
Delfy: Dynamic Test Generation for Dafny

Master Thesis Report

Patrick Spettel

Chair of Programming Methodology
Department of Computer Science

ETH Zurich

http://www.pm.inf.ethz.ch/

Zurich, June - November 2013

Supervised by: Maria Christakis
Prof. Dr. Peter Müller

http://www.pm.inf.ethz.ch/

Abstract

In this Master’s thesis we present the design and implementation of a novel dynamic test generation
tool. The novelty is that it targets Dafny, a language designed with static verification in mind.
The core is based on existing ideas in dynamic test generation but special verification constructs
pose challenges. We describe the design and implementation and how we have approached the
challenges. We then present our results to show what we have achieved and learned throughout
the whole process of this project.

Delfy: Dynamic Test Generation for Dafny iii

Acknowledgments

I would like to thank Maria Christakis for her supervision of this project. I am very thankful for
the guidance through the project and for the various helpful discussions on the different challenges
I faced.

I would also like to thank Prof. Dr. Peter Müller for providing me the opportunity to do my
Master’s thesis project at the Chair of Programming Methodology. Thanks also to all the members
of the Chair of Programming Methodology. The feedback and ideas which were provided during
my presentations were very helpful. Special thanks to Malte Schwerhoff, Valentin Wüstholz and
Leonardo de Moura for supporting me in challenges I had with Dafny and Z3.

This thesis is dedicated to my parents for all their support.

Delfy: Dynamic Test Generation for Dafny v

Contents

Contents vii

List of Figures x

List of Tables xi

List of Listings xii

List of Algorithms xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 1

1.2.1 Dafny . 1

1.2.2 Concrete execution . 1

1.2.3 Symbolic execution . 2

1.2.4 Dynamic test generation . 2

2 Design of the dynamic test generation engine 5

2.1 Execution . 6

2.1.1 Concrete execution . 7

2.1.2 Symbolic execution . 7

2.2 Condition solver . 11

2.3 Exploration strategies . 11

2.3.1 Depth-first . 11

2.3.2 Breadth-first . 13

2.3.3 Generational . 15

2.4 Visual Studio integration . 17

Delfy: Dynamic Test Generation for Dafny vii

CONTENTS

3 Support for basic Dafny features 19

3.1 Primitive Types . 19

3.2 Classes and objects . 20

3.2.1 Challenges . 20

3.3 Statements . 21

3.3.1 AssumeStmt . 21

3.3.2 AssertStmt . 22

3.3.3 PrintStmt . 22

3.3.4 BreakStmt . 22

3.3.5 ProduceStmt . 23

3.3.6 UpdateStmt . 23

3.3.7 AssignStmt . 23

3.3.8 AssignSuchThatStmt . 23

3.3.9 VarDecl . 24

3.3.10 CallStmt . 24

3.3.11 BlockStmt . 25

3.3.12 IfStmt . 25

3.3.13 AlternativeStmt . 25

3.3.14 WhileStmt . 26

3.3.15 AlternativeLoopStmt . 26

3.3.16 ConcreteSyntaxStmt . 26

3.4 Expressions . 26

3.4.1 FunctionCallExpr . 27

3.4.2 FreshExpr . 27

3.4.3 OldExpr . 27

3.5 Specifications . 28

3.5.1 Function/Method pre- and postconditions 28

3.5.2 Termination metrics . 28

3.5.3 Loop invariant . 29

3.5.4 Modifies/Reads/Fresh support . 29

3.6 Implicit checks . 35

4 Support for other interesting Dafny features 37

4.1 Non-deterministic assignment statements . 37

viii Delfy: Dynamic Test Generation for Dafny

CONTENTS

4.2 Non-deterministic if statements . 38

4.3 Non-deterministic while statements . 38

4.4 Functions with no body . 41

4.5 Sets and sequences . 41

4.5.1 Challenges . 41

4.5.2 Set support using Z3 . 42

4.5.3 Sequence support . 43

5 Static analysis for generating inputs which cover selected errors 47

5.1 Motivation . 47

5.2 Static symbolic execution . 47

5.2.1 Control Flow Graph (CFG) . 48

5.2.2 Design and Implementation . 48

5.2.3 Challenges . 48

5.3 Visual Studio integration enhancement . 50

6 Results 51

6.1 Test suite . 51

6.2 Evaluation . 51

6.2.1 Feature support . 51

6.2.2 Comparison of dynamic test generation with and without static analysis (SA) 51

6.2.3 Comparison with the Boogie Verification Debugger (BVD) 60

6.2.4 Comparison with Pex . 62

6.3 Limitations . 66

6.3.1 Incompleteness . 66

6.3.2 Unsupported Dafny features . 66

7 Conclusions 67

7.1 Related work . 67

7.2 Future work . 68

Bibliography 69

Delfy: Dynamic Test Generation for Dafny ix

List of Figures

2.1 High-level Delfy class diagram. 6

2.2 Search space visualization for the search space example in Listing 2.4. 13

2.3 Delfy result when running the search space example with the depth-first strategy. . 14

2.4 Delfy result when running the search space example with the breadth-first strategy. 16

2.5 Delfy result when running the search space example with the generational strategy. 17

2.6 The Delfy Visual Studio extension. 18

5.1 The Delfy Visual Studio extension with a selected error. 50

6.1 BVD-Delfy comparison for the case of object graphs. 61

6.2 BVD-Delfy comparison for the case of method calls. 62

6.3 BVD-Delfy comparison for the case of loops. 63

6.4 BVD-Delfy comparison for a simple test containing a sequence. 64

x Delfy: Dynamic Test Generation for Dafny

List of Tables

1.1 Summary of symbolic state updates for the example in Listing 1.1 with x = 0. . . . 2

2.1 Stack after generating the successors for the search space example after the first
execution in the depth-first manner. 12

2.2 Stack after generating the successors for the search space example after the first
execution in the breadth-first manner. 15

2.3 Queue after generating the successors for the search space example after the first
execution in the generational search manner. 15

3.1 Dafny statements supported by Delfy. 22

3.2 Dafny expressions supported by Delfy. 27

3.3 Dafny specification constructs supported by Delfy. 28

6.1 Comparison results of the dynamic test generation with and without static analysis. 52

6.2 Comparison results of the dynamic test generation with and without static analysis
for the tests in the test suite. 59

6.3 Results of comparing Delfy and Pex. 65

Delfy: Dynamic Test Generation for Dafny xi

List of Listings

1.1 Example to illustrate symbolic execution. 2
2.1 Dafny example to illustrate the communication of Dafny code to Delfy. 8
2.2 C# code to illustrate the communication of Dafny code to Delfy. 8
2.3 The ICommunication interface. 10
2.4 Example to illustrate the different search strategies. 12
3.1 Dafny example that illustrates the problems with aliasing in object creation. . . . 21
3.2 Dafny example for a loop invariant. 29
3.3 The generated C# code for the example in Listing 3.2. 32
3.4 Dafny example to illustrate the support for the modifies and fresh clause. 33
3.5 The generated C# code for the example in Listing 3.4. 34
4.1 Example of a non-deterministic assignment statement. 37
4.2 Example of a non-deterministic if statement. 38
4.3 Example of a non-deterministic while statement. 39
4.4 Instrumented C# code of the example in Listing 4.3 (simplified). 40
4.5 Example of a function with no body. 41
4.6 Example for a condition with a Dafny set membership assertion. 41
4.7 Z3 set union example. 43
4.8 The Z3 output for the example in Listing 4.7. 44
4.9 Z3 sequence equality example. 45
4.10 The Z3 output for the example in Listing 4.9. 45
5.1 Dafny example with exponentially many path conditions for reaching the last state-

ment of the method body. 49
6.1 set02.dfy . 63
6.2 seq02.dfy . 64
6.3 nondeterministicassignstmt01.dfy . 64

xii Delfy: Dynamic Test Generation for Dafny

List of Algorithms

1 Pseudo-code of dynamic test generation . 5
2 Pseudo-code of successor generation for the depth-first strategy. 12
3 Pseudo-code of successor generation for the breadth-first strategy. 14
4 Pseudo-code of successor generation for the generational strategy. 15

Delfy: Dynamic Test Generation for Dafny xiii

Chapter 1

Introduction

1.1 Motivation

Dafny is a language and program verifier for functional correctness, which has been developed
by Microsoft. The language is designed to support static program verification. The idea is to
annotate the program using special verification features such that functional verification can be
performed automatically [12]. The verifier is sound and powered by Boogie [1, 11] and Z3 [4].

However, it is possible that in certain circumstances the verifier is not able to prove or disprove
correctness. Reasons for this include that the verifier has not enough information, has too much
information or it times out. For such cases it is helpful to use software testing methods. But
manually finding inputs that detect errors is a difficult task.

Thus, the goal of this Master’s thesis project is to build a dynamic test generation tool for Dafny,
which can be used to complement the static verifier. The motivation for the usage of the tool
is two-fold. Firstly, errors can be found if the Dafny static verifier is not able to automatically
reason about a program. And secondly, we can achieve full coverage in some cases with the usage
of dynamic test generation. This case is especially interesting if Dafny has not enough information
available to prove a particular statement.

1.2 Background

1.2.1 Dafny

Dafny is a feature-rich verification language. Therefore, we do not give an introduction here. An
overview of Dafny is given in [12]. Moreover, the project web page ([13]) gives further pointers. For
a tutorial-like introduction, [14] is especially interesting because Dafny is provided in the browser
side-by-side with the tutorial.

1.2.2 Concrete execution

In a concrete execution, inputs to a program are fixed. Then the program is executed using these
inputs. Different approaches exist for keeping track of the path taken through the program. One
such approach is to create a trace file that can then be analyzed by other tools. Another idea is
to combine other tools directly with the concrete execution, for example through callbacks.

Delfy: Dynamic Test Generation for Dafny 1

CHAPTER 1. INTRODUCTION

1.2.3 Symbolic execution

Symbolic execution has been introduced by James King. The idea is to statically simulate the
execution of a program using symbolic values for inputs. For this, a symbolic state is kept. This
state consists of a prefix of a path through the program, a mapping of variables to expressions
over symbolic variables, a symbolic heap and path conditions. A path condition is a condition
over symbolic variables that holds if and only if the execution takes a certain path [9].

As an example, Listing 1.1 shows a simple Dafny program. This program consists of a single
method testme that takes an integer x as an argument. It then prints the integers beginning
with x up to but excluding 2.

Table 1.1 summarizes the updates to the symbolic state when calling this method with the integer
0. A row in this table shows the symbolic state and the path condition after executing the
code on the line with the given line number. Capital letters denote the symbolic versions of the
corresponding variables. The while statement acts as a branch which is tested in every iteration.
Thus, when x = 2 the loop is not entered anymore which is also reflected in the path condition.

1 method testme(x: int)
2 requires 0 <= x;
3 {
4 var i := x;
5 while (i < 2)
6 {
7 print i;
8 i := i + 1;
9 }

10 }

Listing 1.1: Example to illustrate symbolic execution.

Line Symbolic state Path condition
1 x→ X true
2 x→ X 0 ≤ X
3 x→ X 0 ≤ X
4 x→ X, i→ X 0 ≤ X
5 x→ X, i→ X 0 ≤ X ∧X < 2
6 x→ X, i→ X 0 ≤ X ∧X < 2
7 x→ X, i→ X 0 ≤ X ∧X < 2
8 x→ X, i→ (X + 1) 0 ≤ X ∧X < 2
5 x→ X, i→ (X + 1) 0 ≤ X ∧X < 2 ∧ (X + 1) < 2
6 x→ X, i→ (X + 1) 0 ≤ X ∧X < 2 ∧ (X + 1) < 2
7 x→ X, i→ (X + 1) 0 ≤ X ∧X < 2 ∧ (X + 1) < 2
8 x→ X, i→ ((X + 1) + 1) 0 ≤ X ∧X < 2 ∧ (X + 1) < 2
5 x→ X, i→ ((X + 1) + 1) 0 ≤ X ∧X < 2 ∧ (X + 1) < 2 ∧ ¬(((X + 1) + 1) < 2)

Table 1.1: Summary of symbolic state updates for the example in Listing 1.1 with x = 0.

1.2.4 Dynamic test generation

Dynamic test generation combines concrete and symbolic execution to dynamically generate test
inputs for programs. Goals include the maximization of branch coverage and the discovery of
faults in a given program.

2 Delfy: Dynamic Test Generation for Dafny

CHAPTER 1. INTRODUCTION

During concrete execution, the unit under test is executed for arbitrary concrete input values.
At the same time, the symbolic execution builds up a path condition using symbolic values to
represents the input values. This results in an expression over symbolic values which represents the
path taken through the program by the concrete execution. This path condition is then modified
(e. g. parts are negated) and passed to a solver to find inputs which exercise new paths [18, 7, 6].

Using the example in Listing 1.1 from Section 1.2.3 we have the path condition 0 ≤ X ∧ X <
2 ∧ (X + 1) < 2 ∧ ¬(((X + 1) + 1) < 2). In dynamic test generation the conjuncts of the path
condition are tagged with the types of branches they come from. For example the first conjunct,
0 ≤ X, comes from a precondition. This means that we do not modify it. Otherwise we would
potentially break the precondition when calling the method. One example of a modification is
0 ≤ X ∧ X < 2 ∧ ¬((X + 1) < 2) in which we leave out the last conjunct and negate the
second-to-last conjunct. This yields x = 1 as another test input.

Delfy: Dynamic Test Generation for Dafny 3

Chapter 2

Design of the dynamic test
generation engine

Algorithm 1 illustrates the core of our dynamic test generation engine.1 It is pseudo-code that
shows how the branches of a program are explored. The procedure explore takes a prefix of a
path condition as an argument. This prefix represents the condition of the path we want to follow.
The expression over symbolic variables is then solved using a theorem prover. If the condition is
satisfiable, this yields an assignment of the symbolic variables to concrete values. These concrete
values are then used to concretely execute the unit under test. Afterwards, the symbolic execution
yields a new path condition. The extension of the prefix of this path condition is modified in order
to exercise new branches in the next call to explore.

Algorithm 1 Pseudo-code of dynamic test generation

1: procedure explore(Seq<Condition> prefix)
2: values := solve(prefix);
3: if solution is available then
4: path := executeConcrete(values);
5: pathCondition := executeSymbolic(path);
6: extension := pathCondition[|prefix|...];
7: for all non-empty prefixes p of extension do
8: if p = p’ ++ [branchCondition(c)] for some p’,c then
9: explore(prefix ++ p’ ++ [branchCondition(¬c)]

10: end if
11: end for
12: end if
13: end procedure

We took this idea and designed Delfy with configurability and extensibility in mind. Figure 2.1
shows a high-level class diagram. The entry point into Delfy is in the class DelfyDriverMain.
The class DelfyMain contains the code that glues the exploration together. Everything that
is underspecified in the pseudo-code is designed to be extensible and configurable in Delfy. In
particular, we do not fix how the execution is done, how conditions are solved and how the next
condition to explore is computed. We designed this using generalization. The exploration routine
simply gets a configuration and uses the API of the abstract classes. Different specific behaviors

1Algorithm taken from slides of the spring semester 2012 ETHZ course “Software Architecture and Engineering”
by Prof. Dr. Peter Müller.

