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Abstract

Envision is a visual programming environment written in C++. In this thesis we are
working on self-hosting Envision thereby aiming to enable development of Envision in
itself. Our main contributions are creating a code generation framework that can repre-
sent macros in Envision, translating C++ macros to our code generation framework and
analyzing dependencies between code fragments to enable exporting code from Envision
to C++. The code generation facility is able to encode almost all macros used in Envi-
sion’s C++ code. We are also able to automatically import most of the essential macros
used in Envision and the most challenging part of exporting, the dependency analysis,
has been tackled.



Table of Contents

List of Figures 3

List of Tables 5

List of Code Listings 6

1 Introduction 7
1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9
2.1 Structural differences between Envision trees and C++ source code . . . 9
2.2 Code generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Existing C++ support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Import-Export Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Code generation framework 13
3.1 Meta-programming systems in existing languages . . . . . . . . . . . . . 13
3.2 Tool support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Syntactic macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Importance of code context . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Meta definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Meta call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Splicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8 Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9 Predefined meta definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 C++ macro import 24
4.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Original nodes and clones . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Macro reconstruction from the expanded Envision AST . . . . . . . . . . 26
4.4 Meta definition reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Lexical transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Macro arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 Partial macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.8 X-Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1



5 Export to C++ 36
5.1 Dependency analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Converting a dependency composite to C++ . . . . . . . . . . . . . . . . 37

6 Implementation details of C++ macro import 39
6.1 Clang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Mapping between Clang and Envision ASTs . . . . . . . . . . . . . . . . 40
6.3 Lexical transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.4 MacroImporter Components . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Evaluation 44
7.1 Code generation framework . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2 C++ macro import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Future Work 48
8.1 Known issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2 Finalizing the import-export cycle . . . . . . . . . . . . . . . . . . . . . . 49
8.3 Further extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9 Related work 51
9.1 Macro and code generation systems . . . . . . . . . . . . . . . . . . . . . 51
9.2 C++ Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10 Conclusion 53

References 54

Appendices 55

A Import guide 56

2



List of Figures

2.1 Tree structure of an example method declaration. . . . . . . . . . . . . . 9
2.2 In general it is not clear how to create an Envision AST from C++ code. 10
2.3 X-Macro example showing how a data list can be used to create different

code with similar structure. . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 We want to import C++ code into Envision and export Envision code to

C++. This forms the import-export cycle effectively enabling self-hosting
of Envision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Example showing a macro that create a method called ExampleMethod

with a print statement expressed both declaratively and imperatively. . . 14
3.2 Example showing how a syntactic macro and its syntactically complete

subelements can be translated to forests of trees in the tree model of Envision. 15
3.3 Example showing a non-syntactic macro. . . . . . . . . . . . . . . . . . . 15
3.4 The macro MEMBER DECLARATION creates a code element that can end up

being a field or a variable declaration depending on the context it is ex-
panded in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Visualization of a meta definition called ATTRIBUTE with arguments and a
declaration context of type class. . . . . . . . . . . . . . . . . . . . . . . . 17

3.6 Meta call to meta definition with stringification and identifier concatena-
tion with resulting generated code. . . . . . . . . . . . . . . . . . . . . . 18

3.7 Meta call to a meta definition called ATTRIBUTE shown in figure 3.5. . . . 18
3.8 A meta definition argument spliced inside a method definition body. . . . 19
3.9 A meta definition creating two different code structures from an argument

list. Without specific support for this case the argument list needs to be
duplicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.10 A meta definition which uses meta-bindings to reduce code duplication. . 21
3.11 A macro from Envision’s C++ code base with an argument called OVER-

RIDE which can toggle the override flag for several methods in the macro
body. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.12 A meta definition using the predefined meta call SET OVERRIDE FLAG. . . 23

4.1 Integration of the macro import system in the existing C++ import system. 25
4.2 General approach on reconstructing standard meta definitions and meta

calls from the expanded Envision AST. . . . . . . . . . . . . . . . . . . . 26
4.3 Example showing that lexical transformation is needed in order to recon-

struct information on stringification or identifier concatenation. . . . . . 30

3



4.4 Example begin partial macro specialization using a simplified real example
from Envision’s C++ source code. . . . . . . . . . . . . . . . . . . . . . . 33

4.5 X-Macro example from Envision’s C++ code base showing the relationship
between partial macros and X-Macro children. . . . . . . . . . . . . . . . 33

4.6 Example X-Macro meta definition created when importing Envision’s C++
source code (manually fixed two missing lexical transformations). . . . . 35

6.1 Components of the macro import system and their dependencies. . . . . 42
6.2 Information flow from the existing C++ import system to the macro im-

port system components. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4



List of Tables

3.1 Comparison of properties of meta-programming systems of different lan-
guages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7.1 Macro import evaluation: nodeMacros.h . . . . . . . . . . . . . . . . . . 45
7.2 Macro import evaluation: typeIdMacros.h . . . . . . . . . . . . . . . . . 46
7.3 Macro import evaluation: attributeMacros.h . . . . . . . . . . . . . . . 46
7.4 Macro import evaluation: itemMacros.h . . . . . . . . . . . . . . . . . . 46
7.5 Macro import evaluation: shapeMacros.h . . . . . . . . . . . . . . . . . 46
7.6 Macro import evaluation: StandardExpressionVisualizations.h . . . 47
7.7 Macro import evaluation: StandardExpressionVisualizations.cpp . . 47

5



List of Code Listings

4.1 Pseudo code of the main method for macro reconstruction invoked after
every translation unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Pseudo code showing the recursive method handleMacroExpansion in-
voked by the code in listing 4.1. . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Pseudo code of the meta definition creation method invoked in the code
of listing 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 A real code example for a begin partial macro from Envision’s C++ source
code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 A real code example for an end partial macro from Envision’s C++ source
code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.1 Options to be added in common.pri to enable importing. . . . . . . . . . 56
A.2 Script used for importing. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6



1 Introduction

In this thesis we are working on self-hosting the Envision visual programming environment[1].
Envision is a visual code editor aiming to increase productivity of software developers by
visualizing code not only using text but also with graphical objects.

The term self-hosting refers to a software’s ability to create versions of itself. For example
a compiler can compile a different version of itself and a development environment can
let the user open and modified its own code. The goal of this thesis is to make Envision
self-hosting.

It is an important milestone to attain self-hosting stage when developing a programming
environment. Envision is a complex program with a sizeable code base. Being able to
handle such a complex real-world program shows Envision’s applicability.

Developing Envision in itself will drastically increase usage and problem discovery. That
in turn will lead to improving robustness and usability of the program. As a result
Envision will become more fit for interactive user studies and programming in general.

Furthermore we are not aware of any other self-hosting visual programming environment.
Self-hosting a visual programming environment is a challenging tasks. Existing visual
programming environments that we are aware of are either domain specific (for example
Labview[4]), or meant for educational and smaller tasks(for example Scratch[7] or MIT
app inventor[8]). Envision on the other hand is meant for general purpose programming
and targets professional developers.

1.1 Challenges

To be able to edit Envision’s code in Envision we first need to be able to load Envision’s
large C++ code base into Envision. This is a challenging task because of the difference of
code representation between Envision and C++. Envision uses trees to store the program
structure whereas C++ code is just text. Particularly challenging is the heavy usage of
macros in the C++ code base. Not only is it hard, or even impossible in some cases, to
convert textual macros into trees but we have to develop a code generation framework
for Envision in order to represent them.

After Envision’s C++ code has been imported, all the code is in one single tree (no code
duplication) and another challenge is to split the code into header and source files when
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exporting to C++. Typically the header file contains the public interfaces of declarations
whereas the definitions of said declarations reside in the corresponding source file. This
means that the dependencies are not the same for both parts. Therefore we have to
design a dependency analysis that calculates the set of dependencies given the code of
one file.
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2 Background

In this chapter we discuss structural differences between Envision and C++, the existing
C++ support system and give a short introduction to code generation in order to prepare
the reader for the contents of this thesis.

2.1 Structural differences between Envision trees and

C++ source code

Envision structures code using a tree model similar to an Abstract Syntax Tree (AST). All
code elements are represented by nodes and their properties are captured in child nodes.
For example a node representing a method has a child node for the name of the method
and another child node representing its body. The corresponding tree is illustrated in
figure 2.1.

method

statement statement ...

name body ...

Figure 2.1: Tree structure of an example method declaration.

In contrast to Envision’s tree model C++ code is represented by text. The tree consists
of nodes whereas the text consists of lexical tokens. This difference results in unequal
expressive power of the two domains. It is possible to write just half a class in the textual
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domain but you cannot create half a class node in the tree model. This is relevant when
writing macros in C++ where it is common to write partial declarations. In general it is
hard to map between the two domains (see figure 2.2).

class ExampleClass {

}

class

ExampleClass ...

class ExamplePartialClass {

?

Figure 2.2: In general it is not clear how to create an Envision AST from C++ code.

Another structural difference is that in Envision one code element, for example a declara-
tion, is represented by exactly one node. C++ structures code using text split in header
and source files. This split together with the way modularity is achieved in C++ (by
text inclusion) means that logically the same declaration might occur in many different
places in the expanded code of a translation unit.

