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Abstract

With the increasing demands on software quality, testing has become an important part of the
software development process. In particular, unit testing [21][3] is a widely applied technique
for detecting bugs in a modular and repeatable way. However, dealing with external resources,
whose behavior is not determined by test inputs, is a problem well-known for its difficulty. While
different existing approaches (see Chapter 4) solve some aspects of this problem, they are often too
restrictive. Initially motivated by interface-level fault injection, we present a general architecture
for injecting stubs at the binary level. Built around a DSL (Domain Specific Language), our
framework allows to alter the behavior of native and managed (i.e. .NET-based) functions in
a flexible and language-independent way. We illustrate the potential of this framework in an
evaluation that shows, how we can search for bugs in error handling code of large applications
such as Microsoft Excel or Word.

Outline. Chapter 1 motivates this thesis, provides a summary of the necessary background and
ends with a guided tour of our tool. Chapter 2 presents the general architecture and – in places –
takes a deep dive into the technical details. In Chapter 3 we show the evaluation of our tool on a
set of frequently used applications. We discuss related work in Chapter 4 and conclude the thesis
in Chapter 5.
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Chapter 1

Introduction

1.1 Motivation

Robustness and reliability have always been important traits of a good software product. In
today’s software industry, where continuous deployment and automatic updates are widespread
practices, the time that can be spent on testing a next release decreases steadily. An established
practice used to cope with the increasing release cadence is automated unit testing. Only by
automating the testing procedure itself, the release deadlines can be met and certain functional
and qualitative standards maintained while the codebase is evolving.

At the same time, the breadth of software-driven devices and the variety of environmental
configurations (e.g. cellular network vs. wireless vs. LAN, AC vs. battery) increases. This is in
bold contrast to the typical development environment, which is very uniform, meaning test runs
are always executed on the same machine and under the same network conditions etc. Automated
test suites can, at least to a certain extent, mitigate this problem by running their tests in parallel
on a number of different hardware configurations. However, two issues arise: First, the number
of testable configurations will almost always be smaller than the number of configurations in
production (this holds true especially for shrink-wrap software and mobile apps). Second, the test
suite should, in addition to the happy path (i.e. given correct input, the program provides the
correct output), also exercise failure and exceptional paths (e.g. network connection is disrupted).
However, this is often not the case, as testing for such deviant behavior is difficult.

A pure software approach to emulating these exceptional states is a technique called mocking.
Instead of directly invoking an API, it is accessed through an abstract interface. This allows
replacing the implementation of the API during testing, thus simulating the exceptional states
in a controlled way. The downside of this approach is the considerable amount of additional
development effort. This is aggravated by the fact that the mocking infrastructure often cannot
be shared between different projects, as the mocks are very project-specific.

In this thesis, we try to address some of these problems by providing a tool that enables the
injection of deviant behavior in a controlled way, while keeping the effort below the demands of
traditional mocking. The requirements for this framework are therefore set as follows:

1. Deviant behavior should be captured in a succinct and modular way.

2. The framework should be applicable to existing codebases without adaptation or the need
to recompile the code.

3. When a model for a specific deviant behavior has been developed targeting one program, it
should be transferable to a different program with no or very low effort.

1



2 1 Introduction

1.2 Approach

During this thesis, we developed a framework called Brute, which allows injecting deviant behavior
in a controlled and reproducible way. We do not rely on source code, but instrument an application
directly on the assembly level. Therefore our solution is applicable to a wide range of applications.
For our current implementation we chose to target Microsoft Windows applications only, however
the ideas are applicable to other operating systems as well.

Many functions indicate for every call if the operation was successful or not. This happens
by either returning an error code, setting an error/status flag or throwing an exception. The
core idea is to provide the developer with a simple way of injecting these error states directly at
the system API border. This allows us to test applications that were not specifically designed
for testing and removes the need for defining an abstract interface of an API only for testing
purposes.

Concretely, the developer can specify a fault model and an injection strategy on a per-function
basis. The fault model describes the type of error that is injected, based on the arguments, the
original return value and the original error code. Fault models can become arbitrarily complex,
invoke other API functions or user-defined code and also keep state over multiple calls. They have
the power to modify the arguments to a function before the call occurs and its result value after
the call completed. The injection strategy specifies how often and under which circumstances
a fault is injected. Together, the fault model and injection strategy define a rule, which can be
applied to one or multiple functions that are being identified by their name (either explicitly or
using regular expressions). Finally, there is a launcher that executes an unmodified program and
alters the behavior of functions dynamically at runtime based on a set of rules. Currently, we
support the instrumentation of DLL-exported functions (see Section 1.3.1) and managed functions
(see Section 1.3.3).

Additionally, there is extensive tracing support, which allows listing function calls and the
capturing of arguments, return values, error codes and parts of the heap. This is not only useful
for developing the fault models in the first place, but also for debugging in general.

1.3 Background

The following sections provide information on the concepts and terminology required for the
understanding of the remaining parts of this report. The esteemed reader already familiar with
the topics at hand may skip the respective section(s).

1.3.1 Executables, Dynamic Link Libraries and Modules

On the Windows platform, executable code is stored in PE (Portable Executable) files. While PE
files come in various subtypes, the two most common types are executables and DLLs (dynamic
link libraries). Executables are applications with a single main entry point, while DLLs cannot
be run on their own, but are referenced from executables and other libraries. The contents of a
PE file (usually when loaded into memory) is referred to as a module.

Internally, PE files contain a header with multiple so-called directories. These are organized
as tables and provide metadata for the loader. The important directories for our purposes are the
export, import and .NET metadata directory. The export directory contains a list of functions
and variables that this module exports and is normally only present in DLLs (although, because
of their similar structure, executables can also export functions and be loaded like DLLs). The
import directory contains a list of all external functions that this module needs. Modules that



1.3 Background 3

are referenced in the import directory are loaded at the same time as the referencing module.
Therefore, the modules are referred to as statically referenced modules, not to be mistaken for
statically linked modules, which is a compile-time only concept. Should a module not be found, a
message box is shown to the user and the loading process is aborted. Finally, The .NET metadata
directory contains the type information for managed code. See Section 1.3.3 and 2.10 for more
information.

To execute the code, the respective file is loaded into memory (usually using memory mapped
files, shared between processes and with copy-on-write semantics), relocated and some entry code
is executed. For executables, this is the familiar main function. DLLs also have an entry point
named DllMain which is called after the DLL was loaded into a process, when the process creates
or destroys a thread and before the process terminates. A module is separated into different
sections, which are also described as part of the file header. Every section may have different
alignment restrictions and protection flags (e.g. executable, read-only, read-write).

DLLs can be dynamically loaded using an API called LoadLibrary. In contrast to statically
loaded DLLs, no error message is displayed when loading such a library fails and the caller has to
deal with the missing dependency. Another API function provides access to the addresses of the
functions and variables listed in the export directory.

Every executable depends at least on ntdll.dll and kernel32.dll. ntdll.dll contains
the low-level interactions with the kernel and provides runtime services like the loader and memory
management. kernel32.dll exports the common system APIs for memory management, thread
management, I/O etc. User-code normally only interfaces with kernel32.dll directly, while
ntdll.dll remains hidden in the background.

1.3.2 Component Object Model

The COM (Component Object Model) defines an ABI (application binary interface) as well as
some common interfaces to build components that can be shared between different languages.
While primarily used by Windows and its supporting frameworks to provide the more high-level
APIs, there exist other implementations like Mozilla’s XPCOM. COM is not bound to a specific
programming language, but predominately used in C++ applications. COM exposes components
in an object oriented manner, uses reference counting for managing object lifetimes and provides
other runtime services like concurrency management for multi-threaded applications, remote
procedure calls (DCOM) and component versioning.

For this project, we need to interface primarily with two APIs that are exposed through COM:
the DIA (Debug Interface Access) API for reading debugging symbols and the CLR profiling API.
Because COM not only manages the creation of objects, but also concurrency (e.g. dispatching a
call from one thread to a different thread transparently) it needs to be initialized on a per-thread
basis. This can be problematic because of incompatibilities on how the threading model is
initialized (i.e. initialized differently by the application than Brute expects) or because COM is
not yet initialized when we require to use it (see Section 2.7).

1.3.3 The .NET Framework and the CLR

.NET Framework is an umbrella term for multiple ECMA specifications (in particular the
CLI (Common Language Infrastructure) and the programming language C#) as well as an
implementation of these specifications referred to as the CLR (Common Language Runtime). The
CLI defines a virtual machine (similar to the Java VM) and a portable low-level language called
IL (Intermediate Language) (similar to Java Bytecode).
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Multiple languages target the CLI, the prevalent one being C#, but many other languages,
such as VB.NET and F#, exist. Code that runs on a CLI virtual machine is called managed code.
In contrast to native (i.e. unmanaged) code, programs written for the CLI are compiled into IL
instead of assembly and stored together with type information (the .NET metadata) as a PE file.
While native PE files and managed PE contain the same header information, managed functions
have to be just-in-time compiled into native assembly code before execution. This usually happens
on demand, however precompilation for faster start-up times is possible. Aside from just-in-time
compilation, the CLR provides other facilities like automatic memory management (garbage
collection) and P/Invoke, a way to interact with native code.

IL is a low-level, strongly and statically typed, object oriented, stack-based language. Because
of its simple structure (compared to the source languages), IL can be analyzed and rewritten
with relatively little effort. We use the facility to rewrite IL code on-the-fly to provide the same
type of instrumentation for managed functions as we do for unmanaged code. The CLR exposes
multiple COM interfaces that allow unmanaged code to interact with the virtual machine itself.
The most important interface for our purposes is the profiling API, which provides the callbacks
for instrumenting and rewriting IL code.

1.4 A Guided Tour of Brute

In this section, we go through a short but complete example for defining a rule and applying it to
an application. This provides an intuition of how Brute works, which becomes valuable when we
later discuss the architecture and some of the implementation details.

DWORD WINAPI GetModuleFileNameW(
_In_opt_ HMODULE hModule ,
_Out_ LPWSTR lpFilename ,
_In_ DWORD nSize

);

Listing 1.1: Signature of GetModuleFileNameW

For this guided tour, we will develop
a fault model concerning LFN (long file
name) support for the Windows API function
GetModuleFileNameW. This function expects
the handle of a module and a buffer and will,
given the buffer is sufficiently large, copy the
name of the source file into the buffer. It re-
turns the number of characters copied exclud-
ing the zero-termination char (or zero if the
call failed). If the return value is equal to the buffer size, the file name was truncated. In Windows
XP, the error code is set to ERROR_SUCCESS, regardless of any truncation. For later versions of
Windows, ERROR_INSUFFICIENT_BUFFER is returned as an error code. According to the MSDN1

this function supports long file names and thus, buffer sizes up to 32KB could be required. While
the Windows kernel supports long file names, many applications still assume the maximum length
of a path to be MAX_PATH chars, which is a constant defined by the Windows headers as 260.
The fault model we are developing will simulate file name lengths well beyond MAX_PATH to find
callers that are not ready for long file names.

Based on the aforementioned information, we can create a fault model that simulates the
truncation of the filename, should the buffer not be large enough. Listing 1.2 shows, how
such a model can be encoded using Brute. First, we specify that our rule targets only the
function GetModuleFileNameW in module KERNEL32.dll (line 1). Next, we provide names for
the parameters, such that we can access them in the after action. The types of the arguments
can be omitted, because the type information can be deduced from the debugging symbols
automatically. We inject code after the function returns (lines 5-10) and check if the buffer size is
larger than 32000, which is close to the real maximum length of 32768. If the buffer is smaller,

1https://msdn.microsoft.com/en-us/library/windows/desktop/ms683197(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms683197(v=vs.85).aspx
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we change the return value to the buffer size to indicate a truncation and set the error code to
ERROR_SUCCESS as mandated by the MSDN documentation. The other rule attributes (lines
2-4) disable tracing, instruct Brute to apply the fault model to every second call and to do fault
injection on recursive calls to GetModuleFileNameW as well as on surface level calls.

1 rule KERNEL32.dll!GetModuleFileNameW(hModule , lpFileName , nSize)
2 include recursive;
3 trace none;
4 frequency every_nth(2);
5 after {
6 if (nSize < 32000) {
7 last_win32_error = ERROR_SUCCESS;
8 result = nSize;
9 }

10 }

Listing 1.2: Rule for forcing LFN support with GetModuleFileNameW

We can save this rule in a file tour.br and then launch any application to which we want
to apply this rule with Brute. In case we see any unexpected behavior or crashes while the
application runs, it is most likely caused by insufficient support for long file names. To make sure
that the Brute instrumentation is not responsible for the crash, we can change line 4 of Listing 1.2
to frequency none. This will enable all instrumentation except for injecting the fault. If the
crash becomes irreproducible now, we can be sure that it was the result of improper usage of the
GetModuleFileNameW function and was not related to the instrumentation.

We have found occurrences where this rule will lead to crashes in multiple applications.
Depending on the version of Windows and the installed components, injecting this fault will
prevent the common file dialog from opening and crash the process trying to show the dialog.

Changing the current time. A second example shows the capabilities of the framework that
are not directly related to fault injection. We will create a rule that fixes the date to Feburary,
29th 2016, which is a leap day. This special date has been responsible for problems across all
different kind of programs. For example, it caused a service disruption at Microsoft Azure in
2012[14]. With this rule, a program or test suite can be executed under the assumption that it is
running on a leap day to find any problems related specifically to that date.

To determine the time, the Windows API provides a pair of functions located in kernel32.dll.
GetLocalTime returns the date and time in the current time zone, GetSystemTime in the UTC
timezone. Both functions have the same signature and expect a pointer to a SYSTEMTIME
struct, which is filled by the function. Contrary to many other functions, GetLocalTime and
GetSystemTime do not return an error code, injecting a fault is therefore not possible for these
functions. Passing a null pointer is prohibited as stated by the documentation and will result in
an access violation. Listings 1.3 and 1.4 show the signature for both functions and the definition
of the related SYSTEMTIME struct.

