Research in Computer Science - Project Proposal
Integrating dynamic test generation
with sound verification

Patrick Emmisberger

November 21, 2014

1 Abstract

Dafny is a programming language with built-in specification constructs to
support sound static verification. The Dafny program verifier is powered by
Boogie and Z3 and targets functional correctness of programs. Delfy is an
automatic test generation tool based on dynamic symbolic execution for the
Dafny language. This project explores the deep integration of sound verifi-
cation, as implemented in the Dafny verifier, with dynamic test generation,
as implemented in Delfy.

2 Problem statement

The goal of this project is to use a combination of the existing verifier
and dynamic symbolic execution engine to improve the feedback on failing
assertions and verify as many properties as possible. This combination will
be available to the user through an extension for Visual Studio, which we call
wizard, that simplifies development with the Dafny language. The following
core problems should be addressed:

e Run the verification and dynamic symbolic execution in parallel in
the background to improve the feedback on assertions by combining
the results of both analyses. In particular, if the dynamic symbolic
execution detects a failing assertion, then we definitely know that the
assertion cannot be verified. If the verifier can verify a particular piece
of code, there is no need to run dynamic symbolic execution on this
code. In case we can fully explore straight-line code with Delfy but the
Dafny verifier reports a verification error, then we have proved that
this error is a false positive.

e Find ways to determine the tool more suitable for verifying a piece of
code.



Prioritize assertions for the user to provide more specifications. This
will be done based on the level of coverage that can be achieved by
dynamic symbolic execution. For example, we mark an assertion that
is not fully explored by the dynamic symbolic execution with a high
priority, while an assertion in fully explorable code has a low priority.

The following suggestions could be implemented as an extension to the
core part:

If the dynamic symbolic execution is able to prove properties about a
method (e.g., by an exhaustive path search of straight-line code), add
these properties as an assumption to strengthen the verification.

Improve the performance of the dynamic symbolic execution engine
to provide feedback more rapidly and extract the concrete execution
from the Visual Studio process to prevent IDE crashes by faulty test
code.

Learn specifications, especially about sets, and implement a feedback
loop from Delfy to Dafny.

3 Project definition

The project is subdivided into the following parts:

3.1

Conceptual phase

Goal: Developing ideas on how to approach the main problems. If appro-
priate, build a small proof of concept for some of the ideas.

3.2

Implementation phase

Goal: Implementation of the wizard which will be integrated into Visual
Studio.

3.3

Learning phase

Goal: Implementation of a feedback channel from Delfy to Dafny.

3.4

Writing phase

Goal: Documentation of the approach, implementation and evaluation re-

sults.



