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1 Introduction

Envision is an integrated development environment (IDE) for object-oriented pro-
gramming written in C++. Its development started during the master’s thesis of Dimitar
Asenov [1]. In contrast to most traditional IDEs Envision represents programs not only
in text form but also uses various forms of visualization. Envision aims to help users
increase their productivity by augmenting the code using visual elements. In this project
we are adding semantic zoom support for Envision to further increase user productivity
by improving code comprehension and navigation.

1.1 Motivation

A large object-oriented program can contain a huge amount of code distributed in
many projects, modules and classes. The visualizations of all these elements need a certain
amount of space and the available space of a screen is limited depending on resolution and
screen size. Envision uses a single surface to display an entire program. For navigation
purposes it is therefore important to be able to zoom in and out. It is common practice
to use zoom out to fit more visual elements into a screen area. This will show more
elements on a given screen and the elements themselves are displayed smaller but all the
information is retained. This common notion of zoom by just geometrically zooming items
is what we will refer to as geometric zoom. In practice screens have a fixed resolution and
human visual perception is limited leading to an inevitable loss of information. Figure 1.1
shows how the labels of books become unreadable when geometrically zooming out.

Most of the time when geometrically zooming out the user is not interested in the
elements that are getting too small to recognize. The user basically requests a higher level
overview and is interested in information on that level instead. This inevitably raises the
question: Why not display what the user is actually interested in instead?

Displaying something in a different way to show the most relevant information about
it depending on a given situation is exactly what semantic zoom is all about.
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Figure 1.1: An example of geometric zoom. The captions of books become unreadable
when zooming out too much.
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2 Semantic Zoom

This chapter gives a brief introduction to semantic zoom. It compares semantic zoom
to geometric zoom and shows why semantic zoom is useful. Additionally, we discuss
common challenges that arise while working with semantic zoom.

2.1 Semantic Zoom vs. Geometric Zoom

Most people are familiar with the notion of geometric zoom. When using geometric
zoom the size of all visual elements is scaled by the same amount but all the elements
and their structure are retained as illustrated in Figure 1.1.

Semantic zoom on the other hand does not only vary the size of visual elements, but
the amount of details shown. This may result in displaying elements in a different way,
or not at all, depending on the semantic zoom level. Figure 2.1 illustrates semantic zoom
using the bookshelf example used in Figure 1.1.

full5detail

Biology

Physics

Mathematics

Chemistry

category5regions

Chemistry:
Physics:
Biology:
Mathematics:

195books5(120)
515books5(330)
385books5(250)
475books5(300)

category5list5with5statistics

semantically5zooming5out

Figure 2.1: An example of different semantic zoom levels.
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2.2 Challenges

In this section we are going to talk about issues that are common to all semantic zoom
implementations independent of Envision’s application area. Specific design choices and
trade-offs in the context of Envision are discussed in the chapter Design.

2.2.1 Smooth transitions between semantic zoom levels

Semantic zoom is supposed to help the user work more efficiently. However, changing
the looks of visual objects too abruptly can be confusing. The user should be able to
easily relate between the appearance of an element displayed on two adjacent semantic
zoom levels. This ensures that the user does not lose context information when switching
the semantic zoom level.

2.2.2 Avoiding ambiguity of visualizations

It is important that visualizations of semantic zoom levels are unambiguous. If an
element looks the same on a certain semantic zoom level as on another semantic zoom level
in special situations the user will not be able to distinguish between the two possibilities.

For example: Assume we are visualizing the book shelf from Figure 2.1 and abstracting
it on one semantic zoom level just shows the book shelf and omits the books it contains.
On another semantic zoom level the whole book shelf with its books is displayed in full
detail. Under these circumstances the user is unable to see the difference between a book
shelf displayed on the first semantic zoom level and an empty book shelf on the second
semantic zoom level.

2.2.3 Geometric consistency

When switching between semantic zoom levels it is important to preserve a certain
degree of geometric consistency. For example if an element A is displayed left of element B
on one semantic zoom level then A should also be on the left of B on a different semantic
zoom level. Additional to the relative location of elements it is important to have a
stable relation between the areas used by an item displayed on two different semantic
zoom levels.

Geometric consistency forms the bridge between semantic and geometric zoom. It
ensures that the user is easily able to relate between the current appearance of a scene
and the appearance resulting from modifications to semantic or geometric scale.
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3 Design

This chapter describes the design process as well as the final design without going
into implementation details.