2.2 Code generation

Code generation refers to the procedure of creating code as a result of a computation
which in most code generation systems takes is done at compile-time. It has many useful
applications such as creating code from data or automatic naming. An example of the
first is the creation of visualizations for expressions in Envision where the data provided
is the operands and operator names and order. Code generation can help to reduce code
size, because describing code often takes less space than repeatedly writing code with
similar structure, and as a consequence there is less code to maintain.

A more concrete concept of code generation are macros. A macro is a program or piece
of code that given some input produces another program or code fragment.

The C++ preprocessor processes code and the result is used as the input to the C++
compiler. C++ macros are implemented in the preprocessor and together with C++
templates they form the code generation possibilities for C++. The preprocessor is
unaware of any syntax or semantics of the resulting code. It uses its own language
where every preprocessor operation is described starting with a preprocessor directive.
The preprocessor can do simple text manipulations (copy, replacement, concatenation
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etc.) providing features for C++ like modularity by file inclusion, macros or conditional
compilation.

Envision’s C++ source code uses a well-known technique called X-Macro to generate
different visualizations for expressions provided a list of data defining the expressions. In
general X-Macros are used to generate several variants of code with similar structure from
the same dataset in C++. It is a very textual mechanism and features usages of macros
which are not syntactically complete (see section 3.3) presenting a special difficulty for
the code generation framework and when importing code containing X-Macros.

An X-Macro usage consists of a list providing structure and data to be used and the
transformation for each list element. Every element in the data list is wrapped in a
macro call. The definition of the wrapping macro calls is changed depending on how
the data should be used for code generation. Figure 2.3 shows and example of a simple
application of the X-Macro technique where we generate an enum class and a list of
constants from the same data list.

#defineMDATA_LIST
MMMMDATA_ENTRY(cat)
MMMMDATA_ENTRY(dog)
MMMMDATA_ENTRY(car)M

enumMExampleEnumM{
   #defineMDATA_ENTRY(name)Mname;
MMMDATA_LIST
   #undefMDATA_ENTRY
}

voidMExampleMethodM{
   #defineMDATA_ENTRY(name)Mconst intMnameM=M1;
MMMDATA_LIST
   #undefMDATA_ENTRY
}

enumMExampleEnumM{
MMMcat,
MMMdog,
MMMcar
}

voidMExampleMethodM{
   const intMcatM=M1;
   const intMdogM=M1;
   const intMcarM=M1;
}

Figure 2.3: X-Macro example showing how a data list can be used to create different
code with similar structure.

2.3 Existing C++ support

Prior to this thesis, Lukas Vogel worked on adding C++ support for Envision during his
Bachelor’s Thesis[10]. The framework he created uses Clang, an open-source front end
for the LLVM compiler, to import C++ code into Envision.

The existing C++ import system is not complete. It does not handle macros and other
preprocessor directives. Clang first processes the C++ code to be imported and then
provides an AST representing the preprocessed code. The resulting imported code thus
lost all information about macros and other preprocessor directives. To enable self-hosting
we need to retain all information about preprocessing directives and macro usage.
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Furthermore some C++ constructs are not yet correctly imported by the existing import
system but fixing these issues should be trivial. Clang introduces some implicit nodes
that have no corresponding source text and we would like to detect and remove them
since they are not part of the original source code directly.

In our work we focus on supporting C++ macros. Other issues are only addressed as
time allows but fixing them is generally not considered to be in the scope of this project.

In chapter 3 we discuss the code generation framework we designed in order to encode
the necessary macros in Envision.

2.4 Import-Export Cycle

In order to make Envision self-hosting we need to be able to open, edit and save C++
programs. We plan on achieving this by designing and implementing an import-export
cycle. The import-export cycle is a concept where we can move between C++ source
code and an Envision tree model by means of automatic conversion. There is an import
system taking C++ code files as input and producing an Envision tree model and an
export system creating C++ code files from an Envision tree model. We plan on reaching
our goal of self-hosting Envision by extending the existing import system to be able to
import macros, adding a code generation framework and an export system to Envision.
These systems combined can then form an import-export cycle as illustrated in figure 2.4.

.h.cpp

import

export

Figure 2.4: We want to import C++ code into Envision and export Envision code to
C++. This forms the import-export cycle effectively enabling self-hosting of Envision.
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3 Code generation framework

3.1 Meta-programming systems in existing languages

To inform the design of our code generation framework we looked at the solutions other
languages use to realize code generation. Table 3.1 compares properties of various lan-
guages.

C++ Scala Nemerle CommonLisp

Medium text tree tree list
Representation declarative mixed mixed declarative
Meta language Preprocessor Scala Nemerle CommonLisp
Typed no yes yes no
Hygiene no yes yes no (Scheme yes)
Modularity inclusion import using load

Table 3.1: Comparison of properties of meta-programming systems of different languages.

The medium property refers to the structure of code pieces a meta-programming system
works with.

The property of being declarative or imperative refers to the way a macro expresses the
computation it performs. A declarative approach focuses directly on what the result
should be whereas an imperative approach focuses on describing how to get to the de-
sired result. Figure 3.1 shows an example of how a macro creating a method with a
print statement could look like in each of the two representations. We decided to use
a declarative approach for our code generation framework because it provides enough
flexibility for our needs. Furthermore it allows directly editing macros with existing code
editor functionality and the representation is more concise, direct and familiar due to the
similarity to C++ macros.

Scala’s and Nemerle’s meta-programming systems are typed. This is achieved by declaring
the types of trees which have to be equal to the types of the expressions one would get by
evaluating a tree. Our code generation framework is currently not typed, because it was
not needed to reach the main goal of this project, but we are confident that it is possible
to do so.
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macro DeclarativeMacro()
{
  void ExampleMethod
  {
    print();
  }
}

macro ImperativeMacro()
{
  exampleMethod = new Method("ExampleMethod");
  exampleMethod.addStatement(new PrintStatement());
  return exampleMethod;
}

Figure 3.1: Example showing a macro that create a method called ExampleMethod with
a print statement expressed both declaratively and imperatively.

In meta-programming systems the term hygiene refers to a meta-programming system’s
ability to avoid accidental capturing of names in macros. This means that a hygienic
meta-programming system avoids capturing of names from surrounding code at the lo-
cation where a macro is expanded automatically unless instructed otherwise. Our code
generation framework is not hygienic.

The term modularity describes how a developer using a language is able to use symbols
in his code which are defined somewhere else (other code files, libraries, etc.). This
property is interesting because in C++ modularity is achieved by including code files
with declarations which is a preprocessor operation that works very similar to C++
macros.

3.2 Tool support

We want to enable tool support for generated code. In particular tools such as reference
resolution or auto-completion are very important when working in a code editor and they
should be able to process generated code as well. We found two ways of enabling tool
support for generated code. One way is to generate the actual code in form of an Envision
AST and append it to the code at the location of the macro expansion enabling tools
for reference resolution or auto-completion to work on the expanded AST like if it was
normal code. The other approach would be to not generate any actual code but make
the tools aware of the code generation framework. Tools then would need to know how
to incorporate generated code in their analysis directly, for example by interpreting the
corresponding macro bodies.

The interpretation approach could use less memory and would not require any caching
of generated code. However it is not clear how complex this approach would be and
the design of some tools like Envision’s reference resolution system is not yet final. A
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IfStatement}ARG{is}

}positive}

print

print

0

ARG

>=
#define{SYNTACTIC_MACRO(ARG)
if{(ARG{>={0)
{
{{{{print(}ARG{is});
{{{{print(}positive});
}

{{{{

Figure 3.2: Example showing how a syntactic macro and its syntactically complete subele-
ments can be translated to forests of trees in the tree model of Envision.

IfStatement

body?

0

ARG

>=
#define NON_SYNTACTIC_MACRO(ARG)
if (ARG >= 0)    

Figure 3.3: Example showing a non-syntactic macro.

generative approach on the other hand requires more memory and the system has to keep
track of whether previously generated code is still valid. In turn the complexity of the
reference resolution system barely increases and other tools can work with the generated
code directly.

We decided to use a generative approach since it seems less complex to do overall and
will be more performant. Generating code is potentially a costly operation. We therefore
cache generated code in the node corresponding to the macro call which generates said
code.

3.3 Syntactic macros

Syntactic macro systems work on the level of ASTs unlike the C++ preprocessor which
works on the level of lexical tokens. As a consequence macros in syntactic macro systems,
called syntactic macros, generate syntactically complete code. Here syntactically com-
plete means that the resulting code can be fully described by a forest of ASTs. Figure 3.2
illustrates this concept by comparing C++ code regions with corresponding ASTs. Fig-
ure 3.3 shows an example of a non-syntactic macro where we cannot fully describe the
macro body with a forest of ASTs.
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A macro can be directly represented in a tree structure if it is a syntactic macro. Therefore
syntactic macros directly fit Envision’s model. It is not clear how non-syntactic macros
can be represented by trees in general. The C++ code base of Envision uses non-syntactic
macros in the context of X-Macros. The code generation framework and macro import
system we design therefore has to be able to deal only with certain kinds of non-syntactic
macros.

3.4 Importance of code context

The representations in C++ and Envision for the same code element encode different
information. A field declaration in Envision is a field node. The same piece of code in
C++ is only a group of lexical tokens. The field node has a type while the corresponding
code in C++ does not. Only by knowing the context of the C++ text the code becomes
meaningful. This effect is especially important when working with macros.

