to simulate 
network errors). To prevent false positives, we need to only return errors 
that could potentially occur (i.e. malloc returning a null pointer is legal be
cause running out of memory is always possible, while injecting an "Invalid 
file handle" is not, if the given handle is in fact valid). To accomplish that, 
we supply a configuration file to our value injection infrastructure, that en
codes the fault model for a specific API (e.g. the set of functions used for 
file or socket IO) and a fault injection strategy. The fault model defines the 
interface that is used to communicate errors to the UUT and the logic for 
determining which faults to inject. The fault model is complemented with 
a fault injection strategy that defines the number and frequency of injected 
faults as well as a set of constraints that define the circumstances under 
which a fault will be injected. 

This presents us with three main questions, which we seek to answer 
in this thesis. First, which are the APIs that promise the most potential 
for finding bugs? Second, given an API and a fault model, what are the 
strategies that find these bugs? And finally, which is the best fault injection 
strategy? 

To implement the aforementioned features, it is necessary to instrument 
or fully replace the system calls that we want to support. Detours[8] al
lows us to rewrite functions in memory, to call a user-supplied replacement 
instead of the original function. Through a dynamically generated trampo
line stub, the original function is still available and can be called as part of 
the replacement function. The infrastructure should be capable of handling 
different architectures (x86 and x64) and calling conventions. Support for 
concurrency is strictly required, as the intercepted system calls may run on 
different threads in parallel. 

With the questions above in mind, we evaluate the success of different 
fault models and strategies based on the number of discovered bugs and 
increased code coverage minus any false positives introduced by our tool. 

2 

2 Core tasks

Unit tests typically cover frequently-exercised, non-failing paths, i.e. they
ensure that given valid inputs, the program generates correct results. From
the existing unit tests we get deep coverage (in terms of the call tree) di-
rectly, without any exploration. By only concentrating on certain inputs, we
reduce the potential for resource exhaustion, but are still able to expand the
execution from the successful path towards paths that may contain errors.

The central issue is the selection of the values that we want to manip-
ulate. As a starting point, we will be focusing on the simulation of failing
system calls. We inject artificial errors into system calls by returning an
error, even if the system call was successful. This forces the unit test to de-
viate from the happy path and deal with different types of errors. This idea
is particularly interesting, as it allows to test code, which typically would
require the use of mocks or a complex test infrastructure (e.g. to simulate
network errors). To prevent false positives, we need to only return errors
that could potentially occur (i.e. malloc returning a null pointer is legal be-
cause running out of memory is always possible, while injecting an “Invalid
file handle” is not, if the given handle is in fact valid). To accomplish that,
we supply a configuration file to our value injection infrastructure, that en-
codes the fault model for a specific API (e.g. the set of functions used for
file or socket IO) and a fault injection strategy. The fault model defines the
interface that is used to communicate errors to the UUT and the logic for
determining which faults to inject. The fault model is complemented with
a fault injection strategy that defines the number and frequency of injected
faults as well as a set of constraints that define the circumstances under
which a fault will be injected.

This presents us with three main questions, which we seek to answer
in this thesis. First, which are the APIs that promise the most potential
for finding bugs? Second, given an API and a fault model, what are the
strategies that find these bugs? And finally, which is the best fault injection
strategy?

To implement the aforementioned features, it is necessary to instrument
or fully replace the system calls that we want to support. Detours[8] al-
lows us to rewrite functions in memory, to call a user-supplied replacement
instead of the original function. Through a dynamically generated trampo-
line stub, the original function is still available and can be called as part of
the replacement function. The infrastructure should be capable of handling
different architectures (x86 and x64) and calling conventions. Support for
concurrency is strictly required, as the intercepted system calls may run on
different threads in parallel.

With the questions above in mind, we evaluate the success of different
fault models and strategies based on the number of discovered bugs and
increased code coverage minus any false positives introduced by our tool.

2



In summary, the core tasks are as follows: 

1. Implement the instrumentation infrastructure. 
2. Devise a flexible representation for the description of injection strate

gies and fault models. 
3. Find and select APIs for fault injection and develop respective fault 

models. 
4. Determine different injection strategies. 
5. Evaluate the effectiveness of different injection strategies and API se

lections. 

3 Extensions 

As an extension, we apply our framework to different Microsoft products. 
Candidates are well-known desktop applications like Notepad, Internet Ex
plorer or OneNote. This allows us to evaluate the framework on real-world 
applications with substantial test suites. In the later two cases, the applica
tions contain a high degree of asynchronous network communication, which 
presents an interesting starting point for fault injection. 

