Self-hosting the Envision Visual
Programming Environment

Master Thesis Project Description

Patrick Luthi

Supervised by Dimitar Asenov, Prof. Dr. Peter Miiller
ETH Ziirich

May 7, 2015

1 Introduction

In this project we are going to work on Envision [1], a visual programming system for
object-oriented programs. Visual programming environments like Envision use a variety
of visual elements to represent programs. Their goal is to visualize the code in ways that
help the programmer work more efficiently than with just text.

The goal of this project is to make Envision a self-hosted programming environment.
The term self-hosting describes a software’s ability to create variants of itself (for example
a compiler compiling itself). Therefore the goal is to enable development of Envision in
itself. Envision is written in C++ and up to the present it was developed using Eclipse
and Qt Creator.

Reaching self-hosting stage is an important milestone for programming tools. The
main purpose of programming tools is to create or edit software and being able to self-
host shows their applicability.

We are not aware of any other visual programming system that is self-hosting. Visual
programming tools have been mostly successful in educational, small scale or domain
specific applications. Envision’s C++ codebase on the other hand is significant in size and
not written in any domain specific way making self-hosting Envision a challenging task.

2 Challenges and Core Goals
In this section we are going to outline the main challenges and core goals of the project.

e Code generation
Envision’s source code makes use of the C++ preprocessor. We have to find a way to
bridge the gap between Envision’s internal tree representation of programs and the
textual nature of C++ macros while retaining all semantics during transformation
which is generally a hard problem as previous work [2, 3] has shown.
The solution has to support at least all usages of preprocessor directives used in
Envision’s source code.

e Import from C++ source files
All C++ features used in Envision’s source code have to be correctly interpreted in
Envision. The current import feature of Envision has to be extended because it
does not yet support processing of macros, comments and some newer C++ features.

e Export to C++ source files
Envision uses a tree representation for programs whereas C++ code is split into
header and source text files.
We have to decide how to generate both header and C++ source files from a single
Envision source tree by analysing the class dependencies. Using the results from
the analysis we will determine the minimal amount of information required to put
into the header files in order for the program to work.

e Non-standard C++ features
Envision’s current C++ code base uses some features provided by the Qt meta-object
compiler (MOC):

— The MOC does an additional pass over the code performing code generation
before the C++ preprocessor. This is used for embedding resources and setting
up the Qt meta-object property system.

— The MOC also provides a signals and slots concept that enables an event
driven program flow. The signals and slots mechanism is a variation of the
publish-subscribe pattern.

These non-standard C++ features have to be interpreted correctly when importing
and made use of when exporting to retain compatibility with other development
tools.

3 Extensions

The following list contains possible features to work on after the core goals have been
completed:

e Preserve Documentation
Envision supports advanced documentation features (images, tables, etc.). There
exists no trivial mapping between C++ text files and this type of documentation.
This extension’s goal is to preserve such data during an export-import cycle (for
example by referencing secondary files in C++ source files).

e Improve library support
To enable efficient working in an IDE, auto completion, jump to definition, find all
references and other related features are essential. In order to provide such features
for external libraries we would have to find a way to generate or import the headers
of the libraries alongside a project when it is imported.

e Support QMake
Envision’s current C++ code base uses the QMake build system.

— In order to output meaningful error messages during compilation and other
related services, Envision has to support the usage of QMake’s options while
self-hosting.

— QMake files store relevant information regarding the build process of the
project (i.e. what classes are part of it etc.). If a user modifies a program
that uses the QMake build system in Envision by adding or removing a class
from said project then the related QMake files have to be adjusted as well.

4 Approach

To make Envision self-hosted we are going to provide functionalities for importing code
written in C++ into Envision and for exporting Envision projects to C++ code. One export-
import cycle should result in the same program (round-trip requirement) as illustrated
by figure 4.1. This enables the usage of other development tools alongside Envision until
all features are working properly.

The system should be running on simple inputs (using few language features) early
on and kept in a running state during all phases of development while it is gradually
extended to handle more complex code. The final goal is to be able to handle at least all
the features needed to process Envision in itself.

import

.Cpp h

export

Figure 4.1: A visualization of the import-export round-trip. One full cycle should result
in the original program.

5 Schedule

We are going to work on this project for exactly 6 months. The following table shows
an approximate schedule:

’ Date ‘ Time ‘ Task ‘
11.05.2015 | 2 weeks | Explore existing work on code generators

25.05.2015 | 7 weeks | Design a code generator framework for Envision that
can represent C++ preprocessor directives

13.07.2015 | 1 week | Familiarize with Envision’s current import/export sys-
tems and their limitations

20.07.2015 | 2 weeks | Design and implement correct interpretation of macros
and comments from C++ code in Envision

03.08.2015 | 3 weeks | Find a way to interpret non-standard C++ features when
importing from C++ code

24.08.2015 | 3 weeks | Find a way to use non-standard C++ features when ex-
porting from Envision

14.09.2015 | 2 weeks | Design a dependency analysis to generate C++ header
files from Envision source trees

28.09.2015 | 4 weeks | Extensions

26.10.2015 | 2 weeks | Report

11.11.2015 | - End

References

[1] D. Asenov and P. Miiller. Envision: A fast and flexible visual code editor with
fluid interactions (overview). In Visual Languages and Human-Centric Computing

(VL/HCC), pages 9-12, 2014.

[2] Alejandra Garrido and Ralph Johnson. Challenges of refactoring ¢ programs. In Pro-
ceedings of the International Workshop on Principles of Software Evolution, IWPSE
‘02, pages 6-14, New York, NY, USA, 2002. ACM.

[3] Bjarne Stroustrup, Aditya Kumar, and Andrew Sutton. Rejuvenating c++ programs
through demacrofication. In Proceedings of the 2012 IEEE International Conference
on Software Maintenance (ICSM), ICSM ’12, pages 98-107, Washington, DC, USA,
2012. IEEE Computer Society.

