
Lightweight automatic loop invariant
selection

Bachelor Thesis

P. Pozdnyakov

Monday 30th September, 2019

Advisors: M. Eilers, Prof. Dr. P. Müller

Department of Computer Science, ETH Zürich

Abstract

One of the approaches used today in automatic program verifica-
tion is deductive program verification. Alongside with specifica-
tions it uses auxiliary annotations to the program text to prove or
refute desired properties of a program. The examples of such an-
notations are pre- and postconditions and loop invariants.

One of the possible ways to find the right annotations, which may
help to verify a given program, is to guess them based on some
heuristics. To find out which of the guessed annotations actually
hold one could use the Houdini algorithm. One assumes first, that
all annotations hold and runs the verifier. If some annotation is
refuted by the verifier, it is deleted from the program text. The
process repeats until no annotation is refuted.

In this work we concentrate our attention on the loop invariants.
We show an alternative approach to find out which of the guessed
invariants for the program to be verified hold without repeated
calls to the verifier.

We present an encoding that allows us to infer invariants from
the list of candidate invariants with consecutive verification of the
given program using only one call to the verifier. We have also
implemented the encoding in C# and tested it against Houdini on
the number of programs. In most of the cases the running time
of Houdini was as good or better as of our implementation. This
is caused by the fact that in our implementation it is necessary
to check exponentially many combinations of candidate invariants.
We not exclude, however, that there still may exist a way to infer the
invariants without exponential growth in running time complexity.

i

Contents

Contents iii

1 Introduction 1
1.1 Project Overview . 2
1.2 Project structure . 3

2 Encoding 5
2.1 General Idea . 5
2.2 Transformation Function . 9

2.2.1 Definitions . 9
2.2.2 Transformations . 12

2.3 Potential Problems of the Encoding 20
2.3.1 Possible Inefficiencies 20
2.3.2 Potential Solutions 21

3 Implementation 27

4 Evaluation 29

5 Conclusion 35

A Code Listings 37
A.1 . 37
A.2 . 47
A.3 . 53
A.4 . 55
A.5 . 56
A.6 . 57

iii

Contents

Bibliography 59

iv

Chapter 1

Introduction

Gradually increasing complexity of modern software combined with the
proliferation of applications used in life critical situations makes it desir-
able to be able to verify the correctness of a program and to be able to
automate the process as much as possible.

A number of tools and approaches aiming to help to solve the problem
of automatic program verification were developed in the past decades.
Some of the tools available today are Viper [7], Boogie [6], Why3 [3] and
ESC/Java [4].

The approach we are exploring in this work is deductive program verifi-
cation, automated by using an SMT solver. It relies on specifying prop-
erties of a program through auxiliary annotations to the program text.
These annotations may be based for example on the program specifica-
tions or may be guessed based on some heuristics. They help the verifier
to prove whether certain properties of a program hold. The annotations
include pre- and postconditions for methods as well as loop invariants.

Pre- and postconditions express the desired functionality of the method,
but this still may not be sufficient to prove a certain program prop-
erty. Finding the correct pre- and postconditions to a method may itself
be rather challenging. The process of finding the right loop invariants
seems to be even more involved. Difficulties in specifying annotations
to a program text suggest that not only the verification process, but also
the process of finding annotations should be automated.

We cannot, however, completely automate the process. Some annota-
tions may rely on properties which are difficult to infer automatically.

1

1. Introduction

In this case it is necessary to give a human user the possibility to influ-
ence the verification process by specifying such annotations by hand.

Houdini [5], one of the existing tools to help to find the right annotations
for a program text, uses the so-called guess-and-check approach to infer
pre- and postconditions for methods and loop invariants.

Based on manual inspection of annotated programs, heuristic rules are
created to guess the right pre- and postconditions and loop invariants.
These rules are then used to guess the candidate annotations to the given
porgram. The candidate annotations are then automatically added to
the program text. This extended program text is then given to a verifier,
whose job is to check whether all of this annotations hold.

In the case of some annotation being invalid, as found by the verifier, it
is removed from the program text. The verifier is then called again on
this new program text.

The process continues until no annotation is refuted.

1.1 Project Overview

In this project we concentrate our attention exclusively on loop invari-
ants. We want to explore alternative ways, compared to existing ones,
of utilizing the guess-and-check approach for proving the program cor-
rectness.

We further restrict ourselves to investigate primarily the check-part of
guess-and-check approach, i.e., we assume that a set of guessed loop
invariants, the candidate invariants, is already given. For previously de-
scribed reason we also want to support the possibility for a user to influ-
ence the verification process by specifying invariants, the user invariants,
manually.

As opposed to guessed candidate invariants user invariants should hold,
i.e., if some of the user invariants do not hold, the verifier should report
it to the user. This report is useful, if the user is not only interested
in successful program verification, but also wants to explicitly check,
whether a certain invariant holds.

One of the potential problems with the check phase as it is currently
employed, e.g., in Houdini [5], is that it usually has to be repeated sev-
eral times until no annotation is refuted and the desired property of a
program itself is proved or refuted.

2

1.2. Project structure

Considering loop invariants, the extreme case would be to have a large
amount of program code with only tiny fraction of it belonging to a
loop statement, with the loop statement itself having a large number of
invariants which do not hold. In the worst case Houdini would refute
the invariants one by one, calling the verifier each time on the whole
program text. The program text itself, however, except for the loop
statement, remains unchanged in every call to the verifier. This means
the verifier have to unnecessarily consider the same code chunks again
and again.

In this thesis we give one possible way to transform the input program
with the candidate invariants and the user invariants so that only one
verifier call is necessary to infer invariants and to verify the program.