4 Related work 

Most previous works on fault injection like the DOCTOR[7], FERRARI[9] 
and DEFINE[10] tools focus on the simulation of faulty hardware by manip
ulating either code or data. The aim is to check the robustness of software 
in the presence of arbitrary hardware failures. Our approach differs in the 
level where fault injection is applied (API vs. hardware) and also in the 
type of injected faults. Whereas the former tools simulate different types 
of memory corruption, we only inject faults that are permitted by the API 
specification (encoded as part of the fault model). 

Jaca[12], a fault injection tool for Java, is also focused on interface error 
injection[3]. It corrupts parameter, field and return values to simulate bugs, 
and tests the robustness of the client in the presence of these corrupted 
values. Like with the former tools, the difference to our approach is that we 
only inject faults that are permitted by the API specification. 

MAFALDA[14] and BALLISTA[11] use a similar instrumentation tech
nique, but the aim is to test the robustness of the kernel for malformed 
system calls. These tools are the inverse to our framework in the sense that 
the role of producer and consumer is interchanged. 

References 
[1] Ella Bounimova, Patrice Godefroid, and David A. Molnar. Billions and billions of constraints: 

Whitebox fuzz testing in production. In ICSE, pages 122-131. ACM, 2013. 

3 

In summary, the core tasks are as follows:

1. Implement the instrumentation infrastructure.

2. Devise a flexible representation for the description of injection strate-
gies and fault models.

3. Find and select APIs for fault injection and develop respective fault
models.

4. Determine different injection strategies.

5. Evaluate the effectiveness of different injection strategies and API se-
lections.

3 Extensions

As an extension, we apply our framework to different Microsoft products.
Candidates are well-known desktop applications like Notepad, Internet Ex-
plorer or OneNote. This allows us to evaluate the framework on real-world
applications with substantial test suites. In the later two cases, the applica-
tions contain a high degree of asynchronous network communication, which
presents an interesting starting point for fault injection.

4 Related work

Most previous works on fault injection like the DOCTOR[7], FERRARI[9]
and DEFINE[10] tools focus on the simulation of faulty hardware by manip-
ulating either code or data. The aim is to check the robustness of software
in the presence of arbitrary hardware failures. Our approach differs in the
level where fault injection is applied (API vs. hardware) and also in the
type of injected faults. Whereas the former tools simulate different types
of memory corruption, we only inject faults that are permitted by the API
specification (encoded as part of the fault model).

Jaca[12], a fault injection tool for Java, is also focused on interface error
injection[3]. It corrupts parameter, field and return values to simulate bugs,
and tests the robustness of the client in the presence of these corrupted
values. Like with the former tools, the difference to our approach is that we
only inject faults that are permitted by the API specification.

MAFALDA[14] and BALLISTA[11] use a similar instrumentation tech-
nique, but the aim is to test the robustness of the kernel for malformed
system calls. These tools are the inverse to our framework in the sense that
the role of producer and consumer is interchanged.

References
[1] Ella Bounimova, Patrice Godefroid, and David A. Molnar. Billions and billions of constraints:

Whitebox fuzz testing in production. In ICSE, pages 122–131. ACM, 2013.

3



[2] Yoonsik Cheon and Gary T. Leavens. A simple and practical approach to unit testing: The 
JML and JUnit way. In ECOOP, volume 2374 of LNCS, pages 231-255. Springer, 2002. 

[3] D. Cotroneo, A. Lanzaro, R. Natella, and R. Barbosa. Experimental analysis of binary-level 
software fault injection in complex software. In Dependable Computing Conference (EDCC), 
2012 Ninth European, pages 162-172, May 2012. 

[4] Pranav Garg, Franjo Ivancic, Gogul Balakrishnan, Naoto Maeda, and Aarti Gupta. Feedback-
directed unit test generation for C/C++ using concolic execution. In ICSE, pages 132-141. 
ACM, 2013. 

[5] Patrice Godefroid. Micro execution. In ICSE, pages 539-549. ACM, 2014. 

[6] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated whitebox fuzz testing. 
In NDSS, pages 151-166. The Internet Society, 2008. 

[7] Seungjae Han, K. G. Shin, and H. A. Rosenberg. Doctor: an integrated software fault 
injection environment for distributed real-time systems. In Computer Performance and 
Dependability Symposium, 1995. Proceedings., International, pages 204-213, Apr 1995. 

[8] Galen Hunt and Doug Brubacher. Detours: Binary interception of Win32 functions. In 
Usenix Windows NT Symposium, 1999. 

[9] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham. Ferrari: a flexible software-based fault 
and error injection system. IEEE Transactions on Computers, 44(2):248-260, Feb 1995. 