We can change the returned time and date using an after action. Listing 1.5 shows the rule
which applies this change by simply assigning the respective members of the SYSTEMTIME struct.
Since both functions share the same signature, we can target GetLocalTime and GetSystemTime
using a single rule with a regular expression that matches both function names. Because the
modification of the struct runs after the function call, we do not need to check if the given pointer
is valid. When we inject this rule into Microsoft Notepad and print the date and time (using the
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‘Edit’ → ‘Time/Date‘ menu or the F5 function key) a timestamp with the current time but the
date set to ‘02/29/2016’ is inserted.

// Get time in local timezone.
void WINAPI GetLocalTime(

_Out_ LPSYSTEMTIME lpSystemTime
);

// Get UTC time.
void WINAPI GetSystemTime(

_Out_ LPSYSTEMTIME lpSystemTime
);

Listing 1.3: Signature of functions to get date/time.

struct SYSTEMTIME {
WORD wYear;
WORD wMonth;
WORD wDayOfWeek;
WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;

} *LPSYSTEMTIME;

Listing 1.4: Definition of SYSTEMTIME.

1 rule *!‘Get(System|Local)Time ‘(lpSystemTime)
2 include recursive;
3 frequency always;
4 after {
5 lpSystemTime ->wYear = (WORD)2016;
6 lpSystemTime ->wMonth = (WORD)2;
7 lpSystemTime ->wDay = (WORD)29;
8 }

Listing 1.5: Change current date to a leap day.

External Functions. Next, we introduce how external functions can be used as part of fault
models. To this end, we extend the previous fault model to display a dialog the first time it is
called, which allows to select if the leap day should be injected. For this, we import the external
function MessageBoxA from user32.dll, which can display a dialog with various different sets
of buttons.

Listing 1.6 shows the full configuration file for the extended version of the fault model. We
first declare a global variable on_leapday, which stores the answer that the user provides during
the first call to one of the functions. The variable is initialized to zero by Brute, which indicates
that the user has not yet made a choice. The lines 6-8 define different constants related to the
MessageBox function, whose definitions can be found on the respective MSDN page2. On line
10 we import the function MessageBoxA (the ANSI version of the function) under the name
MessageBox with the indicated parameter list.

Inside the after action, we first check if the user has already made a choice (line 16) and show
the dialog if not (line 17). We use the previously defined constants to configure the dialog to show
a question mark icon and a pair of buttons titled ‘Yes’ and ‘No’. If the user selects ‘Yes’, we store
1 (line 18) in on_leapday, otherwise -1 (line 20). On line 24 we check the value of on_leapday
to see if the user chose to change the date or not. Figure 1.1 shows a screenshot of Microsoft
Notepad displaying the dialog.

We conclude the guided tour with this rule, which shows a bit more of the capabilities that
Brute provides, in particular how our DSL can be used to define powerful and flexible rules.

2https://msdn.microsoft.com/en-us/library/windows/desktop/ms645505(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms645505(v=vs.85).aspx
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1 #include <win_error.br>
2 #include <win_types.br>
3

4 global on_leapday -> int;
5

6 #define MB_YESNO 0x00000004L
7 #define MB_ICONQUESTION 0x00000020L
8 #define IDYES 6
9

10 import user32.dll!MessageBoxA as MessageBox(PVOID hwnd, LPCSTR text, LPCSTR
title , DWORD flags) -> int;

11

12 rule *!‘Get(System|Local)Time ‘(lpSystemTime)
13 include recursive;
14 frequency always;
15 after {
16 if (on_leapday == 0) {
17 if (MessageBox(nullptr , "Change date to February 29th?", "Leap Day",

MB_YESNO | MB_ICONQUESTION) == IDYES) {
18 on_leapday = 1;
19 } else {
20 on_leapday = -1;
21 }
22 }
23

24 if (on_leapday > 0) {
25 lpSystemTime ->wYear = (WORD)2016;
26 lpSystemTime ->wMonth = (WORD)2;
27 lpSystemTime ->wDay = (WORD)29;
28 }
29 }

Listing 1.6: Extended leap day example with dialog.

Figure 1.1: Microsoft Notepad showing dialog from after action.
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Chapter 2

Architecture

This chapter contains a description of Brute’s architecture. We start with a general overview of
the components and their interactions. Continued by a discussion of the different components,
we conclude with a section highlighting the more interesting challenges that we faced during
development and the solutions that we chose. While many of the ideas are explained on a
conceptual level, this chapter is the most technical and will at certain points also dive deep into
the implementation and explain some of the low-level issues that we had to solve.

2.1 Overview

Figure 2.1 shows the global architecture of the tool. The three main components are the Launcher,
the Brute Runtime and the Rule Definitions, that are stored in a configuration file (indicated by
the rules.br file in the diagram). The gray parts of the diagram are only relevant for managed
applications.

The Launcher is a command line application responsible for spawning a new process and
injecting the Brute Runtime together with the launch configuration into the process. The launch
configuration is a preprocessed version of the command line arguments and other configuration
data required by the Brute Runtime. The Brute Runtime is a DLL that is loaded into the same
address space as the target application and therefore has unrestricted access to the process’
private memory. When loaded, the Brute Runtime finds the launch configuration and extracts

Launcher

Application CLR

Dynamically Linked Libraries

Brute Runtime

Native Calls
P/Invoke Profiling API

rules.br

Figure 2.1: Architectural Overview

9
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information about the location of the Rule Definitions on disk.
The Rule Definitions are a set of files that determine which functions to modify and how

to alter their behavior. A detailed discussion of the rule specification language can be found in
Section 2.9. The Brute Runtime modifies the functions that match one or multiple rules. For
unmanaged functions this is done using Detours[9]. In the managed case, we use the Profiling
API that is provided by the CLR.

2.2 Modifying Functions with Detours

Because we operate on the assembly level and do not have access to the source code of the client
application, we require a way to modify or replace a function at runtime. This technique is
commonly referred to as hooking and there exist multiple libraries that simplify this task.

The library we selected for this project is Detours[9]. Detours is developed by Microsoft and
is being used a multitude of Microsoft’s internal tools, as well as by many other companies. A
restricted, free version can be obtained directly from Microsoft. A licensing model is available for
commercial applications.

The hooking process involves three functions. First, the target function, which is the function
that we want to modify, then a hook function, which contains the replacement for the target
function and finally a trampoline function, which is generated dynamically and allows the hook
function to call the original implementation.

CreateFile
 Create backup

CreateFileOriginal

CreateFile

Add jump back into original instruction stream

CreateFileOriginal


Replace beginning of target function with unconditional jump

CreateFile CreateFileOriginalCreateFileHook

sub rsp,58h  
mov r10d, [rsp+88h]  
mov eax,r10d  
and eax,7FB7h  

sub rsp,58h  
mov r10d, [rsp+88h]  
mov eax,r10d  
and eax,7FB7h  

sub rsp,58h  
mov r10d, [rsp+88h]  
  

sub rsp,58h  
mov r10d, [rsp+88h]  
jmp CreateFile+0xE

jmp CreateFileHook

mov eax,r10d  
and eax,7FB7h  

sub rsp,58h  
mov r10d, [rsp+88h]  
jmp CreateFile+0xE

void* CreateFileHook(...) {
  ...
  void* result =
    CreateFileOriginal(...);
  ...
}

Figure 2.2: Hooking a function with Detours.

Figure 2.2 shows a visualization of the hooking process for the target function CreateFile.
Detours first creates a backup copy of the instructions at the beginning of the target function.
While doing this, it adjusts the instructions in case they use an addressing model that is relative
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to the current instruction pointer (RIP addressing). The location where Detours created the
backup becomes the trampoline function by appending an unconditional jump back to where the
instruction stream continues in the original function.

Subsequently, Detours replaces the beginning of the target function with an unconditional
jump to the replacement function. On architectures that use variable-length instruction encoding,
in particular x86 and x64, the jump instruction might be longer than the first original instruction.
Therefore, Detours needs to copy at least as many instructions, such that the total size of the
copied instructions is larger than the size of the jump instruction.

Now the hooking operation is complete. When a caller jumps to the entry point of the
CreateFile function, the execution will immediately be redirected to our replacement function.
By keeping a backup of the overwritten instructions, the original implementation is still available
at a different address. The replacement function is aware of this address and can invoke the
original implementation at will.

Since the jump instruction transfers the execution directly from the target function to the
hook functions, the signatures (i.e. the calling convention, number and types of parameters and
return type) of these functions must match exactly. Otherwise, the call will lead to a stack
imbalance and in most cases, shortly after, to a crash.

2.3 Running a Process with Brute

In this section we describe the main steps that are performed when a new process is started
with Brute and how the Brute Runtime is initialized. Figure 2.3 shows a timeline of the process
lifecycle and the most important events.
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Figure 2.3: Timeline of the process lifecycle when running with Brute.

The whole procedure is started by running the Launcher process. It parses the command line
arguments and determines which client application to start. Subsequently, it creates a new process
in a suspended state. Using Detours[9], we manipulate the DLL import table to reference the
Brute Runtime as the first statically imported DLL. When the newly started process is resumed,
the Windows loader will therefore first load the Brute Runtime and call its DllMain function
before any user code runs. However, we cannot fully initialize Brute here, because code that runs
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inside of DllMain is subject to multiple restrictions. The most important one being, that we are
not allowed to dynamically load other libraries using the LoadLibrary API. To circumvent this
restriction, we hook the entry point of the application (i.e. the client’s main function) and defer
the remaining initialization until all other statically referenced DLLs are loaded.

When the Windows loader has finished initializing the other DLLs and jumps to the entry
point, we regain control over the process and perform most of the initialization work. This
includes parsing the rule definitions, generating the internal function repository (i.e. the table
of all DLL-exported functions), loading the metadata for the currently loaded DLLs, such as
symbol information and registering ourselves as a managed profiler for this process. This second
initialization phase is called Late Initialization. Now that all necessary information for applying
the rules is ready, we attach the hooks and finally call the original entry point.

At this point, the application runs normally and we get callbacks for all hooked functions. If
the application is managed (or hosts a CLR in any other way, like using a managed COM server)
we will also get callbacks from the CLR. When DLLs are loaded or unloaded dynamically, we
update the internal function repository and attach hooks accordingly as described in Section 2.5.

Just after the application exits (either by returning from the main function or calling
ExitProcess) the DllMain function of the Brute Runtime DLLs is called again, this time
indicating that the process is terminating. During this call, we unhook all functions, flush all
remaining tracing data to disk and finally terminate the process.

After the launcher detects that the target application has exited, it performs some post-
processing of the tracing data and then exits as well. More information about the tracing feature
can be found in Section 2.11.

2.4 Generic Hooks

For reasons described in Section 2.2, the signature of any target function must be known in order
to hook it. This is problematic for our purposes, because we want to hook functions on a large
scale, without needing the full signature or any signature at all. To this end, we developed an
extension to Detours that allows hooking without any knowledge about a function, except for its
start address. This section is fairly technical and while the most important concepts are explained
to the extent necessary to understand the ideas, basic knowledge about processor architectures is
assumed.

In order to understand how generic hooks work, we first need to discuss how function arguments
are passed from caller to callee (and vice-versa for the return value) on the assembly level. We will
also take a look at the role of calling conventions. When compiling from a higher-level language
to assembly, the compiler needs to map function arguments to registers or areas of memory,
since the assembly instruction for calling a function does not handle function parameters. In
order to pass the arguments correctly, the caller and callee must agree on where arguments are
stored, even if the two functions are written in different high-level languages or compiled using
different compilers. To accomplish this, there are different calling conventions, which define how
the arguments are mapped to processor resources (like registers or memory). A discussion of
the different calling conventions can be found in Section 2.8. To allow for recursion and avoid
concurrency issues, argument values are usually placed on the stack or in registers, if the calling
convention allows this and the registers are large enough. Since we need a way of intercepting a
function call independent of the calling convention, we can only rely on properties that all calling
conventions have in common, which are the following:

1. The stack grows from top to bottom (i.e. from higher addresses to lower addresses).

2. The stack pointer points to the last value on the stack.
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3. The stack below (i.e. lower addresses) the stack pointer can be used freely by the callee.

4. Upon entering the callee, the return address (i.e. the address of the next instruction to
execute when the function returns) is the last value on the stack.

As a side note, these statements only hold true for x86 and x64. Other processor architectures
like ARM use completely different calling conventions. While an implementation of generic
hooks would still be possible, the solution presented here only works for these two Intel-based
architectures.

0xFFFFFFFF

0x00000000

In-Use / Unknown

Return Address
Free

Stack Start

ESP

Figure 2.4: Stack layout upon entering a function.

Figure 2.4 visualizes the stack directly after
a function is entered. For the remainder of this
section, the example will always target x86 but
is still directly applicable to x64 by extend-
ing addresses to 64-bit and switching register
names with their 64-bit counterpart (e.g. ESP
becomes RSP). ESP is the processor’s stack
pointer register (i.e. a pointer to the last value
on the stack). EAX, EBX, ECX and EDX are
general purpose registers.

We can execute arbitrary code before and
after the call to the original function, under
the condition that we preserve all the relevant
state. This includes at least all registers, as well as the stack pointer and the data that is above
the current stack top (i.e. addresses higher than the stack pointer). While all these conditions
must hold when we call the original implementation (i.e. the trampoline function that Detours
generated), we can temporarily violate these restrictions as long as we reestablish them again
before calling the original function. This allows us to perform a callback before and after the
original function runs. Note that without the signature, it is not possible to skip the call to the
original function, since some calling conventions require that the callee removes the arguments
from the stack and we do not have the necessary information to do this.

1: push registers
2: call beforeCallback
3: pop registers

4: call originalImplementation

5: push registers
6: call afterCallback
7: pop registers

8: ret

Figure 2.5: Pseudo-code for generic hook.

From this, we can derive the pseudo code
for a generic hook as seen in Figure 2.5. We
first push the (volatile) registers onto the stack,
call beforeCallback and restore the register
values from the stack after we return from
the callback (lines 1-3). Then, we call the
original implementation (line 4), followed by
the same procedure for afterCallback (lines
5-7). Since we need precise control over the
registers and stack, the implementation of this
stub must be written in assembly. We already
provide implementations for x86 and x64. As
mentioned earlier, an implementation for ARM
is possible, but was not in the scope of this
project.