1.2 Project structure

In order to accomplish the goals of the project a number of examples of
simple programs were considered. Based on these examples a number
of different encoding approaches were developed. One of those was
then chosen for the encoding.

The resulting encoding, as well as considerations about its limitations
and problems during its development, is presented in Chapter 2. In
Section 2.3 some thoughts on alternative approaches to the encoding
are presented. These were not chosen for the current encoding either
because they do not give sufficient gain in efficiency relative to imple-
mentation complexity, or they turned out to be unsound.

In order to test our ideas in practice, we have implemented the encoding
as part of the Boogie verifier. A description of the implementation can
be found in Chapter 3. Having an implementation at hand we made
a comparison of running times of our implementation against Houdini.
The description of results can be found in Chapter 4.

Final thoughts considering the results of the work as well as possible
further research on the topic to be done in the future, are presented in
Conclusion, Chapter 5.

3

Chapter 2

Encoding

The main part of this chapter is the definition of the transformation
function we used in our encoding, Section 2.2. However, we first present
the general ideas underlying the encoding, Section 2.1. At the end of the
chapter, Section 2.3, we present some further thoughts and ideas related
to our encoding and its potential alternatives.

2.1 General Idea

As stated in Section 1.2 we want to accomplish the following goals.
Given a program to be verified, the input program, and the corresponding
sets of candidate invariants and user invariants, we want to transform
the program in a way that allows us to infer the loop invariants and to
verify the program using only one call to the verifier. We also want the
user to be notified, if some of the user invariants do not hold.

For the transformed program the same pre- and postconditions should
hold as for the input program. For the loops of the transformed program
the same invariants should hold as for the loops of the input program.
At the same time the transformed program should allow us to infer
invariants and verify the program in a way described above.

The main part of our encoding should be, therefore, the transformation
function, explicitly defined in Section 2.2.

We define our encoding for the simple imperative language IMP [8].
The language structure is represented in the Table 2.1, where we denote
vectors of variable names as (x1, ..., xm) and (y1, ..., yn), vectors of expres-

5

2. Encoding

Table 2.1: IMP Structure

Procedure proc procedure m(x1, . . . , xm) returns(y1, . . . , yn){s}

Statement s skip
∣∣ x := e

∣∣ (x1, ..., xm) := call m(e1, ..., ek)
∣∣

s; s
∣∣ i f (b) then s else s

∣∣ while(e) do{s}
∣∣

assume e
∣∣ assert e

∣∣ x := havoc
∣∣ var x

Expression e e := c
∣∣ x

∣∣ e⊕ e

sions as (e1, ..., ek) and where c ∈ R and ⊕ = {+,−, ∗, /, %,==>,<==
,<==>,∨,∧,¬}.

The transformation function takes as arguments procedures and state-
ments of the input program. It then transforms them appropriately, such
that the resulting transformed program has the desired properties, de-
scribed above.

Before we explain further, what transformations should be done to the
input program, we first describe the input itself and the preprocessing
we perform.

As input we have a program we want to verify and candidate and user
invariants to be given for. In order to make our encoding more general,
we allow different sets of candidate and user invariants be given for
different loops. Hence, we assume that besides the program itself we
have a mapping Map from a loop, represented through a unique id, and
the tuples of two corresponding sets of candidate and user invariants as
input.

As an implicit preprocessing step we transform the mapping as follows.
We want all user invariants to hold. If it is not the case, we want it to be
reported to the user. We therefore combine all user invariants defined
for the same loop in one invariant, the user invariant, by conjoining them.
As for the candidate invariants for a given loop, we have to consider
each possible combination of them, i.e., the power set without an empty
set, since, for example, two candidate invariants together may be an

6

2.1. General Idea

invariant, but none of them separately is an invariant.

For each loop of the input program we now define the new set of can-
didate invariants as follows. We first take the power set P of the input
candidate invariant set for that loop. We then take the union of each
element of the power set and the user invariant. For each element of the
resulting set P′ we then conjoin all candidate invariants contained in this
element to build one single candidate invariant. We call the resulting set
of the candidate invariants P′′.

We now define a new mapping Map′ from the loop ids to the correspond-
ing sets P′′ of the candidate invariants. We do not need to handle user
invariants separately anymore since the power set P also contains an
empty set. By applying the union function to the empty set and the user
invariant we get exactly one element representing the user invariant in
P′ and, hence, the same element in P′′.

From now on, whenever we refer to a mapping from loop ids to the sets
of candidate invariants we mean the mapping Map′. When we speak
about a set of candidate invariants we mean the set P′′. And when we
speak about a candidate invariant, we speak about an element from the
set P′′.

In order to understand what transformations should be done to the in-
put program, let us first consider, what should hold for a candidate
invariant to be an invariant. The candidate invariant should hold imme-
diately before the loop, at the beginning of the loop and at the end of
the loop. Hence, to infer the invariants it must be possible to check these
three properties for each candidate invariant. It should also be enough
for our transformations to only affect the loops of the input program.

For each candidate invariant of a given loop we, therefore, need firstly to
simulate the loop to see, whether three properties mentioned above are
satisfied. We refer to the phase of simulating the loop to infer, whether
a candidate invariant is an invariant, and its corresponding encoding as
the simulation loop.

After the simulation loop is performed for each candidate invariant all
the invariants are known. It is now possible to check whether the user
invariants hold. In order to do so it is enough to assert the disjunction of
all the elements of the candidate invariant set for the given loop. Since
we incorporated the corresponding user invariant in each of the candi-
date invariants in a way described above, at least one of the candidate
invariants has to hold. If it is not the case, i.e., the assertion is not satis-

7

2. Encoding

fied, it indicates that at least one of the user invariants for that loop does
not hold.