Delfy: Dynamic Test Generation for Dafny 5

http://www.pm.inf.ethz.ch/education/courses/sae/archive/2012

CHAPTER 2. DESIGN OF THE DYNAMIC TEST GENERATION ENGINE

MethodConcreteExecutor

AssumeCondition

ExploreStrategy
+nextCondition(): PathCondition
+generateSuccessorsOfCondition(cond: PathCondition)

CallbackBasedExecutor

CompoundCondition

InjectionCallbackBasedExecutor

ExploreConfiguration

BoundedBreadthFirstExploreStrategy

DelfyMain
+Explore(conf: ExploreConfiguration)

LoggingCommunication

1

0..n

DepthFirstExploreStrategy

0..n

0..1

uses to execute

0..n0..1
uses as solver backend

«interface»
ICommunication

RemoteCallbackBasedExecutor

DelfyDriverMain
+Main

Executor
+Execute(input: ExecutionInput): ExecutionOutput

0..1

manages

BranchCondition

0..n

0..1

explores according to

BreadthFirstExploreStrategy

BoundedDepthFirstExploreStrategy

ProgramConcreteExecutor

BoundedGenerationalExploreStrategy

PathCondition

Condition

Z3ConstraintSolver

ConstraintSolver
+Solve(constraint: Constraint): ConstraintSolution

GenerationalExploreStrategy

Figure 2.1: High-level Delfy class diagram.

are then implemented in subclasses.

In the next Sections we explain the design of Delfy regarding the execution of units under test,
the condition solving and the exploration order, respectively.

2.1 Execution

In Algorithm 1, concrete and symbolic execution is separated. First, the unit under test is con-
cretely executed. This results in a trace, which is then passed to the symbolic execution step.
In contrast to this approach we combine these two steps into one. That is, during the concrete
execution we update the symbolic state. This is achieved through callbacks at clearly defined
points in the concrete execution. The next two Sections, Section 2.1.1 and Section 2.1.2, explain
this approach in detail.

6 Delfy: Dynamic Test Generation for Dafny

CHAPTER 2. DESIGN OF THE DYNAMIC TEST GENERATION ENGINE

2.1.1 Concrete execution

We extended the Dafny compiler for the concrete execution of Dafny programs under test. The
Dafny compiler works by translating Dafny to C#. The resulting C# code is then compiled into
a .NET assembly using the C# compiler.

Our extensions are the compilation of ghost state, the generation of run time checks and the
instrumentation with callbacks into Delfy.

Compilation of ghost state and run time checks: Dafny supports statements that are only
used for verification and are not compiled. Assertions, pre- and postconditions and loop invariants
are examples of this.

For instance, in order to be able to tell during the concrete execution whether an assertion holds
or not, we need some code generated for these Dafny features. For this we use Code Contracts [16].
For example, the statement assert false would be translated into Contract.Assert(false).

Delfy callbacks: We needed to instrument the translated code with callbacks into Delfy for our
approach of doing the symbolic execution during the concrete execution.

At well-defined points in the concrete execution we call into Delfy such that we can update the
symbolic state as needed. An example of such a callback is when executing an if statement. We
need to call into Delfy and communicate whether the then-branch or the else-branch was taken.
Moreover, the symbolic execution needs to know the expression of the if statement’s guard in order
to update the path condition. Section 2.1.2 explains in detail how this works in Delfy.

2.1.2 Symbolic execution

This Section explains the communication between the unit under test and Delfy, i. e., how we call
back from the unit under test into Delfy. For illustration we use the if statement as an example.
We do not focus on how we update the symbolic state. This is explained in detail in Sections 3
and 4.

The overall idea is to call back from the unit under test into Delfy at well-defined points. We
designed this to be flexible. Referring to Figure 2.1 every class that implements the interface
ICommunication is able to handle callbacks. The details of the communication then depend
on the concrete implementation. We implemented two approaches that we refer to as the in-
jection-based approach and the remote-based approach. These are implemented in the classes
InjectionCallbackBasedExecutor and RemoteCallbackBasedExecutor, respectively.

The injection-based approach works by instrumenting the Dafny-translated C# code with
a static field of type ICommunication to which we refer to DafnyToDelfy. For concrete
execution we then compile this instrumented C# code into a .NET assembly and load this assembly
dynamically. Using reflection we then inject the callback handler, i. e., we set the static field
DafnyToDelfy.

The advantage of this approach is that from the unit under test we call directly back into Delfy.
This has the disadvantage that we need to reference the Delfy assembly when compiling the unit
under test because we make use of the interface ICommunication in the helper code.

The remote-based approach works by making use of remote method calls. Our implementation
makes use of the Windows communication Foundation (WCF) framework [15]. Similarly to the
injection-based approach we need to instrument the Dafny-translated C# code with some helper
code. In this case we need to create a communication channel to Delfy. On the Delfy side the
handler needs to be set up to act as a server that dispatches the callbacks.

Delfy: Dynamic Test Generation for Dafny 7

CHAPTER 2. DESIGN OF THE DYNAMIC TEST GENERATION ENGINE

One advantage of this approach is that the program under test can be compiled independently of
Delfy. During concrete execution it is then tried to build a channel to Delfy dynamically. Another
advantage is that the unit under test and Delfy can be run on different machines without changing
anything. The disadvantage is the indirection through remote calls. Because during a concrete
execution there can be, and usually are, lots of callbacks this can reduce performance.

In order to explain how we communicate Dafny code such as statements and expressions to Delfy
we come back to the example of the if statement.

method testme(x: int)
{

if (x == 10) {
assert false;

} else {
print "success";

}
}

Listing 2.1: Dafny example to illustrate the communication of Dafny code to Delfy.

Listing 2.1 shows a method testme that takes an integer x as argument and fails if x equals 10.
If we concretely execute the then-branch we need to call back into Delfy saying that x == 10
holds, for the else-branch that ¬(x == 10) holds.

Because we instrument C# code with Delfy callbacks we needed to come up with a way to embed
the Dafny code we want to translate into the C# code. We came up with the following solution.
During instrumentation we pretty-print the Dafny code into a string that we pass as an argument
to the callback. In Delfy we can then make use of the Dafny parser and resolver to parse and
resolve the expression back. For this to work we also pass all the code that is needed for resolving
such as type information, functions, methods and classes. So we need to pass a full Dafny program.
In particular we generate wrapper code to pass single expressions or statements.

For this example it looks like shown in Listing 2.2. Because we need a way to find the expression
we wanted to communicate we use an assignment to the variable delfyInstrumentationVar
in a new block. For the communication of statements we do not need the assignment but we also
use a new block to find the statement.

...
if (x == 10) {

GetDafnyToDelfy().Branch(@"
var x: int;
{

ghost var delfyInstrumentationVar := (x == 10);
}

");
...

} else {
GetDafnyToDelfy().BranchNegated(@"

var x: int;
{

ghost var delfyInstrumentationVar := (x == 10);
}

");
...

}
...

Listing 2.2: C# code of the Dafny example (Listing 2.1) to illustrate the communication of Dafny
code to Delfy.

8 Delfy: Dynamic Test Generation for Dafny

CHAPTER 2. DESIGN OF THE DYNAMIC TEST GENERATION ENGINE

The ICommunication interface

Listing 2.3 shows all the callbacks. They are gradually explained in Chapters 3 and 4.

Delfy: Dynamic Test Generation for Dafny 9

CHAPTER 2. DESIGN OF THE DYNAMIC TEST GENERATION ENGINE

using System;
using System.Numerics;
using System.ServiceModel;

namespace Delfy {
namespace DafnyToDelfy {

/// <summary>
/// The communication interface between Dafny and Delfy.
/// </summary>
[ServiceContract]
public interface ICommunication {

[OperationContract]
void ScopeBegin();
[OperationContract]
void ScopeEnd();
[OperationContract]
void Branch(string guard);
[OperationContract]
void BranchNegated(string guard);
[OperationContract]
void NonDeterministicWhileStmtBranch(string var);
[OperationContract]
void NonDeterministicWhileStmtBranchNegated(string var);
[OperationContract]
void Statement(string stmt);
[OperationContract]
void FunctionCallBefore(string functionCallExpr);
[OperationContract]
void FunctionCallAfter(string functionCallExpr);
[OperationContract]
void CallStmtBefore(string callStmt);
[OperationContract]
void CallStmtAfter(string callStmt);
[OperationContract]
void LoopBefore();
[OperationContract]
void LoopAfter();
[OperationContract]
void LoopIteration();
[OperationContract]
void StoreTmp(string tmp, string expr);
[OperationContract]
bool NonDeterministicIfStmtVar(string var);
[OperationContract]
Tuple<BigInteger, bool> NonDeterministicAssignStmtVar(string var,

string type);
[OperationContract]
BigInteger NonDeterministicWhileStmtBound(string var);
[OperationContract]
BigInteger NonDeterministicWhileStmtInit(string var);
[OperationContract]
void NonDeterministicWhileStmtIncrement(string var);
[OperationContract]
Tuple<BigInteger, bool> GetFeasibleFunctionReturnValue(string expr,

string fName,
string type);

[OperationContract]
void TokenLineAndColumn(string line, string column);
[OperationContract]
void Nop();

}

}
}

Listing 2.3: The ICommunication interface.

10 Delfy: Dynamic Test Generation for Dafny

CHAPTER 2. DESIGN OF THE DYNAMIC TEST GENERATION ENGINE

2.2 Condition solver

For solving path conditions we implemented an interface around Z3. For this, the conditions are
translated from the representation using the Dafny AST to the Z3 AST nodes. They can then be
handed over to the Z3 solver. The design is flexible such that is easy to change this or support
different solving strategies.

2.3 Exploration strategies

Depending on how exactly the extension of the new path condition is modified, different ex-
ploration strategies are possible. We designed this as an abstract class ExploreStrategy that
contains the two methods nextSuccessor and generateSuccessorsOfCondition. Method
nextSuccessor returns the prefix condition that should be explored next. Method generate-
SuccessorsOfCondition generates the successors of a given condition. Using these two meth-
ods we allow the implementation of different kinds of exploration strategies. Currently Delfy
contains three strategies: depth-first, breadth-first and generational. All the strategies stop going
deeper in the search tree after reaching a configurable bound (Section 6.3.1 contains more details
about incompleteness).

Listing 2.4 is an example that illustrates the different search strategies. It is based on the similar
example in [7]. In the original example the input is a string of length 4. This string is compared
to the string bad!. If 3 or more characters match then there occurs an error. Because Dafny does
not support strings Listing 2.4 uses 4 boolean variables. If 3 or more are true an error is simulated
with the statement assert false.

Figure 2.2 shows the search space for this program. In [7] the program is run with the string good
as argument. In our example this corresponds to the first execution of testme in which all four
boolean variables are set to false. This yields the path condition ¬A ∧ ¬B ∧ ¬C ∧ ¬D.

2.3.1 Depth-first

The DepthFirstExploreStrategy keeps a stack of PathConditions internally. When
querying the next successor the path condition on top of the stack is returned. The genera-
tion of successors for a given path condition works as outlined in Algorithm 2. Line 1 specifies pc
to be the path condition for which to generate the successors. Every path condition has a length
and a prefix length. The length is the number of conditions in a particular path condition. The
prefix length specifies the part of the path condition that is to be regarded as the prefix. Assum-
ing the conditions in the path condition are numbered starting with 0, the prefix consists of the
conditions with the indices 0, 1, . . . , pc.prefixlen − 1. This corresponds to the prefix condition
passed into the explore procedure in Algorithm 1. On lines 3 − 8, Algorithm 2 then generates
the successors in a depth-first manner for all the non-empty prefixes of the extension of pc. A
new path condition that contains the prefix is created on line 4. In addition to the prefix, every
extension length is considered (line 3) and the last condition of a particular extension length is
negated (line 4). On line 5 the prefix length of the new path condition is then adapted to contain
the whole extension. Finally, the result is pushed onto the stack that is internal to the depth-first
strategy (line 6).

Delfy: Dynamic Test Generation for Dafny 11

CHAPTER 2. DESIGN OF THE DYNAMIC TEST GENERATION ENGINE

method testme(a: bool, b: bool, c: bool, d: bool)
{

var n := 0;
if a {

print "b"; n := n + 1;
} else {

print "g";
}
if b {

print "a"; n := n + 1;
} else {

print "o";
}
if c {

print "d"; n := n + 1;
} else {

print "o";
}
if d {

print "!"; n := n + 1;
} else {

print "d";
}
print "\n";
if n >= 3 {

assert false;
}

}

Listing 2.4: Example to illustrate the different search strategies (based on the similar example
in [7]).

Algorithm 2 Pseudo-code of successor generation for the depth-first strategy.

1: Let pc be the given path condition for which we want to generate the successors.
2: i := pc.prefixlen
3: while i < pc.len do
4: newpc := pc[0..i− 1] + +[¬pc[i]]
5: newpc.prefixlen := i + 1
6: push newpc onto the stack
7: i := i + 1
8: end while

Table 2.1 shows how the stack looks like after generating the successors for the path condition
¬A ∧ ¬B ∧ ¬C ∧ ¬D assuming this is the path condition after the first execution, i. e., the prefix
length is 0. Note that this yields a depth-first exploration because nextSuccessor always
returns the top of the stack. Thus, we go deeper before considering the other path conditions at
the same depth.

Path condition prefix length
¬A ∧ ¬B ∧ ¬C ∧D 4
¬A ∧ ¬B ∧ C 3
¬A ∧B 2
A 1

Table 2.1: Stack after generating the successors for the search space example after the first exe-
cution in the depth-first manner. The first row represents the top of the stack.

12 Delfy: Dynamic Test Generation for Dafny

CHAPTER 2. DESIGN OF THE DYNAMIC TEST GENERATION ENGINE

Figure 2.2: Search space visualization for the search space example in Listing 2.4; the numbers
indicate the generations (reprinted from [7]).

Figure 2.3 shows the result when running Delfy for this example with the depth-first strategy. We
see that the search order is indeed from left to right in the tree shown in Figure 2.2.

2.3.2 Breadth-first

To achieve a breadth-first exploration the BreadthFirstExploreStrategy keeps a stack of
PathConditions. Analogous to the DepthFirstExploreStrategy the path condition on
top of the stack is returned when querying for the next successor. But the generation of successors
for a given path condition works differently. It is similar but the order in which the new conditions
are generated is different. Algorithm 3 shows in pseudo-code how it is done. Line 1 specifies pc to
be the path condition for which to generate the successors. On lines 3− 8, Algorithm 3 generates
the successors in a breadth-first manner for all the non-empty prefixes of the extension of pc. A
new path condition that contains the prefix is created on line 4. In addition to the prefix, every
extension length is considered (line 3) and the last condition of a particular extension length is
negated (line 4). For the breadth-first strategy i starts with pc.len − 1 and is decreased whereas
in the depth-first strategy i starts with pc.prefixlen and is increased. On line 5 the prefix length
of the new path condition is then adapted to contain the whole extension. Finally, the result is
pushed onto the stack that is internal to the breadth-first strategy (line 6).

Delfy: Dynamic Test Generation for Dafny 13

CHAPTER 2. DESIGN OF THE DYNAMIC TEST GENERATION ENGINE

Figure 2.3: Delfy result when running the search space example with the depth-first strategy.

Algorithm 3 Pseudo-code of successor generation for the breadth-first strategy.

1: Let pc be the given path condition for which we want to generate the successors.
2: i := pc.len− 1
3: while i >= pc.prefixlen do
4: newpc := pc[0..i− 1] + +[¬pc[i]]
5: newpc.prefixlen := i + 1
6: push newpc onto the stack
7: i := i− 1
8: end while

Table 2.2 shows how the stack looks like after generating the successors for the path condition
¬A ∧ ¬B ∧ ¬C ∧ ¬D assuming this is the path condition after the first execution, i. e., the prefix
length is 0.

Figure 2.4 shows the result when running Delfy for this example with the breadth-first strategy.

14 Delfy: Dynamic Test Generation for Dafny

CHAPTER 2. DESIGN OF THE DYNAMIC TEST GENERATION ENGINE

Path condition prefix length
A 1
¬A ∧B 2
¬A ∧ ¬B ∧ C 3
¬A ∧ ¬B ∧ ¬C ∧D 4

Table 2.2: Stack after generating the successors for the search space example after the first exe-
cution in the breadth-first manner. The first row represents the top of the stack.

