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1 Abstract 

With the increasing demands on software quality, testing has become an 
important part of the software development process. In particular, unit 
testing [13][2] is a widely applied technique for detecting bugs in a modular 
and repeatable way. However, developing and keeping unit tests up-to-date 
is a time-consuming and tedious activity, that even when done meticulously, 
can still miss bugs. These bugs are often edge cases that are very hard to 
detect, because they are either counter-intuitive (otherwise the programmer 
would have tested for them) or hard to reconstruct (because they involve an 
unexpected behavior of an external resource like files, sockets, etc.) 

On the other hand, dynamic test generation has been successfully ap
plied in different contexts (in particular security vulnerabilities[1][15], API 
fuzzing[5] and regression testing[16]) to find these kinds of bugs. By mod
ifying the input of a program randomly (black-box fuzzing) or analysing 
the program and deriving problematic inputs (white-box fuzzing[6] and test 
generation[16][4]), these edge cases can usually be found automatically, un
der the condition that the unit-under-test (UUT) does not exhaust the re
sources of the testing tool. However, most real-world applications are far too 
complex to be fully tested this way, as the time and memory consumption 
exceeds reasonable limits and as a result, bugs are missed (false negatives). 
Only applying dynamic test generation to methods lower in the call tree 
does not solve this problem, as it generates spurious errors (false positives). 

In this project we try to address the limitations of both approaches, by 
building a platform that allows to selectively inject values (e.g. return values 
or arguments to a function call) during the execution of the UUT. This allows 
us to explore new paths in the code, without requiring the exhaustiveness 
of unconstrained dynamic symbolic execution and the associated resource 
problems. We do this directly on CPU instruction level, without the need 
for the source code of the UUT. 
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2 Core tasks 

Unit tests typically cover frequently-exercised, non-failing paths, i.e. they 
ensure that given valid inputs, the program generates correct results. From 
the existing unit tests we get deep coverage (in terms of the call tree) di
rectly, without any exploration. By only concentrating on certain inputs, we 
reduce the potential for resource exhaustion, but are still able to expand the 
execution from the successful path towards paths that may contain errors. 

The central issue is the selection of the values that we want to manip
ulate. As a starting point, we will be focusing on the simulation of failing 
system calls. We inject artificial errors into system calls by returning an 
error, even if the system call was successful. This forces the unit test to de
viate from the happy path and deal with different types of errors. This idea 
is particularly interesting, as it allows to test code, which typically would 
require the use of mocks or a complex test infrastructure (e.g. to simulate 
network errors). To prevent false positives, we need to only return errors 
that could potentially occur (i.e. malloc returning a null pointer is legal be
cause running out of memory is always possible, while injecting an "Invalid 
file handle" is not, if the given handle is in fact valid). To accomplish that, 
we supply a configuration file to our value injection infrastructure, that en
codes the fault model for a specific API (e.g. the set of functions used for 
file or socket IO) and a fault injection strategy. The fault model defines the 
interface that is used to communicate errors to the UUT and the logic for 
determining which faults to inject. The fault model is complemented with 
a fault injection strategy that defines the number and frequency of injected 
faults as well as a set of constraints that define the circumstances under 
which a fault will be injected. 

This presents us with three main questions, which we seek to answer 
in this thesis. First, which are the APIs that promise the most potential 
for finding bugs? Second, given an API and a fault model, what are the 
strategies that find these bugs? And finally, which is the best fault injection 
strategy? 

To implement the aforementioned features, it is necessary to instrument 
or fully replace the system calls that we want to support. Detours[8] al
lows us to rewrite functions in memory, to call a user-supplied replacement 
instead of the original function. Through a dynamically generated trampo
line stub, the original function is still available and can be called as part of 
the replacement function. The infrastructure should be capable of handling 
different architectures (x86 and x64) and calling conventions. Support for 
concurrency is strictly required, as the intercepted system calls may run on 
different threads in parallel. 

With the questions above in mind, we evaluate the success of different 
fault models and strategies based on the number of discovered bugs and 
increased code coverage minus any false positives introduced by our tool. 
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In summary, the core tasks are as follows: 

1. Implement the instrumentation infrastructure. 
2. Devise a flexible representation for the description of injection strate

gies and fault models. 
3. Find and select APIs for fault injection and develop respective fault 

models. 
4. Determine different injection strategies. 
5. Evaluate the effectiveness of different injection strategies and API se

lections. 

3 Extensions 

As an extension, we apply our framework to different Microsoft products. 
Candidates are well-known desktop applications like Notepad, Internet Ex
plorer or OneNote. This allows us to evaluate the framework on real-world 
applications with substantial test suites. In the later two cases, the applica
tions contain a high degree of asynchronous network communication, which 
presents an interesting starting point for fault injection. 

4 Related work 

Most previous works on fault injection like the DOCTOR[7], FERRARI[9] 
and DEFINE[10] tools focus on the simulation of faulty hardware by manip
ulating either code or data. The aim is to check the robustness of software 
in the presence of arbitrary hardware failures. Our approach differs in the 
level where fault injection is applied (API vs. hardware) and also in the 
type of injected faults. Whereas the former tools simulate different types 
of memory corruption, we only inject faults that are permitted by the API 
specification (encoded as part of the fault model). 

Jaca[12], a fault injection tool for Java, is also focused on interface error 
injection[3]. It corrupts parameter, field and return values to simulate bugs, 
and tests the robustness of the client in the presence of these corrupted 
values. Like with the former tools, the difference to our approach is that we 
only inject faults that are permitted by the API specification. 

MAFALDA[14] and BALLISTA[11] use a similar instrumentation tech
nique, but the aim is to test the robustness of the kernel for malformed 
system calls. These tools are the inverse to our framework in the sense that 
the role of producer and consumer is interchanged. 

References 
[1] Ella Bounimova, Patrice Godefroid, and David A. Molnar. Billions and billions of constraints: 

Whitebox fuzz testing in production. In ICSE, pages 122-131. ACM, 2013. 
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