After all invariants for the given loop are inferred and the check whether
all corresponding user invariants hold is performed, the actual verifica-
tion phase of the loop starts. We refer to this phase and the correspond-
ing encoding as the original loop. In order for the original loop to use
the information about the previously inferred invariants, boolean flags
are declared for each possible invariant. The simulation phase for a
candidate invariant either sets the flag or does not.

The simulation loop and original loop are defined in a manner described
above for each loop of the input program. The corresponding transfor-
mations surface to achieve the goals of the project.

Before we explicitly give the corresponding encoding in Section 2.2, we
describe how the simulation loop phase and the original loop phase
should be performed and what we need for this.

Having both the simulation and original loop means performing the
same loop at least twice, whereas in the input program it is performed
only once. We do not want to affect the values of variables used in the
original loop while performing the simulation of that loop. Therefore,
for every target variable of the input program we define a copy of it, the
duplicate. We refer to variables that may change their value inside the
corresponding loop body, e.g., through assignment to them, as target
variables or targets. It suffices to define only one duplicate for each
target variable. We use duplicates of the targets while simulating the
loop and original target variables in the original loop.

Every simulation phase starts by checking whether the corresponding
candidate invariant holds before the loop. For that purpose we define
a boolean variable for each candidate invariant of each loop (as defined
by our mapping Map′). This boolean flag is set to true, if and only if the
candidate invariant holds before the loop.

To be able simulate an arbitrary iteration, we need to havoc the values
of the duplicates for that loop. The only restrictions on the duplicates
values are then given only by our assumptions about loop condition and
the candidate invariant. If the previously defined boolean flag was set
to true the loop condition is checked. If it may be satisfied the loop body
is executed once, i.e., we simulate an arbitrary iteration of the loop, with
restrictions put on the havocked duplicate values by the loop condition
and the candidate invariant. After the simulation of of an arbitrary

8

2.2. Transformation Function

iteration the check whether the candidate invariant hold is performed
again. For that check the target variable names of the loop used in
the candidate invariant should also be replaced with the corresponding
duplicate names.

If the candidate invariant also holds after an arbitrary iteration it is actu-
ally an invariant. To store this information we define for each candidate
invariant of each loop a boolean flag, which, when set to true, indicates
that the corresponding candidate invariant is an invariant.

If the candidate invariant holds before the loop, but the loop condition
may never be satisfied, it is trivially an invariant and the corresponding
flag is set to true. In all other cases the flag indicating, whether the
candidate invariant is an invariant is set to false.

The original loop phase is similar to the simulation loop phase. Here the
original names of target variables are used instead of duplicates. After
havocking the target variable values the assumption according to the
previously set boolean flags that the inferred invariants hold is made.
An arbitrary iteration of the loop is then performed. After assuming the
negation of the loop condition the verifier continues with the program
text below the loop.

We now continue with the explicit definition of the transformation func-
tion.

2.2 Transformation Function

2.2.1 Definitions

We first give a number of definitions listed in the Table 2.2, which will
then be used through out the Section to improve the readability.

Table 2.2: Definitions

Invs′ The tuple built from the Map′, in the following way.

Recall that Map′ as defined in Section 2.1

is a mapping between the loop id and

the corresponding set of candidate invariants.

9

2. Encoding

Each element of each set is also an element of Invs′

and vice versa.

LtoI(Invs′, loop id) A function, which takes as arguments

a tuple of candidate invariants and

a loop id and outputs an ordered set of indices

of candidate invariants, for the corresponding loop.

loop while(e) do{s}

get id(loop) A function, which returns the unique identifier

of the loop.

get nested id(outer loop id) A function, which returns the set of identifiers

of the loops inside the outer loop.

T(loop id) A function, which returns a tuple of names

of all targets of a given loop.

locals ∪loop∈procT(loop id),

where proc is the method under transformation.

vars (x1, x2, ...),

where x1, x2, ... are variable names.

f resh(vars) Variable names x1, x2, ... are fresh, i.e., do not occur

in the procedure under transformation.

M(vars) A function, which returns a tuple of variables vars′

such that there is a bijection between vars and vars′

and f resh(vars′).

10

2.2. Transformation Function

locals′ M(locals).

�n
i=1si The sequential composition of n statements s1, ..., sn.

xs = (x1, ..., xm) The vector of parameter names.

ys = (y1, ..., yn) The vector of return variable names.

e[tuple1/tuple2] Replacement of the variable names in tuple1

with variable names in tuple2 in expression e.

We further make the following three assumptions.

1. Input variables are immutable.

2. The statement (x1, . . . , xm) := call m(e1, ..., en) is equivalent to

assert [preconditions]

havoc (x1, . . . , xm)
assume [postconditions]

and is implicitly replaced by the latter in the input program before
we start the transformation. We therefore do not define the trans-
formation function for the statement (x1, . . . , xm) := call m(e1, ..., en).

3. The evaluation of an expression cannot change the program state.

4. The set of candidate invariants is not empty. In case there is no
input candidate invariants and no input user invariants specified,
we have a trivial user invariant and a trivial candidate invariant,
the literal true.

While performing the transformations we differentiate between the sim-
ulation loops and the original loops, which were defined in Section 2.1.
The former is used to infer which of the candidate invariants hold. The
latter is used while performing verification of the input program with
already inferred invariants.

We further differentiate between performing the transformations inside
and outside of a loop, as well as outer loops and inner loops. Outer loops
are outside of any other loop of the corresponding procedure. Inner
loops are inside at least one other loop.

11

2. Encoding

2.2.2 Transformations

We define two separate transformation functions,[[•]]I and [[•]]I L(targets).
The former is used to perform the transformations outside of a loop or
inside of an original loop. The latter is used to perform transformations
inside of a simulation loop.