2.3.3 Generational

As the name suggests, the idea of the generational search strategy is to search in generations.
For a given path condition all the direct modifications are considered before considering indirect
modifications, i. e., modifications over multiple generations [7].

The way this is implemented in GenerationalExploreStrategy is that we make use of a
queue of PathConditions. The front of the queue is returned if the next successor is queried.
The generation of successors works as shown in Algorithm 4. Line 1 specifies pc to be the path
condition for which to generate the successors. On lines 3−8, Algorithm 4 generates the successors
by generations for all the non-empty prefixes of the extension of pc. A new path condition that
contains the prefix is created on line 4. In addition to the prefix, every extension length is
considered (line 3) and the last condition of a particular extension length is negated (line 4).
The generational strategy works similarly to the breadth-first but the generational strategy uses
a queue instead of a stack internally. On line 5 the prefix length of the new path condition is then
adapted to contain the whole extension. Finally, the result is put into the queue that is internal
to the generational strategy (line 6).

Algorithm 4 Pseudo-code of successor generation for the generational strategy.

1: Let pc be the given path condition for which we want to generate the successors.
2: i := pc.len− 1
3: while i >= pc.prefixlen do
4: newpc := pc[0..i− 1] + +[¬pc[i]]
5: newpc.prefixlen := i + 1
6: enqueue newpc into the queue
7: i := i− 1
8: end while

Table 2.3 shows how the queue looks like after generating the successors for the path condition
¬A ∧ ¬B ∧ ¬C ∧ ¬D assuming this is the path condition after the first execution, i. e., the prefix
length is 0.

Path condition prefix length
A 1
¬A ∧B 2
¬A ∧ ¬B ∧ C 3
¬A ∧ ¬B ∧ ¬C ∧D 4

Table 2.3: Queue after generating the successors for the search space example after the first
execution in the generational search manner. The first row represents the front of the queue.

Figure 2.5 shows the result when running Delfy for this example with the generational strategy.
We see that the search order is exactly according to the generation numbers given in the tree in

Delfy: Dynamic Test Generation for Dafny 15

CHAPTER 2. DESIGN OF THE DYNAMIC TEST GENERATION ENGINE

Figure 2.4: Delfy result when running the search space example with the breadth-first strategy.

Figure 2.2. This is because we use a queue and enqueue the new path conditions in the stated
order.

16 Delfy: Dynamic Test Generation for Dafny

CHAPTER 2. DESIGN OF THE DYNAMIC TEST GENERATION ENGINE

Figure 2.5: Delfy result when running the search space example with the generational strategy.

2.4 Visual Studio integration

We extended the Dafny extension 2 for Visual Studio with a graphical frontend for Delfy. Figure 2.6
shows the result of running Delfy for the example in Listing 1.1

2The Dafny extension source code, binaries, details and installation instructions can be found in [13].

Delfy: Dynamic Test Generation for Dafny 17

CHAPTER 2. DESIGN OF THE DYNAMIC TEST GENERATION ENGINE

Figure 2.6: The Delfy Visual Studio extension.

18 Delfy: Dynamic Test Generation for Dafny

Chapter 3

Support for basic Dafny features

This Chapter explains how the basic Dafny features are supported in Delfy. We describe how
we extended the Dafny-to-C# compiler to support a particular feature. Moreover, we provide
examples for illustration.

The symbolic state consists of a path condition pc, a mapping varmap that maps variables to
symbolic expressions and a mapping symheap that maps references to symbolic expressions.

Furthermore, we define a substitution function subst that maps a symbolic expression to another
symbolic expression. It substitutes variables and references in a symbolic expression by using the
mapping varmap for variables and the mapping symheap for references.

3.1 Primitive Types

The Dafny primitive types

• Integers (int)

• Naturals (nat)

• Booleans (bool)

are supported.

Concrete execution

• int is translated into BigInteger in C#

• nat is translated into BigInteger in C#

• bool is translated into boolean in C#

Symbolic execution

• int is translated into a Z3 integer

Delfy: Dynamic Test Generation for Dafny 19

CHAPTER 3. SUPPORT FOR BASIC DAFNY FEATURES

• nat is translated into a Z3 integer with an axiom stating that a variable of type nat is
non-negative

• bool is translated into a Z3 boolean

3.2 Classes and objects

Concrete execution

In the concrete execution classes and objects are mapped to C# classes and objects.

Symbolic execution

The support for classes and objects in the symbolic execution works by representing references
as integers. We represent null with 0 and introduce axioms stating that references of different
types have to be different. The Z3 back end we use can then directly handle this.

If a unit under test requires objects as inputs, the objects are then recursively constructed and
initialized using the results of the symbolic execution. Section 3.2.1 discusses the challenges we
faced and how we deal with them in Delfy.

3.2.1 Challenges

The creation of objects as inputs for a unit under test is a difficult task for a few reasons. Firstly,
in some cases a complete object graph has to be recursively initialized. Secondly, aliasing has to
be taken into account. Thirdly, objects must be initialized such that they are in a valid state.

For the construction of a complete object graph we need information in order to be able to
initialize all the fields recursively. In the case of dynamic symbolic execution the solution to the
path condition is the information we have available. If a field is not present at all in the condition
there are a lot of possibilities to initialize it. For primitive types this could be a default value.
But for reference types there are more possibilities.

References can be initialized to null, to a new object with some state or to an already existing
object (aliasing). The first case is not difficult but the other two cases are challenging. The second
case is again what is described in the previous paragraph. For the third case some pool of objects
could be allocated. This pool could then be used to get references to already existing objects. The
aliasing problem is for instance discussed in more detail in [8].

Even though the fields can be initialized this way there is still a problem. Just initializing the
fields is not always enough. Object invariants must be taken into account. The problem and
related work is discussed in [20].

In Delfy we deal with those challenges in the following way. We initialize the object graph re-
cursively using the solution to the path condition. Fields are initialized to their default values
(references to null) except if they occur in the solution to the path condition. If they do, we
take this into account and initialize them appropriately instead of using the default value. The
consequence of this is that we create new objects only if they are accessed and therefore present
in the path condition. Furthermore we consider aliasing only if the path condition mentions the
possibility of aliasing explicitly.

To illustrate this, Listing 3.1 shows a method testme that takes a Cell and an integer as
arguments. The Cell class represents a cell in a linked list. It has two fields: an integer data field

20 Delfy: Dynamic Test Generation for Dafny

CHAPTER 3. SUPPORT FOR BASIC DAFNY FEATURES

and the link to the next cell. In method testme an error is simulated if the value of the fifth list
element equals to f(x). For the next fields there is no explicit condition. Implicit conditions are
generated for the accesses when the branch condition is added to the path condition on line 14.
All the possibilities are considered, i. e., every next field can either be null or non-null. This
means that all the next fields are different from null for at least one case. Therefore, aliasing
is implicitly considered. But we only consider one case. Which case this is depends on what the
solver back end yields. All the next fields could be null, they could all reference the same object
or some of them could reference the same object.

1 class Cell
2 {
3 var v: int;
4 var next: Cell;
5 }
6
7 function method f(v: int): int
8 {
9 2*v + 1

10 }
11
12 method testme(p: Cell, x: int) returns (r: int)
13 {
14 if p.next.next.next.next.v == f(x)
15 {
16 assert false; // ERROR!
17 }
18 return 0;
19 }

Listing 3.1: Dafny example that illustrates the problems with aliasing in object creation. The
argument object p must be initialized recursively in order to set all the next fields.

3.3 Statements

Table 3.1 summarizes all the statements Delfy supports. The terminology is the one used in the
Dafny AST (DafnyAst.cs). The following Sections explain how we support these in Delfy.

Statements are supported in symbolic execution through the callback “Statement”.

void Statement(string stmt);

The argument is the Dafny statement that is wrapped into helper code such that the Dafny parser
and resolver can be used to build the AST in Delfy.

3.3.1 AssumeStmt

Concrete execution

An AssumeStmt is translated using Code Contracts and implicit checks (Section 3.6) are gener-
ated.

Symbolic execution

An AssumeStmt statement

Delfy: Dynamic Test Generation for Dafny 21

https://dafny.codeplex.com/SourceControl/latest#Source/Dafny/DafnyAst.cs

CHAPTER 3. SUPPORT FOR BASIC DAFNY FEATURES

AssumeStmt
AssertStmt
PrintStmt
BreakStmt
ProduceStmt
UpdateStmt
AssignStmt
AssignSuchThatStmt
VarDecl
CallStmt
BlockStmt
IfStmt
AlternativeStmt
WhileStmt
AlternativeLoopStmt
ConcreteSyntaxStmt

Table 3.1: Dafny statements supported by Delfy.

assume e;

adds an assume condition containing subst(e) to the path condition pc.

3.3.2 AssertStmt

Concrete execution

An AssertStmt is translated using Code Contracts and implicit checks (Section 3.6) are gener-
ated.

Symbolic execution

An AssertStmt statement

assert e;

adds a branch condition containing subst(e) or ¬subst(e) to the path condition pc depending on
whether the expression holds or respectively does not hold.

3.3.3 PrintStmt

For a PrintStmt implicit checks (Section 3.6) are generated besides the C# code.

3.3.4 BreakStmt

For a BreakStmt only the C# code is generated.

22 Delfy: Dynamic Test Generation for Dafny

CHAPTER 3. SUPPORT FOR BASIC DAFNY FEATURES

3.3.5 ProduceStmt

In the following Dafny code example we have a method alwaysOne that returns the integer 1
unconditionally.

method alwaysOne() returns (result: int)
{

return 1;
}

Because methods in Dafny allow multiple return values and these are named, a ProduceStmt is
used for the return. The C# code generated for this is an assignment to the C# out parameter
corresponding to result followed by a C# return statement.

3.3.6 UpdateStmt

Concrete execution

An update statement is translated into C# assignment statements.

Symbolic execution

An update statement

x1, x2, ..., xn := e1, e2, ..., en;

updates the mappings in the symbolic state such that x1 maps to subst(e1), x2 maps to subst(e2),
. . . , xn maps to subst(en).

3.3.7 AssignStmt

Concrete execution

An assignment statement is translated into C# variable declarations and assignment statements.

Symbolic execution

An assignment statement

var x1, x2, ..., xn := e1, e2, ..., en;

updates the mappings in the symbolic state such that x1 maps to subst(e1), x2 maps to subst(e2),
. . . , xn maps to subst(en).

3.3.8 AssignSuchThatStmt

The following Dafny code illustrates an AssignSuchThatStmt. A method m that takes no
arguments and returns an integer is defined. It assigns an integer to a variable x such that
0 ≤ x ≤ 10 and returns x.

Delfy: Dynamic Test Generation for Dafny 23

CHAPTER 3. SUPPORT FOR BASIC DAFNY FEATURES

method m() returns (result: int)
{

var x :| 0 <= x <= 10;
return x;

}

If the Dafny resolver is able to generate bounds, C# code is generated to find a satisfying assign-
ment. One potential problem is that the generated code may not terminate. This can for example
be the case if the right-hand-side is unsatisfiable. We handle this case by asking the condition
solver whether the expression is satisfiable or not. In case it is not satisfiable we terminate the
ongoing execution. Otherwise, we handle it like an AssumeStmt (see Section 3.3.1).

3.3.9 VarDecl

For a Dafny statement VarDecl a C# local variable declaration is generated.

3.3.10 CallStmt

Concrete execution

A Dafny CallStmt is translated into a C# call statement.

Symbolic execution

In the symbolic execution a CallStmt

var x1, x2, ..., xn := m(in1, in2, ..., inn);

or

x1, x2, ..., xn := m(in1, in2, ..., inn);

is supported using the two callbacks, “CallStmtBefore” and “CallStmtAfter”.

void CallStmtBefore(string callStmt);

“CallStmtBefore” is called before the call is done in the concrete execution and “CallStmtAfter”
after the call has returned.

void CallStmtAfter(string callStmt);

It is worth noting that a call statement can only contain a call to a method. Function calls are
handled as expressions. The implication of this is that only functions can be called in expressions.

Both take the Dafny call statement wrapped inside helper code for parsing and resolving as
argument. In the callback “CallStmtBefore” a new call frame is created and all the inputs in1,
in2, . . . inn are set. In the callback “CallStmtAfter” and all the outputs are set to the corresponding
variables on the left-hand-side. The call frame is then thrown away and the previous call frame is
restored.

24 Delfy: Dynamic Test Generation for Dafny

CHAPTER 3. SUPPORT FOR BASIC DAFNY FEATURES

3.3.11 BlockStmt

Concrete execution

For concrete execution a BlockStmt is translated into a C# block.

Symbolic execution

For symbolic execution the callbacks “ScopeBegin” and “ScopeEnd” are used, which do not take
any arguments. “ScopeBegin” saves the current scope, creates a new scope and makes it current.
“ScopeEnd” destroys the current scope and restores the saved one. This is needed to support
scopes in the symbolic execution. For example, the body of a loop is a BlockStmt. It is
possible to declare variables inside the loop that hide variables outside of the loop. The callbacks
“ScopeBegin” and “ScopeEnd” are used to deal with such cases.

3.3.12 IfStmt

Concrete execution

For concrete execution an IfStmt is translated into a C# if statement.

Symbolic execution

An IfStmt is supported through the callbacks “Branch” and “BranchNegated”.

void Branch(string guard);

void BranchNegated(string guard);

They both take as an argument the guard expression wrapped inside helper code for parsing and
resolving. “Branch” creates a new branch condition with the given expression, “BranchNegated”
with the negation of the given expression. This branch condition is then added to the path
condition pc.

3.3.13 AlternativeStmt

An AlternativeStmt looks like shown in the following example.

if {
case x < 0 => assert false;
case x > 0 => print "x > 0";
case x == 0 => print "x == 0";
case true => print "true";

}

Because it is treated as a nesting of if statements it is handled analogously to the IfStmt.

Delfy: Dynamic Test Generation for Dafny 25

CHAPTER 3. SUPPORT FOR BASIC DAFNY FEATURES

3.3.14 WhileStmt

Concrete execution

For concrete execution a WhileStmt is translated into a C# while statement.

Symbolic execution

The WhileStmt is supported through the callbacks “Branch” and “BranchNegated”.

“Branch” is called at the beginning of the loop body, “BranchNegated” after the loop. The
semantics of “Branch” and “BranchNegated” is explained in Section 3.3.12

Moreover, the callbacks “LoopBefore”, “LoopAfter” and “LoopIteration” are used in order to
support breaking out of the loop after a specified amount of iterations.

There is a configurable bound on how many loop iterations are considered in the execution (Sec-
tion 6.3.1 contains more details about incompleteness).

3.3.15 AlternativeLoopStmt

An AlternativeStmt looks like shown in the following example.

var i := 0;
while
{

case i < 3 => i := i + 1;
case true => break;

}

Due to the similarity with the AlternativeStmt and the WhileStmt it is handled similarly
as they are.

There is a configurable bound on how many loop iterations are considered in the execution (Sec-
tion 6.3.1 contains more details about incompleteness).

3.3.16 ConcreteSyntaxStmt

The ConcreteSyntaxStmt is an AST node that contains another statement AST node. There-
fore, we need to handle the statement that is inside the ConcreteSyntaxStmt.

3.4 Expressions

Table 3.2 summarizes all the expressions Delfy supports. The terminology is the one used in the
Dafny AST (DafnyAst.cs).

26 Delfy: Dynamic Test Generation for Dafny

https://dafny.codeplex.com/SourceControl/latest#Source/Dafny/DafnyAst.cs

CHAPTER 3. SUPPORT FOR BASIC DAFNY FEATURES

LiteralExpr
ThisExpr
IdentifierExpr
FieldSelectExpr
FunctionCallExpr
OldExpr
FreshExpr
UnaryExpr
BinaryExpr
PredicateExpr
CalcExpr
ITEExpr
ConcreteSyntaxExpression
NamedExpr

Table 3.2: Dafny expressions supported by Delfy.