3.1 Visualizations in Envision

Programs written in an object-oriented language naturally exhibit a tree like struc-
ture. An example is shown in Figure 3.1. Note that Envision uses a structural component
called module which is equivalent to a package or namespace.

project

module

module

class

method method method method

class class

method method method

project

Figure 3.1: An example tree structure of an object-oriented program.

Envision stores the structure of programs in a model tree. The nodes of the tree
represent program components like projects, modules, classes, methods or statements. A
node may or may not be visualized and can switch visualizations depending on its content,
context or other environmental conditions. The visualizations of nodes are called items
organized in trees which closely resemble the structure of the model tree.
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3.2 Using visualizations to achieve semantic zoom

We decided to have discrete semantic zoom levels representing different levels of ab-
straction (varying the amount of details shown). This means that we need items to change
their appearance depending on the semantic zoom level.

In Envision the appearance of an item is determined by the visualization used. En-
vision supports the creation of custom visualizations. Therefore we can create all the
visualizations needed for a semantic zoom level. By defining which custom visualizations
belong to which semantic zoom level it is possible to change the appearance of items
depending on the active semantic zoom level. For this to work Envision has to be able to
choose an appropriate visualization under given circumstances. This is discussed in the
next section.

3.3 Choosing a suitable visualization

Envision already has a mechanism to choose visualizations for a given item. The
mechanism distinguishes between an item’s type and a property called purpose to choose
a suitable visualization for an item. The purpose is a visualization parameter describing
what visual functionality the visualization exhibits. Currently Envision supports a default
purpose and a control-flow purpose.

Our design of semantic zoom adds an additional property called semantic zoom level
to extend the visualization choice mechanism. When rendering an item the visualization
choice will now depend on the semantic zoom level as well.

If we are trying to choose a visualization given a triple of type, purpose and a se-
mantic zoom level and there exists an exact match (a visualization suited for exactly
those parameter values) it is used directly. However, once we are not able to match all
requirements the choice gets more difficult. In that case we are interested in an existing
visualization which matches the requested parameter values as closely as possible. In
general there is no optimal solution to this problem.

For example if there was a visualization matching type and purpose and a different
visualization matching type and semantic zoom level but no visualization matching all
3 parameters then it is not clear which of the two partially matching visualizations is
better.

We decided to use a simple priority based approach. The parameters have differ-
ent priorities. The type of an item was chosen to be most influential followed by the
requested semantic zoom level and lastly the visualization purpose. This prioritization
disambiguates the problem of choosing a suitable visualization.

For example: The visualization choice strategy that prioritizes item type over semantic
zoom level over purpose first checks whether a visualization for the exact values of all 3
parameters exists. If not it will proceed in looking for a visualization that at least matches
the type and semantic zoom level parameter. If there is still no match it will look for
a visualization based on the type and the purpose parameter. Lastly if no visualization
was found so far only the type is considered.

7



As this approach is very simple the visualization choice will most likely become more
elaborate in the future. We decided to integrate this functionality in a way that allows
it to be easily extended in the future.

3.4 Individual semantic zoom level

One could have a global semantic zoom level that determines the semantic zoom level
for all items. However, there are scenarios where semantically zooming only individual
items is desirable. In the context of Envision one could for example be working on one
part of a program. The programmer might be interested in using other parts of the
project in their own work. The programmer most likely is only interested in the public
interface of those parts providing all the information needed to use them in the new code.
In this example the programmer would most likely prefer seeing the necessary features of
the other program parts on a different semantic zoom level than the part that is currently
under construction. Therefore we decided to support individual semantic zoom levels for
each item.

3.5 Arrangement of visualizations

When using a different visualization for an item to achieve semantic zoom, the vi-
sualization commonly shows less information on a coarser zoom level. As a result the
visualization of an item after abstraction (showing less details about it) is usually going
to be smaller compared to the size it takes to show the same item in full detail. The
smaller visualization retains the position of its original representation and the freed space
may stay unused, thus creating a gap between the item and its neighbours like illustrated
in Figure 3.2.

In the following subsections we discuss some approaches to rearrange the items to
make better use of the available space.

3.5.1 Move visualizations to the centre of the viewing region

The idea behind this first approach was to try and tackle the larger distance between
visualizations directly. Based on the current viewport (the viewport is the viewing region)
all visualizations in the immediate area in and around it could be moved closer together.