Procedure

By definition a procedure cannot be inside a loop, so only [[•]]I is de-
fined for it. Its only purpose is to declare the duplicates of all target
variables of the procedure, as defined in Section 2.1. The same names
for duplicates of the target variables are used through the whole proce-
dure, so we declare them right at the beginning using varx′; statement.
[[procedure m(xs) returns(ys){s}]] I =

procedure m(xs) returns(ys)

{

�x′∈locals′ var x′;

[[s]] I
}

We apply our transformation function [[•]]I to each procedure of the
input program. We then recursively call it on all of the statements of a
given procedure.

Skip, Sequential Composition, If, Assume, Havoc, Assignment, Decla-
ration

For all the statements except assertions and loops the two transforma-
tion functions behave in the same way. [[•]]I is the identity transfor-
mation. [[•]]I L(targets) replaces the names of target variables with the
corresponding duplicate names, defined at the beginning of the trans-
formed procedure.

Skip :

[[skip]] I = skip

[[skip]] I L(targets) = skip

Since skip statement does not affect the program state, our transforma-
tion functions do nothing in this case.

12

2.2. Transformation Function

SequentialComposition :

[[s;s]] I = [[s]] I; [[s]] I

[[s;s]] I L(targets) = [[s]] I L(targets); [[s]] I L(targets)

I f :

[[if(e) then s else s]] I = if(e) then [[s]] I else [[s]] I

[[if(e) then s else s]] I L(targets) =

if (e′) then [[s]] I L(targets) else [[s]] I L(targets)

where e′i = ei[targets/M(targets)]

Assume :

[[assume e]] I = assume e

[[assume e]] I L(targets) = assume e[targets/M(targets)]

Havoc :

[[x:=havoc]] I = x:=havoc

[[x:=havoc]] I L(targets) = x′:= havoc

where x′ = M((x))

Assignment :

[[x:=e]] I = x:=e

[[x:=e]] I L(targets) = x′:=e[targets/M(targets)]

where x′ = M((x))

Declaration :

[[Var x]] I = var x

13

2. Encoding

[[Var x]] I L(targets) = var x′

where x′ = M((x))

Assert.

[[assert e]] I = assert e

[[assume e]] I L(targets) = skip

For the assertion statements the [[•]]I function is again the identity trans-
formation. The [[•]]I L(targets) function, however, replaces an assertion
with the skip statement.

Recall that we apply the [[•]]I L(targets) function in the simulation loop
body, where the invariants are unknown. At this point in the program,
the verifier is checking the loop body for all possible candidate combina-
tions, including ones that do not contain candidates that actually hold.
Therefore it may not be able to prove assertions that actually hold, and
could be proven to hold for the right choice of candidates.

This leads us to consideration that ”assert” statements should be re-
placed by ”skip” statements for the process of invariants selection and
added again to the program text for the original loop phase, when the
invariants are known.

While.

Since the transformations made to the loops are rather complex, we
add comments in the style of the C programming language directly into
the transformation formula where appropriate. Curly braces are added
to the encoding to improve readability and denote blocks, as in the C
programming language.

We first give a step by step description of what the transformation func-
tions do and then provide a corresponding formula.

[[while(e) do{s}]]I. As discussed in Section 2.1 we only apply the func-
tion [[•]]I either to an outer loop, or to the loop body in the original
loop.

14

2.2. Transformation Function

Firstly, the boolean variables to infer whether a candidate invariant
holds are declared. For each candidate invariant from the outer loop and
for each candidate invariant of all of its inner loops two such boolean
variables are declared. One is the flag which is set to true iff the candi-
date invariant holds before the loop. The other is the flag which is set
to true if the candidate invariant is actually an invariant at the end of
the corresponding simulation loop, where we have already inferred this
information.

In the next step for each candidate invariant of the outer loop the check
is performed, whether the candidate invariant holds before the loop.
The corresponding flags are then set accordingly.

For each candidate invariant a simulation loop, i.e., a simulation of an
arbitrary iteration of the outer loop, is defined in the following way.
A conditional statement to check whether the flag indicating that the
candidate invariant holds before the loop is set to true is added to the
program text. The else clause means the flag is set to false, i.e., the
candidate invariant is definitely not an invariant and we may proceed
to the next candidate. For the then clause the following transformations
are performed.

For each target variable name of the corresponding loop of the input
program we replace this name in the loop body with the name of the
corresponding duplicate variable, declared at the beginning of the pro-
cedure. The values of the target variables duplicates are then havocked.

Depending on the flag indicating whether the candidate invariant holds
before the loop, assumptions on the variable values according to this
invariant with target variables replaced by their duplicates are made.

The check of the loop condition is now performed. If the loop condition
is satisfied, i.e., it is possible to enter the loop at least once, a simulation
of an arbitrary iteration of the loop is performed. An assumption that
the loop condition with replaced target variables holds is added to the
porgram text and the transformation function [[•]]I L(targets) is applied
to the loop body with target variable names of the outer loop as the
second argument.

It is now possible to check whether the candidate invariant is an invari-
ant. If the candidate invariant with replaced targets has held before an
arbitrary iteration and still holds after it, the corresponding flag is set to
true.

15

2. Encoding

After the flags are set that indicate, for each candidate invariant, if it is an
invariant, we encode an arbitrary iteration of an actual loop, the original
loop, with no replacement of target variables. This part of encoding is
used for proving correctness of the loop body.

The values of all target variables of the loop are havocked and assump-
tions that previously inferred invariants hold are made. A new boolean
variable is then declared and a conditional statement based on the value
of this variable is added to the program text.

If the variable is true, the assumption that the loop condition holds is
made. The transformation function [[•]]I ia then applied on the loop
body, as if it was outside of a loop, and the statement assume f alse is
added at the end of the then branch. This last statement is an indication
that this part of the program text still belongs to the loop body and
the program text below it can only be reached if the loop condition is
false. The assumption that the loop condition is false is made in the else
branch.