A C++ macro can generate code that even provided the same input can change semantics
depending on where the macro is called. Figure 3.4 shows an example of this. The pre-
processor pastes lexical tokens and is unaware of semantics or the programming language
used. The flexibility this provides sometimes helps in further reducing code size which
is one of the main goals when using code generation. Additionally for many developers
thinking in terms of code as text and not as code elements can make it feel natural that
a macro system behaves in this manner.

#definehMEMBER_DECLARATION
inthmemberhhhh

classhExampleClass
{
hhhhMEMBER_DECLARATION;
}h

classhExampleClass
{
    inthmember;h//hmemberhishahfield
}h

voidhExampleMethod()
{
hhhhMEMBER_DECLARATION;
}h

voidhExampleMethod()
{
    inthmember;h//hmemberhishahvariable
}h

used in

expanded result

Figure 3.4: The macro MEMBER DECLARATION creates a code element that can end up
being a field or a variable declaration depending on the context it is expanded in.

In Envision a field and a variable declaration are two different code element types. As a
consequence the code generation framework in Envision has to know exactly what type
of nodes it has to create as a result of a macro call. This information could be computed
from the macro call site providing the context of the generated code. However in non-
trivial cases where the macro call resides inside another macro definition this computation
could become complicated. Even if such a computation was done there would still be a
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problem with creating and editing macros in Envision. The code editor has to be able
to create the right node types when editing. For those reasons we decided to introduce
the concept of context as a main part of all macro definitions in our code generation
framework which is described in the next section.

3.5 Meta definition

In our code generation framework the equivalent of a C++ macro is a meta definition.
A meta definition has a similar structure to a method. Every meta definition has a
name, formal arguments and a body. The body consists of a context declaration that in
turn contains the actual macro code. Figure 3.5 shows a meta definition as visualized in
Envision.

ATTRIBUTE type name setMethodName

CompositeIndexModel. . name##Index

Context

type* name

( )type* get( )name##Index

void setMethodName
node
type*

set( )name##Index node

Figure 3.5: Visualization of a meta definition called ATTRIBUTE with arguments and a
declaration context of type class.

The context declaration in the meta definition body defines the context type where this
definition can be used. The context declaration at the location of the usage is called
the actual context. The actual context type has to match the context type of the meta
definition, body to perform code generation. Having a context declaration disambiguates
cases as discussed in section 3.4 and allows editing macros directly in the code editor.

Meta definitions are stored in declarations (Projects, Modules, Classes, Methods, etc.).
More specifically they can be located in any declaration type that can also be the context
declaration type.

Figure 3.6 shows how our code generation framework supports features like stringification
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and identifier concatenation similar to C++. The syntax is identical to the C++ variants
where a double hash (##) is used to concatenate identifiers and a single hash (#) followed
by an identifier can be used to stringify the provided identifier.

Figure 3.6: Meta call to meta definition with stringification and identifier concatenation
with resulting generated code.

3.6 Meta call

In our code generation framework the equivalent of a C++ macro call is a meta call.
Meta calls provide the name of the meta definition to be used as well as parameters to
generate code at their location. Figure 3.7 shows an example of a meta call to ATTRIBUTE

shown in figure 3.5. The arguments of meta calls are trees. In case a forest is required
as an argument the forest is to be provided in a list node.

Meta calls are expressions and as such can be used anywhere an expression can be used.
Additionally meta calls can be used directly in all types of declarations that can be
a context declaration type of a meta definition (see section 3.5). This means that the
locations a meta call can be used in Envision is more restrictive than the locations a
macro call can be used in C++ (no restrictions). This is fine because the locations we
support is all the locations we need to handle in order to make Envision self-hosting.

# ATTRIBUTEnodeMacrosModel. . ( )Text  name  setName

Figure 3.7: Meta call to a meta definition called ATTRIBUTE shown in figure 3.5.
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3.7 Splicing

Similar to the concept of lexical token pasting of macro systems such as the C++ prepro-
cessor the concept of splicing is used to insert trees at a certain location of a macro body
in many syntactic macro systems. At the place where a tree is to be inserted (spliced)
there is a splice identifier, from now on called the splice. Usually the splice consists of
the name of a formal macro argument where the actual argument provided would be the
tree to be spliced in. An example of argument splicing is shown in Figure 3.8.

ExampleMetaDefinition

Context

argument

#ExampleMetaDefinition( )true

Context

true

argument

final result

called meta definition with splice

meta call with tree to be spliced

Figure 3.8: A meta definition argument spliced inside a method definition body.

3.8 Bindings

Sometimes it is useful to generate different code with similar structure from the same
input. Figure 3.9 shows an example where we want to create a list of fields and do
something with the same fields in a method body. Code similar to the one shown in
example 3.9 exists in Envision’s C++ code base and is handled using X-Macros (see
section 2.2). Unlike in the example shown in figure 3.9 where we have to provide a
similar list twice we ideally only want to specify the list once.

Inspired by X-Macros we developed the concept of meta bindings. Meta bindings provide
a way to generate different code with similar structure from the same input. Like in
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ExampleMetaDefinition fields statements

Context

fields

ExampleMethod

statements

#ExampleMetaDefinition( )#CreateField( )fieldNameA

#CreateField( )fieldNameB

#CreateStatement( )fieldNameA

#CreateStatement( )fieldNameB

Figure 3.9: A meta definition creating two different code structures from an argument
list. Without specific support for this case the argument list needs to be duplicated.

X-Macros, where all entries are wrapped in macro calls, the entries in the data list are
wrapped in meta calls. Meta bindings enable meta definitions to provide custom meaning
to the wrapping meta calls provided in arguments. Figure 3.10 shows the same example
as in figure 3.9 but using meta bindings. A meta binding consists of an input referencing
a formal meta definition argument, a meta call mapping and a name for the result of the
meta binding. All meta calls inside the input are transformed using the mapping and the
resulting tree is available as local variable with the name of the meta binding in the meta
definition body.

3.9 Predefined meta definitions

The designed code generation framework is limited to creating trees. There is no way to
modify existing nodes by using just the introduced concepts up to this point. Figure 3.11
shows an example from Envision’s code where modifying existing nodes is necessary.
The override flag is not stored in a separate node but together with all modifiers for a
declaration in one node. Setting the override flag thus requires us to modify that node,
which exists for all declarations as soon as the declaration itself exists, by using a meta
call. While this is not possible using the standard meta definitions we provide such
functionality by means of predefined meta definitions. Predefined meta definitions are
meta definition with reserved names. When the code generation framework encounters a
meta call to a predefined meta definition it does not look for a meta definition node in the
current project but instead performs a special operation depending on the reserved name
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ExampleMetaDefinition bindingInput

fields←bindingInput CreateUnspecified≡ CreateField

statements←bindingInput CreateUnspecified≡ CreateStatement

Context

fields

ExampleMethod

statements

#ExampleMetaDefinition( )#CreateUnspecified( )fieldNameA

#CreateUnspecified( )fieldNameB

Figure 3.10: A meta definition which uses meta-bindings to reduce code duplication.

used. This allows us to encode any transformation on a node but all effects of predefined
meta definitions have to be hardcoded in the code generation framework.

In order to solve the problem posed by the real example from Envision’s code in fig-
ure 3.11 we added a predefined meta definition called SET OVERRIDE FLAG which toggles
the override flag of the surrounding declaration based on a boolean argument provided in
the predefined meta call. Figure 3.12 shows how the macro from figure 3.11 is represented
in our code generation framework.
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#definenDECLARE_TYPE_ID_COMMON.OVERRIDEvnnnnnnnnnnnnnnnnnnnnnnnnn
 public:                                   
  virtual const QStringhntypeName.vnconstnOVERRIDE;nnnnnnnnnnnnnnnnnnnn
  virtual intntypeId.vnconstnOVERRIDE;nnnnnnnnnnnnnnnnnnnnnnnn
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
nn}<nnReturnsnannorderednlistnofnallnidsninnthentypenhierarchynofnthisnclass{n<}
nn}<nThenmostnderivednidnappearsnatnthenfrontnofnthenlist{n<}
  virtual QList<int>nhierarchyTypeIds.vnconstnOVERRIDE;nnnnnnnnnnnnnnnnnnnn
  virtual boolnisSubtypeOf.intntypevnconstnOVERRIDE;nnnnnnnnnnnnnnnnnnnn
  virtual boolnisSubtypeOf.const QStringhntypevnconstnOVERRIDE;nnnnnnnnnnnnnnnnn
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
  static const QStringhntypeNameStatic.v;nnnnnnnnnnnnnnnnnnnnnnn
  static intntypeIdStatic.vn{nreturnntypeId_;n}nnnnnnnnnnnnnnnnnnnnn
  static voidninitType.v;nnnnnnnnnnnnnnnnnnnnnnnnnnnnn
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
 private:                                   
  static intntypeId_;n

Figure 3.11: A macro from Envision’s C++ code base with an argument called OVER-
RIDE which can toggle the override flag for several methods in the macro body.
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DECLARE_TYPE_ID_COMMON OVERRIDE

int typeId_

Context

const QString) typeName

FSET_OVERRIDE_FLAGb lOVERRIDE

int typeId

FSET_OVERRIDE_FLAGb lOVERRIDE

QList int hierarchyTypeIds

FSET_OVERRIDE_FLAGb lOVERRIDE

bool isSubtypeOf
type

int

FSET_OVERRIDE_FLAGb lOVERRIDE

bool isSubtypeOf
type

const QString)

FSET_OVERRIDE_FLAGb lOVERRIDE

const QString) typeNameStatic

int typeIdStatic

typeId_

void initType

Figure 3.12: A meta definition using the predefined meta call SET OVERRIDE FLAG.
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4 C++ macro import

In this chapter we discuss the design and integration of the macro import system.