As a first concrete approach we considered a star-shaped visualization movement
algorithm. The algorithm would go through all visualizations ordered by their ascending
proximity to the centre of the viewport and move each visualization as close as possible to
this centre point without overlapping different visualizations. The visualizations would
be moved along straight lines joining at the centre point of the viewport resulting in a
star-shaped like illustrated in Figure 3.3.

We found this approach to have one severe drawback: The resulting view can change
significantly depending on the centre point of the viewport. Even if the user shifts the
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Figure 3.2: Space difference between abstracted items.
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Figure 3.3: Moving items closer to viewport centre.
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Controller

View

Example

Controller

View

Example

changing the semantic zoom level

Figure 3.4: Issue of an item becoming very small and not more readable after changing
the semantic zoom level.

viewport only slightly in one direction the appearance of the scene can change in a very
unintuitive way. For the sake of overview and comprehensibility we argue that shifting
the viewport should not lead to a completely different arrangement of visualization items.
One could maybe relax the constraint and allow small, easily comprehensible arrangement
differences. However, the proposed approach can not guarantee to only slightly change
the arrangement of items.

Another issue we identified was the difference in size between an item visualized on
different semantic zoom levels. Figure 3.4 illustrates how a huge module ends up to be
very small after changing the semantic zoom level even though it would have enough
space to be displayed much larger. Based on this observation we decided that not only
the visualization and position of an item has to be changed during the rearrangement
but its scale as well. This lead to the design idea described in the next subsection.

3.5.2 Using only the area used when shown in full detail

After the initial approach we decided to design an arrangement algorithm that is able
to scale and move items while being careful about the area the transformed items would
occupy. The following approach was an intermediate step in the design process. The final
arrangement algorithm we used is described in the next subsection.

One of the most common uses of semantic zoom currently is encountered when using
online maps. The issue we are facing is not encountered there as a map is very geometrical.
What that means in general is that no matter on what geometric or semantic scale you
are looking at a map piece, all information related to it will always be shown inside its
own region of the total space. A region of a map owns a certain part of the total space and
will always fully occupy it. However, in Envision there are no limitations to the area used
by a visualization. The lack of geometric consistency between the area used by an item
visualized on different semantic zoom levels is a problem. Studying how semantic zoom
is used for existing online maps and why the problem we are facing is not encountered
there inspired us to develop the idea of area ownership.

Area ownership makes it possible to usefully constraint the used area even if we relax
the property about an item using always the whole area it owns. Each item owns a certain
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area equal to the area needed when it is shown in full detail. The item would then be
free to move inside this area and take any shape or size as long as the transformed items
area is still contained in the area it owns.

An item can be scaled as much as possible such that its proportions are not distorted
and the area the scaled item takes is still contained in its owned area. We decided it
makes sense to not scale an item beyond a certain maximum scale. That maximum
scale can change depending on the current geometric scale and intuitively enforces that
its perceived scale is not larger than 1. The perceived scale is obtained by multiplying
the geometric scale used with the scale of the item (note that the item’s scale is the
actual scale of the item times the parent item’s scale). For example if the whole scene is
currently shown using a geometric scale of 0.5 then the maximum scale an item can have
is 2 as that is the maximum number that will lead to a total perceived scale of 1 or less.
After scaling the item would be positioned according to the first approach but such that
it still remains completely inside its owned area as illustrated in Figure 3.5.

Due to the way Envision works this approach could not be realised. To be able to use
the proposed arrangement procedure we have to be able to get the area an item owns.
A reasonable choice for the owned area would be the extents the item has if shown in
full detail. The only way to obtain that area is to render the item in full detail. This
would mean that we have to render each item that should not be shown in full detail
twice. This was considered to be an unacceptable complication and therefore a different
solution, as described in the next subsection, was developed.

3.5.3 Equal growth around the original area

Knowing the limitations of the framework and the properties we want the transformed
items to have, the next step was to consider what can be done without having to visualize
an item in full detail first. This in turn seemed to exclude the possibility of working with
area ownership. However, working on the previous idea revealed an interesting correlation
between the two kinds of transformations that we want to apply to items which should be
rearranged. Using the idea of items being scaled dynamically depending on the geometric
scale of the scene automatically takes care of the distance between different items as well.
The smaller the geometric scale gets, the larger visualizations can potentially become thus
leading to the empty space between items being filled by the growing items around it.
We therefore decided to not have direct movement transformation. It was left to decide
how the scaling should happen such that the transformed item has the most desirable
properties.