Despite the assume f alse statement at the end of the then clause, we still
needed it. Here the possible assertions, which were removed from the
simulation loop body, are examined.

It is now possible to check, whether the user invariant, as defined in
Section 2.1 holds. The corresponding assertion, as described in Section
2.1, is added to the program text before the original loop. It is the first
place were we can perform this check, since only at this point we know
all the invariants for the loop.

We now give the definition of the [[•]]I function. We abbreviate i f (e)
then s1 else skip as i f (e) s1.

Let Id = get id(while(e) do{s})
Let Is = LtoI(Invs’, Id)

Let Ids = get nested id(get id(Id))

// boolean variables to infer , whether an invariant holds

�i∈Is var on i;

�i∈Is var on_b i;

// boolean variables to infer ,

// which invariants hold in nested loops of this outer loop;

�id∈Ids�i∈LtoI(Invs′ ,id) var on_id i;

�id∈Ids�i∈LtoI(Invs′ ,id) var on_b_id i;

16

2.2. Transformation Function

// the simulation loop

// check whether an invariant holds before the loop

�i∈Is assume inv i <==> on_b i;

// for every candidate invariant for that loop

// simulate an arbitrary iteration

�i∈Is
{

// if the candidate invariant does not hold

// before the loop , it cannot be an invariant;

// we then go to the next candidate

if (on_b i) then

{

�x′=M((x)),x∈T(Id) x′:= havoc;

assume on_b i ==> inv i[T(Id)/M(T(Id))];

// we only simulate the outer loop ,

// if we can ever enter it

if(e) then

{

assume e[T(Id)/M(T(Id))];

// transformed loop body

[[s]] I L(T(Id));

}

// infer , whether the i-th invariant holds

assume inv i[T(Id)/M(T(Id))] ==> on i;

}

}

// we now check wether the user invariant ,

// as defined in Section 2.1, holds;

assert ∨i∈Is on i;

// the original loop

var star;

�x∈T(Id) x:= havoc;

�i∈Is assume on i ==> inv i;

if (star) then

{

assume e;

17

2. Encoding

// if the loop body contains another loop ,

// we will do at this place the corresponding

// simulation and original loop phases

[[s]]$_{I}$;

assume false;

}

else

{

assume ¬ e;

}

where ∧i∈Is f resh(oni), ∧i∈Is f resh(on bi), ∧id∈Ids ∧i∈LtoI(Invs′ ,id) f resh(on idi),

∧id∈Ids ∧i∈LtoI(Invs′ ,id) f resh(on b idi) and f resh(star)

[[while(e) do{s}]]I L. As discussed in Section 2.1, the function [[•]]I L
is applied to the inner loop in the simulation loop phase.

The function [[•]]I L(targets) performs almost the same transformations
to the loop as [[•]]I . The differences are as follows.

The boolean flags to infer invariants were already declared by the func-
tion [[•]]I . This was done solely to improve readability by putting the
declaration of all the flags on one place. The only new boolean variable
is for the loop condition of the simulation loop. Firstly, its value is set,
then all values of the target variable duplicates are havocked. Now it is
still possible to use the value of the loop condition, even if the values of
the variables used in it may be unknown.

We did not need this trick in the outer loop, since it was enough to
evaluate the loop condition with original variables. In an inner loop we
work exclusively with the duplicates, as long as we are in the simulation
loop.

Another difference is that at the end of the simulation loop the function
[[•]]I L(targets) does only three things. It havocs the values of the target
variables duplicates of the corresponding inner loop. It then puts an as-
sumption, that negated loop condition holds, again with target variables
replaced with their duplicates. At the end it assumes that previously in-
ferred invariants hold.

There is no original loop part. For this part we may need to know the
invariants for the outer loop as well as all the invariants of the inner

18

2.2. Transformation Function

loops the loop under consideration is inside of. We do not have this
knowledge at this point, however.

We now give the definition of the [[•]]I L function.

Let id = get id(while(e) do{s})
Let Is = LtoI(Invs’, id)

// check , whether an invariant holds before the loop

�i∈Is assume inv i <==> on_b_id i;

// check the inner loop condition ,

// as described in Section 2.1

var lc_id;

assume e[targets/M(targets)] <==> lc_id;

// for each candidate invariant

// simulate an arbitrary iteration

�i∈Is
{

// if the candidate invariant does not hold

// before the loop , it cannot be an invariant;

// we then go to the next candidate

if (on_b_id i) then

{

�x′=M((x)),x∈T(id) x′:=havoc;

assume on_b_id i ==> inv i[T(id)/M(T(id))];

// we only simulate the outer loop ,

// if we can ever enter it

if(lc_id) then

{

assume e[T(id)/M(T(id))];

// transformed loop body

[[s]] I L(T(id));

}

// infer , whether the i-th invariant holds

assume inv i[T(id)/M(T(id))] ==> on_id i;

}

}

// the statements below put the neccessary restictions

// on the corresponding variable values ,

// the restictions may be needed to infer invariants

// for the outer loop of this inner loop

19

2. Encoding

�x′=M((x)),x∈T(id) x′:= havoc;

assume ¬e[targets/M(targets)];
�i∈Is assume on_id i ==> inv i;

where f resh(lc id) holds and on idi and on b idi for i ∈ Is should be declared

earlier

2.3 Potential Problems of the Encoding

2.3.1 Possible Inefficiencies

As one can see from the encoding in the previous section, the most
changes to the initial program text are done when it comes to the while
statements. These changes are also a source of potential inefficiencies.

One of the main differences between the two functions, [[•]]I and
[[•]]I L(targets), lies in their handling of the while statement at the point,
where the loop invariants for the corresponding loop are inferred.