4.1 Integration

The macro import system works together with the existing C++ import system. Fig-
ure 4.1 provides an overview of the combined import system.

We first let Clang translate the C++ source code we wish to import into a Clang AST.
In order to do that Clang first preprocesses the C++ code and then creates an AST rep-
resenting the expanded source code. The macro import system uses Clang preprocessor
callbacks to collect preprocessing information. In the current design we only collect macro
expansion information because we do not yet have a representation for other preprocess-
ing directives in Envision. The process of collecting information repeats itself after every
translation unit that Clang processes. The information is then just stored until after the
existing import system is done processing the translation unit.

After preprocessing, the existing C++ import system translates the Clang AST of the
fully expanded C++ code into an expanded Envision AST. During this conversion the
macro import system gathers information about both the Clang and Envision ASTs in
order to be able to map between them later on. In particular we calculate a range of the
source text that corresponds to a Clang AST node and the Envision AST corresponding
to the Clang AST node to get a mapping from Envision AST node to source range. This
is important because all the information from the Clang preprocessor callbacks references
source locations and we need a way of associating Envision AST nodes with the collected
preprocessing information.

After the expanded Envision AST for one translation unit was generated by the existing
C++ import system the macro import system uses the preprocessor information collected
during this translation unit to reconstruct macros. In general what we want to do when
reconstructing macros is to identify the parts of the expanded Envision AST that originate
from a macro expansion. The identified subtrees together with the information collected
are then used to create meta definitions. At the location where the expanded code used
to be we then insert an appropriate meta call akin to the macro call that used to be at
the same location in the C++ source code (see figure 4.2). The following sections discuss
necessary concepts and describe the process of reconstructing meta definitions.
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Figure 4.1: Integration of the macro import system in the existing C++ import system.

4.2 Original nodes and clones

One node in the expanded Envision AST can occur in many different translation units.
For example a method which is declared in a header file that is included in many source
files will exist only once in the expanded Envision AST but occurs in multiple transla-
tion units (usually one source file corresponds to one translation unit). If we modified
the original expanded Envision AST during the processing of one translation unit then
information could be missing the next time the same region of the tree is used by another
translation unit. An example for this would be when replacing the expanded code gener-
ated by a macro with a meta call to the reconstructed meta definition. Therefore we have
to leave the original expanded Envision AST unmodified until all translation units have
been processed. We achieved this by introducing the concept of cloning with a mapping.
When cloning a tree it returns the cloned tree together with a mapping that can be used
to map from original nodes to clones and vice versa. Using cloning with mapping we can
clone the parts of the original expanded Envision AST that we need to modify and use
them, for example in a meta definition body, together with the mapping to relate back
to the original expanded Envision AST without modifying it.
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Figure 4.2: General approach on reconstructing standard meta definitions and meta calls
from the expanded Envision AST.

4.3 Macro reconstruction from the expanded Envi-

sion AST

In this section we discuss how we reconstruct macros, given the collected information
as described in section 4.1, from the expanded Envision AST resulting from the existing
import system.

Listing 4.1 shows the main routine of the macro import system invoked after every trans-
lation unit in pseudo code (implementation details omitted).

1 for (expansion : topLevelExpansions)

2 {

3 generatedNodes = topLevelNodes(expansion);

4

5 handleMacroExpansion(generatedNodes, expansion);

6

7 if (!alreadyInsertedMetaCall(expansion))

8 {

9 finalizationMetaCalls.insert(expansion.expandedNode, expansion);

10 }

11

12 calculateFinalizationNodes(generatedNodes, mapping);

13 }

Listing 4.1: Pseudo code of the main method for macro reconstruction invoked after every
translation unit.

We first calculate the top level macro expansions of the current translation unit. A top
level macro expansion is a macro expansion which does not occur inside another macro
expansion. All macro calls in non-generated code therefore result in a top level macro
expansion. The following steps are repeated for every top level macro expansion found:

26



1. Line 3: We calculate all the top level nodes belonging to (that are generated by) the
current top level macro expansion. A node is a top level node iff the node belongs
to the current expansion but its parent does not. The result of the computation is
a list of nodes with subnodes forming the forest generated by the current top level
macro expansion.

2. Line 5: Next we process the current top level macro expansion and all child expan-
sions, the macro expansions inside another macro expansion. This process takes
care of creating a meta definition for the current top level macro expansion and all
its child expansions and is discussed in detail later in this section.

3. Line 7: We check whether a meta call to the meta definition representing the current
top level macro expansion should be inserted in the non-generated Envision code.
In particular we want to prevent adding a meta call that represents a macro call
in the C++ source code that has already been added in another translation unit.
Such effects occur due to code file inclusion in the preprocessed source code where
some code fragments that are logically only present once in the original source code
get duplicated and processed in multiple translation units.

4. Line 9: In the case where we want to insert a meta call to the meta definition
representing the current top level macro expansion we do not directly modify the
original expanded Envision AST. Instead we remember what node needs to be re-
placed by the meta call (the node to be replaced, called expansion node, was com-
puted in the call in Line 5). After all translation units have been processed the
finalizationMetaCalls list is used to do a final transformation on the expanded
Envision AST by replacing the nodes with appropriate meta calls. Section 4.2 dis-
cusses in more detail why we cannot directly edit the expanded Envision AST at
this point in the import.

5. Line 12: Similar to Line 9 we do not directly remove the forest belonging to the
current top level macro expansion from the expanded Envision AST. Instead we
remember all the nodes belonging to the current top level macro expansion. These
nodes are removed from the expanded Envision AST after all translation units have
been processed.

4.4 Meta definition reconstruction

In this section we discuss how we reconstruct meta definition, given the collected infor-
mation as described in section 4.1, from the expanded Envision AST resulting from the
existing import system.

Listing 4.2 shows the recursive method handleMacroExpansion invoked by the code in
listing 4.1 (implementation details omitted). It handles the computation of the expanded
node as well as the creation of a meta definition for the macro expansion. The expanded
node of a macro expansion is the node in the original expanded Envision AST that should
be replaced by a meta call to the meta definition representing the macro expansion.

27



1 void handleMacroExpansion(nodes, expansion)

2 {

3 for (childExpansion : expansion.children)

4 {

5 handleMacroExpansion(topLevelNodes(childExpansion), childExpansion);

6 }

7

8 calculateExpandedNode(expansion);

9

10 createMetaDefinition(nodes, expansion);

11 }

Listing 4.2: Pseudo code showing the recursive method handleMacroExpansion invoked
by the code in listing 4.1.

Listing 4.3 shows a simplified version of the meta definition creation method invoked in
the code of listing 4.2.

1 void createMetaDefinition(nodes, expansion)

2 {

3 metaDefinition = createEmptyMetaDefinition(expansion);

4

5 for (node : nodes)

6 {

7 applyLexicalTransformations(node);

8 insertChildMetaCalls(node, expansion);

9 removeUnownedNodes(node, expansion);

10 insertArgumentSplices(node, expansion);

11 addNodeToDeclaration(node, metaDefinition.context);

12 }

13 }

Listing 4.3: Pseudo code of the meta definition creation method invoked in the code of
listing 4.2.

The following steps are performed in order to create a meta definition given a set of nodes
that were generated by the expansion we want to reconstruct:

1. Line 3: We create an empty meta definition. Here empty refers to the context
declaration content (or body) of the meta definition. At this point we add the
formal arguments of the meta definition and register it in our macro import system
so we can retrieve it later if needed.

2. Line 5: We do the next steps for all the nodes we identified to be a top level node
of this meta definition. The reason we can have multiple nodes is that a meta
definition body might contain a forest and not just a single tree.

3. Line 7: At this point we do lexical transformation of this top level tree in order
to recover stringification and identifier concatenation. Lexical transformation is
discussed in detail in the next section.
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4. Line 8: Here we insert all the meta calls to macro expansions inside the expansion
we are currently reconstructing. The meta definitions for these child expansions
have already been reconstructed by virtue of the recursive caller method shown in
the code of listing 4.2.

5. Line 9: We remove nodes that are children of the current tree we want to add to
the meta definition but do not actually get generated by this meta definition. This
can happen if for example a field declaration is generated by this meta definition
but the field also has an initialization which originates from some other part of the
code. This initialization is detected at this point as unowned by this meta definition
and removed accordingly.

6. Line 10: Here we add splices (see section 3.7) for arguments of this meta defini-
tion. In particular this means we identify the potential subtree generated from a
meta definition argument and replace it with a splice to the corresponding formal
argument. In section 4.6 we discuss macro arguments in more detail.

7. Line 11: We add the reconstructed tree to the meta definition body we are currently
reconstructing.

4.5 Lexical transformation

Information about identifier concatenation, stringification and sometimes macro argu-
ments and name qualification is lost during the creation of the Clang AST in the existing
C++ import system. Figure 4.3 illustrates the problem. Related information is only
easily available in reduced or expanded form. In order to reconstruct macros we need to
recover that information. The only way to do this is to go down to the level of source
text and parse the text directly.