Only the area of the current item visualization is known at this point. We decided
to scale the item in such a way that the area an item takes on a geometric scale of 1
is always contained in the area after transformation. This guarantees that, when geo-
metrically zooming, the relative locations of items are retained. Furthermore, this allows
the transformed item to be moved by the user such that the item’s new position looks
reasonable on other semantic zoom levels as well. The concrete implementation of the
proposed arrangement algorithm is discussed in the next chapter.
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Figure 3.5: Arranging items with area ownership.
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ClassA ClassB
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Figure 3.6: Without header scaling.

ClassA ClassB

ClassC

Example

Figure 3.7: Example from Figure 3.6 with header scaling.

3.6 Header scaling

When using the arrangement algorithm at this point and geometrically zooming out
on the running example the scene will eventually end up looking like shown in Figure 3.6.

Note that the structural children of the project got scaled up while the header of the
project became much smaller. In this special case the project has no parent visualization.
This means it has unlimited space around it. We decided to scale the header of items
without a parent item in such a way that the total perceived scale of the header is always
1.

The example from Figure 3.6 with header scaling is illustrated in Figure 3.7.

3.7 Automatically changing the semantic zoom level

While it is very useful to be able to choose an item’s semantic zoom level manually it
makes sense to let the semantic zoom level of an item also change automatically if the user
did not explicitly put a desired semantic zoom level for it. The whole idea behind semantic
zoom is to display something different if the current visualization becomes inappropriate.
A visualization becomes unsuitable especially if the details of it cannot be recognized any
more after getting too small due to geometrically zooming out.

We decided to add an automatic mechanism, a semantic/geometric zoom mix, that
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switches the semantic zoom level of items that become too small when geometrically
zooming. The mechanism switches between two semantic zoom levels for all projects,
modules, classes and methods. One is the fully detailed level and the other one is the
declaration abstraction introduced in this project (see 4.7.2).

If an item’s perceived scale falls below a certain threshold (we used 0.8) it switches
from the most detailed semantic zoom level to the declaration abstraction semantic zoom
level. When an item gets abstracted the geometric scale at that point is saved. The
saved value is used to switch the item’s semantic zoom level back to full detail when
geometrically zooming in.

However, the location where we want to save the geometric zoom scales on which the
items got abstracted can get lost if some parent item changes its visualization. In this
case we have to come up with some kind of estimation on when to switch items to fully
detailed semantic zoom level again. We decided to do this based on the unused space
around an item. If there is enough space for the fully detailed visualization to have a
reasonable perceived scale (ideally the threshold chosen in the last paragraph) we want
to switch to the full detail semantic zoom level. So essentially we are looking for an
estimation of the area an item’s fully detailed visualization takes. We took the simple
approach of using a just constant size as an estimation. However, this estimation was
put in a separate function such that it can easily be improved in future work.
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4 Implementation

4.1 Storing the semantic zoom level

We added an extra field for each item to hold its semantic zoom level. The value
refers directly to a specific semantic zoom level or alternatively takes on the value -1.
The special value -1 is used to create a relative dependency on the parent item’s semantic
zoom level. The semantic zoom level property of the root item is never negative and can
be used as a single point of modification to change the semantic zoom level for the whole
program.

We also added a map that holds the semantic zoom levels of child nodes.

4.2 Visualization choice

The class ModelRenderer was extended to be able to switch between different vi-
sualization choice strategies. We introduced a field to control the visualization choice
strategy. Two concrete strategies were implemented. One prioritizes type over purpose
over semantic zoom level and the other prioritizes type over semantic zoom level over
purpose. The second one is used in the current implementation by default.

4.3 Introducing a semantic zoom level

A semantic zoom level essentially consists of a collection of visualizations to be used
when showing the scene on that semantic zoom level. So we provide a functionality to
register a semantic zoom level and link it to a unique identifier. That identifier is then
used to add visualizations to the semantic zoom level.

15



4.3.1 Registering a semantic zoom level

One can register a new semantic zoom level using the feature registerSemanticZoomLevel
of ModelRenderer. The method accepts two arguments. The first argument is a string
representing the name of the new semantic zoom level and is used to refer to this semantic
zoom level after it was registered. The second argument takes an integer. This integer
determines its place in the hierarchy of all registered semantic zoom levels.

4.3.2 Adding visualizations to a semantic zoom level

As the semantic zoom level was designed to be another parameter determining visual-
ization choice we extended the existing visualization registration methods of ModelRenderer
to accept a semantic zoom level identifier as well. The semantic zoom level identifier is
chosen by the programmer when registering the associated semantic zoom level.