In case of the function [[•]]I L(targets) we negate the loop condition
and assume that the previously inferred invariants hold. After that the
simulation of the corresponding outer loop continues.

In case of the function [[•]]I we proceed to the simulation of the actual
loop, with original variable names.

Since the invariants for the outer loop at this point are known, we recur-
sively apply the function [[•]]I to the loop body, as if the loop body was
a program text outside of any loop.

The recursion and, hence, the repeated inference of the invariants for the
inner loops is needed, however. Although we have inferred invariants
for the outer loop, we are not able to store the values of the flags for
the inner loops invariants, which have helped us to infer the outer loop
invariants.

This implies potential problems if the input program has nested loops.
Although we have only one original loop phase for each loop of the
input program, the simulation loop phase is repeated for any inner loop
at least as many times, as there are loops in which the given loop is
contained.

20

2.3. Potential Problems of the Encoding

In the current encoding both functions, [[•]]I and [[•]]I L(targets), infer
whether a candidate invariant holds separately for each candidate in-
variant, i.e., for each element of the power set of the input candidate
invariants set. Therefore the simulation phase of the inner loop will be
potentially repeated many more times than just the number of its re-
spective outer loops, since it is the part of any simulation of these outer
loops.

The size of the code parts responsible for the loop simulation grows,
therefore, exponentially with the number of elements of all the input
candidate invariant sets of this loop and its respective outer loops. This,
of course, has negative consequences for the verification time.

2.3.2 Potential Solutions

The presented encoding of the loops is obviously inefficient because
loop bodies are duplicated very often. An alternative idea would be
to try out all possible combinations of candidates at once in a single
loop simulation.

One way to do that would be to have an additional flag on a for each
candidate invariant in the outer loop and add an assume on a ==> inv
statement for each candidate invariant at the beginning of the simulation
of an arbitrary iteration of the outer loop.

The corresponding, unsound, encoding for the [[•]]I is presented below.

Let Id = get id(while(e) do{s})
Let Ids = get nested id(Id)

[[while(e) do{s}]] I =

// boolean variables to infer ,

// whether an invariant holds

�k
i=1 var on i;

�k
i=1 var on_b i;

�k
i=1 var on_a i;

// boolean variables to infer ,

// which invariants hold in nested loops

�id∈Ids�k
i=1 var on_id i;

�id∈Ids�k
i=1 var on_b_id i;

�id∈Ids�k
i=1 var on_a_id i;

21

2. Encoding

// check , whether an invariant holds before the loop

�k
i=1,invj∈I′ assume inv i <==> on_b i;

// simulate an arbitrary iteration

�x′=M(x),x∈T(Id) x′:= havoc;

�k
i=1,invj∈I′ assume on_a i ==> inv i[T(Id)/M(T(Id))];

// we only simulate the outer loop , if we can ever enter

it

if (e) then

{

assume e[T(Id)/M(T(Id))];

// transformed loop body

[[s]] IL (T(Id));

}

// infer , which invariants hold

�k
i=1,invj∈Invs′ assume (on_b i ∧ (on_a i ==> inv i[T(Id)/M(T(Id))

])) ==> on i;

// actual loop

var star;

�x∈T(Id) x:=havoc;

�k
i=1,invj∈Invs′ assume on i ==> inv i;

if (star) then

{

assume e;

[[s]] I L;

assume fale;

else

{

assume ¬e;
}

where f resh(on1, ..., onk) ∧ f resh(on b1, ..., on bk) ∧ f resh(on a1, ..., on ak) ∧
∧id∈get nested id(Id) f resh(on id1, ..., on idk) ∧
∧id∈get nested id(Id) f resh(on b id1, ..., on b idk) ∧
∧id∈get nested id(Id) f resh(on a id1, ..., on a idk) ∧
f resh(star)

22

2.3. Potential Problems of the Encoding

The problem with this approach is that the combination of assume on a ==>
inv statements may lead to unexpected restrictions on the values of vari-
ables used in invariant expressions, rendering the inference process un-
sound.

We illustrate that with the following example.

Let us further consider the following Boogie program.
function lol(b: bool): bool;

procedure bar() returns ()

{

var a: int;

var b: int;

var c: int;

var temp: int;

var stop : bool;

stop := false;

a := 1;

b := 2;

c := 3;

while (!stop)

invariant a != c;

invariant a != b;

{

stop := lol(stop);

temp := a;

a := b;

b := c;

c := temp;

}

// should fail without b != c invariant ,

// should succeed otherwise.

assert {:msg "outer"} a != c;

}

Let us now look at the result produced by our unsound encoding.
function lol(b: bool): bool;

procedure bar_transformed () returns ()

{

var a: int;

var b: int;

var c: int;

var temp: int;

var stop: bool;

var stop_duplicate: bool;

23

2. Encoding

var temp_duplicate: int;

var a_duplicate: int;

var b_duplicate: int;

var c_duplicate: int;

var anon0_on_1: bool;

var anon0_on_b_1: bool;

var anon0_on_a_1: bool;

var anon0_on_2: bool;

var anon0_on_b_2: bool;

var anon0_on_a_2: bool;

var anon0_on_3: bool;

var anon0_on_b_3: bool;

var anon0_on_a_3: bool;

var anon0_star: bool;

stop := false;

a := 1;

b := 2;

c := 3;

assume (a != b && a != c) <==> anon0_on_b_1;

assume a != c <==> anon0_on_b_2;

assume a != b <==> anon0_on_b_3;

havoc stop_duplicate;

havoc temp_duplicate;

havoc a_duplicate;

havoc b_duplicate;

havoc c_duplicate;

assume anon0_on_a_1 ==> (a_duplicate != b_duplicate &&

a_duplicate != c_duplicate);

assume anon0_on_a_2 ==> a_duplicate != c_duplicate;

assume anon0_on_a_3 ==> a_duplicate != b_duplicate;

if (!stop)