The macro import component responsible for lexical transformation is informed about
which Clang AST node corresponds to which Envision AST node in the import phase
where the existing import system converts the Clang AST to an expanded Envision AST.
It then uses various properties of Clang nodes (dependent on the type of the node) to
find the source text that best matches the associated Envision AST node. In many cases
the whole source text belongs to the node. However some Clang AST nodes (mostly
clang::Type nodes) do not provide a way to directly find the source text that belongs
to them. Hence it is not possible to always exactly match a node with a piece of source
text. In that case we are looking for a larger piece of source text that is guaranteed to
contain the source text we are interested in. We then use information on surrounding
code and node type to choose a regular expression to extract the relevant information.
The resulting source text is then stored in a map from Envision AST node to said source
text and used later when creating a meta definition. This process is not very flexible and
there are still a few use cases not properly handled by the current implementation.
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Figure 4.3: Example showing that lexical transformation is needed in order to reconstruct information on stringification or identifier
concatenation.
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Every time a tree is added to a meta definition some of its nodes are transformed according
to the stored source text from the lexical transformation component. Sometimes the text
has to be used to not only transform existing nodes but create new trees from the stored
source text. We therefore wish to minimize the usage of stored lexical transformations.
This is achieved by checking whether there is at least one formal argument of the current
meta definition with a name occurring in the stored source text. If there is no such
occurrence we know for sure that we do not have to lexically transform this particular node
because it cannot possibly be the result of an identifier concatenation or stringification.

4.6 Macro arguments

When creating meta calls all actual arguments are by default instantiated to be reference
expressions with a name equal to the spelling of the C++ code macro argument. This
means that for example instead of a boolean literal node there would be a reference
expression with the name ”true” and we do not want that. Instead we wish to identify
a forest inside the code generated by a meta call corresponding to an actual meta call
argument. We achieve this by using the gathered information in the Clang AST to
Envision AST transformation. It allows us to find a source range for each Envision node.
Clang provides a way of checking whether a source location points to the beginning or
the end of an expanded macro argument. In all cases where we can map Envision nodes
to source locations that are identifiable as the beginning and end of an expanded macro
argument by Clang we can use them as actual meta call arguments. As a consequence
in the previous example with the boolean literal the reference expression with the name
”true” is replaced by a node of type boolean literal which was created as part of the
expanded Envision AST in the existing macro import system.

4.7 Partial macros

Not all macros in the C++ code base of Envision are syntactically complete. In the con-
text of X-Macros there occur syntactically incomplete macros (see section 3.3) that have
to be handled in a special manner by our code generation framework. The structure of all
used syntactically incomplete macros fall into only a few categories. Only syntactically
incomplete macros falling into one of these categories are handled properly by the current
code generation framework. If a syntactically incomplete macro does not fall into one of
the categories the behavior is undefined yet most likely it will just incorrectly reconstruct
the macro.

In the following we refer to syntactically incomplete macros with some extra properties
as partial macros. In particular we differentiate between two kinds of partial macros:

1. Begin partial macros (bp-macros) are all syntactically incomplete macros that start
syntactically complete and can be made complete by a following ep-macro. List-
ing 4.4 shows a real example of a bp-macro from Envision’s C++ source code.
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2. End partial macros (ep-macros) consist of just a closing brace (”}”) thus completing
a bp-macro. Listing 4.5 shows a real example of an ep-macro from Envision’s C++
source code.

1 #define BEGIN_STANDARD_EXPRESSION_VISUALIZATION_BASE(apiSpecification,

2 className, nodeType, styleTypeName)

3 class apiSpecification className

4 : public ::Super<::OOVisualization::VExpression<className,

5 ::Visualization::LayoutProvider<>, nodeType>> {

6 ITEM_COMMON_CUSTOM_STYLENAME(className, styleTypeName)

7 public:

8 className(::Visualization::Item* parent, NodeType* node,

9 const StyleType* style = itemStyles().get());

10 protected:

11 virtual void determineChildren() override;

Listing 4.4: A real code example for a begin partial macro from Envision’s C++ source
code.

1 #define END_STANDARD_EXPRESSION_VISUALIZATION };

Listing 4.5: A real code example for an end partial macro from Envision’s C++ source
code.

4.7.1 Identifying partial macros

In general it is hard to identify whether a C++ macro is syntactically incomplete without
parsing the code in the context it is used. We decided to use a name convention to help
identify partial macros. This is acceptable since the main focus of this project lies on
importing Envision and not other code with partial macros. By definition all bp-macro
names must start with BEGIN while all ep-macro names must start with END . This way
of naming macros is somewhat standard with X-Macros and Envision was already using
these names prior to our work.

4.7.2 Begin partial macro specialization

It is possible to create a bp-macro by calling another bp-macro and then adding code to
the open end of the macro body. We call the resulting bp-macro a bp-macro specialization
because it specializes the bp-macro called in the macro body. It is necessary to handle
such macros because they occur in the C++ code base of Envision in the context of
X-Macros.

In order to import specialized bp-macros we first find the base bp-macro that is the bp-
macro called inside the specialized macro. The meta definition corresponding to the base
bp-macro is then transformed to accept one additional argument which is spliced in at
the end of the meta definition’s body. After this transformation the meta definition of the
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specialized macro consists just of a call to the meta definition of the base macro call with
the specializations added as the additional actual arguments as illustrated by figure 4.4.

BEGIN_STANDARD_EXPRESSION_VISUALIZATION apiSpecification className nodeType metaBindingInput

Context

CBEGIN_STANDARD_EXPRESSION_VISUALIZATION_BASE ryclassName ynodeType

const OperatorStyleOOVisualization& & z opStyley= style r

setStylelayout r&  r( layoutopStyle→  r

base bp-macro specializations

Figure 4.4: Example begin partial macro specialization using a simplified real example
from Envision’s C++ source code.

4.8 X-Macros

In this section we describe the design of the part of the macro import system responsible
for handling X-Macros.

In the previous section we introduced the concept of bp-macros and ep-macros. Their
purpose in importing the C++ code base of Envision is to surround other macro calls as
shown in Figure 4.5. In the following we refer to the surrounded macro calls as X-Macro
children.

BEGIN_STANDARD_ENUMERATION_VISUALIZATIONbAPI-d
ddddddddddddddddddVDeleteExpression-dOOModel::DeleteExpression-disArrayg
ddddddddPREFIXbtrueg
ddddddddOPERANDbexprg
END_STANDARD_EXPRESSION_VISUALIZATION

begindpartialdmacrodcall

enddpartialdmacrodcall

xhmacrodchildren

Figure 4.5: X-Macro example from Envision’s C++ code base showing the relationship
between partial macros and X-Macro children.

Macro expansions are identified to be X-Macro children if they follow a bp-macro expan-
sion and precede an ep-macro. This is enabled by using the fact that the preprocessor
processes the code top to bottom.

4.8.1 X-Macro meta definition

X-Macros are often (in the case of Envision always) used together with bp-macros and
ep-macros. In particular there is a bp-macro in a header file that has a counterpart (also
a bp-macro) in a source file and the same for ep-macros. In the following we discuss how
we use meta bindings and the relationship between bp-macros and ep-macros to generate
a X-Macro meta definition.
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To enable the usage of meta bindings (see section 3.8) we need to create a meta definition
for X-Macros. In that X-Macro meta definition we bind the wrapping meta calls of X-
Macro children to some specific meta definition. In order to do that we need to identify
the header and source bp-macros. The two bp-macros are matched by assuming that
the generated code from the header bp-macro contains the meta call to the source bp-
macro. This is very specific to Envision and in Envision’s current C++ code base header
bp-macros always introduce a new declaration. Everything following a header bp-macro
or belonging to the source bp-macro counterpart is going to be inside that declaration.
Therefore once we find a bp-macro we just assume that it is a header bp-macro and look
for another bp-macro in the code generated by it. If we can find such an other bp-macro
then that means that it is the corresponding source bp-macro.

Given two matching bp-macro calls we first find the two base partial macros (see sec-
tion 4.7.2). The two base bp-macro meta definitions are then merged into one X-Macro
meta definition. We add an extra formal argument to the merged meta definition to pro-
vide potential X-Macro children and add bindings for both a list of declarations and a list
of statements. The list of declarations can be filled by X-Macro children surrounded by
the bp-macro of the header file while the statement list can be filled by X-Macro children
surrounded by the bp-macro of the source file. The splice for the statement list is inserted
at the end of the last method in the meta definition body of the source bp-macro. This
transformation is very specific to Envision but sufficient because it allows us to handle
all the patterns appearing in Envision’s C++ source code is all we need to do.