[10] Wei-Lun Kao and R. K. Iyer. Define: a distributed fault injection and monitoring envi
ronment. In Fault-Tolerant Parallel and Distributed Systems, 1994., Proceedings of IEEE 
Workshop on, pages 252-259, Jun 1994. 

[11] P. Koopman and J. DeVale. The exception handling effectiveness of posix operating systems. 
IEEE Transactions on Software Engineering, 26(9):837-848, Sep 2000. 

[12] E. Martins, C. M. F. Rubira, and N. G. M. Leme. Jaca: a reflective fault injection tool 
based on patterns. In Dependable Systems and Networks, 2002. DSN 2002. Proceedings. 
International Conference on, pages 483-487, 2002. 

[13] Glennford J. Myers. The Art of Software Testing. Wiley, 1979. 

[14] Manuel Rodriguez, Frederic Salles, Jean-Charles Fabre, and Jean Arlat. Dependable Com
puting — EDCC-3: Third European Dependable Computing Conference Prague, Czech Re
public, September 15-17, 1999 Proceedings, chapter MAFALDA: Microkernel Assessment by 
Fault Injection and Design Aid, pages 143-160. Springer Berlin Heidelberg, Berlin, Heidel
berg, 1999. 

[15] Alexander Sotirov. Windows animated cursor stack overflow vulnerability, 2007. http: 
//www.offensive-security .com/os101/ani.htm. 

[16] Nikolai Tillmann and Jonathan de Halleux. Pex—White box test generation for .NET. In 
TAP, volume 4966 of LNCS, pages 134-153. Springer, 2008. 

4 

[2] Yoonsik Cheon and Gary T. Leavens. A simple and practical approach to unit testing: The
JML and JUnit way. In ECOOP, volume 2374 of LNCS, pages 231–255. Springer, 2002.

[3] D. Cotroneo, A. Lanzaro, R. Natella, and R. Barbosa. Experimental analysis of binary-level
software fault injection in complex software. In Dependable Computing Conference (EDCC),
2012 Ninth European, pages 162–172, May 2012.

[4] Pranav Garg, Franjo Ivančić, Gogul Balakrishnan, Naoto Maeda, and Aarti Gupta. Feedback-
directed unit test generation for C/C++ using concolic execution. In ICSE, pages 132–141.
ACM, 2013.

[5] Patrice Godefroid. Micro execution. In ICSE, pages 539–549. ACM, 2014.

[6] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated whitebox fuzz testing.
In NDSS, pages 151–166. The Internet Society, 2008.

[7] Seungjae Han, K. G. Shin, and H. A. Rosenberg. Doctor: an integrated software fault
injection environment for distributed real-time systems. In Computer Performance and
Dependability Symposium, 1995. Proceedings., International, pages 204–213, Apr 1995.

[8] Galen Hunt and Doug Brubacher. Detours: Binary interception of Win32 functions. In
Usenix Windows NT Symposium, 1999.

[9] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham. Ferrari: a flexible software-based fault
and error injection system. IEEE Transactions on Computers, 44(2):248–260, Feb 1995.

[10] Wei-Lun Kao and R. K. Iyer. Define: a distributed fault injection and monitoring envi-
ronment. In Fault-Tolerant Parallel and Distributed Systems, 1994., Proceedings of IEEE
Workshop on, pages 252–259, Jun 1994.

[11] P. Koopman and J. DeVale. The exception handling effectiveness of posix operating systems.
IEEE Transactions on Software Engineering, 26(9):837–848, Sep 2000.

[12] E. Martins, C. M. F. Rubira, and N. G. M. Leme. Jaca: a reflective fault injection tool
based on patterns. In Dependable Systems and Networks, 2002. DSN 2002. Proceedings.
International Conference on, pages 483–487, 2002.

[13] Glennford J. Myers. The Art of Software Testing. Wiley, 1979.

[14] Manuel Rodŕıguez, Frédéric Salles, Jean-Charles Fabre, and Jean Arlat. Dependable Com-
puting — EDCC-3: Third European Dependable Computing Conference Prague, Czech Re-
public, September 15–17, 1999 Proceedings, chapter MAFALDA: Microkernel Assessment by
Fault Injection and Design Aid, pages 143–160. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1999.

[15] Alexander Sotirov. Windows animated cursor stack overflow vulnerability, 2007. http:

//www.offensive-security.com/os101/ani.htm.

[16] Nikolai Tillmann and Jonathan de Halleux. Pex—White box test generation for .NET. In
TAP, volume 4966 of LNCS, pages 134–153. Springer, 2008.

4

http://www.offensive-security.com/os101/ani.htm
http://www.offensive-security.com/os101/ani.htm

	Abstract
	Core tasks
	Extensions
	Related work