4.4 Arrangement of visualizations

This section describes the concrete implementation of the used arrangement algorithm.
The arrangement algorithm was integrated into the class PositionLayout because all
items we want to change the visualizations for when switching the semantic zoom level
happen to be direct children of PositionLayouts. The algorithm works as an additional
modification step to the existing implementation of PositionLayout and is located at
the end of the updateGeometry method.

4.4.1 Scaling items

The arrangement algorithm tries to expand the area that items which are children of
a PositionLayout can occupy. If an item has more space available it can be scaled larger
in an attempt to increase its visibility. The items should be scaled in such a way that
they keep their proportions exactly the same. Additionally, the arrangement algorithm
will only increase the scale of items. Items have a scale of 1 before the rearrangement
takes place.

As we only need to calculate the area an item can use when performing the rearrange-
ment, we decided to optimize the process and work directly with the area of the item.
In the design section we pointed out that we want the original area (the area the item
takes without getting scaled) always to be completely contained in the scaled area. One
further design choice was to try to let this original area be located as central in the scaled
area as possible.

We distinguish between 4 different directions in which an item’s area can potentially
be expanded as illustrated in Figure 4.1. The area is transformed in such a way that the
larger increase in one direction is equal to a certain predefined constant. This constant
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can be used to control the speed with which the item gets expanded. A higher constant
will lead to faster convergence but a less optimal solution in return.

item

constant

item

constant

item

constant

item

constant

Left-Up Right-Up Left-Down Right-Down

Figure 4.1: Item expansion directions.

4.4.2 Arrangement algorithm

Code 4.1: Arrangement algorithm.

1 const f l o a t EXPANDING STEP
2
3 fo r each ( item )
4 {
5 item . expand ingDirec t ions = [ LeftUp , RightUp , LeftDown , RightDown ]
6 item . area = non−s c a l ed non−moved area o f the cur rent v i s u a l i z a t i o n
7 item . widthHeightRatio = item . width / item . he ight
8 }
9
10 whi l e ( the re are s t i l l i tems to expand )
11 {
12 fo r each ( item )
13 whi l e ( the item can be expanded f u r th e r )
14 {
15 switch ( f i r s t element o f item . expand ingDirec t ions )
16 {
17 case LeftUp :
18 expans ionLe f t = expansionUp = EXPANDING STEP;
19 complementDirection = RightDown ;
20 case RightUp :
21 expansionRight = expansionUp = EXPANDING STEP;
22 complementDirection = LeftDown ;
23 case LeftDown :
24 expansionRight = expansionDown = EXPANDING STEP;
25 complementDirection = LeftUp ;
26 case RightDown :
27 expans ionLe f t = expansionDown = EXPANDING STEP;
28 complementDirection = RightUp ;
29 }
30
31 i f ( item . widthHeightRatio > 1)
32 {
33 expansionUp /= item . widthHeightRatio
34 expansionDown /= item . widthHeightRatio

17



35 }
36 e l s e
37 {
38 expansionRight ∗= item . widthHeightRatio
39 expans ionLe f t ∗= item . widthHeightRatio
40 }
41
42 item . area = item . area expanded by expans ionLe f t /Right/Up/Down ;
43
44 i f ( item . area does not c o l l i d e with any other item area &&
45 item . area does not c o l l i d e with any border )
46 {
47 s c a l e the item us ing the space o f the expanded area
48
49 i f ( item has now a perce ived s c a l e o f 1)
50 s e t item to not need any f u r t h e r expans ions
51 e l s e
52 {
53 put the cur rent expanding d i r e c t i o n at the end o f item .

expand ingDirect ions
54
55 move the complementDirect ion to the f r on t o f item .

expand ingDirect ions
56 }
57
58 break
59 }
60 e l s e
61 {
62 r ev e r t the changes to item . area
63 }
64 }
65 }

The algorithm starts with the information about the extents of the PositionLayout’s
inner size (the size of the area usable by children of the PositionLayout), the position
of the items and each item visualizations extents (note that this is the size of the current
visualization of an item and not the fully detailed one).

During initialization the algorithm associates a queue of directions to each item indi-
cating in which directions an item can still try to expand itself. It then iterates over all
child items of the PositionLayout and keeps doing so as long as some modification has
taken place. As the available space for items to expand to is limited and does not change
during the iteration process it will always terminate after a finite amount of iteration
steps.