Figure 2.6 shows the layout of the stack during the call to beforeCallback (line 2). Ret.
Addr. Callback represents the address, at which the execution resumes after the callback completes
and is the address of line 3 and 7, respectively. Inside the callback, we can calculate the original
ESP and therefore, access the return address and preceding data on the stack. Should the user
provide a signature for the function (either by providing debugging symbols or specifying the
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signature as part of the rule), we are still able to read and modify the arguments and the return
value.

While the implementation follows the structure outlined in Algorithm 2.5, there are a few
additional caveats that need to be addressed. First, we cannot call the original implementation
directly (line 4). Doing this would push an additional return address onto the stack, with the
effect that all accesses to the stack would be off by the size of an address (i.e. 4 bytes on x86 or 8
bytes on x64). However, we can replace the return address on the stack with the address of line 5
in the algorithm and restore the original return address as part of the afterCallback. While
this change is visible to the callee, it is not problematic, because the callee should not make any
assumptions about the address of a caller1. An issue that arises as a direct consequence of this is
that we need to store the original return address for the duration of the call. Since storing the
address on the stack is not an option, we use a shadow stack in thread-local storage.

0xFFFFFFFF

0x00000000

In-Use / Unknown

Return Address

Free

Stack Start

ESPorig

Register Backup

Ret. Addr. Callback

Local Variables
ESP

Figure 2.6: Stack layout during a callback.

Second, preserving the stack and registers
is not sufficient in order to make the before
and after callbacks completely transparent to
the user code. In general, we need to pre-
serve the whole state that is shared between
the Brute Runtime and the user code. While
we try to keep the amount of overlap as min-
imal as possible (see Section 2.12.4 for more
information) and stack/registers cover most
of this overlap, there are other instances of
shared data. An important example is the
error code of the last API call (accessed us-
ing GetLastError()). Windows maintains a
thread-local variable, that is used by most of
the Windows APIs to communicate the type of
error that occurred during the last call. Should
we use these APIs during the callbacks (the
after callback being the more interesting one here), we inadvertently overwrite the error code that
was returned by the original implementation with the error code that happens to be returned by
the last API call in the callback.

There are other architecture-specific details like the stack alignment restriction on x64 or the
FPU state on x86. These need to be addressed in the implementation, but do not contribute to
the understanding of the basic idea, which is why we skip them here. In general, our solution
implements a mechanism that is similar to a lightweight context switch and stores the ephemeral
call data on a shadow stack in thread-local storage. As a result, we can preserve the shared
state (in particular the stack) during the before and after callbacks, making our instrumentation
transparent to the user code, with the exception of the return address and the timing. Because of
this, we can instrument functions regardless of their signature, while maintaining the ability to
read and manipulate arguments and the return value, should a signature be provided.

1There exists code that uses the return address to ensure that a function is only called from specific modules or
functions. However, this check is not reliable in the presence of tail call optimization and there are multiple ways
to circumvent this check, should one invest the necessary amount of criminal energy. Therefore, we do not handle
this type of function.
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2.5 Dynamic Module Tracking

Aside from statically referencing DLLs in the import table, DLLs can also be delay-loaded or
dynamically loaded. In the case of delay-loaded DLLs, the compiler does not add a reference in the
DLL import table, but instead generates a thunk for every referenced function, that dynamically
loads the DLLs when it is first called. After the DLLs are loaded, all thunks that target the same
DLL are forwarded to the actual implementation. In the fully dynamic case, the DLL is loaded
using the LoadLibrary API which takes the path to a DLL on disk. By passing the resulting
module handle and a function name to the GetProcAddress function, the address of a function
in the DLL can be determined.

Since we can only hook functions that are present in memory, we need to keep track of all
currently loaded DLLs, dynamically update the function repository when modules are loaded
or unloaded and hook functions before the user has a chance to get the function address.
We do this by hooking three internal functions (LdrLoadDll, LdrResolveDelayLoadedAPI,
LdrUnloadDll) that the Windows loader uses when dynamically- or delay-loading/unloading
a DLL. We determined these functions by hooking lower-level functions for mapping the DLLs
into the address space, for which we knew that they were used to load DLLs and then analyzing
the stack traces. After a module is loaded into or unloaded from the process, we enumerate all
modules and calculate which modules were added or removed. We then update the function
repository and attach hooks to the functions accordingly.

We use this approach because it is much simpler than trying to track the loading / unloading
of every module separately. First, loading one DLL can result in multiple DLLs being loaded
into the process (the requested DLLs and all transitive dependencies). Second, the loading
process is parallelized internally and the corresponding functions are all undocumented and not
DLL-exported. One drawback of this approach is, that modules are unloaded before they can
be successfully unhooked (i.e. the unload event is only triggered when the module has already
been unloaded). Naturally, this prevents Detours from successfully unhooking the functions.
Depending on how Detours handles this issue, it could result in a memory leak.

2.6 Reentrancy and Safe Functions

Because we allow hooking of a wide range of functions, including low-level functions that may be
used by the instrumentation itself, we need to deal with reentrancy in two different contexts.

First, we want to allow the user to limit the effect of a rule only to the outer most recursive
call or to the surface call of an API. The later meaning, that when a hooked API uses other
hooked functions, the rules only apply to the outermost function call (even if the call is not
recursive). The reasoning behind this is, that we might introduce false positives when injecting
faults into lower-level calls. The library developer could have used some source-level information
about the behavior of a function in the same module, which is then invalidated by a rule. As an
example, take a function whose documentation specifies more error codes than the function can
actually return. This is always allowed and can prevent that a change breaks the API contract,
thus making the API more stable. However, for intra-module function calls, the developer might
only handle errors that the function can actually return and just expand the error handling code
as needed. By injecting errors that the documentation specified, but are never actually returned,
we might end up introducing false positives. In theory, we would like to only apply rules when a
call crosses API boundaries. However, in practice, determining these boundaries is impossible,
since modularity is only a design concept, but does not necessarily manifest itself in the compiled
code.
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Second, the instrumentation must handle the case, where functions used in the before and after
callbacks have rules applied to them. If this occurs, we also do not want to apply the rule behavior,
because it could lead to infinite recursion or compromise the integrity of the fault-injection logic
itself.

We address these issues in two ways: By detecting reentrancy dynamically and where this is
not possible, preventing it statically. The dynamic detection covers most of the functions and is
implemented by simply keeping a flag in thread-local storage, indicating whether the thread is
currently inside an instrumentation function. This flag is internally referred to as the reentrancy
gate. Inside the before callback, we first try to acquire the reentrancy gate (i.e. check if the flag is
currently not set and set it if this is the case). If we fail to acquire the reentrancy gate, we simply
jump to the original implementation of the function, the after callback is never invoked for these
calls. If we manage to acquire the reentrancy gate, we proceed by setting up the after callback
and perform any other actions that are specified by the rule for this function. Before calling
the original implementation, we release the reentrancy gate and reacquire it in the after callback.
Reacquiring the reentrancy gate should always succeed, because of thread-locality. Should the
user specify that reentrant calls should not be instrumented, we do not release the reentrancy
gate for the duration of the call to the original implementation. With this simple approach, we
can dynamically detect reentrant calls into the before and after callbacks, allowing the safe usage
of any function inside these callbacks, even for hooked functions.

While the dynamic reentrancy detection works for most functions and prevents us from
requiring static knowledge of all the functions that are used inside of callbacks, there is a subset
for which we need a different approach. Concretely, these are the functions required for setting up
the reentrancy gate itself (i.e. the functions for accessing thread-local storage) and the functions
that need to run outside of the reentrancy gate. Internally, we refer to these as safe functions,
because they are always safe to call. Instead of statically binding to these functions, we maintain
a table of function pointers that is automatically updated by the instrumentation, whenever we
hook or unhook a function inside the table. In the unhooked state, the table points to the normal
function address. While a function is hooked, the table points to the trampoline function (i.e.
the original implementation) instead. Therefore, whenever we call a function through this table,
we are sure to always call the original implementation, regardless of any rules applied to them.

2.7 Metadata and Type Information

While Brute does not require type information for basic tracing and fault injection, it is still
required for the more advanced features like argument value tracing or fault injection based on
function arguments. Brute supports two different ways of specifying type information, either by
listing the full signature of a function inside the configuration file or by importing types from
debugging symbol information, emitted by the C/C++ compiler. While the code architecture
is easily extensible and would allow for different formats of debugging symbols, only the PDB
(Program Database / CodeView) format (used by the Microsoft Visual C++ compiler) is currently
supported. For managed code, no additional type information is required, because it is already
embedded in the IL code and (managed) assembly metadata.

Brute contains an implementation of a type system that is closely based on C’s type system
(with some additions from C++). The type system supports the usual fundamental types like
signed and unsigned integers of different widths and floating point numbers, structs, unions,
function signatures, type modifiers like const and volatile, pointers and reference types. Types
can be created by lifting static C++ types to our type system (this is useful exposing internal
structs and functions of the Brute API to the user), by importing debugging symbols or parsing
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them as part of the configuration file. Should a type declared by the debugging symbols not be
representable, it will be replaced by an opaque type called unknown.

The user can specify a symbol server, from which debugging symbols are automatically
downloaded on demand. Debugging symbols will only be imported once for every module and
then cached in a metadata cache. While this speeds up the metadata loading procedure, it has
additional benefits. First, loading the debugging symbols from a symbol server requires HTTP(S)
communication, which not only loads many additional dependencies into the process, but also
relies on the network, thus having a big impact on the client application. Furthermore, because
the PDB format is proprietary, accessing PDB files requires making use of the DIA (Debug
Interface Access) API, which is a COM-based API. The problem lies in the fact that COM needs
to be initialized on a per-thread basis, which means that accessing the DIA API could lead to
conflicts with the COM configuration of the instrumented application. The COM infrastructure
might not even be available at the time when a new DLL is loaded and its debugging symbols
are imported (e.g. if this function is required for the initialization of COM itself). Therefore,
we need to achieve the lowest possible impact on the client application. Should populating the
metadata cache not be possible dynamically, the user can still pre-populate the cache. Loading
the metadata from cache does not require any external APIs aside from reading a file.

2.8 Stack Frame Serialization

Section 2.4 describes a technique for hooking functions without requiring a signature for broad
coverage, with tracing being the primary use case. In Section 2.7, we show how type information
can be added to allow for more advanced features like argument tracing or fault injection based
on argument values. In order to implement these features, we first need the following operation:
Given the location of a stack frame (or more precisely a call frame) in memory, the contents of
the registers at call time and a signature, construct a strongly-typed and reusable representation.
However, before we look at how this deserialization operation works, we first need to discuss how
Brute represents values internally.

Values are internally represented as terms. A term is an object that has a type associated to
it (i.e. the type of the value that it represents). Terms also define a conversion to a string (for
debugging purposes) and an evaluation function. The simplest type of term is a literal term, which
represents a constant value of its respective type. The evaluation of a literal term is simply the
identity function. More complicated terms, such as binary terms for arithmetic, become important
when we look at the fault modeling language. For this section, we will just focus on literal terms.
While a literal term is just a container for a constant value and much more expensive to create
(in terms of memory and CPU cycles), it still provides two important features, which in some
sense, are the inverse of each other. First, inherently provides type erasure, meaning a term can
store a value of any representable type. Second, it allows for introspection, where, given a term
we can dynamically check the type of its value. Now we can define stack frame deserialization as
a function from a signature and a register state at a call site (which, in particular, includes the
stack pointer) to a tuple of terms, where the tuple elements represent the argument values.

How the deserialization works, depends heavily on the calling convention, which is provided
as part of the signature. The following calling conventions are supported (where multiple versions
of the calling convention exist, we use the MSVC++ interpretation):

1. x86/stdcall. stdcall is the primary calling convention used by the Windows API and
COM interfaces. It pushes all arguments onto the stack from right to left and the callee
is responsible for cleaning up the stack (which implies that it does not support a variable



18 2 Architecture

number of arguments). Return values are stored in EAX for 32-bit and EAX:EDX for 64-bit
values. Floating point return values are passed via the FPU stack.

2. x86/cdecl. cdecl is the standard C calling convention. It differs from stdcall in that the
caller is responsible for removing the arguments from the stack, thus allowing a variable
number of arguments (varargs).

3. x86/fastcall. fastcall is similar to cdecl with the exception that the first two arguments
(from left-to-right) are passed in registers ECX and EDX, provided they fit into 32 bits.
The remaining arguments (or arguments that are wider than 32 bits) are pushed from
right-to-left onto the stack.

4. x86/thiscall. thiscall is similar to stdcall with the exception that the first (implicit)
argument (i.e. the this-pointer) is passed in ECX instead of the stack.

5. x64. On x64 there exists only a single calling convention. The first 4 arguments are passed
in registers RCX, RDX, R8, R9 if they are integral values or XMM0-XMM3 if they are
floating point values. The return value is passed in RAX (for integral values) or XMM0
(for floating point).

This list illustrates why it is important to abstract away the calling convention as soon as
possible and work with a more versatile representation internally. After deserialization of the
call frame, the resulting terms can either be written to disk for tracing or fed into other terms to
perform calculations based on the arguments.

For now, we have looked at the conversion from a call frame to a term-based representation.
The inverse operation is also required, in order to support calling external functions from a fault
model. When a fault model calls an external function, we are given a signature and a tuple of
terms for the arguments. Then we arrange the values on the stack and in registers, according
to the calling convention, and jump to the given external function. When the call returns, we
deserialize the return value (usually in EAX or RAX) into a term and continue the evaluation of
the fault model. While the C(++) compiler emits code that reads and creates call frames for
every function and function call, we still need the capability to do this dynamically, because the
function signatures are only known at runtime and pre-generating code for all possible signatures
is infeasible even for very short signatures.

2.9 Rule Specification Language

Brute employs a DSL (Domain Specific Language) to encode the rules that it applies to an
application. In a first step, a C++ preprocessor transforms the configuration file. This allows the
use of directives like #include or #ifdef and is compatible with preprocessor libraries like Boost
Preprocessor2 and Boost VMD3. Together with the abilities to specify include files and define
additional macros over the command line, this allows for very flexible configuration files. To avoid
dependencies on external tools, we include the Boost Wave4 preprocessor implementation inside
the Brute Runtime.