The mappings for the two meta bindings are inserted upon discovering X-Macro children.
Every time an X-Macro child is added to a meta definition argument we look up the
corresponding X-Macro meta definition and check whether there exists a mapping for
both meta bindings for the X-Macro child. If that is not the case we add new mappings
to both meta bindings by adding a fresh meta binding name that binds to each of the
actual meta definitions (for header and source part of the X-Macro child). Figure 4.6
shows a X-Macro meta definition created when importing Envision’s C++ source code.
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BEGIN_STANDARD_EXPRESSION_VISUALIZATION_BASE className nodeType styleTypeName cppSpecSplice metaBindingInput

list ←metaBindingInput

OOVISUALIZATION_API ≡ OOVISUALIZATION_APIoovisualization_apiOOVisualizationY Y

PREFIX≡ PREFIXStandardExpressionVisualizationsOOVisualizationY Y

OPERAND≡ OPERANDStandardExpressionVisualizationsOOVisualizationY Y

POSTFIX≡ POSTFIXStandardExpressionVisualizationsOOVisualizationY Y

INFIX ≡ INFIXStandardExpressionVisualizationsOOVisualizationY Y

WRAPPED_OPERAND≡ WRAPPED_OPERANDStandardExpressionVisualizationsOOVisualizationY Y

INFIXq ≡ INFIXqStandardExpressionVisualizationsOOVisualizationY Y

listq ←metaBindingInput

OOVISUALIZATION_API ≡ OOVISUALIZATION_APIoovisualization_apiOOVisualizationY Y

PREFIX≡ PREFIXStandardExpressionVisualizations_CPPOOVisualizationY Y

OPERAND≡ OPERANDStandardExpressionVisualizations_CPPOOVisualizationY Y

POSTFIX≡ POSTFIXStandardExpressionVisualizations_CPPOOVisualizationY Y

INFIX ≡ INFIXStandardExpressionVisualizations_CPPOOVisualizationY Y

WRAPPED_OPERAND≡ WRAPPED_OPERANDStandardExpressionVisualizations_CPPOOVisualizationY Y

INFIXq ≡ INFIXqStandardExpressionVisualizations_CPPOOVisualizationY Y

Context

v ITEM_COMMON_CUSTOM_STYLENAMEItemMacrosVisualizationY Y x WclassName gstyleTypeName

className SuperY VExpressionOOVisualizationY Y className LayoutProviderVisualizationY Y DeleteExpressionOOModel Y

StyleType ≡ OperatorSequenceStyleOOVisualizationY Y

v ITEM_COMMON_DEFINITIONSItemMacrosVisualizationY Y x WclassName styleTypeName

list 

className parent
ItemVisualizationY Y 2

node
NodeType2

style

const StyleType2

Super

Reflectx Wparent node style

void determineChildren

indexint ← )

cppSpecSplice

listq

Figure 4.6: Example X-Macro meta definition created when importing Envision’s C++
source code (manually fixed two missing lexical transformations).
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5 Export to C++

The last remaining task of the import-export cycle is exporting Envision’s tree model to
C++. The main challenges here are splitting Envision code in header and source files
as well as analysing dependencies to properly add includes or forward declarations to
the exported C++ files. Another challenge is converting meta definitions and meta calls
back to C++ macros. Furthermore our goal is to not only export code which is runnable
but we want to get C++ code that is as close as possible to the C++ code we imported.

5.1 Dependency analysis

In this section we discuss the design of the dependency analysis part of the export mech-
anism. The dependency analysis uses Envision’s reference resolution system to find ref-
erence targets.

A dependency reference is a data structure holding the target of a reference and whether
this reference requires a hard dependency on the target or whether a name-only depen-
dency is enough. A soft dependency or name-only dependency is a dependency where we
only need to know that the name of a declaration targeted by a reference exists (forward
declaration in C++). A hard dependency is a dependency which is not a soft dependency
but needs to know about size and structure of the type targeted by a reference as well.
Hard dependencies are translated to include statements while name-only dependencies
are translated to forward declarations when exporting to C++.

A dependency unit is an inseparable forest of Envision trees that belong together when
exporting. Ultimately all code in a dependency unit is guaranteed to be in the same C++
file after exporting. Currently every Envision class as well as every module containing no
classes are treated as one dependency unit each.

Sometimes it makes sense to put multiple classes in the same C++ file. Dependency
composites are groups of dependency units which allow multiple dependency units to
be put in the same C++ file. If a dependency unit is to be put in the same file as
another dependency unit or the resulting file should be named differently from what the
dependency unit name suggests this can be manually specified by virtue of a configuration
file.
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5.1.1 Dependency composite order

In this subsection we discuss an approach on topologically ordering dependency compos-
ites in order to export required dependency composites (dependency composites another
dependency composite depends on) first. Near the end of this thesis we realized that this
approach is not going to work. We outline the problem and how we intend to fix it at
the end of this subsection.

Dependency composites contain dependency units that depend on other dependency units.
Those dependency units in turn belong to a dependency composite. Following this rela-
tionship dependency composites depend on other dependency composites.

In any valid assignment of dependency units to dependency composites the resulting de-
pendency graph is a directed acyclic graph (DAG). More importantly the graph corre-
sponding to Envision’s code must be acyclic because otherwise the C++ code base would
not compile.

Nodes in a DAG can be topologically ordered. The topological ordering provides a hi-
erarchy over dependencies allowing us to process dependency composites higher up the
hierarchy independently from the ones lower down the hierarchy. We use Kahn’s al-
gorithm1 to compute a topological ordering over all dependency composites using the
dependency relation. The algorithm also provides a way to check for cycles indicating an
invalid assignment of dependency units to dependency composites.

Additionally to the processing order when translating dependency composites to C++
header and source files the topological sort is used to order dependency units in the same
dependency composite.

Near the end of this thesis we realized that the proposed approach is not going to work.
In particular it is okay for two dependency composites to depend on each other as long
as the header files after splitting the code of the dependency composites do not have hard
dependencies on each other. We therefore have to use dependency composites only as
containers to group multiple classes in one header/source file pair. The proposed analysis
still works as long as it is done on some other dependency reference collection that only
contains the dependency references used in a header or source file.

5.2 Converting a dependency composite to C++

In this subsection we discuss how we intend to output C++ header and source files given
a dependency composite and the results of the dependency analysis.

The header file should contain all public declarations as well as inlined functions whereas
the source file contains all definitions. This means that we need to split the code inside
a dependency composite in a public interface declarations and inline functions parts and
print the result in the corresponding header file. Everything else should be output in the
source file. This separation is done by the component which actually prints the C++
code since that component must know what part of a tree to print in one file either way.

1https://en.wikipedia.org/wiki/Topological_sorting#Kahn.27s_algorithm, 07.11.2015
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The output files now contain the C++ code but are missing dependency information
like forward declarations and inclusion. This information can be requested from the
dependency analysis system. The only information needed to calculate the appropriate
dependencies are the dependency references used to output each file. Finally we apply
transitive reduction on the calculated set of dependencies and print the result on top of
the respective files.

The dependency relationship is transitive. The list of all dependencies of a file can have
redundant entries if some of the dependencies are reachable via others. The process of
removing redundant edges in a graph to nodes that can be reached via another path is
called transitive reduction. In the context of dependencies this means that we reduce the
amount of dependencies such that we cannot remove any further dependencies from the
list but the transitive closure of the dependencies remaining after the transitive reduction
is equal to the transitive closure of the original dependencies.
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6 Implementation details of C++ macro
import

In this chapter we discuss implementation details of the C++ macro import system we
designed.

6.1 Clang

The information we collect during the existing import system’s work largely relates to
data over Clang source locations so we need a way of working with them.

A source location in Clang is an opaque pointer into the source code managed by a source
manager. Usually information about a source location is retrieved by providing it as an
argument to a function of the corresponding source manager. The function isMacroID()

is the only interesting function existing directly in source location. It can be used to
check whether the given source location represents a location inside a macro expansion.
A source range is a pair of source locations representing the beginning and the end of the
range respectively.

The source manager provides functionality for finding the location where a certain source
range is expanded to (expansion range) or the location of the source text of a to-
ken (spelling location). It is important to note that there exist two forms of such
queries: Plain ones (for example getExpansionRange) and immediate ones (for example
getImmediateExpansionRange). The difference between the two is easily understood by
using an example on expansion ranges: For example the function getExpansionRange

returns the range describing the terminal destination of where a source location is ex-
panded to. getImmediateExpansionRange on the other hand just returns the very next
expansion step location.

Source locations are commonly associated with Clang node properties (for example the
source range of the name text of a declaration node). Clang nodes are separated in
different categories and do not have a common base class. There are two kinds of Clang
nodes we treat specially. The statement type nodes inheriting from clang::Stmt and
the declaration nodes inheriting from clang::Decl. Those kinds of nodes are used in
mapping between the Clang and Envision ASTs. Statement and declaration nodes have
a variety of source ranges associated with them which vary depending on subtype. The
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following list compiles a few of the most interesting source range and source location
queries on such nodes:

• All statement and declaration nodes have a member called getSourceRange() re-
turning the smallest source range encompassing itself and all subnodes.

• Named declarations (clang::NamedDecl) have a member called getLocation()

returning a source location pointing to the beginning of the name.

• Operator type nodes have a member called getOperatorLoc() providing the source
location of the operator symbol.

Another category of Clang nodes are types inheriting from clang::Type. These nodes
often do not have source location information. Instead they point to the declaration of
the type. This can be problematic when reconstructing macros because the information
it provides is not the information we need. In that case we are looking for a larger piece
of code that at least contains the source text belonging to the type node and then find
the relevant part using the node type and node context information (see section 4.5).