In each iteration step the algorithm checks for each item whether it can be further
expanded. An item can be further expanded if and only if the queue of possible direc-
tions it can grow to is not empty. If an item can be further expanded it dequeues the
first possible direction and transforms the area associated to this item accordingly. The
transformed area is then checked against all other item areas as well as the boundaries set
by the parent PositionLayout. If the transformed area does not overlap with any other
area and is still fully contained in the parent PositionLayout the items transformation
is committed. However, if that was not the case the transformation is reverted and the

18



algorithm tries the next possible direction.
When an item was successfully expanded in one direction the used direction gets en-

queued at the end of the queue and the complement direction, if existent, is pushed to
the front the queue. This results in a direction being reused only after trying to expand
in all other available directions first. The special case with the complement direction
being pushed to the front tries to ensure that the growing is as balanced as possible.
This way the original area before transformation gets centralized as much as possible in
the transformed area.

4.5 Header scaling

The implementation for scaling the header of items without a parent item was put
directly into the update procedure of the most common top level items: Project and
Module. In the update procedure we check whether the item has no parent visualization
and if so we calculate the increase in scale needed to cancel out the geometric scale. The
calculated scale is then set directly for all the items that make up the header.

4.6 Automatically changing the semantic zoom level

The mechanism is implemented in PositionLayout. After the rearrangement of items
the function determineAutomaticSemanticZoomLevel is invoked for each item. The
return value of this function determines the semantic zoom level of the item. The function
determineAutomaticSemanticZoomLevel gets the item for which the automatic semantic
zoom level has to be determined and uses the function estimateItemSizeFullDetail

to estimate whether there is enough empty space around the item for it to be shown in
full detail.

4.7 Implemented Semantic Zoom Levels

4.7.1 Declaration abstraction

In Envision all projects, modules, classes and procedures are also declarations. It is a
common base class of the items we want to change depending on their semantic scale. All
the fully detailed visualizations of the declarations of interest have a common structure
shown in Figure 4.2.

The goal was to create a visualization which abstracts away most details about an
item. It makes sense to not vary the appearance of an item too much when abstracting
it. When an item gets abstracted the user should be able to easily get a hold of what
is happening and therefore should be able to relate between the abstracted and fully
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nameicon

body

Figure 4.2: Basic structure of declarations.

detailed visualization of an item reasonably quickly. To accomplish this it was deemed
important to keep the colour scheme as well as a major part of the header and outline
the same. Each declaration item is equipped with an icon when shown in full detail and
we decided to retain this visual cue during the abstraction as well.

When just omitting the visualization of the item’s body entirely the icon and name
of the abstracted visualization lacks visual connection. Usually the icon and name of a
declaration seem to be attached to the background of the declaration body. Therefore we
kept the background shape of a declaration. However, when just structuring the shape
the same way as in the fully detailed visualization the looks of the abstraction of an item
and the item having an empty body but shown in full detail are ambiguous. To resolve
the ambiguity we moved the bottom of the shape up such that it still acts as binding for
the icon and name but would be different from any looks attainable by using the fully
detailed visualization. Figure 4.3 illustrates the result.

4.7.2 Public interface abstraction

This semantic zoom level implementation aims to show only the public interface of
classes. Instead of completely abstracting away the whole body of a class it selectively
only omits the non-public members of the class.

Most of the times when writing code the programmer needs to know the public in-
terface of other classes to be able to use them in the current working process. The
implementation details of those classes is not of importance at that point and displaying
them essentially serves no purpose. By hiding the unnecessary details it is easier for users
to find the information they are looking for.

Figure 4.4 illustrates the abstraction in comparison to the fully detailed visualization.
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Figure 4.3: Concrete declaration abstraction.
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Figure 4.4: Showing only the public interface of a class.
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5 Discussion and Future Work

5.1 Known issues

This section discusses known issues of the current implementation.

5.1.1 Scaling of items on geometric scale change

We decided that items should never be scaled to be larger than a perceived scale of 1.
However, currently there is an issue with items being scaled over this value. This happens
because the PositionLayouts are not updated in the necessary order. For the scaling
to work correctly a PositionLayout higher up the structural hierarchy of a program has
to be updated before a PositionLayout deeper down the hierarchy. If the order is not
considered then it can happen that for example a PositionLayout sees its parent’s scale
to be a value A and arranges its items according to the parent scale A and one of its items
reaches a perceived scale of 1. Afterwards a PositionLayout higher up the hierarchy gets
updated and changes its scale to a value B that is greater than A. This change directly
influences every item deeper down the hierarchy and therefore also increases the item
formerly defined as having a perceived scale of 1. As a consequence that item’s perceived
scale must now be larger than 1 and thus violates the design decision of having perceived
scale of at most 1.

