
Translating Pedagogical Verification
Exercises to a Rust Verifier

Bachelor Thesis Project Description
Patrick Muntwiler

Supervised by Prof. Dr. Peter Müller, Aurel Bílý
Departement of Computer Science

ETH Zürich
Zürich, Switzerland

October 2022

1 Introduction
Deductive program verifiers are tools that take as input a program and its specification,
which must be written formally and unambiguously, and decide whether the program
satisfies the specification. At the Programming Methodology Group in ETH Zurich, the
Viper verification language [1] was developed, a simple sequential, object- based, imper-
ative programming language that allows the users to specify the behaviour of methods
with logical assertions. Given an annotated Viper program, the Viper tooling determines
automatically whether the code satisfies its specification or not.
Viper was designed to be an intermediate verification language. In fact, there are multi-
ple front- ends of Viper for modern programming languages, including Gobra [2] for Go,
and Prusti [3] for Rust [4]. These tools allow the user to annotate programs written in
mainstream programming languages and to verify them by translating the source- code
and the specification to Viper. If the obtained Viper file is successfully verified, then the
original program is guaranteed to satisfy its specification; otherwise, an error message
indicating the source of the verification error is presented at the level of the original
source code.
Program verifiers are extremely effective at proving the absence of bugs. Nonetheless,
program verification is still regarded as an obscure and challenging field that suffers
from a steep learning curve and a lack of learning resources aimed at complete begin-
ners. The focus of this project is thus to develop new pedagogical material for Viper and
its front- ends, in order to lower their entry barrier for beginners in verification. To that
end, the plan is to write new examples for Viper and its front- ends (this thesis project
focuses on Prusti) that exercise features commonly found in deductive verifiers such

1



as formal specification, mathematical data types, ghost code, and techniques to reason
about heap- allocated data structures. Using these features, the goal is to demonstrate
how to prove different kinds of properties of programs such as memory safety, functional
correctness, and termination. As a starting point, the plan is to translate a subset of
the examples and exercises taken from a recent book on Program Verification called
”Program Proofs” by K. Rustan M. Leino. The book uses Dafny [5], a programming
language and verifier originally developed at Microsoft Research.

2 Approach
The main goal of this thesis is to provide helpful examples for beginners to learn program
verification. Another benefit of this thesis is identifying missing features in Prusti that
make proofs cumbersome or impossible compared to Dafny.
The plan is to go through the book and to translate examples and exercises from Dafny
into Rust code with Prusti annotations.
Figure 1 shows an example of a Dafny function and Figure 2 show the code translated
into Rust:

method sum(n: int) returns (res: int)
requires 0 <= n;
ensures res == n * (n + 1) / 2;

{
res := 0;
var i: int := 0;
while(i <= n)

invariant i <= (n + 1);
invariant res == (i - 1) * i / 2;
decreases n - i;

{
res := res + i;
i := i + 1;

}
}

Figure 1: A Dafny method that calculates the sum of the first n integers. Dafny checks if
the code satisfies the postcondition given the precondition, i.e. the result is n∗ (n+1)/2
if n ≥ 0.

2



#[requires(0 <= n)]
#[ensures(result == n * (n + 1) / 2)]
pub fn sum(n: i64) -> i64 {

let mut res: i64 = 0;
let mut i: i64 = 0;
while i <= n {

body_invariant!(res == (i - 1) * i / 2);
res = res + i;
i += 1;

}
return res;

}

Figure 2: The previous Dafny function translated to Prusti. Note that overflow checks
were disabled for the Prusti code, since Dafny works with unbounded integers and Prusti
uses bounded integers.

The examples from the book are then categorized based on if and how their transla-
tion worked. Some possible categories are:

• Translation works mostly 1-to-1

• Translation works, but is written differently in Prusti compared to Dafny

– Example was easier/harder to encode in Prusti

• Translation into Prusti is cumbersome or impossible

– Subcategories based on the encountered difficulty or missing Prusti feature

One interesting aspect will be the effects of Rusts ownership model on the transla-
tions, which may decrease the specification overhead for static analysis in Rust by having
memory safety annotations included in the language itself.

2.1 Core Goals
• Translating a subset of Dafny examples and exercises from the aforementioned

book into Prusti.

• Categorizing the examples based on their Prusti translation and listing problems
found during translation.

• Using the translated examples to improve tutorial-level documentation for Prusti.

3



2.2 Extension Goals
• A potential extension goal is to implement one of the missing features identified

during the project, e.g., enabling Prusti to do termination checks by forwarding
the corresponding functionality from Viper.

• Another possibility would be to write a Prusti evaluation, e.g. a verified hashtable.

• Also possible would be to forward the unbounded integer functionality from Viper
for use in Prusti (“Ghost integer”).

3 Approximate Working Schedule
Task Description Time
Reading book, identifying examples, translation, categorization 8 Weeks
Evaluation 2 Weeks
Extension Goals 4 Weeks
Write final report 4 Weeks

References
[1] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. “Viper: A verifica-

tion infrastructure for permission-based reasoning”. In: International conference on
verification, model checking, and abstract interpretation. Springer. 2016, pp. 41–62.

[2] Felix A. Wolf et al. “Gobra: Modular specification and verification of go pro-
grams”. In: International Conference on Computer Aided Verification. Springer.
2021, pp. 367–379.

[3] Vytautas Astrauskas et al. “Leveraging Rust types for modular specification and
verification”. In: Proceedings of the ACM on Programming Languages 3.OOPSLA
(2019), pp. 1–30.

[4] Nicholas D. Matsakis and Felix S. Klock. “The Rust Language”. In: Ada Lett. 34.3
(Oct. 2014), pp. 103–104. issn: 1094-3641. doi: 10.1145/2692956.2663188.

[5] K. Rustan M. Leino. “Dafny: An automatic program verifier for functional correct-
ness”. In: International conference on logic for programming artificial intelligence
and reasoning. Springer. 2010, pp. 348–370.

4

https://doi.org/10.1145/2692956.2663188

	Introduction
	Approach
	Core Goals
	Extension Goals

	Approximate Working Schedule

