
Checking Termination of Abstraction Functions
Bachelor’s Thesis Project Description

Patrick Gruntz
Supervisor: Malte Schwerhoff

ETH Zürich

March 28, 2017

Motivation
In deductive software verification, the programs to verify are usually annotated with specifica-
tions (or contracts) in order to express what the program is supposed to do. A method specifi-
cation, for example, usually consists of a precondition and a postcondition, which summarise
the effects of an invocation of that method.
It is common practice to use abstraction functions in such specifications in order to abstract over
implementational details. For example:

function sum(xs:Seq[Int]):Int
{

|xs| == 0 ? 0 : xs[0]+sum(xs[1..])
}

This function can be used in the postcondition of an append method to state that the sum of all
elements of the resulting sequence is the sum of the input sequence plus the newly appended
value.

Such specifications, however, are only meaningful if all abstraction functions are well-defined[1],
which, among other things, means that all functions terminate, and thus actually represent val-
ues. Proving termination of mutually recursive and heap-dependent abstraction functions is
therefore an important task for an automated verifier.

1

The Viper verification infrastructure[2] developed at ETH Zurich is a framework where programs
plus specifications written in a source language (for example Java) can be encoded as programs
in the intermediate verification language Viper. The translated program can then be verified by
two different verifiers. The key property of such a translation is that the source program is cor-
rect (with respect to its specifications) if its encoding in Viper verifies. Each verifier therefore
has to check that user-provided abstraction functions are well-defined.

The termination checks of abstraction functions are currently not implemented at all. One goal
therefore is to define proof obligations in Viper e.g. by following approaches used in other veri-
fiers such as Dafny[3] or Chalice[4]. An implementation of the checks in each verifier separately
wouldn’t be a good option considering that the necessary efforts duplicate and that each imple-
mentation would have to be adapted if the rules for checking termination change. Since Viper
is an expressive language, a Viper-to-Viper transformation can be implemented that encodes,
for a given Viper program, the termination-related proof obligations as another Viper program.
The abstraction functions in the original Viper program are then guaranteed to terminate if the
generated Viper program verifies.

In order to show termination of an abstraction function, Viper can be used to prove that a given
variant is monotonic and bounded. In the example above, the length of the sequence (i.e. |xs|)
would be such a variant. The program would be extended by the following code, which then
can be proven by Viper:

function sum(xs: Seq[Int]): Int
//decreases |xs|
{ |xs| == 0 ? 0 : xs[0] + sum(xs[1..]) }

method sum_termination_proof(xs: Seq[Int]) {
if (|xs| == 0) {
// no recursive call; function terminates

} else {
assert |xs[1..]| < |xs|

}
}

2

Another core goal is to implement termination measures to show that the amount of heap loca-
tions accessible to the function decreases with every function call. Thus, they can be used to
prove termination of heap-manipulating functions. For example:

field val: Int
field next: Ref
predicate list(x: Ref) {
x != null ==> acc(x.val) && acc(x.next) && list(x.next)

}
function list_sum(x: Ref): Int
requires list(x)

{
unfolding list(x) in x == null ? 0 : x.val + list_sum(x.next)

}

In this example the termination of the function list sum can be shown by proving that the
amount of accessible locations in each function is getting reduced. The recursive call is only
being able to access the list’s tail starting at x.next, which is only a part of the whole acces-
sible list. The amount of accessible locations on the heap will therefore be reduced with every
function call. Since the definition of the predicate list implies that lists are finite and acyclic,
the amount of accessible locations will decrease and the function will terminate.

One of the challenges that we expect to arise in such a transformation is to identify which
references, fields and predicate instances are relevant for the generation of the Viper code.

Core Goals
• Implement a Viper-to-Viper transformation, such that the generated Viper program veri-

fies that a given value decreases. This requires:

– A decrease relation (strict partial order)�: T×T → Boolean for all relevant Viper
types T (following an approach taken by Dafny). The relation should be applicable
for single expressions (e1� e2) and tuples of expressions.

– An implementation of a decrease annotation, such that the user can specify a
variant i.e. an expression, that becomes strictly smaller each time a recursive func-
tion or method is called.

• Integrate heap/permission based termination measures into above relation.

• Provide a mechanism to ensure that the definitional axioms for a function are availabe
only once the function is known to be well-defined

3

• Add a mechanism for translating error messages for the generated Viper program to mean-
ingful, termination-related error messages.

• Evaluate the implementation with known termination problems to demonstrate perfor-
mance and expressiveness of the chosen approach

Possible Extensions
• Integrate termination proofs for predicates

• Adapt the approach developed for functions and allow proving the termination of loops

• Extend the heap/permission-based measures to also cover examples using fractional per-
missions.

• Reduce annotation overhead by:

– Designing and implementing heuristics for automatically inferring decreases clauses
(as e.g. done in Dafny)

– Building and analyzing the static call graph and detecting cycles

References
[1] A. Rudich and A. Darvas and Müller, P.: Checking Well-Formedness of Pure-Method

Specifications, FM 2008.

[2] P. Müller and M. Schwerhoff and A. J. Summers: Viper: A Verification Infrastructure
for Permission-Based Reasoning, VMCAI 2016.

[3] K. Rustan M. Leino: Dafny: An Automatic Program Verifier for Functional Correct-
ness, 2010.

[4] K. R. M. Leino and P. Müller and J. Smans: Verification of Concurrent Programs with
Chalice, Foundations of Security Analysis and Design V 2009.

4