The issue can be resolved by ensuring that the PositionLayouts are updated in the
right order (top-down the structural hierarchy).

5.1.2 Delayed update of visualizations

The changes to the semantic zoom level of items performed by the semantic/geometric
zoom mix mechanism currently do not cause the appearance of an item to be changed
immediately. The appearance change is delayed until an item gets updated again at a
later time.
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5.1.3 Performance

Envision was designed specifically to be able to handle large projects containing a
huge amount of items. This thesis introduced an arrangement algorithm that rear-
ranges items in PositionLayouts. Specifically all projects, modules and classes have
a PositionLayout in their body arranging their containing items. When testing the
current implementation using a large project we discovered it to run very slow. Investi-
gations of this performance issue showed that the source of the problem was the usage
of calls to change an item’s scale located in the underlying graphics framework. The
performance problem was therefore not caused directly by the implementation itself. As
work inside the underlying graphics framework was not considered to be inside the scope
of this thesis we did not put any more efforts into resolving the issue.

5.1.4 Varying item size on different semantic zoom levels

In our implementation the size of the visualizations of an item can change when
changing the semantic zoom level. In hindsight we should have probably decided to have
an item’s visualization size stay the same on every semantic zoom level. That design
could have been less confusing for the user.

5.2 Possible extensions

In the following subsections we discuss ideas on how to get better results. We also
mention possible features that were not implemented as part of this thesis.

5.2.1 Locking the semantic zoom level of an item

In the current implementation the semantic zoom level for an item can change because
of the automatic semantic zoom level change mechanism on geometric zoom or because
the user changed it manually. There is currently no difference between these two ways of
changing the semantic zoom level of an item and therefore both ways can interfere with
each other. In particular the automatic mechanism can change a manually set semantic
zoom level for an item. However, a user’s choice should always be more important than
the decisions made by the automatic mechanism.

To resolve this one could introduce some sort of locking mechanism for the semantic
zoom level of items. The user could then choose to lock the semantic zoom level of an
item. If locked an item’s semantic zoom level as well as the semantic zoom level of all of
its parents should not be changed further by the automatic mechanism. The user should
be able to unlock an item in a similar fashion resulting in the item getting modified by
automatic changes again.
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5.2.2 Estimation of an item’s area

The performance of the semantic/geometric zoom mix feature can be improved by
introducing a more elaborate method to estimate the size an item takes in full detail.
Currently this method just returns a constant size for any input.

5.2.3 Arrangement of visualizations

Improving the arrangement algorithm

The current implementation of the arrangement algorithm only scales items and does
not move them directly. However, while in many cases this simple functionality provides
a useful result, there are scenarios where a more complex arrangement algorithm would
be preferable. Especially if items in the same PositionLayout have vastly different sizes
the algorithm will provide a poor solution.

As an example Figure 5.1 illustrates a project containing one large and two rather
small modules. After abstraction the difference in size between the largest item and the
two smaller items entails a larger distance between the large item and the small items
than between the two small items. The large item and the upper small item have a lot
more space between themselves than the two smaller items. As the algorithm uses the
space around items to expand them this means that the large item and the upper small
item can grow bigger. The result shows the large module as well as the upper smaller
module scaled up very much while the other small item is barely visible any more.

While this behaviour may be desirable in some use cases we think that in the general
case one would rather like the items to share the total space better resulting in a more
equal scaling of items in the same PositionLayout. To achieve a more reasonable ar-
rangement (in the sense of having better sharing the free space between items) one could
consider to add a ”pushing” step to the existing arrangement algorithm.

Instead of just stopping to try expanding an item in a certain direction in the ar-
rangement algorithm after detecting a collision one could ask the items that occupy the
required space to move away. The quality of this approach would heavily depend on
the method used to decide where the items should be moved. Moving them away in the
direction we want to expand to directly seems to be a straight forward idea but we argue
that this could lead to suboptimal solutions in many cases. Additionally, it is noteworthy
that the approach has to be absolutely deterministic. That is because when calculating
the arrangement of an unchanged item multiple times the result must look the same.

Revisiting the previous example and assuming we have a good deterministic method
to move items one might achieve a different arrangement like shown in Figure 5.2.