After preprocessing, the configuration can contain multiple rules and top-level definitions of
the fault modeling language.

〈Configuration〉 ::= (〈Rule〉 | 〈TLD〉)*

2http://www.boost.org/doc/libs/1_60_0/libs/preprocessor/doc/index.html
3http://www.boost.org/doc/libs/1_60_0/libs/vmd/doc/html/index.html
4http://www.boost.org/doc/libs/1_60_0/libs/wave

http://www.boost.org/doc/libs/1_60_0/libs/preprocessor/doc/index.html
http://www.boost.org/doc/libs/1_60_0/libs/preprocessor/doc/index.html
http://www.boost.org/doc/libs/1_60_0/libs/vmd/doc/html/index.html
http://www.boost.org/doc/libs/1_60_0/libs/wave/
http://www.boost.org/doc/libs/1_60_0/libs/preprocessor/doc/index.html
http://www.boost.org/doc/libs/1_60_0/libs/vmd/doc/html/index.html
http://www.boost.org/doc/libs/1_60_0/libs/wave
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2.9.1 Rule Definitions

A rule can target one or multiple functions. For each matching function, it sets one or more
function-specific attributes. Rules are aggregated from top to bottom, meaning that multiple
rules can target the same function and later rules overwrite the attributes set by previous ones.
The grammar for defining rules is as follows:

〈Rule〉 ::= ‘rule’ 〈Filter Module〉‘!’〈Filter Name〉[‘(’〈Params〉‘)’] [ ‘->’ 〈Type〉] 〈Attributes〉 ‘;’

〈Name〉 ::= Id | ‘¨’ Name ‘¨’

〈Filter〉 ::= 〈Name〉 | ‘`’ Regex ‘`’ | ‘*’

〈Params〉 ::= 〈Param〉 [‘,’ 〈Param〉 [‘,’ ...]]

〈Param〉 ::= [〈Type〉] 〈Identifier〉

〈Attributes〉 ::= 〈Attribute〉 [‘;’ 〈Attribute〉 [‘;’ ...]]

〈Attribute〉 ::= 〈Include〉 | 〈Frequency〉 | 〈Repeat〉 | 〈Trace〉 | 〈CallStatic〉 | 〈Before〉 | 〈After〉

The set of targeted functions is determined by two filter expressions, one for the module name
and one for the function name. A filter expression can either be an identifier (possibly enclosed in
quotation marks if needed), a regular expression (enclosed by backticks) or an asterisk (to match
everything). An identifier (designated Id in the grammar) consists of letters, underscores, dots
and digits and has to start with either a letter or an underscore. Should a module or function
name contain other characters, the name must be enclosed in quotation marks and the standard
C-style escaping with backslashes applies. Following the filters, the user can optionally specify a
list of parameters as well as the return type. The specification of type information is optional
and automatically inferred from the debugging symbols, if available. After the signature follows a
list of attributes, which are defined as follows:

〈Include〉 ::= ‘include’ (‘false’ | ‘none’ | ‘leaf’ | ‘recursive’)

〈Frequency〉 ::= ‘frequency’ (‘always’
| ‘never’
| ‘every_nth(’ 〈Int Interval〉 ‘)’
| ‘random(’ 〈Float Probability〉 ‘)’
| ‘custom(’ 〈Int Interval〉 ‘,’ 〈Float Probability〉 ‘)’)

〈Repeat〉 ::= ‘repeat’ (‘infinitely’ | 〈Int Repetitions〉)

〈Trace〉 ::= ‘trace’ (‘automatic’ | ‘none’ | ‘call’ | ‘arguments’ [‘(’ 〈Int Depth〉 ‘)’])

〈CallStatic〉 ::= ‘call_static(’ 〈VarDecls〉 ‘)’

〈VarDecls〉 ::= 〈VarDecl〉 [‘,’ 〈VarDecl〉 [‘,’ ...]]

〈VarDecl〉 ::= 〈Type〉 Id

〈Before〉 ::= ‘before’ ‘{’ 〈Code〉 ‘}’
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〈After〉 ::= ‘after’ ‘{’ 〈Code〉 ‘}’

The include attribute specifies in which cases a rule is applied:

• false. The targeted functions are not hooked. None of the other attributes apply.

• none. The targeted functions are hooked, but no action is taken for this call and all nested
calls.

• leaf. The targeted functions are hooked and the actions are performed as defined, but only
for this call. No action is taken for all nested calls.

• recursive. (default) The targeted functions are hooked and the actions are performed as
defined, for this call and nested calls (unless overridden by a rule for a nested call).

While the include attribute defines if we include a function in the fault injection process
in general, the frequency and repeat attributes provide more fine-grained control over the
injection behavior. All three attributes combined represent the injection strategy for the targeted
functions. The frequency attribute controls the regularity at which the fault injection runs. It
is determined by two parameters, an interval and a trigger probability. Every time a function is
called, the engine does a probabilistic test that succeeds with the specified trigger probability. If
the test succeeds, a per-function interval counter is increased by one, until it reaches the interval
value. On the call where we reach the interval value, we decrement a per-method repetition
counter which is initialized to the value specified by the repeat attribute. If the counter (before
decrementing) is larger than zero, we inject a fault and reset the interval counter to zero.

The frequency attribute specifies the interval and trigger probability and provides some
convenience options for a more readable configuration:

• always. Injects a fault for every call. Sets the trigger probability to 1 and the interval to 1.

• never. (default) Never injects a fault. Sets the trigger probability to 0.

• every nth(n). Injects a fault for every nth call. Sets the trigger probability to 1 and the
interval to n.

• random(p). Injects a fault with a probability of p. Sets the trigger probability to p and
the interval to 1.

• custom(n, p). Sets the trigger probability to p and the interval to n.

The trace attribute specifies the extent to which a call to a targeted function will be reported
in the trace file. Tracing occurs independently of the injection strategy for all (or no) calls.

• none. Does not write calls to this function into the trace.

• call. Writes an entry into the trace file every time this function is called or returns from a
call.

• arguments(d) Same as call with the addition of including the function arguments (on
entry) and the return value (on exit) in the trace. d indicates the number of pointer-
indirections that are followed (e.g. 2 means that the dereferenced value for all pointers and
pointers-to-pointers is included as well). If no type information for the targeted function is
available, a warning is written to the log and call is used instead. If d is not specified, it
defaults to zero.

• automatic. (default) Automatically determines the tracing behavior based on the avail-
ability of type information. If no type information is available for a given function, this is
the same as call. If type information is available, it turns into arguments(0).

The remaining attributes define the fault model for the targeted functions. The before and
after attributes specify a snippet of code that will be executed as part of the before and after
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callback. We refer to these snippets as before and after actions. This snippet of code is written
in a DSL described in the next section (Section 2.9.2). The call_static attribute allows to
declare a set of variables that are scoped to a single call to the function (i.e. they are available in
both the before and after action and keep their values in between the two callbacks).

2.9.2 Fault Modeling Language

The fault models are encoded using a simple programming language that is strongly based on C.
However, compared to regular C there exist two major differences.

The first difference lies in the way type information is consumed. While C usually requires
header files for interfacing with an API, Brute uses the type information it has extracted from
the debugging symbols, instead. This eliminates the need for parsing arbitrary header files, which
would be beyond the scope of this thesis. Furthermore, it prevents version differences between the
header files and the actual implementation. However, it also introduces an additional challenge,
since parsing C syntax is not context-free and requires a type symbol table while parsing. Because
of this, C only allows to reference types that were defined previously in the file. For cyclic
dependencies forward declarations are required. Since our type information is only available
after the associated module has been loaded, we cannot fully parse the configuration file during
initialization. Instead, we only tokenize certain sections of the configuration and parse them on
demand. For example, the before and after actions of a rule are only parsed when the function is
first called, ensuring that the type information for that module is already available.

The second difference is that while C is usually compiled, fault models are executed depending
on the environment of the target function. For native (i.e. unmanaged) functions, a parsed and
type-checked intermediate representation is interpreted for every call. While the execution speed
is lower than for compiled and optimized code, the lower performance is often not relevant because
fault models are rarely computationally intensive. Should the performance of the fault model
still be an issue, a simple solution is to delegate parts or even the whole model to an external
DLL, which can be fully optimized. For managed code, we take a different route and translate
the code into IL, which can then be merged with the target function. The just-in-time compiler
will translate the instrumented version of the function, including the before and after action.

Aside from the before and after actions, the fault modeling language provides several top-level
definitions for defining functions and variables. The following definitions are supported:

〈TLD〉 ::= 〈GlobalVar〉 | 〈Function〉 | 〈Import〉

〈GlobalVar〉 ::= (‘global’ | ‘thread_static’) 〈Id〉 ‘->’ 〈Type〉 ‘;’

〈Function〉 ::= ‘function’ Id(〈Params〉) [‘->’ 〈Type〉] ‘{’ 〈Code〉 ‘}’

〈Import〉 ::= ‘import’ [〈CallingConv〉] 〈Name〉‘!’〈Name〉 [‘as’ Id](〈Params〉) [‘->’ 〈Type〉];

〈CallingConv〉 ::= ‘__stdcall’ | ‘__cdecl’ | ‘__fastcall’ | ‘__thiscall’;

Global and thread-static variables are accessible within all functions, before and after actions.
They are instantiated as implied by the declaration (i.e. a single shared variable for global
variables, an individual instance in thread-local storage for thread_static variables). The type
of the variable is specified after the variable name, followed by an arrow (->) and must be known
when the variable is first accessed. Similar to the rule actions, top-level definitions are lazily
parsed when they are first needed. That is also the reason for the arrow syntax for specifying the
type of a variable. While this syntax may look strange from the viewpoint of a C programmer,
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C++ uses a similar syntax to specify the return types of lambda expressions and functions that
require the use of decltype on parameters as part of the return type.

Functions allow to refactor common code in multiple rule actions into a single subprogram.
If the return type is omitted, void is assumed by default. Should the function not require any
parameters, we write a pair of empty parentheses (void foo()), instead of the C-syntax that
uses void foo(void).

Imports allow the use of arbitrary DLL-exported functions in rule actions and functions
written using the fault modeling language. The import keyword is followed by an optional
calling convention specification, which defaults to stdcall as most of the Windows APIs use this
convention. After that, follows the name of the module and function to import. Since some
function names are mangled and contain characters that are not allowed in identifiers, the optional
as keyword allows to specify a different name for the function. The remaining part of the import
definition contains the parameter list and the return type. As with functions, omitting the return
type uses the default type void.

The order in which global variables, functions and imports are defined does not matter, because
their resolution is performed on-demand when a referencing rule action is used for the first time.
In particular, forward declarations of functions are not required.

For the remainder of this section, we look at the statements and expressions that the fault
modeling language provides. As mentioned earlier, many elements are taken from C and the
language should immediately feel familiar to a C programmer. The following statements are
supported and can be used in functions and, with the exception of return, also in rule actions:

〈Code〉 ::= 〈Statement〉*

〈Statement〉 ::= ‘{’ 〈Statement〉* ‘}’
| ‘if’ ‘(’ 〈Expr〉 ‘)’ 〈Statement〉 [‘else’ 〈Statement〉]
| ‘while’ ‘(’ 〈Expr〉 ‘)’ 〈Statement〉
| ‘do’ 〈Statement〉 ‘while’ ‘(’ 〈Expr〉 ‘)’ ‘;’
| ‘continue’ ‘;’
| ‘break’ ‘;’
| ‘return’ [〈Expr〉] ‘;’
| 〈DeclarationStmt〉 ‘;’
| 〈Expr〉 ‘;’

〈DeclarationStmt〉 ::= 〈RootType〉 〈CVMod〉 〈Declaration〉 [‘,’ 〈Declaration〉 [‘,’ ...]] ‘;’

〈Declaration〉 ::= 〈DeclMod〉 Id [‘=’ 〈Expr〉]

〈DeclMod〉 ::= ‘*’* [‘&’]

The standard conditional and looping constructs are supported, with the exception of for-loops.
However, these can always be replaced with a corresponding while-loop. Jump instructions like
break (to exit the inner-most loop), continue (to jump to the next loop iteration) and return
(to exit the function) are supported as well, however the general goto is missing. Local variables
can be declared anywhere and are scoped to the inner-most compound statement (i.e. pairs of
{}). Types are written as in C, with additional support for reference types and bool.

〈IntType〉 ::= (‘char’ | ‘short’ [‘int’] | ‘long’ [‘long’] [‘int’] | ‘int’)

〈BaseType〉 ::= ‘void’
| ‘bool’
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| (‘unsigned’ | ‘signed’) [〈IntType〉]
| 〈IntType〉

〈CVMod〉 ::= ‘const’ [‘volatile’] | ‘volatile’ [‘const’]

〈RootType〉 ::= 〈CVMod〉 (〈BaseType〉 | Id)

〈Type〉 ::= 〈RootType〉 〈TypeMod〉*

〈TypeMod〉 ::= 〈CVMod〉 ‘*’* [‘&’]

The fault modeling language supports a wide range of C operators and expressions, some
additions from C++ like booleans and nullptr, as well as some Microsoft-specific language
extensions (like the i suffix for numeric literals). HexLiteral and DecLiteral are terminals
for hexadecimal numbers (prefixed with 0x) and decimal integers and floating point numbers,
respectively. String literals prefixed with L are wide-char unicode literals.

〈Expr〉 ::= 〈Unary〉 [⊕ 〈Unary〉] where ⊕ in Figure 2.7

〈Unary〉 ::= ‘(’ 〈Type〉 ‘)’ 〈Unary〉
| (‘-’ | ‘~’ | ‘!’ | ‘*’) 〈Unary〉
| (‘++’ | ‘-’ | ‘&’) 〈Atom〉
| 〈Atom〉 [‘++’ | ‘-’]

〈Atom〉 ::= 〈Value〉 (‘.’ Id | ‘->’ Id | ‘(’ 〈ExprList〉 ‘)’ | ‘[’ 〈ExprList〉 ‘]’ )*

〈Value〉 ::= ‘(’ 〈Expr〉 ‘)’
| ‘true’ | ‘false’ | ‘nullptr’
| HexLiteral
| DecLiteral [‘u’] [‘l’ | ‘ll’ | ‘i32’ | ‘i64’ | ‘i8’ | ‘f’]
| [‘L’] ‘"’ QuotedString ‘"’
| Id
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Figure 2.7: Precedence of supported binary operators.