{

assume !stop_duplicate;

stop_duplicate := lol(stop_duplicate);

temp_duplicate := a_duplicate;

a_duplicate := b_duplicate;

b_duplicate := c_duplicate;

c_duplicate := temp_duplicate;

}

assume (anon0_on_b_1 && (anon0_on_a_1 ==> (a_duplicate

!= b_duplicate && a_duplicate != c_duplicate))) ==>

anon0_on_1;

assume (anon0_on_b_2 && (anon0_on_a_2 ==> a_duplicate !=

c_duplicate) ==> anon0_on_2;

24

2.3. Potential Problems of the Encoding

assume (anon0_on_b_3 && (anon0_on_a_3 ==> a_duplicate !=

b_duplicate) ==> anon0_on_3;

havoc anon0_star;

havoc stop;

havoc temp;

havoc a;

havoc b;

havoc c;

assume anon0_on_1 ==> (a != b && a != c);

assume anon0_on_2 ==> a != c;

assume anon0_on_3 ==> a != b;

if (anon0_star)

{

assume !stop;

stop := lol(stop);

temp := a;

a := b;

b := c;

c := temp;

assume false;

}

else

{

assume !!stop;

}

assert a != c;

}

Transformed Boogie Program

Assertion a 6= c at the end of the transformed program is successfully
proven. This should not be possible, however, without the invariant
b 6= c.

The problem here is the following. Whenever the flag anon0 on 1 is set
to true, i.e., we assume that the candidate invariant a 6= c ∧ a 6= b at
the beginning of the loop holds, it implies that the candidate invariants
a 6= c and a 6= b also hold at the beginning of the loop and that the
candidate invariant a 6= c holds at the end of the loop. Therefore we
are able to infer that the candidate invariant a 6= c is an invariant. This
should not be the case.

25

2. Encoding

Although neither of candidate invariants holds by itself, the inference
process for one candidate invariant affects the inference process for an-
other one. This happens since both inference processes use the same
variables.

This could be solved for example by introducing a new copy of tar-
get variables for each candidate invariant in the simulation loop, which
would be equivalent to the sound encoding presented in this thesis. The
number of variable copies grows exponentially in the number of input
candidate invariants.

The way to solve the issue, which is used in the sound version of encod-
ing and implementation, is to encode the simulation of the loop for each
invariant separately. In this case the number of target variable copies re-
mains constant, but the number of loop simulations grows exponentially
in the number of input candidate invariants.

It seems, however, that there is now straightforward efficient solution to
that problem.

26

Chapter 3

Implementation

In this chapter we give a brief overview of the implementation. We have
chosen to implement our encoding, presented in the previous chapter,
as an extension of the Boogie Programming Language. The implemen-
tation is done in C#, as is the implementation of Boogie itself.

Since the implementation follows rather strictly the encoding, we con-
centrate here mainly on the differences. The differences are caused
mainly by the implementation of the Boogie Programming language it-
self, in particular the Boogie AST.

One particular difference is that we had to make the transformations
not on the granularity of statements, as described in the encoding, but
on the granularity of BigBlocks. The BigBlock is a unit element created
by the parser. It contains of the Simple Commands and the Structured Com-
mands, i.e., not control flow and control flow statements correspondingly.
Each BigBlock always starts with a simple command, if there are any in
program text, and always ends with one structured command, if there
is any in program text. This implementation detail did not influence the
semantics of the encoding, however.

The next two changes we have made to the encoding also have slightly
changed the semantics. The changes, however, do not affect the process
of invariants inference and the verification of the input program.

1. Boogie supports multiple left hand sides in an assignment state-
ment. We have also implemented this functionality, which is not
present in the encoding, in our extension.

2. The types in our encoding are implicit. If we declare a new vari-
able, it has no indication of type. And if we declare a new variable

27

3. Implementation

which is a copy of a target variable, it has the same type as the
corresponding target variable; the type is, however, not explicitly
given.

Our implementation supports all the types of the Boogie Program-
ming Language.

In order for our implementation to read the input candidate invariants
and the input user invariants they should be encoded in the input pro-
gram text in the following way.

1. A candidate invariant inv is given by the statement invariant b ==>
inv for the corresponding loop. b is a global constant, declared at
the beginning of the input program text as const {: existential true}
b : bool;.

2. A user invariant invu is given by the statement invariant invu for
the corresponding loop.

This is the same format Houdini uses.

As the transformation phase reaches a loop, the corresponding candi-
date invariants set is built from previously read candidate invariants for
that loop and user invariants for that loop as described in Section 2.1.

28

Chapter 4

Evaluation

We have evaluated the performance of our implementation against Boo-
gie’s Houdini implementation on various short programs, listed in the
Appendix.

The processor we used was Intel(R) Core(TM) i7-6700HQ CPU, 2.60GHz,
4 Cores, 8 Logical Processors, with 16 GB RAM and 20GB Virtual Mem-
ory. The operating system was Windows 10 Pro, 64-bit version.

We ran our implementation and Houdini 10 times with each program
as input. We then averaged the corresponding running times.

The programs used for evaluation may be divided into three categories.

1. The programs we used to develop and test the ideas for our encod-
ing: nested loops trans f ormed 09.bpl and unsound 00.bpl.

2. The programs to test the behavior of Houdini and our Implementa-
tion under certain conditions: many f alse invariants.bpl and many lines.bpl.
In both programs the amount of program test outside of any loop
is much bigger then the amount of text inside a loop. In the first
program there are nine candidate invariants all of which are not
invariants. In the second program there are only two candidate
invariants and they are also not invariants.