6.2 Mapping between Clang and Envision ASTs

Unlike Clang, all nodes in Envision have a common base class. Since it would make
the implementation cleaner if we could store them in one map we do not store the actual
Clang nodes when mapping between Clang and Envision ASTs. Instead we only store the
source range of Clang nodes because that is all the information we are going to need in the
macro import system (with the exception of the lexical transformation component). The
source range used for this is dependent on the type of the Clang node and the appropriate
source range is extracted when adding an entry to the map.

6.3 Lexical transformation

6.3.1 Identifier concatenation and stringification

Clang preprocesses the code before generating an AST. As a consequence all identifiers
are already concatenated and all stringification operations are already performed. The
source locations of nodes originating from such constructs thus point to an instance where
the concatenation or stringification already took place. We have to be able to handle
such cases specifically by checking whether a given source location originated from a
concatenation or stringification. To determine whether a given source location originated
from a concatenation or stringification we do the following:

1. Check whether the source location points into a macro expansion. If it does not
point into a macro expansion it cannot originate from an identifier concatenation
or stringification.
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2. Calculate the immediate expansion (see section 6.1) of the location to check. In the
following we call this immediate expansion.

3. Check whether the beginning of the immediate expansion range (see section 6.1) of
the location to check equals the beginning of the immediate expansion we computed
previously. If it does then it cannot be originating from an identifier concatenation
or stringification because there would be an intermediate expansion step for those
operations. If the two locations were not equal then the source location must point
into an identifier concatenation or stringification.

6.3.2 Unexpanded spelling

When calculating the source text for an AST node for lexical transformation (see sec-
tion 4.5) we are interested in the source text that was not yet expanded in any way (not
even preprocessed). We call this particular spelling the unexpanded spelling of a node.

Given a source range SR its unexpanded spelling is calculated as follows:

1. Check whether the beginning of SR is part of a concatenation or stringification. If
yes then use the beginning of the immediate expansion range (see section 6.1) of
the beginning of SR.

2. Check whether the end of SR is part of a concatenation or stringification. If yes
then use the end of the immediate expansion range (see section 6.1) of the end of
SR.

3. Use the calculated beginning and end source locations as input to the standard
getSpelling function of ClangHelper which returns the source text for a source
range.

4. Clean up the result. It might contain trailing line separation or whitespace char-
acters determined by the form of the replacement text specified in the #define

directive of the macro.

6.4 MacroImporter Components

This section discusses the components of the macro import system. The main entry
point for the macro import system is a class called MacroImporter. It has several child
components and uses information provided by the existing C++ import system. Fig-
ure 6.1 shows the dependencies between the components and figure 6.2 shows the in-
formation flow from the existing C++ import system to the various components. The
ClangAstVisitor is a component of the existing import system and the parent compo-
nent of MacroImporter. It provides the MacroImporter with information on preproces-
sor, source manager and Clang nodes processed by it. The TranslateManager is also
a component of the existing import system that handles certain kinds of Clang nodes
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ClangHelper

EnvisionToClangMap

MacroDefinitions

MacroExpansions

LexicalTransformations

MacroImporter

AllMetaDefinitions

StandardMetaDefinitions

Figure 6.1: Components of the macro import system and their dependencies.

ClangAstVisitor

TranslateManager

ClangHelper

EnvisionToClangMap

MacroDefinitions

MacroExpansions

LexicalTransformationsMacroImporter

PPCallback

Figure 6.2: Information flow from the existing C++ import system to the macro import
system components.
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delegated by ClangAstVisitor and used to fill the EnvisionToClangMap discussed in
the next paragraph.

The EnvisionToClangMap logically stores the mapping between the Clang and Envision
ASTs. Because we only ever care about the source range for Clang nodes we do not store
the actual Clang nodes here but only the relevant source range for a Clang node. What
source range is relevant for a given Clang node is decided upon adding a mapping to this
component.

The ClangHelper is a helper class that stores a reference to the preprocessor, language
options and source manager. It provides helper functions to interact with the stored
objects.

The MacroDefinitions component keeps track of all macro directives (clang::MacroDirective)
and their names. Additionally it provides useful functions that only require information
on either the name or the properties of macro directives. The state of this component is
cleared after every translation unit.

The MacroExpansions component stores all macro expansions and provides functions to
query information about expansions.

The AllMetaDefinitions component handles the creation of all meta definitions. Special
cases like bp-macro specialization or Y-Macro meta definitions are processed directly by
AllMetaDefinitions while the standard meta definition creation is delegated to a child
component called StandardMetaDefinitions.

The StandardMetaDefinitions component creates and stores meta definitions that are
not begin partial meta definitions or X-Macro meta definitions. It uses the information
collected by the LexicalTransformations component to perform lexical transformation
on the meta definition bodies.

The LexicalTransformations component calculates and stores a piece of source text
for every Envision AST node in order to recover information on stringification or iden-
tifier concatenation (see section 4.5). The stored source text is then used for lexical
transformation when creating a meta definition.
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7 Evaluation

In this chapter we evaluate each one of the three major components of this thesis and
discuss known issues.

7.1 Code generation framework

The code generation framework can represent all the macros used in Envision’s C++
source code. In particular it can represent and create code for macros using stringification
or identifier concatenation and in can represent X-Macros using meta bindings. It does
not yet support code generation for the following two usages:

1. Expression to statement conversion is currently not supported because it was not
used in the earlier stages of the project when the code generation framework was
implemented. Adding support for such a use case requires minor changes in the
CodeGenerationVisitor. In particular one would have to check whether one tries
to replace a statement node with an expression and in that case wrap it in a
ExpressionStatement node before replacing it. And the other way around when
trying to replace an expression node with a statement one would have to check
whether the expression to be replaced is indeed inside a node of type ExpressionStatement
and replace the parent node with the new statement.

2. Arguments of type Model::List should be handled differently than other nodes.
Model::List represents a forest of nodes in the code generation framework. This
means instead of using the list node itself as expanded node one would have to use
all its subnodes and use them like a collection. To enable treatment of Model::List
like any other node one would have to introduce a special node type for splicing
forests.

7.2 C++ macro import

The macro import system was evaluated manually by looking at the Envision AST created
after importing the Envision C++ code. There are seven files which contain most of
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the macros in Envision’s C++ code base. Tables 7.1 to 7.7 contain the results of the
evaluation for each of the macro files.

All macros are recognized when importing provided they are at least used once in the
imported code. Most of the remaining issues originate from missing lexical transforma-
tions. These can be resolved by handling more cases of lexical transformations by adding
more regular expressions based on a node type and its context as discussed in section 4.5.
Perhaps the hardest to resolve are the issues originating from implicit casts added by
Clang during the conversion from C++ source code to Clang AST. This is an issue that
affects all of the import system not just our contributions.

nodeMacros.h

Macro Issues

NODE DECLARE STANDARD METHODS

DECLARE TYPED LIST unsupported node: forward declaration

ATTRIBUTE

PRIVATE ATTRIBUTE

COMPOSITENODE DECLARE STANDARD METHODS

DECLARE EXTENSION

SET EXTENSION ATTR VAL lexical transformation missing

SET ATTR VAL lexical transformation missing

DEFINE TYPED LIST lexical transformation missing

NODE DEFINE TYPE REGISTRATION METHODS COMMON
unsupported node: lambda expression
lexical transformation missing

COMPOSITENODE DEFINE TYPE REGISTRATION METHODS COMMON
unsupported node: lambda expression
lexical transformation missing

NODE DEFINE TYPE REGISTRATION METHODS

REGISTER ATTRIBUTE

REGISTER EXTENSION ATTRIBUTE lexical transformation missing

ATTRIBUTE VALUE CUSTOM RETURN lexical transformation missing

ATTRIBUTE VALUE lexical transformation missing

PRIVATE ATTRIBUTE VALUE lexical transformation missing

EXTENSION ATTRIBUTE VALUE lexical transformation missing

COMPOSITENODE DEFINE EMPTY CONSTRUCTORS

COMPOSITENODE DEFINE TYPE REGISTRATION METHODS

NODE DEFINE EMPTY CONSTRUCTORS

DEFINE EXTENSION

NODE DEFINE TYPE REGISTRATION METHODS WITH DEFAULT PROXY not used

EXTENSION PRIVATE ATTRIBUTE not used

EXTENSION PRIVATE ATTRIBUTE VALUE not used

EXTENSION ATTRIBUTE VALUE CUSTOM RETURN not used

COMOSITENODE DEFINE TYPE REGISTRATION METHODS WITH DEFAULT PROXY

Table 7.1: Macro import evaluation: nodeMacros.h
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typeIdMacros.h

Macro Issues

DECLARE TYPE ID COMMON

DECLARE TYPE ID BASE

DECLARE TYPE ID

DEFINE TYPE ID COMMON Clang implicit cast issue

DEFINE TYPE ID DERIVED

DEFINE TYPE ID BASE

Table 7.2: Macro import evaluation: typeIdMacros.h

attributeMacros.h

Macro Issues

ATTRIBUTE OOP NAME NOSYMBOL

ATTRIBUTE OOP NAME SYMBOL

ATTRIBUTE OOP ANNOTATIONS

REGISTER OONAME NOSYMBOL ATTRIBUTE

REGISTER OONAME SYMBOL ATTRIBUTE

Table 7.3: Macro import evaluation: attributeMacros.h

itemMacros.h

Macro Issues

ITEM COMMON CUSTOM STYLENAME

ITEM COMMON

ITEM COMMON DEFINITIONS

Table 7.4: Macro import evaluation: itemMacros.h

shapeMacros.h

Macro Issues

SHAPE COMMON CUSTOM STYLENAME

SHAPE COMMON

SHAPE COMMON DEFINITIONS

Table 7.5: Macro import evaluation: shapeMacros.h

46



StandardExpressionVisualizations.h

Macro Issues

BEGIN STANDARD EXPRESSION VISUALIZATION BASE lexical transformation missing

BEGIN STANDARD ENUMERATION EXPRESSION VISUALIZATION lexical transformation missing