In the symbolic execution the expressions are handled by querying the symbolic state.

3.4.1 FunctionCallExpr

The FunctionCallExpr is handled very similarly to the CallStmt (see Section 3.3.10). The
two callbacks, “FunctionCallBefore” and “FunctionCallAfter” are used.

void FunctionCallBefore(string functionCallExpr);

void FunctionCallAfter(string functionCallExpr);

In Dafny the body of a function only contains a single expression. Thus, the semantics of handling
the function call expression in the symbolic execution is to replace it with the function body in
which the arguments are substituted.

3.4.2 FreshExpr

The support for FreshExprs is explained in Section 3.5.4.

3.4.3 OldExpr

Concrete Execution

OldExprs are supported using the Code Contracts support (Contract.OldValue). There are
a few limitations. Dafny allows nested old expressions like old(old(x)). We do not support
this in Delfy because it is not supported by Code Contracts. Moreover, for out parameters we
use Contract.ValueAtReturn.

Symbolic Execution

In order to explore all outcomes of a postcondition, the callbacks “Branch” and “BranchNegated”
are used. They update the path condition correspondingly. If the postcondition holds in the con-
crete execution, the symbolic version of the postcondition is added to the path condition, otherwise

Delfy: Dynamic Test Generation for Dafny 27

CHAPTER 3. SUPPORT FOR BASIC DAFNY FEATURES

the negated one. This means that if the concrete expression (C# level) of the postcondition is
true at the end of the method body, “Branch” is used, otherwise “BranchNegated”. In order to be
able to know the value of the concrete postcondition, old expressions must therefore be supported
outside of a Contract.Ensures. This is not supported by Code Contracts. Thus, we do this by
remembering the expression at the start of a method/function body. We then use the remembered
value whenever it is referenced inside of an old expression. For this we currently only support
identifier expressions inside an old expression.

3.5 Specifications

Table 3.3 summarizes all the specification constructs Delfy supports. The terminology is the one
used in the Dafny AST (DafnyAst.cs). The following Sections explain how we support these in
Delfy.

Function/Method pre- and postconditions
Function/Method termination metric
Function reads clause
Method modifies clause
FreshExpr
Invariant for loops
Termination metric for loops

Table 3.3: Dafny specification constructs supported by Delfy.

3.5.1 Function/Method pre- and postconditions

Concrete execution

Pre- and postconditions are checked at the beginning and end of a function or method respectively.

Symbolic execution

For finding inputs that violate pre- and postconditions we add branch conditions to the path
condition pc using the “Branch” and “BranchNegated” callbacks 1.

This is handled in a different way for the top-level method under test and for callees. For the
top-level method under test, the precondition is assumed. It does not make sense to violate the
precondition in this case because execution would stop immediately. For the postcondition we use
the “Branch” and “BranchNegated” callbacks for trying to violate it. The difference for callees is
that we also try to violate the precondition in addition to the postcondition.

3.5.2 Termination metrics

Concrete execution

We check that the termination metric decreases in a recursive call or from one loop iteration to
the next. Moreover, we check that it is bounded.

1The details of the callbacks “Branch” and “BranchNegated” are explained in Section 3.3.12.

28 Delfy: Dynamic Test Generation for Dafny

https://dafny.codeplex.com/SourceControl/latest#Source/Dafny/DafnyAst.cs

CHAPTER 3. SUPPORT FOR BASIC DAFNY FEATURES

Symbolic execution

For finding inputs that violate the termination metric we add a branch condition to the path
condition pc using the “Branch” and “BranchNegated” callbacks 2.

3.5.3 Loop invariant

Concrete execution

We check the loop invariant the same way Dafny does it, i. e., before entering the loop and at the
end of the loop body.

Symbolic execution

For finding inputs that violate the loop invariant we add a branch condition to the path condition
pc using the “Branch” and “BranchNegated” callbacks 2.

Listings 3.2 and 3.3 illustrate this. Listing 3.2 shows a Dafny method sumN that takes an integer
n as argument and returns s =

∑n
i=0 i. The correct loop invariant is commented and an invariant

with an error is given. This is to trigger a failure during concrete execution. Listing 3.3 shows the
corresponding generated C# code. It is simplified and comments are added. The comments mark
the code generated to support loop invariants in concrete and symbolic execution.

method sumN(n : int) returns (s : int)
requires n >= 0;
ensures s == (n*(n+1))/2;

{
var i := 0;
s := 0;
while (i <= n)

//invariant (s == (i*(i-1))/2) && (i <= n+1);
invariant (s == (i*(n-1))/2) && (i <= n+1); // wrong invariant

{
s := s + i;
i := i + 1;

}
return s;

}

Listing 3.2: Dafny example for a loop invariant.

3.5.4 Modifies/Reads/Fresh support

Checks are only needed during concrete execution because nothing is input-tainted in this case,
i. e., Modifies/Reads/Fresh clauses cannot be influenced by different concrete input values.
The checks are done by keeping sets in static fields for every function/method. The details are
explained in the two Sections that follow.

2The details of the callbacks “Branch” and “BranchNegated” are explained in Section 3.3.12.

Delfy: Dynamic Test Generation for Dafny 29

CHAPTER 3. SUPPORT FOR BASIC DAFNY FEATURES

Modifies/Reads support

For every method two sets are used to support modifies clauses. One of them, say modspec, keeps
track of complete object modifications and one of them, say modFieldspec, keeps track of field
modifications. They are initialized with all the objects/fields that are specified in the clause.

The checks that are generated make use of those sets. Upon every write access, a check is gener-
ated. This check makes sure that either the accessed object is in modspec, the accessed field is in
modFieldspec or the object is fresh (the check for freshness is explained below). In addition, upon
every method call a check is generated. This check makes sure that modspec/modFieldspec of the
callee is a subset of modspec/modFieldspec of the caller.

Listing 3.5.4 shows a Dafny skeleton with comments to show where which checks are generated.
It contains a class C with the two methods F and G. Both declare in a modifies clause to modify
“this”. F modifies the “data” field of C. The checks that are generated by the Dafny-to-C#
compiler are described in the comments.

class C {
// In the generated C# code, the sets Fmodspec, FmodFieldspec,
// Gmodspec and GmodFieldspec are declared as static fields here.

var data: int;

method F()
modifies this;

{
// In the generated C# code, Fmodspec is initialized to contain "this",
// FmodFieldspec is initialized to
// be empty (no field accesses in the modifies clause).
...
// In the generated C# code, a check whether "this" is in Fmodspec
// or "this.data" is in FmodFieldspec is done here.
data = 0;
...
G();
// In the generated C# code, a check whether
// Fmodspec/FmodFieldspec is a subset of
// Gmodspec/GmodFieldspec, is generated here.
...

}

method G()
modifies this;

{
// In the generated C# code, Gmodspec is initialized
// to contain "this", GmodFieldspec is initialized
// to be empty (no field accesses in the modifies clause) here.
...

}
}

For functions this works analogously. The only difference is that functions can only have read
clauses and not modifies clauses. As they are basically the same, the generated checks are very
similar.

Fresh support

For every method, two sets, say f and fspec, are used. The set fspec is initialized to contain all the
objects that are specified in fresh clauses inside postconditions. The set f is dynamically updated
whenever a new object is created. For a fresh expression (FreshExpr), a check is generated. This

30 Delfy: Dynamic Test Generation for Dafny

CHAPTER 3. SUPPORT FOR BASIC DAFNY FEATURES

check is performed at the method post state and results in an error if the accessed objects in the
fresh expression are not in f . For a method call, f of the caller is merged with fspec of the callee.
This is because according to the specification all the newly created objects in the called method
are fresh in the caller as well.

Listings 3.4 and 3.5 illustrate the fresh and modifies support with an example. Listing 3.4 shows a
Dafny method CopyNode, which makes use of a fresh clause in the postcondition. It also modifies
the data field of the node parameter. Listing 3.5 shows the corresponding generated C# code.
It is simplified and comments are added. The comments mark the code generated to support
modifies and fresh clauses in concrete and symbolic execution.

Delfy: Dynamic Test Generation for Dafny 31

CHAPTER 3. SUPPORT FOR BASIC DAFNY FEATURES

using System.Linq;
using System.Diagnostics.Contracts;
using System.Numerics;
using System.Collections.Generic;

#region Helpers
...
#endregion

public class D {
...
s = new BigInteger(0);
var oldTmp0 = n;
var _this = this;

BigInteger i = new BigInteger(0);
i = new BigInteger(0);
DafnyToDelfy.Statement(@"i := 0");
s = new BigInteger(0);
DafnyToDelfy.Statement(@"s := 0");
DafnyToDelfy.LoopBefore();

// symbolic execution support in order to try to find inputs to break the invariant
if ((s == (Dafny.Helpers.EuclideanDivision((i * (n - new BigInteger(1))), new BigInteger(2)))) &&

(i <= (n + new BigInteger(1)))) {
DafnyToDelfy.Branch(@"s == i * (n - 1) / 2 && i <= n + 1");

} else {
DafnyToDelfy.BranchNegated(@"s == i * (n - 1) / 2 && i <= n + 1");

}

// check before entering the loop
Contract.Assert((s == (Dafny.Helpers.EuclideanDivision((i * (n - new BigInteger(1))), new

BigInteger(2)))) && (i <= (n + new BigInteger(1))), "Loop invariant does not hold on entry."
);

while (i <= n)
{

var decr_decr2 = n - i;
DafnyToDelfy.Branch(@"i <= n");
DafnyToDelfy.LoopIteration();

s = s + i;

DafnyToDelfy.Statement(@"s := s + i;");
i = i + new BigInteger(1);
DafnyToDelfy.Statement(@"i := i + 1;");

// symbolic execution support in order to try to find inputs to break the invariant
if ((s == Dafny.Helpers.EuclideanDivision((i * (n - new BigInteger(1))), new BigInteger(2))) &&

(i <= (n + new BigInteger(1)))) {
DafnyToDelfy.Branch(@"(s == i * (n - 1) / 2 && i <= n + 1)");

} else {
DafnyToDelfy.BranchNegated(@"(s == i * (n - 1) / 2 && i <= n + 1)");

}

// check at the end of the loop body
Contract.Assert((s == Dafny.Helpers.EuclideanDivision((i * (n - new BigInteger(1))), new

BigInteger(2))) && (i <= (n + new BigInteger(1))), "Loop does not preserve the loop
invariant.");

}
DafnyToDelfy.LoopAfter();
return;

}
}

Listing 3.3: The generated C# code for the example in Listing 3.2 (simplified and comments
added).

32 Delfy: Dynamic Test Generation for Dafny

CHAPTER 3. SUPPORT FOR BASIC DAFNY FEATURES

method CopyNode(node: Node) returns (copyOfNode: Node)
requires node != null;
ensures copyOfNode != null;
ensures copyOfNode.data == node.data && fresh(copyOfNode);

{
copyOfNode := new Node.Init(node.data);
//copyOfNode := node;
node.data := 0;

}

method testme()
{

var node1 := new Node.Init(0);
var node2 := CopyNode(node1);

}

class Node
{

var data: int;

constructor Init(v: int)
ensures data == v;
modifies this‘data;

{
data := v;

}
}

Listing 3.4: Dafny example to illustrate the support for the modifies and fresh clause.

Delfy: Dynamic Test Generation for Dafny 33

CHAPTER 3. SUPPORT FOR BASIC DAFNY FEATURES

using System.Linq;
using System.Diagnostics.Contracts;
using System.Numerics;
using System.Collections.Generic;

#region Helpers
...
#endregion

public class D {
public static ISet<object> _f_CopyNode = new HashSet<object>();
public static ISet<object> _fSpec_CopyNode = new HashSet<object>();
public static ISet<object> _mObj_CopyNode = new HashSet<object>();
public static ISet<Frame> _mObjField_CopyNode = new HashSet<Frame>();
public static ISet<object> _mObjSpec_CopyNode = new HashSet<object>();
public static ISet<Frame> _mObjFieldSpec_CopyNode = new HashSet<Frame>();
public static ISet<object> _tmp_f_CopyNode = new HashSet<object>();
public static ISet<object> _tmp_fSpec_CopyNode = new HashSet<object>();
public static ISet<object> _tmp_mObj_CopyNode = new HashSet<object>();
public static ISet<Frame> _tmp_mObjField_CopyNode = new HashSet<Frame>();
public static ISet<object> _tmp_mObjSpec_CopyNode = new HashSet<object>();
public static ISet<Frame> _tmp_mObjFieldSpec_CopyNode = new HashSet<Frame>();
public void @CopyNode(@Node @node, out @Node @copyOfNode)
{

...
// check fresh
Contract.Ensures(D._f_CopyNode.IsSupersetOf(new HashSet<object>().Union(new object[] {Contract.

ValueAtReturn(out @copyOfNode)})));
...
var _this = this;

var _nw2 = new @Node();
D._f_CopyNode.Add(_nw2); // add _nw2 to fresh

@_nw2.@Init((@node).@data);
D._f_CopyNode.UnionWith(@Node._fSpec_Init);

// check modifies regarding the "Init" call
Contract.Assert(@Node._mObjSpec_Init.IsSubsetOf(D._mObj_CopyNode.Union(D._f_CopyNode)), "Modifies

clause violated.");
Contract.Assert(Contract.ForAll(@Node._mObjFieldSpec_Init, _o => D._mObj_CopyNode.Union(D.

_f_CopyNode).Contains(_o.obj) || D._mObjField_CopyNode.Contains(_o)), "Modifies clause
violated.");

@copyOfNode = _nw2;
(@node).@data = new BigInteger(0);

// check modifies for assignment
Contract.Assert(D._mObj_CopyNode.Union(D._f_CopyNode).Contains(@node) || D._mObjField_CopyNode.

Contains(new Frame(@node, "data")), "Modifies clause violated.");
D._fSpec_CopyNode.UnionWith(new HashSet<object>().Union(new object[] {@copyOfNode}));

}
...

Listing 3.5: The generated C# code for the example in Listing 3.4 (simplified and comments
added).

34 Delfy: Dynamic Test Generation for Dafny

CHAPTER 3. SUPPORT FOR BASIC DAFNY FEATURES

3.6 Implicit checks

For the following implicit failure possibilities we add a branch condition to the path condition pc
using the “Branch” and “BranchNegated” callbacks 3.

• Division by zero

• Modulus by zero

• Dereference of null

The idea behind this is that we want to explore these failure possibilities, i. e., if it is possible to
generate inputs that lead to such failures.

3The details of the callbacks “Branch” and “BranchNegated” are explained in Section 3.3.12.

Delfy: Dynamic Test Generation for Dafny 35

Chapter 4

Support for other interesting
Dafny features

4.1 Non-deterministic assignment statements

Listing 4.1 shows a simple Dafny example of a non-deterministic assignment statement. A variable
x is declared and non-deterministically initialized. Then, it is asserted that x is equal to 0.

method testme()
{

var x := *;
assert x == 0;

}

Listing 4.1: Example of a non-deterministic assignment statement.

Tuple<BigInteger, bool> NonDeterministicAssignStmtVar(string var,
string type);

Using the callback “NonDeterministicAssignStmtVar” a new symbolic variable with the given type
is dynamically introduced in the symbolic execution. It is then assigned to the left-hand side in
the symbolic execution. In the concrete execution it is first initialized to what is returned by the
callback. Thus, all the future uses are then taken into account in the symbolic execution. This
then results in values for the non-deterministic variables according to the solution of solving the
path condition. The calls to “NonDeterministicAssignStmtVar” in later concrete executions of the
unit under test return then corresponding C# values for these solutions.