Additionally to global and thread-static variables, code in before actions also has access
to arguments and call-static variables. The after action can access the same variables as the
before action as well as two implicitly defined, supplementary variables. The first variable is
last_win32_error of type unsigned long and contains the value returned by GetLastError
when leaving the targeted function. The second variable is result of the same type as the return
type of the targeted function and contains the return value. Both variables are writable and
therefore can be used to manipulate the outcome of the function call.
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2.10 Support for Managed Code

While the main focus of this thesis has been on native code, feedback we received during
development lead us to the idea to implement a proof-of-concept to demonstrate how we can
extend the existing infrastructure to other platforms. While the hooking approach works well
for native code, the requirements for instrumenting managed code are vastly different. The
low-level approach of modifying assembly code on the fly collides with the just-in-time compiler
and garbage collector in many different aspects. First, the address of the assembly code is not
known until a function is just-in-time compiled. Second, when we want to work with managed
types, we would need to know the stack and object layout for managed functions and types, which
is internal to the chosen CLI implementation. Lastly, the instrumented code needs to cooperate
with the garbage collector to prevent premature destruction of objects. While the more complex
runtime system makes the Detours approach for hooking very difficult, it provides other means of
integration that solve all of these problems.

To make the instrumentation of unmanaged and managed code very similar from a user
perspective, we keep all the restrictions and the approach that we chose for unmanaged code.
Concretely, we do not rely on the source code being available, use type information from the
metadata that is embedded in managed assemblies and use the same rule specification language.
Internally, the way we instrument the code, however, is very different. While we discussed the
implementation for unmanaged code previously, the next sections explain how we transferred the
original ideas to managed code.

2.10.1 Approach

As we cannot use Detours to instrument managed code, we leverage the Profiling API, provided
by the CLR, instead. The Profiling API is a COM-based interface that, as implied by the name,
was originally conceived as a way to implement managed profilers, i.e. to measure the timing
of managed code to find performance bottlenecks. However, the Profiling API is much more
versatile than that, as it exposes callbacks for various events in the CLR. To mention a few
examples, a profiler gets notified when a module is loaded or unloaded and before a function is
jitted. This last callback allows a profiler to arbitrarily rewrite the IL code of a function before it
is compiled. Therefore, it also allows us to insert code for before and after actions.

One way of implementing the instrumentation would be to simply add a before callback when
a function is entered and a after callback when leaving a function and use the interpreter to
execute the fault model. However, doing this would still not solve the second and third problems
that were outlined in the previous section (i.e. object layout and garbage collection). Instead,
we chose to compile the rule actions directly into IL and inject them into the function at the
appropriate locations. Since the rule actions are thus embedded into the remaining function
code, we can use the same IL instructions that the function uses for accessing object members,
therefore solving the aforementioned issues.

Readers familiar with Pex[26] might recognize some similarities, as both technologies use the
Profiling API to rewrite managed code. Pex inserts callbacks for every IL instruction, which
allows to track the execution in a symbolic way with the ultimate goal of implementing dynamic
symbolic execution. Brute only inserts callbacks on entering and exiting a function, but allows
the modification of argument values to inject faults.
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2.10.2 Implementation

Support for managed code is directly built into the Brute Runtime and is activated by the
CLR when it is loaded into the process. During the late initialization phase, we inject a set
of environment variables into the current process’ environment. These environment variables
indicate the presence of a profiler to the CLR and consist of a path to the DLL that implements
the profiler (which is the Brute Runtime Library itself) and a GUID that identifies a COM class
that implements the ICorProfilerCallback5 interface, which is expected by the CLR. Should
an external profiler be detected, Brute’s profiler is automatically disabled.

During the subsequent initialization of the CLR, it loads the profiler DLL (which is a no-op
as the module is always already present) and creates a new instance of the profiler. The Brute
Profiler then locates the remaining parts of the Brute Runtime in the process and uses this
connection to access the configuration and rule definitions. As part of the initialization, the profiler
registers callbacks for module load, unload and rejitting. ReJIT is a new feature, added to the
profiling API in version 4.5 of the CLR. It provides a set of functions that instruct the just-in-time
compiler to call the profiler before compilation to rewrite the code. Should the code already be
compiled, it will discard the current version and recompile the code with instrumentation. While
rewriting IL was already possible in earlier versions of the CLR, the ReJIT API facilitates many
of the operations.

The IL rewriting itself consists of three phases. First, all the instructions are analyzed and
branch offsets are converted into symbolic values. This is necessary because we invalidate all
non-relative jump targets by inserting instructions at the beginning of the instruction stream. In
a second phase, we attach the rule actions. This is accomplished by compiling the rule actions
into IL code and inserting them at the respective locations. For the before action this is simply
done by prepending the instructions to the instruction stream. For the after action, we need to
deal with the fact that functions can have multiple exit points and can also be exited by throwing
an exception. To ensure that the after action runs in every scenario, we wrap the function in a
try ... finally block. To call unmanaged functions (i.e. to determine if we should inject a fault)
from managed code, we can emit additional P/Invoke functions into the assembly. P/Invoke is a
mechanism that allows managed code to call DLL-exported, unmanaged functions. Finally, in the
third phase, we convert the symbolic jump targets back into concrete offsets and reassemble the IL
into a single, contiguous buffer. The new instruction stream replaces the original implementation.

2.10.3 Conclusion

The approach is powerful enough to transfer the concepts from unmanaged to managed code
and target both runtime systems in roughly the same manner. Due to time constraints, the
current implementation only supports a subset of the fault modeling language for managed code.
Achieving feature parity would imply the implementation of a full-fledged IL compiler, which was
out of scope for this project. However, many of the challenges of interfacing with the CLR have
been solved as part of this proof-of-concept, leaving the implementation-heavy parts for future
work. Another limitation is, that only a single profiler can be attached to a process at the same
time. This implies that Brute cannot be used to inject faults into managed code while another
profiler (e.g. Pex) is also attached. The unmanaged code injection, however, is not affected by
this restriction.

Support for managed code provides an interesting opportunity to show how many of the
concepts and ideas that were developed for unmanaged code can be translated into a different
execution environment. By having a DSL for specifying the fault models, we can target different
languages. The effort of targeting other languages is greatly reduced by sharing the common
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infrastructure code. As an example, using the JVM HotSwap API, an adaptation to JVM-based
languages is conceivable.

2.11 Tracing

The built-in tracing feature collects information on function calls and writes it into a binary trace
file. After the target application terminates, the launcher analyzes the trace file to generate a
report. The contents of the report can be customized using command line options. An existing
binary trace can also be reanalyzed later (offline analysis). As shortly discussed in Section 2.9,
tracing can be configured separately from fault injection and provides three levels of detail. The
tracing level can be different for every function.

At the lowest tracing level, we log function entry and exit events. This allows to reconstruct a
coarse-grained execution trace. Additionally to the function name, we also trace the last Win32
error code when leaving a function. By employing generic hooks, this level of tracing does not
require type information. On the next level, we include the arguments and the return value
for each call, therefore type information is needed. On the highest tracing level, we also follow
pointers up to a configurable limit. The heap serialization algorithm can deal with null(ish)
pointers (i.e. addresses ≤ 0x0000FFFF), invalid pointers and cyclic data structures. Pointers
into the first 64KB of virtual memory are treated as null pointers, because Windows prevents
the usage of this area of memory. Otherwise, we assume that the pointer is valid and use SEH
(structured exception handling) to gracefully handle the access violations that occur should we
touch an invalid address. To detect cyclic data structures, we keep a set of all previously seen
addresses.

During a run of the target application, we write the trace in binary form for smaller file size
and higher tracing speed. At a later point in time, the binary trace can be analyzed and different
aspects can be exported separately. The information that should be extracted can be specified as
part of the command line options. The following aspects can be exported:

• Summary. The summary is always exported and contains high-level statistical information.
We document the number of known functions (i.e. the function entry points that we found in
all DLL export tables), the number of successful and failed hooks, the number of intercepted
function calls as well a summary of the imported type information. Following that, we
print the names of the 20 functions with the highest call count. Finally, we print a list
of all functions that were called at least once with the number of function calls and the
average call depth. The call depth allows an estimation of whether the functions were used
primarily internally (if the number of on the higher end of the spectrum of all averages) or
as a surface API function (close to zero).

• Function Listing. Prints a map of all known functions, grouped by module and sorted by
name. For each function, the map includes to which extent type information is available
and if it is compatible with Brute (i.e. if the function uses types that are representable
using the internal type system).

• Call Trace. A textual representation of all function entry and exit events. The stack
depth is visualized using indentation. Every event contains the ID of the thread on which
it occured, allowing the reconstruction of a function trace for concurrent programs. The
events are serialized using a monitor during the capture of the trace.

• Call Data. Prints the captured arguments and return values converted to a string. By
default, pointers are included in the trace, followed by their value, provided we successfully



2.12 Challenges 27

followed the pointer indirection. To reduce the noise and simplify the further analysis
of the data, the concrete addresses can also be excluded and replaced with an opaque
<PTR> expression, followed by the value (if available). We used this representation in the
evaluation as one possible method for finding functions that are suitable for fault injection
(see Section 3.2.2). If both the call trace and call data are exported, the arguments and
return values are always printed on the line directly following the call trace event during
which it was captured.

The tracing feature was implemented as the first component of the framework for two reasons.
First, it allowed us to check the compatibility of our instrumentation on a large number of
functions. Second, we used the results of the tracing report to guide our search for target functions
during the evaluation.

2.12 Challenges

In this section, we highlight some of the unexpected problems that we experienced and some of
the more challenging aspects of the implementation.

2.12.1 Finding Function Entrypoints

In order to support wildcards and regular expressions in rules, we first need a collection of all
available functions. On a first level, we maintain a collection of all loaded modules by enumerating
all statically loaded modules and tracking the dynamically loaded modules. Assuming we have a
way for enumerating all exported functions in a module, this would provide us with the full list of
exported functions in the process. While this sounds trivial, given that every DLL contains an
export table, some unexpected difficulties arose in practice. In this section, we describe the list of
different solutions that we tried to apply before reaching the final implementation.

As mentioned before, every DLL contains a section that encodes a table of all exported symbols
with their RVA (relative virtual address). This is the address where a symbol is stored in memory
relative to the base address at which the module was loaded. An example of such a table can be
found in Table 2.1.

Oridnal Name RVA
0x0001 ud decode 0x01553E73
0x0002 ud init 0x01553EA4
0x0010 0x01553F9A
0x0011 ud set mode 0x01553FB0
0x0012 0x01553FC4

Table 2.1: Example of a DLL export table.

Every row contains a 16-bit ordinal number, an optional name and an RVA. Other modules
can reference these symbols either by ordinal number or name (should one be specified in the
table). The symbol name is also used for function filtering, should no debugging symbols be
provided. The difficulty arises from the fact that these symbols may reference different types of
exported symbols, without specifying their type (e.g. function or data). For the standard use case,
this information is not necessary, because it is available during compile time and not required at
runtime anymore. If we use the full table and the user specifies a wildcard, we run into the danger
of instrumenting a supposed function, which later turns out to be data instead. “Instrumenting
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data” has detrimental effects on the target application. Some of the data is interpreted as code
and rewritten by Detours, should it resemble something similar to assembly. This introduces
random changes to these exposed variables, which usually results in a crash. Thus, having a
precise list that contains only functions is critical.

Our first approach was to dynamically analyze the memory at the specified RVA before
instrumenting it and checking for signs, indicating that the memory does not contain a function.
Should a function contain invalid instructions or instructions that require CPL-0 (i.e. kernel
mode), this is a strong indicator that the given address does not actually refer to a function.
While this approach was sufficient for certain scenarios (e.g. starting Notepad), it failed for more
complex cases (e.g. opening a common file dialog). We increased the restrictiveness of this filter
by not only excluding based on the aforementioned criteria, but only instrumenting functions
that start with either a push or mov instruction. According to a histogram that we built from
our set of test applications, this covers 97% of all exported functions. This approach worked well
for x86 applications, where most functions create an EBP-based stack frame and thus start with
one of the two instructions. On x64 however, most compilers do not emit stack frames anymore,
rendering the histogram approach unusable.

A next approach was to check in which section an address was contained. The PE file
format contains a section table, which indicates, amongst other information, which areas of the
image are executable, read-write data or read-only data. Should an exported symbol reside in a
non-executable section, it cannot contain code and thus cannot be a function. This approach
worked better, because it is applicable for x86 and x64 code and increased the compatibility
of Brute to a larger set of DLLs. Unfortunately, some DLLs put read-only data inside of code
sections and thus diminish the applicability of this approach.

As a final resort, we decided to use the debugging symbol information. We search for each
address from the DLL export table and only include addresses if we find a corresponding debugging
symbol of a function that starts at the same address. Using this approach we were able to precisely
recover the list of functions and exclude any other kinds of symbols.

There have been different approaches to filtering out functions from the export table. The
only successful way of enumerating only the functions was using symbol information. This is not
optimal, as debugging symbols are not available for many closed-sourced libraries. However, the
need to enumerate all functions of a library is only present when wildcards or regular expressions
are used in a rule. For precisely targeting a single function, the question of the type of an exported
address does not even arise. Should symbol information not be present, we automatically fall
back to the section-based approach, which also works for many of the tested DLLs.

2.12.2 Function Aliasing

An issue that was faced early on in the development, was the problem of function aliasing.
During the evolution of the Windows API, the implementation of some of the subsystems and
functions were moved between DLLs. To keep compatibility with older applications, the DLLs
that originally implemented these functions still export them, but only contain a redirection to
a different DLL. Two prime examples are kernel32.dll and kernelbase.dll. Introduced in
Windows 7, kernelbase.dll contains many of the function implementations that were previously
found in kernel32.dll. The entry points in kernel32.dll are only redirections and contain
no implementation. Aliases occur in three different variants:

1. Direct aliases. Two entries in the export table with the same RVA. This type of alias is
only possible for functions in the same DLL.