EXPRESSION PART lexical transformation missing

PREFIX

OPERAND

POSTFIX

INFIX

WRAPPED OPERAND

INFIX2

BEGIN STANDARD EXPRESSION VISUALIZATION

BEGIN STANDARD FLAG EXPRESSION VISUALIZATION

SHAPE COMMON DEFINITIONS

Table 7.6: Macro import evaluation: StandardExpressionVisualizations.h

StandardExpressionVisualizations.cpp

Macro Issues

PREINPOSTFIX lexical transformation missing

PREFIX

OPERAND lexical transformation missing

POSTFIX

INFIX

WRAPPED OPERAND lexical transformation missing

INFIX2

Table 7.7: Macro import evaluation: StandardExpressionVisualizations.cpp
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8 Future Work

In this chapter we discuss possible future work on the subject.

8.1 Known issues

This section contains known issues of the existing design or implementation.

8.1.1 Invalidating code generation cache

The cache used for code generation is never invalidated as of the end of this thesis. Inval-
idating a cache holding outdated code is mandatory for analysis working with generated
code to function properly.

The cache has to be invalidated if any of the child call meta definitions or the meta
definition of the cache’s meta call change. Additionally the cache has to be invalidated
if any of the parent meta calls or the cache’s meta call change their parameters.

8.1.2 Merging context declarations

Currently all the meta calls inside a top level meta call also generate code with their
respective context declaration. If the resulting tree was used then not only the first node
would be a context declaration but there would be a child node that is a context declaration
for every child meta call. This can interfere with analysis components and might not be
the result one expects to see when visualizing the generated code.

By means of merging child context declarations into the parent one could create a cleaner
result that is more easily analyzable and more convenient to look at. The process of
merging is non trivial. Similar to cloning of composite nodes one could potentially merge
two composite nodes of the same type. Additional complexity is added to the problem by
the requirement of detecting logically equivalent declarations in both trees and merging
them into one declaration in the result.
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8.2 Finalizing the import-export cycle

Apart from the known issues which have to be fixed to make Envision self-hosting there
are a few other things that need to be improved or implemented:

• Unsupported nodes: The existing import system does not yet fully support im-
porting all types of Clang nodes. The macro import system does not yet support
lambda expressions and forward declarations.

• Exporting declarations: Currently Envision’s C++ source code uses macros for this.
We intend to enable to set an export flag for a declaration node in Envision’s tree
model.

• Other preprocessing directives: Apart from macros there are other preprocessor
directives for example directives for conditional compilation. There is currently no
support in the code generation framework or the import for such features.

• Qt framework and implicit Clang nodes: The Qt framework used in Envision as
well as Clang itself introduce code elements in the imported code that we ideally do
not want to have since they are only implicitly added and not present in Envision’s
C++ source code.

• Export to C++: We have to split code into header and source file and print C++
code.

• Special macros: Macros such as LINE or FILE have special behavior and
would have to be realized in the form of predefined meta definitions.

• Stringification: For stringification we currently use the binary plus operator to indi-
cate string literal concatenation. We have to use a separate operator and implement
code generation framework logic which actually concatenates all the string literals
surrounding the new operator to a final string literal.

8.3 Further extensions

8.3.1 Support QMake

The QMake build system is used to compile the C++ code base of Envision. This means
that when self-hosting Envision should be aware of QMake and make use of options
provided by QMake (for example to report error messages when compiling). The QMake
build process uses QMake files listing files to be compiled so when changing Envision’s
code by adding or removing something that is exported to a file (for example a class)
then the QMake files have to be modified to account for the changed element.
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8.3.2 Preserve documentation

Documentation in Envision is not limited to textual comments. The user can choose
from a variety of elements (image, table, internet resource, etc.) to annotate code. This
information should be retained during an import-export cycle round trip. One way to
achieve this is to use special syntax in the form of C++ comments referencing more
complex resources when exporting code to C++. Complementary one has to extend the
current import system to process comments when importing code from C++ and use the
special syntax and referenced resources to reconstruct the original documentation.

8.3.3 Improve library support

When using a code editor features such as jumping to the definition of a declaration
or auto-completion are very important to enable efficient development. Those features
are also useful when working with external libraries. To provide such functionality we
would have to process library headers when importing a C++ project. This can be very
challenging due to libraries having potentially a lot of macros in them which may have
forms that are not correctly handled by the current macro import system (non-syntactic
macros with a structure different from the ones used in Envision). However typically we
do not care about the macros in libraries. Instead we can use the expanded code which
contains all the symbols used in the client application.

8.3.4 Intermediate language

Near the end of this thesis we identified an alternative approach which might make it
easier to make Envision self-hosting. The idea is to use an intermediate language that uses
a text format but closer to Java and Envision in structure. Allowing for easier mediation
between said intermediate format and Envision’s tree model as well as enabling the use
of git for version control. The code generation framework is still necessary independently
of this idea. The initial import from C++ has to be done either way and potentially
multiple times until the intermediate language is working properly. The intermediate
language would lack a compiler so exporting to C++ to use the C++ compiler for running
modified code would still be required.
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9 Related work

9.1 Macro and code generation systems

Syntactic macro systems reach back to Lisp[11] where quotation (a ” ’ ” in front of a
common Lisp expression) could be used to indicate that one wants to use the syntactic
form of an expression, instead of the evaluation, to build new expressions. Other pro-
gramming languages, such as Nemerle, continued evolving quoting and syntactic macro
systems. Nemerle is a functional language using .NET and closely resembles the syntax
of Java or C#. Its meta-programming-system uses Nemerle itself as meta language[9],
supports quasi quotation and provides hygienic macros. The Scala macro system[2] was
inspired by the meta-programming system of Nemerle. Their ideas on quasi quotes and
splicing inspired the design of our code generation framework.

Intentional Programming[3] aims to express intentions instead of imperatively describing
the way a result is obtained. The idea of aiming to express intentions inspired the way we
are handling X-Macros in our code generation framework and lead the way of developing
the concept of meta bindings.

9.2 C++ Preprocessor

The presence of preprocessor directives hindered development of refactoring tools for C++
for quite some time. In their work on rejuvenating C++ programs through demacrofication[6]
A. Kumar et al. describe ways of refactoring certain kinds of preprocessor directives.
They aim to use newer language features like templates to replace former preprocessor
macros. In the earlier stages of this project we considered rewriting macros to templates
but due to the use of stringification and identifier concatenation as well as the fact that
macros are evaluated before the code we were unable to do so. The macro reconstruction
we perform now is very similar to refactoring the code of the expanded program. A.
Kumar et al. suggest a way of tackling syntactically incomplete macros in their analysis
by grouping up following code until the block is syntactically complete again and perform
refactoring on such syntactically complete blocks instead.

Our work ended up heavily targeting Envision’s code. We informed ourselves of common
usages of the C++ preprocessor[5] in other applications to judge the restrictiveness of
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some design decisions targeting the preprocessor use in Envision’s code specifically.

52



10 Conclusion

We came several steps closer to our goal of making Envision a self-hosting programming
environment. In this thesis we designed and implemented a code generation framework
in order to represent macros in Envision when importing code from C++. Furthermore
we designed and implemented an additional stage in the existing C++ import system
to enable macro import by reconstructing them from expanded code using preprocessor
information provided by Clang. Finally we started the export part of the import-export
cycle by adding the dependency analysis needed to enable modularity when exporting
to C++. The issues in existing components as well as time shortage prevented us from
completing our goal but we provide guidance for future work.
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[11] P. H. Winston and B. K. Horn. Lisp. 1986.

54



Appendices

55



A Import guide

In this chapter we provide a step by step guide on how to import Envision. This is a more
up-to-date version of the guide written by Lukas Vogel in his bachelor’s thesis report[10].

1. Clone the Envision repository to some path PATH.

2. In PATH/Core the common.pri add the code from listing A.1.

1 QMAKE_CXX=clang++-3.7

2 QMAKE_CXXFLAGS_WARN_ON += -Wno-unused-private-field

3 -Wno-inconsistent-missing-override

Listing A.1: Options to be added in common.pri to enable importing.

3. In PATH run qmake -r CONFIG+=debug.

4. In PATH create and run a shell script with the following contents shown in the code
of listing A.2.

1 #!/bin/bash

2

3 for dir in ./*/

4 do

5 (cd $dir && make clean && bear make)

6 echo "Processed $dir"

7 done

Listing A.2: Script used for importing.

5. In the directory of your working copy of Envision change directory into CppImport/test,
locate the testSelector file and add spath:REL PATH where REL PATH is the
path to PATH relative to the CppImport/test directory. Make sure that all lines
before spath:REL PATH start with a #-sign.

6. Run Envision with the --test cppimport argument to start importing.
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