Assuming there was a way to know the precise size of items at full detail, we could do
a better semantic zoom in a number of different ways. For example the idea presented
in 3.5.2. At the very end of this project we used a workaround to make use of an item’s
size when shown in full detail to visualize it in a ways such that it would always have the
same size even on different semantic zoom levels. The result is illustrated in Figure 5.3.
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Figure 5.1: Example of the arrangement algorithm performing poorly.
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Figure 5.3: Items retain their position and size on different semantic zoom levels.

Share available space up the item hierarchy

When working with the current implementation we identified another issue. The space
used by the contents of an item remains the same at all times. This means that even if
not all space of a PositionLayout is actually needed to display all items with a perceived
scale of 1 the size of the PositionLayout will not shrink. However, if the items could
instead be compacted that would enable the parent item to use less space. When the
parent item uses less space it can in turn be scaled more provided the space around it
is still available. Having a method of compacting items would therefore distribute the
available space to be used by the parent as well. This would potentially lead to a more
equally distributed scaling over an item hierarchy. An example is shown in Figure 5.4.

5.2.4 Ambiguity in semantic zoom level hierarchy

Switching from a certain semantic zoom level to the next one in either direction can
be a non trivial task. In general there exists no optimal solution and like many issues
related to semantic zoom the most appropriate solution depends on the use case and user
preference. Figure 5.5 illustrates the problem in an example using the semantic zoom
levels implemented in the scope of this thesis.
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27



show only the signatures of methods 

show only the names of public methods

show only the names of a classes

show only the names of a modules

show only the name of methods show only the signatures of public methods

more detailed semantic zoom levels 

less detailed semantic zoom levels 
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Here we can see that we cannot compare the semantic zoom level where we show only
the names of methods of a class and the semantic zoom level where we show only the
public members but with their signatures. Depending on the use case both semantic zoom
levels can be of interest but they are incomparable in terms of how much information is
shown.

One possibility to solve the problem is to let the user decide which way he would like
to take at each junction in the illustrated graph.

5.2.5 Declarative creation of semantic zoom levels

Currently all semantic zoom levels are realised using fixed visualizations created from
scratch to achieve the desired appearance. However, a visualization of a semantic zoom
level is mostly just an abstraction of some original visualization. One could use this
correlation to introduce a different way of creating semantic zoom levels. Instead of
creating fixed visualizations for a semantic zoom level one could provide a mechanism
that accepts a rule set to determine whether a certain item should be visualized. There
could be an empty visualization (essentially displaying nothing at all) replaced for all
items that should not appear in the abstracted visualization determined by the rule
set. This would provide a fast and uniform way of achieving abstracted visualization for
semantic zoom purposes.
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6 Related work

6.1 Code Canvas

Code Canvas [2] was developed by Microsoft Research. It is a user interface for IDEs
that replaces the standard multiple text windows by a single infinitely zoomable surface.
Unlike Envision, which uses individual visualizations even on the statement level, Code
Canvas uses text windows as the most fine grained visual elements. The tool supports
semantic zoom when geometrically zooming to try and display as much useful information
as it can on a given geometric zoom level.

6.2 PolyZoom

The idea behind PolyZoom [4] is to create multiple viewports forming a hierarchy of
differently zoomed regions. The viewports are related using correlation graphics. Having
this multi viewport hierarchy has the advantage of providing the user with more context
information about a magnified area.

The arrangement algorithm approach in 3.5.2 was inspired by studying this paper and
comparing the properties of the elements, namely a piece of a map, to custom visualiza-
tions commonly used in Envision.

6.3 Semantic Zooming for UML Diagrams

In their paper Semantic Zooming techniques for UML Diagrams [3] the authors are
discussing possible usage of semantic zoom in UML diagrams as well as interaction tech-
niques specifically adapted for interfaces using semantic zoom.
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7 Conclusion

We introduced semantic zoom support for Envision. Semantic zoom is achieved by
changing the visualization of items and rearranging them appropriately depending on the
requested semantic zoom level. In the scope of this thesis we implemented a declaration
abstraction and a public interface only visualization to modify the appearance of an
item directly. An arrangement algorithm tries to make better use of the space typically
created when an item’s appearance uses less space when less information is shown. As a
result the user can benefit from improved overview achieved by presenting more relevant
information based on the requested level of detail.

The use of semantic zoom in Envision is not limited to the works in this thesis. Some
ideas on how to improve or extend the existing features related to semantic zoom were
introduced in the future works section. Furthermore, other works like Code Canvas [2]
show how semantic zoom can be used together with common features of IDEs.
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