2. Indirect aliases. A function which only contains an unconditional jump to a different
function. Detours does not instrument this type of method and will instrument the target
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method instead, up to a certain number of indirections. The number of indirections is
determined by the type of jump instruction used (relative, absolute or indirect) and the
order in which these instructions occur. The maximum number of indirections followed is
three.

3. Complex aliases. A function which contains instructions that have no side effects (e.g. mov
edi, edi or creating and immediately removing a stack frame) followed by an unconditional
jump. Depending on the size of the NOOP instructions, Detours can instrument these
functions, however, it will never follow the indirection.

Aliased functions are problematic for various reasons. In case of a direct alias, we hook the
same function twice, resulting in unexpected behavior of the before and after actions. For indirect
aliases, we are not sure which version of the function we instrument, because of the erratic rules
for following indirections employed by Detours. Depending on the entry point that a caller uses,
it might see different behavior for the same function (one entry point is instrumented, the other
one is not). Also, it would be possible to have contradicting rules on aliased functions (because
they have multiple names) which ultimately only exist once in memory. In this situation it would
not be clear, which rule would apply.

To address all these problems, we only allow rules to be applied to the implementation of
a function, not to an alias. We build a DAG (directed acyclic graph) of all exported functions
and add an edge for every indirection. When a rule is applied, we follow the edges (i.e. the
indirections) until we reach a sink (i.e. a vertex with no outgoing edges, which must exist and
represents the function containing the implementation). Should rules from different aliases apply
conflicting settings to a function, the rule closest to the implementation is used. Conflicting rules
are ignored and a warning is issued for each one.

The alias detection can handle direct and indirect aliases. Complex aliases can not be handled,
because automatically distinguishing them from an implementation is very difficult. We would
need some sort of analysis that can proof, that a sequence of arbitrary assembly instructions is
side-effect free, which is beyond the scope of this thesis. The problems connected with complex
aliases are also less severe, as Detours will not follow the indirection and instrument an unexpected
function. The problem, that a client can experience different behavior depending on the alias
that is used to call the function, however, can still occur.

2.12.3 Automatic Recovery

In Section 2.2 we discussed the way Detours[9] instruments a function. This technique of
instrumenting assembly code does not always work and can result in invalid code. Brute contains
an automatic recovery mechanism that tries to transparently unhook a function, should its
instrumentation lead to an exception. In this section we explain how this invalid instrumentation
can occur, how we detect it and how we attempt to automatically recover from the exception
state.

Consider the assembly code of the function RtlSplay outlined in Figure 2.8. On the last
line (address ending in ...77B), we have an unconditional jump to the second instruction of the
function. Up to this point, all code is valid and the function would run normally.

However, when Detours instruments this function, it will place an unconditional jump at the
beginning of the function. Because the jump instruction is longer than the original instruction
(xchg ax, ax), it will replace not only the first but multiple instructions. As shown in Figure 2.9,
for the instrumented function, the jump on the last line now points to an address inside of the
jump instruction to the hook. When the execution reaches this point, there will most likely be
an invalid instruction and the CPU will trigger an exception. This forces the execution to jump



30 2 Architecture

NTDLL.DLL!RtlSplay
00007FFD9084D740  xchg        ax,ax  
00007FFD9084D742  cmp         qword ptr [rcx],rcx  
00007FFD9084D745  jne         RtlSplay+0Bh 
00007FFD9084D747  mov         rax,rcx  
.
.
.
00007FFD9084D77B  jmp         RtlSplay+2h

Figure 2.8: Function before hooking.

to the installed exception handler in kernel mode. The Windows Kernel converts the hardware
exception into a SEH exception and transfers the control back to the responsible process.

NTDLL.DLL!RtlSplay
00007FFD9084D740  jmp         brute!RtlSplayHook
00007FFD9084D742    
00007FFD9084D745  
00007FFD9084D747  mov         rax,rcx  
.
.
.
00007FFD9084D77B  jmp         RtlSplay+2h

Figure 2.9: Function after hooking.

When Windows delegates the exception to the process, it jumps to an assembly stub exported
as KiUserExceptionDispatcher in ntdll.dll. The stub prepares the process for calling the
exception handler. As part of this, it calls a function named RtlDispatchException, which is
responsible for finding the appropriate exception handler or terminating the process if no handler
was found. This function receives two arguments, one containing the exception information
(including the type of the exception) and the other points to the exception context, a structure
that contains the register state of when the exception occurred. Under normal circumstances,
RtlDispatchException would start to unwind the stack until it finds an exception handler
(i.e. a __try ... __except block) and then invoke it. It is not possible to install a global
first-chance exception handler using a public API.

In order to recover from the illegal instruction exception, we need to unhook the function
that caused the exception and retry the same instruction that previously failed. Therefore, we
need to install a handler that runs before any stack unwinding occurs. To accomplish this, we
install a hook on RtlDispatchException and first check if the exception occurred inside of
an instruction that was inserted by Detours. If this is the case, we unhook the function, thus
restoring the original instructions. By passing the exception context to the Windows API function
NtContinue, we try to continue the execution at the same address where the exception occurred.
The difference being, that with the original instructions having been restored, the execution
should now succeed.

A complicating fact is, that RtlDispatchException is an internal function and therefore, we
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do not know its address. We solved this issue by automatically decompiling the assembly stub at
KiUserExceptionDispatcher (which is at a well-known address) during initialization, finding
the instruction that calls RtlDispatchException and extract its address from there.

2.12.4 Shared Resources

The application under test and the Brute Runtime share the same address space. This simplifies
many of the interactions between the two and is a prerequisite for the Detours-type hooking to
work. At the same time, we need to minimize the impact of the instrumentation to prevent false
positives. While some resources, like the virtual address space or CPU time, are inevitably shared
between the application and Brute, we introduce counter-measures to prevent sharing of the C
runtime and the process heap.

As a motivating example, consider the following scenario: An application creates two threads
and calls two different functions foo and bar in parallel using these threads. Both functions
have tracing enabled, therefore entering these functions requires Brute to acquire a lock that
protects the access to the log file. Additionally, it also needs to allocate memory while holding
the tracing lock for capturing the function arguments. A potential execution trace is shown
in Figure 2.10. For this execution, we run into a lock ordering problem, because thread 1 first
acquires the tracing lock and later tries to allocate memory while thread 2 first locks the heap
and then tries to acquire the tracing lock. The result is a deadlock, that was introduced solely
because of the additional lock required by the tracing functionality.

Thread 1 Thread 2

Enter Function foo()

Acquire Tracing Lock

Acquire Heap Lock

Enter Function bar()

Try to acquire Tracing Lock

Allocate Memory for Tracing

Try to acquire Heap Lock

Context switch

Context switch because of lock contention

Dead lock

Figure 2.10: Execution trace leading to deadlock because of a shared heap.

The usual approach to solving deadlocks caused by lock ordering is to introduce dependencies
between the different locks and to include all dependencies when acquiring a lock. If the locks
are always acquired in the same order (for example given by a fixed topological sorting of the
dependency graph), this type of deadlock cannot occur. For our situation, this solution is
not applicable, because the ordering problem is between locks owned by Brute and the client
application, over which we have no control. We also do not want to restrict the use of Brute to
functions where no ordering problem occurs.

The solution we chose introduces a secondary heap that is used for Brute only, thus isolating
the application heap from our private heap. Since every heap has a separate lock, the user code
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is not able to lock the heap that we need for tracing etc. anymore, thus avoiding the deadlock.
We accomplish the heap isolation by multiplexing the access to low-level heap API functions,
depending on the type of code that is currently running on the thread.

The low-level process heap management is implemented in ntdll.dll and exposed to the user
through indirect aliases in kernel32.dll. A process can contain multiple heaps, each identified
by a heap handle. A default heap, whose handle can be determined using the GetProcessHeap()
in kernel32.dll, is created as part of the process initialization. When requesting memory using
a higher-level API function (e.g. GlobalAlloc) or the C runtime (e.g. malloc), the call is
forwarded to the respective lower-level API (e.g. RtlAllocateHeap) and the default heap is
used. Brute instruments these lower-level APIs (i.e. Rtl...Heap functions) and redirects the
requests to a different heap, depending on the calling context. If the thread is executing user code,
no redirection occurs and the default heap will be used. Should the current thread be inside of
instrumentation code, we redirect the calls to the private heap by replacing the heap handle that
is passed in to the Rtl*Heap function. The calling context can be determined by checking the
same thread-local structure that is used for keeping the shadow stack, necessary for the generic
hooks (see Section 2.4). Internally, we use an additional third heap to keep track of the sections
of memory that were allocated, to prevent errors, should a pointer be used in a wrong context
(e.g. a block that was allocated on the private heap is released on the default heap).

By instrumenting the heap functions at a low level, not only built-in allocations are redirected
to the private heap, but also allocations performed by functions that are called as part of the rule
actions. Therefore, all code that runs as part of rule actions is automatically subject to heap
isolation. This is by design, because otherwise the implementations of the called function would
also have to be aware of the lock ordering problem. For user-implemented code this would be
tedious at best, while closed-source libraries that allocate memory simply could not be used as
part of rule actions.

While we need to hook the low-level heap functions for heap isolation, it is still possible to
define rules for these functions. From the view of a rule developer, the original implementation
for the heap functions already contains the multiplexing logic (i.e. the original implementation
from the view point of the rule developer is the instrumented implementation from the view point
of the heap isolation, the final implementation provided by the operating system is not visible for
the rule developer).

0x00000000

Application Memory Block
Brute Memory Block

Shared Heap

0xFFFFFFFF

Virtual Memory

0x00000000 0xFFFFFFFF

Virtual Memory

Isolated Heap

Figure 2.11: Memory layout for shared vs. isolated heaps
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Separating the memory allocations has an additional advantage. Without heap isolation, the
allocations of the application and Brute are interspersed, as shown in the upper half of Figure 2.11.
By having two separate heaps, there is a gap in virtual memory between the memory used by the
application and the memory reserved for Brute (lower half of Figure 2.11). This gap reduces the
risk of memory corruption inside of Brute’s data structures, should the application overflow a
buffer because of an injected fault. This simplifies the crash analysis, as the origin of the heap
corruption is easier to pinpoint.

While the heap is the most critical shared resource, there are other resources that need to
be multiplexed (e.g. standard io, current locale, etc). Luckily, handling concurrency for most of
these resources is done by the C runtime and isolating them can be done by statically linking the
standard library into the Brute Runtime. As a result, we get a private copy of all the internal
C runtime state, including all its locks. However, contrary to the heap isolation, which affects
all code, statically linking the C runtime must be done for each library separately. This means,
that when a DLL is written specifically to be called as part of rule actions, static runtime linkage
should be enabled. Third-party libraries that link dynamically to the C runtime can still be used,
as long as no sharing problem occurs. However, for this scenario Brute does not support the
developer with additional safeguards, like it does for heap isolation.
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Chapter 3

Evaluation

Strong aspects of Brute are its low entry threshold and the applicability to a wide spectrum
of programs. For the evaluation, we wanted to take advantage of these properties as much
as possible. Therefore, we did not focus on a very specific testing scenario, but tested the
robustness of commonly used software products against well-known deviant behavior. As the
primary objective, we wanted to determine if Brute can fulfill the requirements motivated in the
introduction of this thesis. Concretely, we want to verify the following:

(1) Can we successfully apply Brute to an unmodified, production-grade application?

(2) Can the same rule be applied to different applications without modification?

(3) Are the observed crashes reproducible? When running an application with fault injection
twice, will it crash at the same location?

Furthermore, we wanted to extract the following information from the test data:

(4) Are there cases where our testing methodology or infrastructure introduces false positives?
If yes, are there discernable patterns where this occurs and is it an implementation or
conceptual issue?

(5) How do the different injection strategies compare to each other? Is there a clear advantage
to using a specific strategy?

(6) Are the crashes that we find unique?

In the course of this evaluation, we selected a set of commonly used applications to test against.
Next, we selected a set of functions using different strategies. For each of these functions we
developed a simple fault model by checking for potential error codes online. We then combined
the fault models with different injection strategies, in order to see which strategies perform better
and determine why this is the case. To simplify the testing process, we have developed a testing
infrastructure that performs the evaluation automatically and generates a report containing
different operating figures. The following sections explain the evaluation environment, our test
infrastructure and how we selected the different sets of applications, functions and injection
strategies.

3.1 Infrastructure

To collect the evaluation data, we implemented an automated evaluation infrastructure. In
addition to running the different scenarios unattended, it also provides interaction automation
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(i.e. simulation user input), collection of the measured figures and simplifies the reproduction
of a specific scenario for further investigation. Figure 3.1 shows a conceptual overview of the
evaluation infrastructure.

Launcher Application

Brute Runtime

evaluation.br

Evaluation Infrastructure
Debugger

Interactions

evaluation.xml

AppVerify

Figure 3.1: Overview of the evaluation infrastructure.

The infrastructure is driven by a configuration file (evaluation.xml in the figure) that
provides a list of executables. The executables we used for this evaluation are listed in Section 3.2.1.
For each executable we specify a list of fault models, a list of injection strategies and instructions
for automated interactions. We run the launcher for every combination of application, injection
strategy and fault model. The implementation of the fault models is stored in evaluation.br and
we use the C preprocessor feature to enable the desired fault models over command line arguments.
The automated interactions are a list of actions (e.g. send keystrokes, wait for a window, delay,
etc.) that simulate user input and are used to gracefully close the application or perform other
activities like opening a file. Furthermore, we support to enable AppVerifier analyses for each
application. This was originally developed to improve the detection of buffer overflows, but
later disabled because of conflicts between Brute’s instrumentation and the modifications that
AppVerifier performs.

While the application runs, the infrastructure monitors the application over the debugging
interface. All thrown SEH exceptions are being counted and logged. We differentiate between
first-chance and second-chance exceptions. First-chance exceptions are reported whenever an
exception is thrown, even when an exception handler is installed. Second-chance exceptions are
unhandled exceptions, which result in a crash of the application. The second type of exception
was used to count the number of detected crashes.