It is worth noting that the return type of the “NonDeterministicAssignStmtVar” callback is a
tuple of a BigInteger and a boolean. We use a tuple here because the RemoteCallback-
BasedExecutor that uses the WCF framework has problems when object is returned. This
is sufficient though because at the time of writing this report Delfy supports the primitive types
and class types for the left-hand side of a non-deterministic assignment statement variable. If the
type of the left-hand side is int or nat the first item of the tuple is relevant. For type bool, the
second item is relevant. At the time of writing this report Delfy’s non-deterministic assignment
statement class type support is very weak: a left-hand side of class type is always set to null.

Delfy: Dynamic Test Generation for Dafny 37

CHAPTER 4. SUPPORT FOR OTHER INTERESTING DAFNY FEATURES

4.2 Non-deterministic if statements

Listing 4.2 shows a Dafny example of a non-deterministic if statement. Method testme takes
an integer x as argument and returns an integer. The argument x is then assigned to a newly
declared variable y. Then, either 1 or 2 is assigned to y by making use of the non-deterministic if
statement. Finally, y is returned.

method testme(x: int) returns (r: int)
{

var y := x;
if *
{

y := 1;
}
else
{

y := 2;
}

return y;
}

Listing 4.2: Example of a non-deterministic if statement.

bool NonDeterministicIfStmtVar(string var);

Using the callback “NonDeterministicIfStmtVar” a new symbolic variable is dynamically intro-
duced in the symbolic execution. First, it is treated as being false. Therefore, the else-branch
is taken and a corresponding branch condition is added to the path condition. The other branch
is then explored in the symbolic execution.

4.3 Non-deterministic while statements

Listing 4.3 shows a Dafny example of a non-deterministic while statement. Method testme
declares a variable y and initializes it to 2. It then decreases y a non-deterministic amount of
times using a non-deterministic while statement. Two errors are then simulated using assertions.
Both assertions might be violated because the number of loop iterations is non-deterministic.
Therefore, Delfy should generate all the possible number of loop iterations to be able to cover
both assertions.

BigInteger NonDeterministicWhileStmtBound(string var);
BigInteger NonDeterministicWhileStmtInit(string var);
void NonDeterministicWhileStmtIncrement(string var);
void NonDeterministicWhileStmtBranch(string var);
void NonDeterministicWhileStmtBranchNegated(string var);

The idea of supporting non-deterministic while statements is to explore all possible number of
loop iterations up to a configurable bound. The approach we came up with is to set the initial
loop counter value to all values smaller than the bound. Thus, execution after execution more
loop iterations are explored.

Concrete execution

In the concrete execution the callbacks “NonDeterministicWhileStmtBound” and “NonDetermin-
isticWhileStmtInit” are called to get the configurable bound and the current initial value of the

38 Delfy: Dynamic Test Generation for Dafny

CHAPTER 4. SUPPORT FOR OTHER INTERESTING DAFNY FEATURES

method testme() returns (r: int)
{

var y: nat := 2;

while (*)
decreases y;

{
if y == 0
{

break;
}

y := y - 1;
}

if y == 0 { assert false; }
if y == 1 { assert false; }

return y;
}

Listing 4.3: Example of a non-deterministic while statement.

loop counter, respectively. “NonDeterministicWhileStmtIncrement” is called in every loop iter-
ation to connect the concrete execution and the symbolic execution, i. e., to tell the symbolic
execution that a loop iteration is done. The callbacks “NonDeterministicWhileStmtBranch” and
“NonDeterministicWhileStmtBranchNegated” are called to update the path condition in the sym-
bolic execution.

Symbolic execution

In the callback “NonDeterministicWhileStmtInit” a new symbolic variable representing the loop
counter is dynamically created. It is then incremented in “NonDeterministicWhileStmtIncre-
ment”. The callbacks “NonDeterministicWhileStmtBranch” and “NonDeterministicWhileStmt-
BranchNegated” are similar to the “Branch” and “BranchNegated” callbacks as they add branch
conditions to the path condition. This is needed to explore all the possible number of loop itera-
tions in the symbolic execution.

Listing 4.4 shows the simplified C# code that is generated for the non-deterministic while state-
ment in the example in Listing 4.3. The generated code of method testme first initializes the
out-parameter r with 0 and y with 2. The non-deterministic while statement is supported through
callbacks. Before entering the loop, a loop counter (nonDet1) and a loop bound (tmp 2) are
initialized. The first call to “NonDeterministicWhileStmtInit” returns 0. In further calls it returns
whatever is obtained through the solution of the path condition. “NonDeterministicWhileStmt-
Bound” returns the configurable bound on the number of non-deterministic loop iterations. This
means that in the first execution the loop is entered tmp 2 times in this example. In further
executions all the possible loop iterations are considered. This is achieved with the callbacks
“NonDeterministicWhileStmtBranch”, “NonDeterministicWhileStmtBranchNegated” and “Non-
DeterministicWhileStmtIncrement”. As can be seen in the example, this is done analogously to
normal loops. The symbolic state is manipulated and thus dynamic symbolic execution explores
all possibilities. The parameter to the callbacks specifies the name of the variable in the symbolic
execution.

Delfy: Dynamic Test Generation for Dafny 39

CHAPTER 4. SUPPORT FOR OTHER INTERESTING DAFNY FEATURES

// Dafny program nondetwhilestmt01.dfy compiled into C#

using System.Linq;
using System.Diagnostics.Contracts;
using System.Numerics;
using System.Collections.Generic;
using System.Security.Cryptography;

#region Helpers
...
#endregion

public class @__default {
...
public void @testme(out BigInteger @r)
{

@r = new BigInteger(0);
...
BigInteger y = new BigInteger(0);
y = new BigInteger(2);

...

var _nonDet1 = DafnyToDelfy.NonDeterministicWhileStmtInit("_nonDet1");
var _tmp_2 = DafnyToDelfy.NonDeterministicWhileStmtBound("_nonDet1");
while (_nonDet1 < _tmp_2)
{

DafnyToDelfy.NonDeterministicWhileStmtBranch("_nonDet1");
...

y = y - new BigInteger(1);

...

_nonDet1 = _nonDet1 + BigInteger.One;
DafnyToDelfy.NonDeterministicWhileStmtIncrement("_nonDet1");

DafnyToDelfy.LoopIteration();
}
DafnyToDelfy.NonDeterministicWhileStmtBranchNegated("_nonDet1");
DafnyToDelfy.LoopAfter();

...

return;
}

}

Listing 4.4: Instrumented C# code of the example in Listing 4.3 (simplified).

40 Delfy: Dynamic Test Generation for Dafny

CHAPTER 4. SUPPORT FOR OTHER INTERESTING DAFNY FEATURES

4.4 Functions with no body

function method FunctionWithNoBody(x: int) : int
requires 0 < x < 3;
ensures FunctionWithNoBody(x) == 2;

method testme() returns (r: int, s: int)
{

s := FunctionWithNoBody(1);
}

Listing 4.5: Example of a function with no body.

As Dafny is a language designed for static verficiation it is possible to define functions without
a body. Listing 4.5 shows an example. The function FunctionWithNoBody does not define a
body but a precondition and a postcondition. This is useful in a verification language because
there often the specifications are of interest and not the actual detailed implementation.

But this poses a problem for dynamic test generation. For example we cannot compile the C#
code that results by translating the example in Listing 4.5. The reason is that if we simply generate
an empty method for the function FunctionWithNoBody we get a compilation error because
the method must return a value.

The idea we implemented is to call back into Delfy and ask for a value that satisfies the specifi-
cations of the function. Taking the example in Listing 4.5, we would generate a return statement
with a call to “GetFeasibleFunctionReturnValue”. At the time of writing this report Delfy only
supports functions with no body with a result type of int, nat and bool. This is why the return
type of “GetFeasibleFunctionReturnValue” is Tuple<BigInteger, bool>.

Tuple<BigInteger, bool> GetFeasibleFunctionReturnValue(string expr,
string fName,
string type);

In the example we would then always return 2 in a concrete execution.

4.5 Sets and sequences

4.5.1 Challenges

In order to support sets and sequences we needed to come up with a way to encode them for the
prover back end. Because we only implemented one back end, namely Z3, this is what we need
sets and sequences to be encoded for.

Listing 4.6 shows a Dafny program with a set membership assertion to illustrate this. In the
dynamic test generation we want to generate two input sets to the testme method. Once the set
contains the integer 1 and once it does not.

method testme(s: set<int>)
{

assert 1 in s;
}

Listing 4.6: Example for a condition with a Dafny set membership assertion.

Delfy: Dynamic Test Generation for Dafny 41

CHAPTER 4. SUPPORT FOR OTHER INTERESTING DAFNY FEATURES

Our first approach was to translate the Boogie set axioms that Dafny uses for the static verification
to Z3. A set is encoded as an array of booleans. An integer x is in the set if and only if the
corresponding entry in the array is true. The set operations are then axiomatized.

Z3 provides interpretations, i. e., concrete assignments to variables in the condition. This is called
a model. It can be queried after Z3 has been called to solve a given condition. It turned out that
Z3 is not able to come up with appropriate models in all cases. In fact for the majority of cases
Z3 returns the status unknown. Even though the status is unknown Z3 still provides a model
but in these cases the model is simply a “candidate” model and does not have to be precise. We
therefore cannot make use of this.

The axioms work for Dafny because the goal of the Dafny verifier is different than for Delfy. The
Dafny verifier wants to prove an assertion. For this, the return value unknown is good enough
because in this case Dafny can state that the assertion might not hold. But for Delfy this is
different. In dynamic symbolic execution concrete input values are needed. If no concrete input
values can be constructed, the unit under test cannot be concretely executed. For example, assume
we have a condition that states that 1 must be in a set s. For the Dafny verifier it is enough to
generate a verification condition, which can either be true or false, that encodes the condition that
1 must be in s. But Delfy actually then needs a way to construct two sets. Once with and once
without a 1. For being able to do this, an appropriate model must be provided by Z3.

We ended up using the extended array theory [5] that is available in Z3. In Section 4.5.2 we
explain how we make use of this.

4.5.2 Set support using Z3

Using Z3’s extended array theory we are able to encode set theory with boolean algebra1. For this
we make use of the map function that is provided by Z3. This function allows to apply arbitrary
functions to arrays [17].

With this approach we are able to encode the set operations equality, inequality, complement,
intersection, union, difference, subset and membership in the following way.

We encode the sets as arrays with a boolean element type and an index type that corresponds
to the type of the set. For example, a set<int> would be encoded using an array mapping
integers to booleans. Whether a value is in the set or not, is encoded by setting the entry of the
corresponding index to true or false, respectively.

Set equality and inequality is directly supported by Z3’s extended array theory, i. e., the Z3 equality
and inequality operations are supported for array types.

In order to support intersection, union and complement, we make use of boolean algebra and Z3’s
support to map arbitrary functions to arrays. Intersection is encoded by applying boolean “and”
element-wise to the elements of both arrays, union is encoded by applying boolean “or” element-
wise to the elements of both arrays and complement is encoded by applying boolean “not” to all
the elements of an array.

Set membership is encoded by stating that the entry for a particular index must be true in the
array.

Set difference and subset are encoded using the following set identities. Let A and B be two
arbitrary sets. Then, difference is encoded using the following identity: A\B = A ∩ B. Subset is
encoded using the identity A ⊆ B ⇐⇒ A = A ∩ B and proper subset using A ⊂ B ⇐⇒ (A =
A ∩B ∧A 6= B).

1This approach was suggested by Leonardo de Moura (http://stackoverflow.com/questions/18827645/
is-there-a-way-to-use-z3-to-get-models-for-constraints-involving-sets).

42 Delfy: Dynamic Test Generation for Dafny

http://stackoverflow.com/questions/18827645/is-there-a-way-to-use-z3-to-get-models-for-constraints-involving-sets
http://stackoverflow.com/questions/18827645/is-there-a-way-to-use-z3-to-get-models-for-constraints-involving-sets

CHAPTER 4. SUPPORT FOR OTHER INTERESTING DAFNY FEATURES

Set cardinality is one main operation that cannot be encoded this way. The reason for this is
that there is no support in the extended array theory to determine how many entries in an array
have a specific value. One possible way would be to generate a condition that tries all possibilities
but the problem is that there are infinitely many. For example for one element we would need
to generate a condition that tests whether the first, second, third, . . . entries have the particular
value. Then for all possibilities of two, three, . . . elements the same must be done. This is not
feasible.

Listing 4.7 shows an example of how we encode the set union operation for the case of sets of
integers. Line 1 defines a parametric type “Set” of “T” to be an array with index type “T” and
element type boolean. Lines 2 − 4 declare three sets A,B and C as sets of integers. We want a
model such that A contains the integer 1 and B contains the integer 2. This is encoded in Z3 on
lines 6 and 7 by using assertions. An assertion requires a boolean argument. Thus, line 6 states
that the entry of set A at index 1 must be true. Similarly, line 7 states that the entry of set B at
index 2 must be true. Furthermore, we want C to be the union of A and B, i. e., C = A ∪B. We
do this by applying the boolean function “or” to A and B. Line 8 states that C must be equal to
taking the element-wise boolean “or” of A and B. Finally, line 10 tells Z3 to check satisfiability
of all the conditions given using assertions. Line 11 queries the model.

Listing 4.8 shows the corresponding output of Z3. It can be seen that Z3 answers “satisfiable”
(indicated by “sat” on line 1) and indeed C contains 1 and 2 in the model provided by Z3. This
is shown in the model on lines 2− 19. Lines 3− 8 define A, B and C, respectively. They are just
wrappers for the functions k!0, k!1 and k!2, respectively. On lines 10 and 11 we see that k!0 is
true if its argument is 1 and false otherwise. This is encoded using Z3’s “if-then-else” expression
(“ite”). Similarly, lines 13 and 14 show that k!1 is true if its argument is 2 and false otherwise.
And k!2 is true if its argument is either 2 or 1.

1 (define-sort Set (T) (Array T Bool))
2 (declare-const A (Set Int))
3 (declare-const B (Set Int))
4 (declare-const C (Set Int))
5
6 (assert (select A 1))
7 (assert (select B 2))
8 (assert (= C ((_ map or) A B)))
9

10 (check-sat)
11 (get-model)

Listing 4.7: Set union example (in the SMT 2.0 [2] specification language): C = A ∪B.

4.5.3 Sequence support

Sequences are encoded in Z3 as a pair containing the length of the sequence and a function that
maps indices to elements. Based on this pair the sequence operations are then encoded using
universal and existential quantifiers.

In the following Sections the support for the sequence operations length, equality, inequality,
concatenation and membership is explained. For this, let s and t be arbitrary sequences. Then
|s| denotes the length of the sequence. The pair (slength, selements) denotes the pair that encodes
the sequence for Z3: slength is defined as an integer constant in Z3 and represents the length of s;
selements denotes the function that maps the indices of s to the corresponding elements.

Delfy: Dynamic Test Generation for Dafny 43

CHAPTER 4. SUPPORT FOR OTHER INTERESTING DAFNY FEATURES

1 sat
2 (model
3 (define-fun A () (Array Int Bool)
4 (_ as-array k!0))
5 (define-fun B () (Array Int Bool)
6 (_ as-array k!1))
7 (define-fun C () (Array Int Bool)
8 (_ as-array k!2))
9 (define-fun k!0 ((x!1 Int)) Bool

10 (ite (= x!1 1) true
11 false))
12 (define-fun k!1 ((x!1 Int)) Bool
13 (ite (= x!1 2) true
14 false))
15 (define-fun k!2 ((x!1 Int)) Bool
16 (ite (= x!1 2) true
17 (ite (= x!1 1) true
18 false)))
19)

Listing 4.8: The Z3 output for the example in Listing 4.7 (in the SMT 2.0 [2] specification
language).