3.2 Setup

3.2.1 Selection of Applications

For our experiments, we selected twelve well-known applications, based on their extensive use
in production and their sizable test suites. Table 3.1 shows the applications along with a short
description. We tested the latest version of all applications (at the time of writing) on a machine
running Windows 10.

For each of the applications we selected a test scenario, which is a sequence of operations that
are to be performed under active fault injection. For most applications, this is simply starting the
application and closing it again once it is fully loaded. While this is a seemingly simple scenario,
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Application Description

Internet Explorer Browser
Microsoft Excel Spreadsheet
Microsoft Notepad Text editor
Microsoft OneNote Launcher Launcher for note-taking application
Microsoft Outlook Email and calendar application
Microsoft Paint Graphics application
Microsoft PowerPoint Presentation application
Microsoft Publisher Desktop publishing application
Microsoft Visio Diagram and graphics application
Microsoft Word Word processor
Notepad++ Source-code editor
Skype for Business Communications platform

Table 3.1: The target applications used in our experiments.

the initialization process of an application is often fairly complicated, as many of the resources
(e.g. GUI components, file handles for configuration files, etc.) are allocated during this operation.

For the applications from the Office suite, we needed additional automation to ensure, that
they always start in normal mode. When an Office application crashes during initialization,
it will show a dialog box asking the user if the application should start in safe mode on the
next restart. Safe mode prevents add-ins from loading and uses a clean configuration to prevent
stability issues caused by third-party extensions. Since the dialog box suspends the initialization
and we always want the application to run in normal mode, we have an automation script in
place to automatically dismiss this dialog.

For notepad we defined a more complicated scenario. After notepad is initialized, we simulate
the keystrokes for Ctrl+O to show the open file dialog. This dialog is very complex to initialize,
as it contains a Windows File Explorer Frame, which can display previews of various file formats
and supports plugins called shell extensions. Opening this dialog more than doubles the number
of loaded DLLs in notepad. After the open file dialog has loaded, we cancel it again and close
notepad.

3.2.2 Selection of Functions

We used the argument tracing feature to generate a list of all functions that Microsoft Notepad and
Notepad++ use for their respective scenario including the input/output pairs (i.e. the combination
of argument and return values) for each individual call (see Section 2.11 for more information
about tracing). From this pool of close to 3000 functions and 4 million function calls we distilled
out 40 functions using two different strategies.

First, we searched for functions containing the word Create, since these functions usually
allocate some sort of resource. Such allocation attempts might fail sporadically, should the system
run out of a certain resource or because of insufficient privileges of the caller. For a subset of these
functions, we consulted the documentation to verify, that the functions indeed depend on external
resources. In the end, we selected 11 functions using this strategy. A good example for such a
function is kernelbase.dll!CreateFile, which creates a handle for a file on disk or an I/O
device. Should the caller have insufficient rights to access the file or device, or should the given
path be invalid, this function will return INVALID_HANDLE_VALUE and set the corresponding error
code.
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As a second strategy, we searched for functions which potentially have external dependencies.
Here we used the collected input/output pairs to reduce the set of functions to the ones that
return different values for the same arguments. We dealt with pointers in arguments and results
by comparing the value that they point to, up to three degrees of indirection. Since the degrees
of indirection are limited, this introduces a certain imprecision, but is still far more precise
than comparing pointers by reference. The reasoning is, that the results of these functions are
likely to be affected by some external dependency, as the returned value is not fully defined by
the captured argument values. Since external components are beyond the control of the target
application, they are potentially subject to change, e.g., by other applications or the operating
system. Consequently, if there is a dependency to an external component, such as the Windows
registry or environment variables, any unexpected change in that component could cause the
target application to fail.

We selected 29 functions with this strategy, for which we verified that they indeed depend on
an external component by consulting the documentation. An example for a function from this set
is kernelbase.dll!GetEnvironmentVariableW, which retrieves the value of an environment
variable. It could happen that an environment variable is not defined or its content was changed.
If an application makes any assumption about the existence or contents of an environment variable,
it might crash if the variable was changed or deleted by the user or another tool.

Although both strategies attempt to find functions with external dependencies, neither one
is subsumed by the other. In fact, the two subsets yielded by the different strategies were fully
disjoint.

3.2.3 Selection of Fault Models

After choosing 40 functions, we defined a fault model for every function. When a system call fails,
it usually indicates this with a special return value. An error code is set, which can be determined
using the function GetLastError and describes the error more closely. The currently defined range
of error values lies between 1 and 16000 (zero indicates success). Depending on the error code, the
failure may be handled differently. In order to reduce the risk of introducing spurious errors, we
wanted our fault models to return error codes which are also encountered in practice. For this, we
searched the MSDN, StackOverflow and online forums for error codes that people have encountered
in real situations. To illustrate this, take for example advapi32.dll!RegQueryValueExW, which
copies the value of a registry key into a user-allocated buffer. Since registry values can be of
arbitrary length, it is possible that the value will not fit into the allocated buffer. If this is the
case, the function will fail and set the error code ERROR_MORE_DATA. The function indicates the
necessary buffer size to the caller, which allows to allocate a new buffer of sufficient size to read
the value successfully.

To build fault models based on error codes, we used the after action which changes the result
of the function to indicate an error and set the appropriate error code. We provided 39 after and
1 before action. 30 of the after actions needed to set an error code. The high number of after
actions compared to the single before action is explained by the fact, that we mostly simulated
system calls which failed because of an external dependency. In these cases, it is valid for the
operation to have completed and the failure being indicated via the return value and, in some
cases, the error code.

3.2.4 Selection of Injection Strategies

Finally, we selected five different injection strategies. With the exception of Never, we wanted to
compare the effectiveness of the different injection strategies and motivate them with different
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scenarios:

• Never. Instrument the function but never inject a fault. We use this scenario to get a
baseline, which ensures that Brute does not interact with the application in a way that
could result in a crash. If running the application with Brute in this scenario reveals a
crash, we have found an instrumentation bug in our framework and the results for this
configuration are invalid.

• Always. Inject a fault every time the function is called. An example for this would be
a function that is permanently not executable, i.e. opening a file without the necessary
privileges.

• Once. Inject a fault for the first call during the process life time. This could simulate a
function that requires a resource that has not yet been initialized.

• EveryOtherCall. Inject a fault for every second call. This can simulate a fault that can
be solved by simply retrying the call.

• FiftyFifty. Inject a fault with a probability of 50%. This can simulate a scenario where a
function depends on an unstable resource, e. g. a weak network connection.

3.2.5 Function Grouping

For the base evaluation, we run a test for every combination of function × injection strategy
× application, which means that for each run, we injected faults in only a single function. To
evaluate whether certain faults are only found when we inject faults into multiple functions at the
same time, we wanted to perform additional tests with function groups. However, an exhaustive
evaluation over all possible function combinations yields far too many configurations to test and
probably does not reveal any additional bugs, if the functions are completely unrelated. Based on
this reasoning, we defined the function groups by API (i.e. a group for file related APIs, a group
for registry APIs, etc.) This only adds a few additional configurations and has a higher chance of
finding interactions between multiple functions, since they contextually belong together.

3.3 Results

Table 3.2 shows the results of our evaluation for the ungrouped tests. The first column shows
the name of the application, the second column the injection strategies, the third column the
number of crashes in each application per injection strategy, the fourth column shows the total
number of calls to instrumented functions and the fifth column the number of injected faults. By
successfully evaluating over the specified applications, we have achieved objective (1) as stated
in the introduction of this chapter. To verify objective (3), which states that the injected faults
should be reproducible, we run the full test set three times. Each table row shows the accumulated
number of crashes, injected faults and total calls over all runs and all functions.

In the following sections, we focus on different aspects of the results and try to verify the
remaining objectives that we defined at the beginning of this chapter. We conclude the results by
analyzing one of the crashes that we found in depth.

3.3.1 Fault Models

The column Rules in Table 3.2 shows the number of rules that where used for each injection
strategy and application. Recall that we performed the original selection over functions from
Microsoft Notepad and Notepad++. However, the extracted rules were also useful to find bugs in
other applications. As noted in objective (2), this is one of the benefits we strived to achieve.
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Application Inj. Strategy Crashes Rules Total calls Inj. calls

Internet Explorer Always 2 30 1,364 1,364
EveryOtherCall 3 30 1,537 775
Once 0 31 3,363 31
FiftyFifty 2 29 1,434 708

Microsoft Excel Always 4 7 1,643 1,643
EveryOtherCall 5 6 769 387
Once 1 6 9,316 6
FiftyFifty 3 7 1,335 650

Microsoft Notepad Always 1 25 38,499 38,499
EveryOtherCall 4 31 13,143 6,580
Once 0 31 34,207 31
FiftyFifty 3 31 10,256 4,997

Microsoft OneNote Always 1 13 106 106
Launcher EveryOtherCall 1 13 101 55

Once 1 13 156 13
FiftyFifty 1 13 105 55

Microsoft Outlook Always 8 19 2,686 2,686
EveryOtherCall 6 17 1,369 690
Once 2 16 21,203 16
FiftyFifty 8 14 1,309 648

Microsoft Paint Always 0 0 0 0
EveryOtherCall 0 0 0 0
Once 0 0 0 0
FiftyFifty 0 0 0 0

Microsoft PowerPoint Always 9 28 5,029 5,029
EveryOtherCall 7 27 2,950 1,481
Once 2 28 31,677 28
FiftyFifty 7 28 16,074 7,827

Microsoft Publisher Always 7 18 1,883 1,883
EveryOtherCall 4 20 13,758 6,885
Once 1 20 21,522 20
FiftyFifty 5 23 5,177 2,532

Microsoft Visio Always 10 26 1,646 1,646
EveryOtherCall 6 27 3,176 1,595
Once 0 28 23,255 28
FiftyFifty 7 30 8,440 4,126

Microsoft Word Always 14 29 17,906 17,906
EveryOtherCall 9 28 25,550 12,784
Once 2 29 32,630 29
FiftyFifty 8 28 18,122 8,904

Notepad++ Always 0 8 149 149
EveryOtherCall 0 13 1,883 945
Once 0 6 73 6
FiftyFifty 0 14 3,965 1,942

Skype for Business Always 6 12 2,413 2,413
EveryOtherCall 6 12 2,126 1,066
Once 2 11 4,290 11
FiftyFifty 8 19 2,976 1,446

Table 3.2: The crashes detected by Brute in each target application.
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One concern during the development of Brute was the introduction of false positives. This was
also stated in objective (4) of the evaluation. Brute could report false positives for two different
reasons: either because the instrumentation interacts with the application in way that leads to a
crash or because the injected fault models are unrealistic or overly aggressive. To check for the
first type of false positive, we used the Never injection strategy. We do not show the numbers
for Never in Table 3.2, as the instrumentation did not lead to a crash. However, it is to note,
that this only holds true for the scenarios where we targeted a small, specific set of functions.
When using the tracing infrastructure on all DLL-exported functions, some applications crashed
or terminated, because they try do detect such modifications as part of the protection against
software piracy and tools that try to circumvent the license verification.

The test for unrealistic fault models is more complicated and we use a probabilistic approach.
We employ the following heuristic, which for each fault model fi computes the real-bug indicator
rbii:

rbii = 1− number of crashes by fi
number of injected fault by fi

(3.1)

The number of crashes and injected faults is summed over all injection strategies and applica-
tions. rbii indicates the likelihood that a fault model fi reveals real bugs based on the following
reasoning: The denominator shows the number of injected faults that the applications were able
to withstand. The larger this number is, the more confident we can be that it is possible to handle
an injected fault properly. If the numerator (i.e. number of crashes) is small but larger than zero,
only a small fraction of the call sites were not resilient to the fault, which indicates that we found
a bad call site that could be fixed. On the other hand, when every injected fault leads to a crash
at every call site, there is a high chance that it cannot be handled properly, since none of the
applications are resilient to it. This makes it more likely, that the introduced behavior does not
occur in practice, otherwise there would probably be more call sites, which handle the fault.

We have calculated the indicators for all 25 fault models that caused at least one crash and
visualized them in Figure 3.2. The x-axis shows the index i for each of the 25 fault models fi and
the y-axis the respective indicator rbii calculated by the formula (3.1). Note the range on the
y-axis of 0.8 - 1.0. According to this data, the probability that we found real bugs is very high.

3.3.2 Injection Strategies

As described in evaluation objective (5), we wanted to determine how the different injection
strategies compare to each other and how they influence the target application.

When we look at the number of crashes per injection strategy, we can immediately see that the
choice of injection strategy has an impact on the number of crashes. For all target applications,
Always, being the most aggressive strategy, detects the most crashes, with a total of 62. Following
that are the FiftyFifty strategy with 52 and EveryOtherCall strategy with 51 crashes. The
least crashes are detected by Once, which is to be expected as it injects by far the fewest number
of faults. When we divide the number of crashes by the number of injected faults, we get a
crash/fault ratio of 5% for Once, whereas the ratio for Always is below 0.1%. This seems to
indicate, that the initial calls are usually less resilient than subsequent calls.

Next, let us look at the Total calls column of Table 3.2. While Microsoft OneNote Launcher has
similar call counts for all strategies, the number of calls varies largely between different injection
strategies for other applications. If we look at Microsoft Publisher as an example, there are only
1883 calls to functions for which we provide a rule when applying the Always strategy. However,
for the Once strategy, we get 21522 calls, which is more than eleven times the number of calls. On
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Figure 3.2: Indicators rbii that fault model fi finds real bugs.

the other hand, Microsoft Notepad reacts in an opposite way, where Always has a larger number
of calls than any other injection strategy.

These numbers imply that different injection strategies force the application to take different
paths during its execution. For instance, an application might be executing some error recovery
code if a certain operation fails or might cancel an operation prematurely because of an injected
fault. Regardless of the concrete deviations to the execution path, we have thousands of calls to
instrumented functions, indicating that we are not testing shallow execution paths, an exception
being Microsoft Paint and Microsoft OneNote Launcher.

If we compare the different injection strategies, we can see that Always has found the most
crashes. However, it is still beneficial to combine multiple different strategies, as they find different
crashes. This is because of the different paths that the execution can take encountering different,
potentially buggy call sites.