Length

In the Z3 encoding, |s| is encoded as slength.

Equality

The expression s == t is encoded in Z3 as

slength = tlength ∧ (∀i · (0 ≤ i < slength ∧ 0 ≤ i < tlength) =⇒ (selements(i) = telements(i))).

Listing 4.9 shows how this looks in the SMT 2.0 [2] language. On lines 1 and 2 we declare the
length constant and the elements function for the sequence s. Similarly, they are declared for
the sequence t on lines 4 and 5. Lines 7 and 8 then encode the equality relation as stated in
mathematical terms above. Line 9 is added to make the example more interesting. We say that
the sequence s should have at least one element. Without this line a trivial solution, namely s
and t are empty, is possible. Line 10 checks for satisfiability and line 11 queries the model.

Listing 4.10 shows the result of this SMT snippet. Line 1 shows that it is satisfiable (indicated by
“sat”). Lines 2− 11 is the model. It shows that the lengths are 1 (lines 3− 4 and 5− 6) and that
the elements must be the same (lines 7 − 10). In this case, Z3 even takes the same function for
both sequences.

Inequality

The expression s != t is encoded in Z3 as

¬(slength = tlength ∧ (∀i · (0 ≤ i < slength ∧ 0 ≤ i < tlength) =⇒ (selements(i) = telements(i)))).

44 Delfy: Dynamic Test Generation for Dafny

CHAPTER 4. SUPPORT FOR OTHER INTERESTING DAFNY FEATURES

1 (declare-const s-length Int)
2 (declare-fun s-elements (Int) Int)
3
4 (declare-const t-length Int)
5 (declare-fun t-elements (Int) Int)
6
7 (assert (= s-length t-length))
8 (assert (forall ((i Int)) (=> (and (<= 0 i) (< i s-length)) (= (s-elements i) (t-

elements i)))))
9 (assert (> s-length 0))

10 (check-sat)
11 (get-model)

Listing 4.9: Sequence equality example (in the SMT 2.0 [2] specification language): s == t.

1 sat
2 (model
3 (define-fun t-length () Int
4 1)
5 (define-fun s-length () Int
6 1)
7 (define-fun t-elements ((x!1 Int)) Int
8 1)
9 (define-fun s-elements ((x!1 Int)) Int

10 (t-elements x!1))
11)

Listing 4.10: The Z3 output for the example in Listing 4.9 (in the SMT 2.0 [2] specification
language).

Concatenation

The expression r == s + t, where r is a set, is encoded in Z3 as

rlength = slength + tlength ∧ (∀i, j·(0 ≤ i ∧ i < slength =⇒ relements(i) = selements(i))

∧(0 ≤ j ∧ j < tlength =⇒ relements(slength + j) = telements(j))).

Membership

The expression x in s, where the type of x is the type of the elements in s, is encoded in Z3 as

∃i · 0 ≤ i < slength ∧ x = selements(i).

Delfy: Dynamic Test Generation for Dafny 45

Chapter 5

Static analysis for generating
inputs which cover selected errors

5.1 Motivation

Delfy’s dynamic test generation engine explained so far explores all the branches of a unit under
test with some limitations (6.3.1). The goal is to achieve maximum branch coverage and thus
to find the maximum number of errors that is possible under the limitations. However, one is
not always interested in finding the highest number of errors that is possible. For example in
system testing, i. e., in testing whole programs, not units, it is often not feasible to perform a
full exploration of the branches. Nonetheless, it is important to know whether particular parts
of a program contain errors if executed as a whole and not separately as a unit. In this case it
is desirable to be able to select a specific statement and generate inputs that cover exactly this
statement. But also in unit testing there are cases for which a full exploration is not feasible. Such
cases benefit from the static analysis as well because not all paths must be executed.

In the context of Dafny and Delfy this is especially useful because Delfy complements Dafny’s
automatic verifier. An example could be that Dafny outputs that a postcondition might not hold.
We then cannot be sure whether it is indeed violated in all cases or Dafny is just not able to tell
automatically. In this case it would be useful to select this particular postcondition. Then, the
idea is to use Delfy to generate inputs that cover only this postcondition. This pays off if it is not
feasible for Delfy to explore the whole program.

5.2 Static symbolic execution

Our approach to generate path conditions that cover only a particular statement is static symbolic
execution. The idea behind this is as it is described in Section 1.2.3. But whereas we run the unit
under test concretely side-by-side with the symbolic execution in dynamic test generation (details
in Section 1.2.3), in static symbolic execution we just consider the source code statically. To be
more precise this means that we consider all the possible ways the symbolic state might look like
after a particular statement. For every possibility we continue the symbolic execution with the
next statement.

For example for the if statement

...
if 0 < x {

Delfy: Dynamic Test Generation for Dafny 47

CHAPTER 5. STATIC ANALYSIS FOR GENERATING INPUTS WHICH COVER
SELECTED ERRORS

...
} else {

...
}
...

the two possibilities 0 < x and ¬(0 < x) are considered because statically we do not know which
one holds in a concrete execution. In the first case we add 0 < x to the path condition and update
the symbolic state according to the statements in the then-branch. In the second case we add
¬(0 < x) to the path condition and update the symbolic state according to the statements in the
else-branch. All the possible resulting symbolic states are then considered in the statements that
follow this if statement.

5.2.1 Control Flow Graph (CFG)

A control flow graph is built in order to know which paths need to be considered to reach the
particular statements. First, the statements to cover are found in a top-down manner. While
walking down the AST looking for the target statements, the CFG is built. By building the CFG
in this way, we only build the necessary parts of the CFG. I. e., nodes that are further down in the
AST than the target nodes are not considered at all. Then, all the target nodes are considered
one after the other as starting points for a bottom-up traversal of the CFG. These bottom-up
traversals mark the Dafny AST nodes for the static symbolic execution. The nodes are marked in
such a way that the static symbolic execution knows which branches need to be taken into account
to reach the target statements. As an example for an if statement we mark whether we need to
generate a path condition for the then-branch, for the else-branch or for both. This information
is then used during the static symbolic execution to decrease the number of path conditions we
generate.

5.2.2 Design and Implementation

For the static symbolic execution we designed a new class StaticSymbolicExecutor. This
class is able to generate all the possible symbolic states given a Dafny program and a target
location. It performs a static symbolic execution on the Dafny program AST. In particular it
therefore generates all possible path conditions that cover the given location. Every such path
condition can then be handed over to the Delfy dynamic test generation engine. Delfy is then able
to solve the conditions as usual and concretely run the program with the corresponding concrete
inputs.

The Dafny features are handled the same as they are in the symbolic execution of the dynamic
test generation engine. Details can therefore be found in Chapters 3 and 4 in the Subsection
“Symbolic execution” of a particular feature.

5.2.3 Challenges

State explosion

In static symbolic execution we perform model checking. Model checking is a technique for auto-
matically verifying hardware and software systems. It represents a system as a finite set of states
and explores the state space. The size of the state space grows exponentially with the number of
state variables. This is called the “state explosion problem” [3].

48 Delfy: Dynamic Test Generation for Dafny

CHAPTER 5. STATIC ANALYSIS FOR GENERATING INPUTS WHICH COVER
SELECTED ERRORS

In our case this means that there are cases for which we generate exponentially many possible
path conditions. We deal with this problem in two ways. Firstly, we take the information the
CFG provides and generate only those path conditions that actually lead to errors. Secondly, we
try to be conservative. This means that during static analysis we prune the AST in order to avoid
generating too many path conditions. This means that after we built the CFG, when we walk
down the AST with the marked nodes, we not only stop at target statements but also statements
which we consider to be too expensive to fully cover in the static analysis, e. g. while statements.
The reason for this is that already a small number of loop iterations - especially of nested loops -
yields too many path conditions. But when we then hand over the generated path conditions to
the dynamic test generation engine, the generated path conditions are treated as prefixes. This
means that all the parts that were pruned during the static analysis are explored during dynamic
test generation.

Listing 5.1 shows an example of a Dafny program for which there are exponentially many possible
path conditions for reaching an error statement, in particular to reach the last assertion in the
method body. For every loop iteration of the outer loop in the “testme method” there are three
possible loop iterations of the inner loop. Moreover, for every such path condition there are two
more for the first, second, third, . . . if statements. All these numbers multiply. Thus, this example
illustrates that already a small bound on the number of non-deterministic loop iterations and a
small number of if statements can mean that the static analysis is not feasible without pruning.

method testme(aa: int, bb: int) returns (a: int, b: int)
{

a, b := aa, bb;
while *

decreases 2 - a;
{

if a >= 2 { break; }

a := a + 1;

b := 0;
while *

decreases 2 - b;
{

if b >= 2 { break; }
b := b + 1;

}
}

if a == 0 && b == 0 { assert false; }
if a == 1 && b == 0 { assert false; }
if a == 1 && b == 1 { assert false; }
if a == 1 && b == 2 { assert false; }
if a == 2 && b == 0 { assert false; }
if a == 2 && b == 1 { assert false; }
if a == 2 && b == 2 { assert false; }

assert false;
}

Listing 5.1: Dafny example with exponentially many path conditions for reaching the last
statement of the method body.

Delfy: Dynamic Test Generation for Dafny 49

CHAPTER 5. STATIC ANALYSIS FOR GENERATING INPUTS WHICH COVER
SELECTED ERRORS

5.3 Visual Studio integration enhancement

We extended Visual Studio extension that is explained in Section 2.4. If Dafny shows an error this
error can be selected. If Delfy is run and an error is selected, the static analysis generates path
conditions only for the selected error location. These are then handed over to the dynamic test
generation engine. As a further step, they are solved and the unit under test is concretely run for
the particular concrete inputs.

Figure 5.1 shows the result of running Delfy after an error has been selected. The example contains
a method testme, which takes two integers, x and y, as arguments. If x is greater than zero, an
error is simulated by the statement assert false. Similarly, if y is greater than zero, an error
is simulated. The Dafny extension shows that both assertions might not hold. This is indicated
by the squiggly red lines and the red dots. We selected the assertion that is reached if y is greater
than zero and ran Delfy. The inputs that Delfy generates show that only one input is generated.
It covers the selected error with the concrete values x = 0 and y = 1.

Figure 5.1: The Delfy Visual Studio extension with a selected error.

50 Delfy: Dynamic Test Generation for Dafny

Chapter 6

Results

6.1 Test suite

In order to evaluate the Delfy tool that was built during this Master’s thesis project we created
a test suite containing Dafny programs. The main Dafny code base that we have available is the
test suite of the Dafny project itself. In addition to those test cases the test suite we used for
evaluating Delfy contains all the tests that we created during the design and implementation phase
of the project. The test suite contains 391 Dafny programs.

6.2 Evaluation

6.2.1 Feature support

We investigated the test cases in order to see how many Delfy is able to handle. 68 of the 391
Dafny programs in the test suite cannot be handled by Delfy because of missing feature support.
Thus, about 82% of the test cases in the test suite can be explored using Delfy. Section 6.3.2
contains an overview of the unsupported features.

6.2.2 Comparison of dynamic test generation with and without static
analysis (SA)

We implemented the static analysis in order to be able to only generate inputs that cover particular
statements. The main idea is to only cover statements for which the Dafny verifier reports an error.

In this Section we describe the experiments we did to see whether this is helpful in reducing the
number of inputs we generate. We then present our results.

We conducted the experiments in the following way. We did two different kinds of experiments.
One, in which we selected tests from the test suite that we then adapted before running Delfy.
And a second one, in which we ran Delfy for all the tests in the test suite as they are.

For the first experiment we took a method to test from the test suite. We then created three
different versions of this test. The first one verifies. For the other two tests we introduced different
errors. The errors were introduced in verification constructs by removing them completely or
partially. For example, a modifies clause can be completely removed to create a meaningful error.

Delfy: Dynamic Test Generation for Dafny 51

CHAPTER 6. RESULTS

We then ran Delfy with and without static analysis on the selected and adapted tests in order to
compare the number of generated inputs. Table 6.1 summarizes the results of the experiments.
The first column contains the name of the test case. The second column the description of the
different versions of this test case and the other two columns the number of inputs generated with
and without static analysis, respectively. This clearly shows that if there are no errors in a test it
is always better with the static analysis. The reason is that we then generate no path conditions
at all. Therefore, we do not run Delfy and so we do not generate any inputs. For the other cases
the static analysis is not always of much help. The reason is that the static analysis is conservative
as explained in Section 5.2.3. In order for the static analysis to be fast we prune the AST. So
for example if a test contains a loop as the first statement then the static analysis does not help
because we are conservative and prune the loop during the static analysis.

Test case Changes # w/ SA # w/o SA

AdvancedLHS.dfy
verified 0 2
introduced error in modifies clause 0 0
introduced an additional assertion er-
ror

0 2

BinarySearch01.dfy
verified 0 17
introduced error in postcondition 16 17
introduced error in loop invariant 17 17

KatzManna01.dfy
verified 0 1
introduced error in loop invariant 22 22
introduced error in loop termination 12 12

KatzManna02.dfy
verified 0 11
introduced error in loop invariant 8 9
introduced error in loop termination 4 5

KatzManna03.dfy
verified 0 0
introduced error in modifies clause 0 0
introduced error in loop invariant 0 0

loopinvariants03.dfy
verified 0 4
introduced error in loop invariant 3 3
introduced error in postcondition 3 3

modifies01.dfy
verified 0 1
introduced error in fresh expression 1 1
introduced error in modifies clause 1 1

reads01.dfy
verified 0 1
introduced error in reads clause 0 1
introduced another error in reads
clause

0 1

seq02.dfy
verified 0 4
introduced assertion error 1 4
introduced two additional assertion er-
rors

4 4

set08.dfy
verified 0 1
introduced assertion error 1 1
introduced an additional assertion er-
ror

2 3

Table 6.1: Comparison results of the dynamic test generation with and without static analysis.
Every line corresponds to one experiment. The first column states the name of the test case. The
second column explains the test, i. e., whether it verifies or the changes we made. The other two
columns contain the number of generated inputs with and without static analysis, respectively.
The loop iteration bound was set to 10 and the non-deterministic loop iteration bound to 2. The
generational search strategy was used with 3 as the bound on the number of generations (search
depth).

52 Delfy: Dynamic Test Generation for Dafny

CHAPTER 6. RESULTS

For the second experiment we ran Delfy with and without static analysis on the whole test suite,
i. e., on all the tests as they are in the test suite. The results of this are summarized in Table 6.2.
The first column contains the name of the test case. The second and third column show the
number of inputs generated with and without static analysis, respectively. The rows in which
both these columns contain a zero are the test cases that cannot be handled by Delfy due to
unsupported features. What this table shows us is that using the static analysis helps in most
cases. This is because it avoids generating successful inputs, i. e., inputs that do not cover an
unverified statement.

Test case # w/ SA # w/o SA
0ltx 0lty01.dfy 2 3
0ltx 0lty02.dfy 2 3
alternativeloopstmt01.dfy 0 4
alternativestmt01.dfy 1 3
assert01.dfy 1 2
assert02.dfy 1 2
assert03.dfy 1 2
assert04.dfy 1 2
assert05.dfy 1 2
assignment01.dfy 1 2
assignment02.dfy 1 2
assignment03.dfy 0 1
assignsuchthat01.dfy 0 1
assignsuchthat02.dfy 0 1
assume01.dfy 0 1
assume02.dfy 0 4
class01.dfy 1 2
class02.dfy 1 3
class03.dfy 1 2
class04.dfy 1 2
class05.dfy 1 3
class06.dfy 2 4
class07.dfy 1 2
classargument01.dfy 1 2
classargument02.dfy 2 3
classargument03.dfy 1 4
classargument04.dfy 2 4
classargument05.dfy 1 3
classargument06.dfy 1 5
classargument07.dfy 4 6
classargument08.dfy 2 3
classargumentscope01.dfy 0 1
classbinarysearchtree01.dfy 5 6
division01.dfy 1 2
exists01.dfy 1 2
fibonacci01.dfy 0 4
fibonacci02.dfy 0 4
forall01.dfy 1 2
function01.dfy 2 5
function02.dfy 2 5
function03.dfy 2 4
functiontermination01.dfy 0 4

Delfy: Dynamic Test Generation for Dafny 53

CHAPTER 6. RESULTS

functiontermination02.dfy 0 4
functiontermination03.dfy 0 4
functiontermination04.dfy 0 2
functionwithnobody01.dfy 0 1
gcd01.dfy 1 11
gcd02.dfy 2 3
gcd03.dfy 2 3
gcd04.dfy 1 3
generational01.dfy 1 15
ifthenelseexpression01.dfy 1 2
ifthenelseexpression02.dfy 1 2
ifthenelseexpression03.dfy 1 3
integers01.dfy 1 2
integers02.dfy 1 2
intermediatepresentation01.dfy 0 4
intermediatepresentation02.dfy 0 4
intermediatepresentationfreshexpr01.dfy 0 1
intermediatepresentationfunctiontermination01.dfy 0 4
intermediatepresentationfunctiontermination02.dfy 0 2
intermediatepresentationmodifies01.dfy 1 1
intermediatepresentationnondetwhilestmt01.dfy 2 3
intermediatepresentationreads01.dfy 0 1
intermediatepresentationwhilestmtinvariant01.dfy 1 3
intermediatepresentationwhilestmttermination01.dfy 1 1
linear01.dfy 1 4
listinsert01.dfy 1 1
loopinvariants01.dfy 0 7
loopinvariants02.dfy 1 8
loopinvariants03.dfy 0 4
loopinvariants04.dfy 1 3
looptermination01.dfy 1 4
looptermination02.dfy 1 6
looptermination03.dfy 1 1
map01.dfy 0 1
methodtermination01.dfy 0 4
methodtermination02.dfy 0 4
methodtermination03.dfy 0 4
methodtermination04.dfy 1 2
modifies01.dfy 0 1
modifies02.dfy 0 1
modifies03.dfy 1 1
modulus.dfy 1 2
multiassignment01.dfy 1 1
multiassignment02.dfy 0 4
multiset01.dfy 0 1
naturals01.dfy 0 1
naturals02.dfy 1 2
nondeterministicassignstmt01.dfy 1 2
nondeterministicassignstmt02.dfy 1 3
nondeterministicassignstmt03.dfy 1 2
nondeterministicassignstmt04.dfy 1 4

54 Delfy: Dynamic Test Generation for Dafny

CHAPTER 6. RESULTS

nondeterministicifstmt01.dfy 0 2
nondeterministicifstmt02.dfy 0 4
nondeterministicifstmt03.dfy 2 2
nondeterministicifstmt04.dfy 2 2
nondeterministicifstmt05.dfy 3 3
nondeterministicifstmt06.dfy 1 3
nondeterministicifstmt07.dfy 4 5
nondeterministicifstmt08.dfy 1 4
nondeterministicwhilestmt01.dfy 2 3
nondeterministicwhilestmt02.dfy 1 5
nondeterministicwhilestmt03.dfy 1 2
nondeterministicwhilestmt04.dfy 1 1
nondeterministicwhilestmt05.dfy 1 3
nondeterministicwhilestmt06.dfy 1 13
nondeterministicwhilestmt07.dfy 1 7
nonlinear01.dfy 1 3
null01.dfy 1 2
null02.dfy 1 2
null03.dfy 2 3
null04.dfy 1 3
prepost01.dfy 1 3
prepost02.dfy 0 2
prepost03.dfy 0 1
prepost04.dfy 0 1
prepost05.dfy 0 4
prepost06.dfy 1 5
reads01.dfy 0 1
reads02.dfy 0 1
reads03.dfy 0 1
reads04.dfy 0 1
reads05.dfy 0 1
scope01.dfy 0 1
seq01.dfy 0 1
seq02.dfy 1 4
seq03.dfy 1 2
seq04.dfy 1 2
seq05.dfy 1 4
seq06.dfy 0 1
seq07.dfy 0 1
seq08.dfy 1 2
seq09.dfy 1 2
seq10.dfy 1 1
seq11.dfy 1 3
seq12.dfy 0 1
seq13.dfy 1 2
seq14.dfy 0 2
seq15.dfy 1 2
seq16.dfy 0 0
seq17.dfy 0 0
seqconcatenation01.dfy 1 2
seqconcatenation02.dfy 1 2

Delfy: Dynamic Test Generation for Dafny 55

CHAPTER 6. RESULTS

seqconcatenation03.dfy 1 2
seqconcatenation04.dfy 1 2
seqconcatenation05.dfy 1 1
seqconcatenation06.dfy 1 1
seqcontains01.dfy 1 2
seqcontains02.dfy 1 2
seqcontains03.dfy 1 2
seqcontains04.dfy 1 2
seqcontains05.dfy 1 2
seqcontains06.dfy 1 2
seqcontains07.dfy 1 2
seqcontains08.dfy 1 2
seqequality01.dfy 1 2
seqequality02.dfy 1 2
seqequality03.dfy 1 2
seqequality04.dfy 1 2
seqlength01.dfy 1 2
seqlength02.dfy 1 2
seqselect01.dfy 1 2
seqselect02.dfy 1 2
set01.dfy 0 1
set02.dfy 1 2
set03.dfy 1 2
set04.dfy 1 2
set05.dfy 1 4
set06.dfy 1 4
set07.dfy 0 1
set08.dfy 1 1
set09.dfy 1 2
set10.dfy 0 0
set11.dfy 0 0
setdifference01.dfy 1 2
setdifference02.dfy 1 2
setequality01.dfy 1 2
setequality02.dfy 1 2
setequality03.dfy 1 2
setequality04.dfy 1 2
setintersection01.dfy 1 2
setintersection02.dfy 1 2
setmembership01.dfy 1 2
setmembership02.dfy 1 2
setmembership03.dfy 1 2
setmembership04.dfy 1 2
setmembership05.dfy 1 2
setmembership06.dfy 1 2
setmembership07.dfy 1 2
setmembership08.dfy 1 2
setpropersubset01.dfy 1 2
setpropersubset02.dfy 1 2
setsubset01.dfy 1 2
setsubset02.dfy 1 2

56 Delfy: Dynamic Test Generation for Dafny

CHAPTER 6. RESULTS

setunion01.dfy 1 2
setunion02.dfy 1 2
squareRoot.dfy 1 2
test001.dfy 1 2
test002.dfy 1 2
test003.dfy 1 3
test004.dfy 1 2
test005.dfy 2 4
test006.dfy 1 3
test007.dfy 1 15
test008.dfy 1 2
test009.dfy 1 1
test010.dfy 2 6
test011.dfy 1 3
test012.dfy 1 2
unary01.dfy 1 2
unary02.dfy 0 1
zunebug01.dfy 1 4
Add01.dfy 1 2
Add02.dfy 1 2
AdvancedLHS.dfy 0 2
AlternativeStatements.dfy 1 6
BDD.dfy 0 0
BinarySearch01.dfy 1 17
BinarySearch02.dfy 1 17
BinaryTree.dfy 0 0
BreadthFirstSearch.dfy 0 0
Breaks01.dfy 0 7
Breaks02.dfy 2 6
CachedContainer.dfy 0 0
CalcExample.dfy 0 0
Calculations.dfy 0 0
Calls.dfy 1 2
Celebrity.dfy 0 0
ChainingOperators.dfy 1 1
Classics.dfy 0 1
Classics01.dfy 0 1
Classics02.dfy 0 4
Combinators.dfy 0 0
Composite.dfy 0 0
COST-verif-comp-2011-1-MaxArray.dfy 0 0
COST-verif-comp-2011-2-MaxTree-class.dfy 0 0
COST-verif-comp-2011-2-MaxTree-datatype.dfy 0 0
COST-verif-comp-2011-3-TwoDuplicates.dfy 0 0
COST-verif-comp-2011-4-FloydCycleDetect.dfy 0 0
Cube.dfy 1 1
Cubes.dfy 0 1
Dijkstra.dfy 0 0
ExtensibleArray.dfy 0 0
ExtensibleArrayAuto.dfy 0 0
Filter.dfy 0 0

Delfy: Dynamic Test Generation for Dafny 57

CHAPTER 6. RESULTS

FindZero.dfy 0 1
FunctionSpecifications01.dfy 1 4
FunctionSpecifications02.dfy 1 4
FunctionSpecifications03.dfy 1 4
FunctionSpecifications04.dfy 1 3
FunctionSpecifications05.dfy 1 3
FunctionSpecifications06.dfy 0 0
FunctionSpecifications07.dfy 0 0
FunctionSpecifications08.dfy 0 0
Induction01.dfy 1 4
Induction02.dfy 0 4
Induction03.dfy 0 4
Induction04.dfy 0 4
InductionVsCoinduction.dfy 0 0
InfiniteTrees.dfy 0 0
Intervals.dfy 0 0
KatzManna01.dfy 0 1
KatzManna02.dfy 0 11
KatzManna03.dfy 1 1
LazyInitArray.dfy 0 1
ListContents.dfy 0 0
ListCopy.dfy 0 0
ListReverse.dfy 0 0
MajorityVote.dfy 0 0
MatrixFun.dfy 0 1
MonotonicHeapstate.dfy 0 1
MoreInduction.dfy 0 0
MultiAssignments01.dfy 2 3
MultiAssignments02.dfy 2 6
Paulson.dfy 0 0
pow2.dfy 0 4
PriorityQueue.dfy 0 1
Problem1-SumMax.dfy 0 1
Problem2-Invert.dfy 0 0
Problem3-FindZero.dfy 0 0
Problem4-Queens.dfy 0 0
Problem5-DoubleEndedQueue.dfy 0 0
Queue01.dfy 0 0
Queue02.dfy 0 0
ReturnTests01.dfy 0 1
ReturnTests02.dfy 0 1
ReturnTests03.dfy 0 1
ReturnTests04.dfy 0 1
ReturnTests05.dfy 0 1
ReturnTests06.dfy 0 1
RingBuffer.dfy 0 1
RingBufferAuto.dfy 0 0
Rippling.dfy 0 0
SchorrWaite-stages.dfy 0 0
SchorrWaite.dfy 0 0
SegmentSum01.dfy 1 2

58 Delfy: Dynamic Test Generation for Dafny

CHAPTER 6. RESULTS

SegmentSum02.dfy 0 10
SeparationLogicList.dfy 0 0
Simple.dfy 0 0
SimpleCoinduction.dfy 0 0
SimpleInduction.dfy 0 0
Skeletons.dfy 0 0
SmallTests.dfy 0 0
SnapshotableTrees.dfy 0 0
SparseArray.dfy 0 1
SplitExpr.dfy 0 1
StatementExpressions.dfy 0 1
StoreAndRetrieve.dfy 0 0
Streams.dfy 0 0
Substitution.dfy 0 0
SumOfCubes.dfy 0 1
Superposition.dfy 0 1
TailCalls.dfy 0 0
Termination.dfy 0 0
TerminationDemos01.dfy 0 4
TerminationDemos02.dfy 1 3
TerminationDemos03.dfy 2 5
TerminationDemos04.dfy 0 0
Tree.dfy 0 0
TreeBarrier.dfy 0 0
TreeDatatype.dfy 0 0
TreeFill.dfy 0 0
TuringFactorial.dfy 0 4
Two-Way-Sort.dfy 0 1
TypeAntecedents.dfy 0 0
TypeParameters.dfy 0 0
TypeTests.dfy 0 0
UltraFilter.dfy 0 0
UnboundedStack.dfy 0 1
vsi b1.dfy 0 0
vsi b2.dfy 0 1
vsi b3.dfy 0 0
vsi b4.dfy 0 0
vsi b5.dfy 0 0
vsi b6.dfy 0 0
vsi b7.dfy 0 0
vsi b8.dfy 0 0
WideTrees.dfy 0 1
Zip.dfy 0 1

Table 6.2: Comparison results of the dynamic test generation with and without static analysis
for the tests in the test suite. The first column states the name of the test case. The other two
columns contain the number of generated inputs with and without static analysis, respectively.
The loop iteration bound was set to 10 and the non-deterministic loop iteration bound to 2. The
generational search strategy was used with 3 as the bound on the number of generations (search
depth).

Delfy: Dynamic Test Generation for Dafny 59

CHAPTER 6. RESULTS

6.2.3 Comparison with the Boogie Verification Debugger (BVD)

The Boogie Verification Debugger is a tool to help users understand the potential program errors
reported by a program verifier. Although the user interface is similar to a dynamic debugger,
the debugging happens statically. The different levels of abstraction between the theorem prover
counterexample and the program make such a debugger difficult to construct. BVD instruments
the verification conditions it hands over to the theorem prover. It is then able to reconstruct states
and memory values that the user can understand [10].

In the process of manually inspecting the results of Delfy for different Dafny programs we also
used BVD. We recognized patterns in the tests. There are patterns for which a concrete input
leading to a failure is enough to understand the problem. But there are also patterns for which in
addition to a concrete input BVD - in comparison to Delfy - helps to gain a better understanding
of what is going on. Moreover, there are cases for which BVD does not help.

Object graphs

We observed that if a unit under test involves a lot of heap structure BVD is more helpful than
Delfy. This is because it allows to view the state of these object graphs whereas Delfy only provides
values that are constrained through the path condition.

Figure 6.1 shows an example of this. There is a method testme that we want to test. It takes
as parameters a Cell and an integer. The Cell class can be thought of a linked structure such
as a node in a linked list. It has two fields, a data field v and a next field next. Inside testme
we create a new Cell and then there are some conditions under which the assert false is
reached. Both, Delfy as well as BVD provide inputs that violate the assertion. BVD provides
more information though. It shows the state of the objects.

Thus, this example illustrates well the difference between Delfy and BVD from a “user” perspec-
tive. Delfy gives a concrete input that leads to a failure. This is helpful for reproducing errors.
But to actually debug the error and to understand the reason for the error, the information BVD
provides is crucial in this case of object graphs.

Method calls

In the experiments in which we tested a method that calls other methods or functions we noted
that BVD does not relate the parameters back to the ones of the unit under test. Therefore, in
this case Delfy proves more useful as the illustrative example in Figure 6.2 shows. The method
testme takes an integer x as argument. It then calls the method Theorem0 with this argument.
Inside Theorem0 there is an assertion that does not always hold as indicated by the Dafny verifier.

Because BVD is a static debugger there is no runtime call stack. Calls are encoded into Boogie.
The values are not traced back.

Loops

The information BVD provides for cases with loops is not helpful as the example in Figure 6.3
shows. It is a simple method for calculating the greatest common divisor (GCD) of two integers.
In the end we simulate an error if the GCD is 17. One can see that Delfy provides inputs that
exercise this path. In contrast BVD is not able to deal with the loop. It just states that the GCD
must be 17. But with inputs 16 and 1 this is not possible.

BVD is a static debugger. But in order to step through a loop the state of every loop iteration

60 Delfy: Dynamic Test Generation for Dafny

CHAPTER 6. RESULTS

Figure 6.1: BVD-Delfy comparison for the case of object graphs.

would be needed in order to trace back the values. This is not the case. As indicated with the
blue dot before the while statement (Figure 6.3), BVD provides only the states before the while
loop and at the assertion.

Sets and sequences

For the case of sets and sequences we observed that if Delfy is able to come up with concrete
inputs, BVD is as well. Figure 6.4 shows a very simple example of this.

BVD handles sets and sequences by axiomatizing them at the level of Boogie. Therefore, they
are directly encoded in the verification conditions. For this reason the theorem prover is able to
create accurate models for those.