3.3.3 Crashes

As stated in objective (6), we wanted to determine if the crashes that we found are unique. Since
the uniqueness of a crash is hard to determine using only an automated analysis, we inspected all
the crashes in two applications. We picked Microsoft Notepad and Microsoft Visio at random.

For Microsoft Notepad we recorded eight crashes in total. After manual inspection of the crash
sites with a debugger, we found that six of them are unique. The remaining two crash sites were
duplicates found by the EveryOtherCall and FiftyFifty strategy. This is to be expected, as
the FiftyFifty strategy can randomly inject the same pattern as EveryOtherCall. For each
specific injection strategy, we found no duplicate crashes. This is also to be expected, as we only
apply one rule per test run and all rules with the same injection strategy modify the behavior of
different functions.

For Microsoft Visio the total number of crashes is 23. Again, by manually inspecting the crash
sites in a debugger, we found two pairs of duplicates. Same as the situation for Microsoft Notepad,
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both duplicates were introduced by the FiftyFifty strategy, once by having the same pattern as
Always and once by having the same pattern as EveryOtherCall. Again, all crash sites detected
by a single injection strategy were unique.

As explained in Section 3.2.5, we have also performed test runs with groups of functions. The
results are not shown in Table 3.2 as we did not detect any additional crashes. All crashes found
by the grouped configuration could also be found by only injecting faults into a single function.

The data in the Crashes column combined with the Total calls and Injected faults columns
could be considered as a health index, which compares the resilience of two applications for a
given set of rules. When we look at the figures for Microsoft Notepad and Microsoft Excel, Notepad
is more resilient to our set of rules than Excel. Despite the lower number of injected faults for
Excel, there are more crashes than for Notepad.

3.3.4 Example

In this section, we look at a concrete crash site that we discovered using Brute. As the running
example, we take a crash from Microsoft Excel, which is related to concurrent access to the registry.
The Windows Registry can be viewed as a concurrent data structure that is shared between the
system and all running processes. Its predominant use is the storage of configuration data. While
the Registry is primarily used by the operating system, many application also use it to store their
configuration settings.

The Registry ’s hierarchical structure resembles the one of a file system, with the difference
that directories (i.e. nodes that can contain other elements) are called keys and instead of files
they store name-value pairs. The value of a registry key is typed (e.g. REG DWORD for a
32-bit integer or REG SZ for a zero-terminated string). If the type of the registry key allows it,
the length of a registry value is unbounded. Because of that, an operation that reads from the
registry can require multiple attempts. Since the user needs to provide a buffer of sufficient size
to store the value, which can in general be of an unbounded size, the caller cannot allocate a
static buffer, such that the read operation will always succeed. Should the value of a registry key
change during two read attempts, it could even be necessary to make multiple read attempts and
resize the buffer accordingly after every failed attempt.

Listing 3.1 shows the signature of the function RegQueryValueExW in ADVAPI32.dll, which
reads a value from the Registry. The first (hKey) and second (lpValueName) parameter identify
the value to read. The lpType out parameter is set to the type of the registry value and the
value itself is copied into the buffer lpData. The last parameter lpcbData must be initialized
with the length of the buffer and will be updated to contain the actual length of the value. If
the buffer was large enough to hold the value and no other errors occurred, the function returns
ERROR_SUCCESS. If the buffer was too small, ERROR_MORE_DATA is returned instead.

LONG WINAPI RegQueryValueExW(
_In_ HKEY hKey,
_In_opt_ LPCTSTR lpValueName ,
_Reserved_ LPDWORD lpReserved ,
_Out_opt_ LPDWORD lpType ,
_Out_opt_ LPBYTE lpData ,
_Inout_opt_ LPDWORD lpcbData

);

Listing 3.1: Signature of RegQueryValueExW

Now that we are familiar with the interface for reading registry values, let us focus on the rule
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that reveals the bug in Microsoft Excel. The rule is shown in Listing 3.2 and simulates a concurrent
modification of a registry value. On the first two lines we declare two thread-static variables.
On line 1 we declare last_key, which stores the handle of the last accessed registry key on this
thread. The counter declared on line 2 stores the number of repeated calls to RegQueryValueExW
with the same registry key.

Inside the before action, we check if the registry key has changed since the last read attempt
(line 8). If yes, we reset the counter and store the new registry key handle (lines 9 and 10). Note
that we do not store and compare the name of the actual value. While this is possible and would
increase the strictness of this rule, it was not necessary to reveal the bug in question and was
therefore left out for simplicity reasons. If the access is to the same registry key, we increment the
counter (line 12). In the after action we check if the counter is less than 2, i.e. the function has
been called less than twice for the same key. If that is the case, we inject the ERROR_MORE_DATA
return value, which indicates that the provided buffer was too small. That only the third read
attempt can succeed is motivated by the following reasoning: on the first call, the caller cannot
know the size of the value, i.e. the buffer can be too small. On the second call, we simulate the
concurrent modification, rendering the buffer too small, again.

1 thread_static last_key -> void*;
2 thread_static counter -> int;
3

4 rule ADVAPI32.dll!RegQueryValueExW(hKey, lpValueName , lpReserved , lpType ,
lpData , lpcbData)

5 include recursive;
6 frequency always;
7 before {
8 if (last_key != hKey) {
9 last_key = hKey;

10 counter = 0;
11 } else {
12 counter++;
13 }
14 }
15 after {
16 if (counter < 2) {
17 last_win32_error = ERROR_MORE_DATA;
18 result = ERROR_MORE_DATA;
19 }
20 }

Listing 3.2: Rule for simulating concurrent registry access.

Listing 3.3 contains a snippet of the call site, which is not resilient to this type of deviant
behavior. In general, this call site is fairly robust, in that it handles many of the possible pitfalls
correctly. It deals with all the different error codes that RegQueryValueExW can return (line 8)
and also resizes the buffer, should the value exceed its size (line 7). However, we can see that
this is only attempted twice (line 2), which is the minimum number of attempts required for a
successful read, given that we do not know the size of the value at the beginning. When we inject
the rule described above, we run through the two iterations and exit the loop. After the loop,
we hit an assertion (line 10), which states that the read operation was successful. This indicates
that the developer did not think of this scenario and the program is now in an unexpected state.
While a violated assertion would usually terminate the process, it is not present in the code in
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release builds for performance reasons. At a later point in the function, the program tries to
dereference a pointer, which it assumes was initialized on line 5. However, this assignment has
never occurred, thus the program is reading from an uninitialized pointer.

1 // [...]
2 for (int cRetry = 0; cRetry < 2; cRetry++) {
3 lError = RegQueryValueExW(key, [...], buffer , &buffer_size);
4 if (ERROR_SUCCESS == lError) {
5 value_ptr = buffer; break;
6 }
7 else if (ERROR_MORE_DATA == lError) buffer.resize(buffer_size)
8 else return INSTALLSTATE_BADCONFIG; // unknown registry error
9 }

10 Assert(lError == ERROR_SUCCESS); // debug build only
11 // [...]
12 while (*value_ptr++);

Listing 3.3: Snippet from Microsoft Excel which is vulnerable to concurrent registry modifications.

This example illustrates a rule, which injects a fault that is handled by most call sites, but
not the specific one that we examined here. Since there exist other correct call sites, it would be
possible to propose code fixes from these other call sites to the developer.
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Chapter 4

Related Work

As discussed in the introduction, the standard way of dealing with external resources or operations
that do not only depend on test inputs is to replace them with a stub (or mock). The behavior
of the stub can be determined by the testing harness and thus, reproducibility of the test is
guaranteed. By combining this functionality with the need for testing exceptional program states
and language-independence, Brute positions itself between the classic fault injection and mocking
frameworks.

Traditional software implemented fault injection (SWIFI[16]) can be structured into three
groups[5]. The data error category contains tools like FERRARI[10], GOOFI[1, 25] or Xception[2],
which focus on low-level data corruption, such as bit-flips in memory or the malfunctioning
of a processor component like a faulty ALU. A second category of tools like DEFINE[11] and
G-SWFIT[6] inject code changes, either by simulating faulty instruction decoding or modifying
code according to common error patterns. Finally, the interface errors category focuses on
corrupting values that are passed between two modules (e.g. a library and an application).
However, the most prominent tools, like Jaca[19], MAFALDA[24] and BALLISTA[13] often focus
on the correctness and resilience of the callee (i.e. the library or kernel in case of a system call),
instead of the caller. While Brute fits best into the interface error category, our focus is on the
caller and not limited to robustness testing. Another fundamental difference is that the mentioned
tools do not deal with false positives, as they assume that arbitrary memory or program changes
can occur. In contrast to this, we assume that the hardware and libraries work as expected and
that the crashes we detect are the result of the application not handling the results correctly (in
both, the successful or error case). This decision is supported by the results of Natella et al. [22],
claiming that up to 72% of faults, which are injected by a state-of-the-art approach (making the
former assumption) are not representative of residual software bugs. Furthermore, an empirical
study by R. Moraes et al. [20] suggests, that the corruption of values at interface boundaries does
not represent the same class of errors as implementation errors in the components themselves
(like, for example, faulty error handling code). The LFI framework[18, 17] also focuses on the
correctness of the caller, but is limited to fault injection and does not try to avoid false positives
as strictly as we do, as injected faults cannot generally be dependent on the function arguments.

Mocking frameworks[15] like JMock[7], EasyMock[8] and Moq[23] simplify typical mocking
scenarios. However, these framework are usually restricted to a single programming language.
Furthermore, they are often limited to dynamically dispatched functions (i.e. virtual or abstract
functions) and cannot instrument statically bound functions.

There exist multiple tools for performing the actual stub injection and usually, they are
specific to a runtime environment. Detours[9], the library we are using for native stub injection
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internally, allows to intercept arbitrary function calls by replacing the beginning of the callee
with an unconditional jump to a user-specified replacement. The original function can still be
called as part of the replacement function, thus providing a flexible way to alter the behavior
of any function with a well-known address. As we have established, hooking a function with
Detours usually requires knowledge of its signature, which is why we extend the Detours hooking
mechanism with generic hooks (see Section 2.4). For managed code, there exists Moles[27], which
allows to replace any managed function with a different function. Similar tools exist for Java, for
example Javassist[4], which allows the generation of types dynamically at runtime and was used
by Jaca[19] to implement its instrumentation.



Chapter 5

Conclusion

In the course of this thesis, we have developed a framework that allows alterations to the behavior
of managed and unmanaged functions in a generic way. While we initially focused on fault
injection, the resulting framework targets a broader spectrum of applications, such as mocking
and test isolation. The main reason for this high degree of flexibility can be found in the presented
fault modeling language, which allows to execute arbitrary code before and after any DLL-exported
function or any managed function. This moves Brute away from the classic fault injection scenario
and positions it closer to a multi-language aspect weaver[12]. We accomplish this without requiring
access to the source code and hide much of the implementation complexity associated with this
type of instrumentation, providing the developer with an easy-to-use solution.

The evaluation reveals, that even simple fault models can find crashes in well-tested, heavily
used applications. We have found that a combination of multiple different injection strategies can
be beneficial to find different defective call sites, as the program is forced to take different paths
depending on the injected faults. Finally, the only false positives that we found were caused by
unrealistic or overly aggressive fault models.

5.1 Future Work

Brute provides a basis for various different types of future works. The framework itself could
be improved in different aspects and its applicability widened by implementing the following
extensions:

The DSL could be extended with the elements from C that are currently missing to increase
the usability of the language. Furthermore, the translation to IL does not support many of the
constructs that are supported for unmanaged code. Regarding type information, the architecture
would allow to support different formats of debugging symbols to be imported. However, at
the moment we only support PDB/CodeView, which limits the framework to importing type
information from projects compiled with the Microsoft Visual C++ compiler. Reading type
information from other formats, like DWARF, or by parsing header files directly would allow
Brute to be used with other compilers as well. With support for managed code, we have shown
how we can transfer the ideas originally developed for native code to a new execution environment.
However, the CLR only represents a single alternative and porting the same ideas to other virtual
machines, like the JVM, could further expand the applicability of the framework. Adding an API
that allows to enable or disable rules at runtime would increase the usability and integration
of Brute with existing unit test suites, allowing to write test cases for deviant behavior directly
embedded into the existing unit tests. Finally, many of the ideas covered in this thesis could also

49



50 5 Conclusion

be transferred to other operating systems and adding portability would present an interesting
problem.

We employed very simple fault models for the evaluation. However, by combining Brute with
other tools, much more intricate fault models could be written. As an example, an existing
fuzzing framework could be adapted to not only fuzz e.g. input files but also data from sockets or
the registry. By performing lightweight static analysis of the injection call sites, error codes that
are handled specially could be extracted automatically to improve the coverage of error handling
code. By fully replacing an API (e.g. file API, socket API, etc.), it would be possible to provide
test isolation that is not specific to the application under test, reducing the otherwise required
development effort. As mentioned earlier in the thesis, it would also be interesting to propose
code fixes based on a database that contains the resilience functions to certain rules. Concretely,
when we have a function that does not handle a certain fault but we know of multiple other call
sites that do, one could try to either display the code which handles the fault as a proposal for a
fix or even try to transfer the error handling code automatically.



References

[1] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. Goofi: generic object-oriented fault injection tool. In
Dependable Systems and Networks, 2003, pages 668–668, June 2003. doi:10.1109/DSN.2003.1209977.

[2] J. Carreira, H. Madeira, and J. G. Silva. Xception: a technique for the experimental evaluation of dependability in
modern computers. IEEE Transactions on Software Engineering, 24(2):125–136, Feb 1998. doi:10.1109/32.666826.

[3] Y. Cheon and G. T. Leavens. A simple and practical approach to unit testing: The JML and JUnit way. In ECOOP,
volume 2374 of LNCS, pages 231–255. Springer, 2002.

[4] S. Chiba. Javassist - A Reflection-based Programming Wizard for Java. In Proceedings of OOPSLA’98 Workshop
on Reflective Programming in C++ and Java, 1998. URL: http://www.javassist.org.

[5] D. Cotroneo, A. Lanzaro, R. Natella, and R. Barbosa. Experimental analysis of binary-level software fault injection
in complex software. In Dependable Computing Conference (EDCC), 2012 Ninth European, pages 162–172, May
2012. doi:10.1109/EDCC.2012.12.
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