We conclude that the goals of Delfy and BVD are different. Delfy is built to generate inputs for
the unit under test. BVD in contrast is a debugger that means that its goal is to be a general
tool to understand verification errors. This means both tools complement each other in helping
to find the reasons for the verification errors that Dafny reports.

Delfy: Dynamic Test Generation for Dafny 61

CHAPTER 6. RESULTS

Figure 6.2: BVD-Delfy comparison for the case of method calls.

6.2.4 Comparison with Pex

We implemented support for various features of Dafny, which are specific to verification. For
example there is support for pre- and postconditions, termination metrics and loop invariants.
These are examples that can be handled by Pex as well, assuming the C# code is properly
annotated using Code Contracts. But in addition we also implemented support for sets, sequences,
modifies clauses, reads clauses and fresh expressions in Delfy. In order to support those features we
need to keep track of changes, which is not supported by Code Contracts and Pex. In comparison
to Delfy, Pex is also different in that Pex works at the level of byte code whereas Delfy works at
the level of the Dafny AST.

In this Section we describe the experiments we did in this regard and present the results we
obtained.

We conducted the experiments in the following way. We took a method to test from the test suite.
We then created three different versions of this test. The first one verifies. For the other two tests
we introduced different errors. We then ran Delfy and Pex and gathered the results. Table 6.3
summarizes the results of the experiments. The first column contains the name of the test case.
The second column the description of the different versions of this test case and the other two
columns the results when running Delfy and Pex on these cases.

The results of the experiments show that Pex is able to deal with modifies and reads clauses. The
reason for this is that we generate the needed code during compilation of a Dafny program to C#.

62 Delfy: Dynamic Test Generation for Dafny

CHAPTER 6. RESULTS

Figure 6.3: BVD-Delfy comparison for the case of loops.

Delfy does nothing special in the symbolic execution in addition to these runtime checks during
the concrete execution. This is the reason for Pex being able to deal with those constructs.

However, Pex cannot handle non-determinism, sets and sequences. In particular Pex cannot deal
with non-deterministic if statements, while loops and assignment statements. The reason for this
is that the Dafny-to-C# compiler does not generate C# code for handling those. For instance,
a non-deterministic if statement is translated by just compiling the code of one of the branches.
The reason why Pex cannot deal with sets and sequences is that they are compiled using C#
reference types. Therefore, Pex for example generates null as a possible input and it cannot
make use of Dafny’s helper functions for sets and sequences. It also violates the precondition
if the precondition contains expressions with sets and sequences. Listings 6.1, 6.2 and 6.3 show
examples of Dafny test cases with which we observed this behavior of Pex.

In the generated C# code, Dafny helper classes for sets and sequences are used. For the case of
sets we also manually changed the generated code to use .NET HashSets. Pex cannot deal with
sets even when using HashSet. The results are similar to those when using the helper set class.

method testme(s: set<int>) {
assert {1} == s;

}

Listing 6.1: set02.dfy

Delfy: Dynamic Test Generation for Dafny 63

CHAPTER 6. RESULTS

Figure 6.4: BVD-Delfy comparison for a simple test containing a sequence.

method testme(s: seq<int>)
requires 4 in s;

{
if 1 in s
{

if 2 in s
{

if 3 in s
{

assert false;
}

}
}

}

Listing 6.2: seq02.dfy

method testme()
{

var x := *;
assert x == 0;

}

Listing 6.3: nondeterministicassignstmt01.dfy

64 Delfy: Dynamic Test Generation for Dafny

CHAPTER 6. RESULTS

Test case Changes Delfy Pex

AdvancedLHS.dfy
verified 3 3
introduced one error in modifies
clause

3 3

introduced an additional asser-
tion error

3 3

set02.dfy no changes, one assertion that
fails

3 7

seq02.dfy verified 3 7

nondeterministicassignstmt01.dfy verified 3 7

Table 6.3: Results of comparing Delfy and Pex. Every line corresponds to one experiment. The
first column states the name of the test case. The second column explains the test, i. e., whether
it verifies or the changes we made. The other two columns state the results: 3 means expected
result (i. e., expected error found or no error found), 7 means unexpected result (i. e., error not
found or unexpected error found).

Delfy: Dynamic Test Generation for Dafny 65

CHAPTER 6. RESULTS

6.3 Limitations

6.3.1 Incompleteness

Delfy’s dynamic test generation engine does not explore the whole state space. In particular there
are configurable bounds on the number of loop iterations, recursion unfoldings and on the depth
of the search tree. If a bound is exceeded this is reported and the corresponding path is not
further explored. Furthermore, if Z3 is not able to solve a given condition, the exploration of the
corresponding path is stopped (timeout).

During the evaluation phase of the project we observed that setting these configurable bounds
appropriately depends on the test case. As an example, for a method that computes the n-
th Fibonacci number recursively in exponential runtime, the bound on the number of recursion
unfoldings must be chosen small enough. But this then limits the number of possible errors that
can be found. Thus, for another test case that does not involve recursion, this bound can be
set higher. But then perhaps the bound on the number of loop iterations must be adapted if it
contains loops.

6.3.2 Unsupported Dafny features

The following list enumerates the main Dafny features that are not supported by Delfy.

• DatatypeDecl (algebraic data types)

• IteratorDecl (iterators)

• Unbounded AssignSuchThatStmts

• CalcStmt

• TernaryExpr

• Non-exact LetExprs

• Non-deterministic assignment statements are only supported for int, nat, bool and refer-
ence types

• Functions with no body are only supported for a return value of int, nat and bool

• Rank comparisons

• Decreases clauses: only int and nat type supported

• Sets: only membership, equality, inequality, union, intersection, difference operations are
supported

• Sequences: only length, membership, equality, inequality operations are supported

• Maps

• Arrays

66 Delfy: Dynamic Test Generation for Dafny

Chapter 7

Conclusions

We have presented and implemented Delfy, a dynamic test generation tool for Dafny. We applied
known techniques of dynamic test generation to a language specially designed with verification
in mind. Therefore, we had to go beyond the known approaches and we had to come up with
new techniques to support certain features that are special to a verification language like Dafny.
Examples include the compilation to actual code, the support of ghost features, the support of
non-determinism and the support for the special value types in Dafny (sets, sequences, maps).

Dafny is a language with static verification in mind. Thus, there is in principle no need to compile
it to actual code that can be run. But in order to apply software testing methods, in particular
dynamic test generation in our case, we need to actually run it. Dafny already contained a compiler
for compiling Dafny to C# code. However, we had to extend it in order to fit it to our needs
of dynamic test generation. Ghost state is another example of special feature of a language with
static verification in mind. To support this we had to come up with a lot of extensions to the
existing Dafny-to-C# compiler. In addition we had to deal with non-determinism. We handle
this similarly to model checker tools. This means that we explore all the possibilities of a non-
deterministic choice. Another challenge was to add the support of the set type. For this we had
to research ideas. Furthermore, we discussed this issue and got valuable ideas on how we could
approach it.

We have enhanced the Dafny Visual Studio integration to support Delfy. This means that there
is a graphical front end available for Delfy. For this we also added a static symbolic executor to
Delfy. This enables the support of selecting a Dafny verification error in Visual Studio and then
generating only inputs that cover the error using Delfy.

In addition we have also evaluated Delfy. We have created a test suite of Dafny programs. This
test suite was used to see how many programs Delfy supports. In particular we pointed out
which features of a static verification language are difficult to handle in dynamic test generation
in general. Furthermore, we showed the effects of a static analysis prior to the actual dynamic test
generation. We also compared Delfy to the Boogie Verification Debugger. By doing this we were
able to show that Delfy complements the Dafny verifier and BVD well. Moreover, we compared
Delfy to Pex for verification features that Delfy supports but not Pex.

7.1 Related work

A dynamic test generation tool for .NET is Pex [19]. Pex is a white-box test generation tool based
on dynamic symbolic execution. It works at the level of CIL byte code and therefore supports safe

Delfy: Dynamic Test Generation for Dafny 67

CHAPTER 7. CONCLUSIONS

.NET programs. Moreover, it also supports a commonly used set of unsafe features of .NET such
as memory accesses involving pointer arithmetic. In addition, it is able to deal with particular
verification constructs if the code under test is annotated using Code Contracts [16]. Pex generates
test inputs for parameterized unit tests, i. e., for a method under test, with the goal of achieving
high statement coverage. A parameterized unit test is a method that takes parameters, exercises
the code under test and then asserts properties of the expected behavior. It employs search
strategies that are tailored to achieve high branch coverage in a short amount of time.

For C code there is CUTE [18]. There is also a version of this tool for Java. It is based on the
approach of separated concrete and symbolic execution. This means it concretely executes the
unit under test to generate a trace. This trace is then used for symbolic execution. In comparison
to other dynamic test generation tools, the main difference of CUTE is that it aims to support
units under test that take memory graphs as inputs. For this it keeps a logical input map that
represents all inputs as symbolic variables. Integer constraints and pointer constraints are treated
separately. Pointer constraints are also simplified using the logical input map in order to make
the process of constraint solving more efficient.

Another tool that supports C code is DART [6]. DART introduced concepts such that unit testing
can be done completely automatically on any program that compiles. It does this in three steps.
First, the interface is automatically extracted using a static analysis approach. For this interface
a test driver is then generated as a second step. This driver performs random testing to simulate
the external environment. Then, the third step is to perform dynamic symbolic execution to
automatically generate new test inputs to direct the execution along alternative program paths.

SAGE [7] is a whole-program white-box fuzz testing tool that works on the level of x86 code. It is
based on instruction-level tracing and supports system testing of arbitrary file-reading Windows
applications. SAGE is thus a tool for system testing, i. e., it not only supports testing single units
but whole programs as well. It is based on dynamic symbolic execution and is therefore capable of
finding bugs that are beyond the reach of black-box testing tools. SAGE introduced the concept
of the generational search strategy. Being a whole-program testing tool, the generational search
strategy helps in that it systematically but partially explores the state space of large programs.

7.2 Future work

There are different directions for future work. For instance adding support for more Dafny veri-
fication features would enable Delfy to support more programs. Another example of future work
is to make better use of the Dafny verifier’s results.

Many features that are crucial for a verification language cannot be handled by Delfy. For this
reason the tool cannot be used for more interesting verification examples and challenges. We think
that going into this direction would be an interesting challenge.

Our approach to make use of the Dafny verifier’s results is very conservative, i. e., we prune a lot.
Improving this is an interesting challenge as well.

68 Delfy: Dynamic Test Generation for Dafny

Bibliography

[1] Mike Barnett, Bor-Yuh Evan Chang, Robert Deline, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In FMCO, LNCS, page
364387. Springer, 2006. 1

[2] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version 2.0. In
SMT, 2010. 43, 44, 45

[3] Edmund M. Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. Model checking and
the state explosion problem. In TPSV, volume 7682 of LNCS, pages 1–30. Springer, January
2012. 48

[4] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS, volume
4963 of LNCS, pages 337–340. Springer, 2008. 1

[5] Leonardo De Moura and Nikolaj Bjørner. Generalized, efficient array decision procedures. In
FMCAD, pages 45–52. IEEE, 2009. 42

[6] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated random
testing. In PLDI, pages 213–223. ACM, 2005. 3, 68

[7] Patrice Godefroid, Michael Y. Levin, and David Molnar. Automated whitebox fuzz testing.
In NDSS. The Internet Society, 2008. 3, 11, 12, 13, 15, 68

[8] Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. Generalized symbolic execution
for model checking and testing. In TACAS, pages 553–568. Springer, 2003. 20

[9] James C. King. Symbolic Execution and Program Testing. Commun. ACM, 19(7):385394,
July 1976. 2

[10] Claire Le Goues, K. Rustan M. Leino, and Michal Moskal. The Boogie Verification Debugger.
In SEFM, pages 407–414. Springer, 2011. 60

[11] K. Rustan M. Leino. This is Boogie 2, June 2008. 1

[12] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In
LPAR, volume 6355 of LNCS, pages 348–370. Springer, 2010. 1

[13] K. Rustan M. Leino. Dafny project web page. https://dafny.codeplex.com/, 2013.
[Online; accessed 04-September-2013]. 1, 17

[14] K. Rustan M. Leino. Getting Started with Dafny: A Guide. http://rise4fun.com/
Dafny/tutorial/guide/, 2013. [Online; accessed 04-September-2013]. 1

[15] Microsoft. What Is Windows Communication Foundation. http://msdn.microsoft.
com/en-us/library/ms731082.aspx, 2012. [Online; accessed 07-November-2013]. 7

Delfy: Dynamic Test Generation for Dafny 69

https://dafny.codeplex.com/
http://rise4fun.com/Dafny/tutorial/guide/
http://rise4fun.com/Dafny/tutorial/guide/
http://msdn.microsoft.com/en-us/library/ms731082.aspx
http://msdn.microsoft.com/en-us/library/ms731082.aspx

BIBLIOGRAPHY

[16] Microsoft Research. Code Contracts. https://research.microsoft.com/en-us/
projects/contracts/, 2013. [Online; accessed 20-September-2013]. 7, 68

[17] Microsoft Research. Getting Started with Z3: A Guide. http://rise4fun.com/z3/
tutorial/, 2013. [Online; accessed 28-September-2013]. 42

[18] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit testing engine for C.
In ESEC, pages 263–272. ACM, 2005. 3, 68

[19] Nikolai Tillmann and Jonathan de Halleux. Pex—White box test generation for .NET. In
TAP, volume 4966 of LNCS, pages 134–153. Springer, 2008. 67

[20] Xusheng Xiao, Tao Xie, Nikolai Tillmann, and Jonathan de Halleux. Precise identification of
problems for structural test generation. In ICSE, pages 611–620. ACM, 2011. 20

70 Delfy: Dynamic Test Generation for Dafny

https://research.microsoft.com/en-us/projects/contracts/
https://research.microsoft.com/en-us/projects/contracts/
http://rise4fun.com/z3/tutorial/
http://rise4fun.com/z3/tutorial/

	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Algorithms
	Introduction
	Motivation
	Background
	Dafny
	Concrete execution
	Symbolic execution
	Dynamic test generation

	Design of the dynamic test generation engine
	Execution
	Concrete execution
	Symbolic execution

	Condition solver
	Exploration strategies
	Depth-first
	Breadth-first
	Generational

	Visual Studio integration

	Support for basic Dafny features
	Primitive Types
	Classes and objects
	Challenges

	Statements
	AssumeStmt
	AssertStmt
	PrintStmt
	BreakStmt
	ProduceStmt
	UpdateStmt
	AssignStmt
	AssignSuchThatStmt
	VarDecl
	CallStmt
	BlockStmt
	IfStmt
	AlternativeStmt
	WhileStmt
	AlternativeLoopStmt
	ConcreteSyntaxStmt

	Expressions
	FunctionCallExpr
	FreshExpr
	OldExpr

	Specifications
	Function/Method pre- and postconditions
	Termination metrics
	Loop invariant
	Modifies/Reads/Fresh support

	Implicit checks

	Support for other interesting Dafny features
	Non-deterministic assignment statements
	Non-deterministic if statements
	Non-deterministic while statements
	Functions with no body
	Sets and sequences
	Challenges
	Set support using Z3
	Sequence support

	Static analysis for generating inputs which cover selected errors
	Motivation
	Static symbolic execution
	Control Flow Graph (CFG)
	Design and Implementation
	Challenges

	Visual Studio integration enhancement

	Results
	Test suite
	Evaluation
	Feature support
	Comparison of dynamic test generation with and without static analysis (SA)
	Comparison with the Boogie Verification Debugger (BVD)
	Comparison with Pex

	Limitations
	Incompleteness
	Unsupported Dafny features

	Conclusions
	Related work
	Future work

	Bibliography