The programs were written in such a way that Houdini can refute
only one candidate invariant per one verifier call. They were sup-
posed to help to understand, how much the verification time using
Houdini changes relative to our Implementation with increasing
number of candidate invariants, i.e., increasing number of verifier
calls.

29

4. Evaluation

3. The real world applications: kernel structured nocalls.bpl and HistogramAtomics.bpl.
These were taken from Accelerated parallel processing SDK [1] and
translated to the Boogie Programming Language with GPUVerify
[2].

The translated programs were further rewritten by hand to replace
goto statements with while statements and global variables with
local ones. This last transformation was needed since our imple-
mentation does not count loops encoded with gotos as loops. We
also needed to get rid of global variables because if some of them
are modified inside a loop, our implementation would make this
modification at least twice, at least once for the simulation loop
phase and once for the original loop phase. This could be avoided
by storing the values of global variables in auxiliary variables be-
fore performing a simulation of an arbitrary iteration of a loop and
thereafter restoring these values. We did not provide this feature
in our implementation, however.

The evaluation results are provided in Tables 4.1, 4.2, 4.3.

The first group of programs are rather short programs used to get a
general idea of the performance of our implementation and Houdini.
In all cases the running time of Houdini was smaller than that of our
implementation. In this case the amount of code for loop simulations
was bigger, than the amount of code outside of any loop. This lead us
to the idea to evaluate the approach on programs where the amount of
code for loop simulations would be much smaller then the code for the
rest of the program.

Both of the programs of the second group have large amount of code
outside of any loop and were written in such a way that Houdini can
refute only one candidate invariant at a time. We see, however, that also
in this case the verification times using Houdini are much shorter than
verification times using our implementation. Performing exponentially
many (in the number of the candidate invariants) simulations of a loop
for both programs has a huge negative impact on running time also in
the case where the code for the invariant inference phase is only a small
fraction of the overall program text.

The third group of programs allowed us to test the behavior of our im-
plementation in comparison with that of Houdini on real application
programs. Also in this case running times of Houdini were smaller than
those of our implementation.

30

Table 4.1: Evaluation Results

File Name nested loops trans f ormed 09.bpl unsound 00.bpl

Number of Lines 34 35

Number of Lines Produced 409 513

by Our Implementation

Running Time, Seconds 0.02 0.04

Houdini

Running Time, Seconds 0.19 0.19

Our Implementation

Number of Loops 2 / 1 1 / 0

Total / Nested

Number of Invariants 5 / 0 3 / 1

Correct / Incorrect

31

4. Evaluation

Table 4.2: Evaluation Results

File Name many f alse invariants.bpl many lines.bpl

Number of Lines 450045 450031

Number of Lines Produced 612331 600125

by Our Implementation

Running Time, Seconds 27.83 8.05

Houdini

Running Time, Seconds 257.49 227.33

Our Implementation

Number of Loops 1 / 0 1 / 0

Total / Nested

Number of Invariants 0 / 9 0 / 2

Correct / Incorrect

32

Table 4.3: Evaluation Results

File Name kernel structured nocalls.bpl HistogramAtomics.bpl

Number of Lines 316 236

Number of Lines Produced 280810 9731

by Our Implementation

Running Time, Seconds 0.88 0.16

Houdini

Running Time, Seconds 56.04 1.15

Our Implementation

Number of Loops 2 / 1 1 / 0

Total / Nested

Number of Invariants 5 / 6 2 / 6

Correct / Incorrect

33

4. Evaluation

The long verification times using our implementation were expectable
for programs where the amount of code inside a loop constitutes a sig-
nificant amount of overall program text. Even if we have only one can-
didate invariant, our implementation already repeats the corresponding
loop body twice. In the worst case, when this loop is the only program
text we have, it already doubles the size of the program to be verified.
The situation gets even worse if we have several candidate invariants.

Testing the running times on real world programs confirmed the previ-
ous thoughts. Since a loop body constitutes the significant part of the
text of both programs longer running times of our implementation with
respect to Houdini were expectable.

Evaluating the running times with the programs of the second group
showed, however, that our implementation performance is affected by
the duplicated loop bodies much more severely then we initially thought.
Even with a tiny loop body and a huge amount of code outside of a
loop our the running time of our implementation was much slower than
that of Houdini. Although increasing the number of candidate invari-
ants slowed down the verification time using Houdini, the difference in
verification times using our implementation and Houdini remained big.
Since we specifically used a very big amount of code outside of a loop,
which should be bigger than that of an average real world program, it
suggests that verification using Houdini is more efficient.

34

Chapter 5

Conclusion

In this thesis we presented an alternative approach of using the guess-
and-check method to infer loop invariants and subsequently verify the
input program.

We presented an encoding which allows to infer the loop invariants and
verify a program using only one call to the verifier. This is fundamen-
tally different from the corresponding approaches used today, e.g., Hou-
dini. In the process of reducing the number of calls to the verifier we
introduced, however, another problem. In our encoding we have to con-
sider all possible combinations of the input candidate invariants for a
given loop. This may significantly enlarge the amount of text of the
transformed program leading to long verification times.

We implemented our encoding as an extension of the Boogie verifier
and evaluated it against Houdini implementation for the Boogie Pro-
gramming Language.

As we suggested, Houdini performed better than our implementation if
the amount of code inside the loop body was significant relative to the
overall amount of the program text. We found, however, that Houdini
also performed better if the amount of code inside the loop body was
negligibly small relative to the overall amount of the program text. This
means that the problem of considering all possible combinations of the
input candidate invariants for a given loop should be solved before our
method can be used in practice.

As we discussed in Chapter 2, finding a solution to this problem means
being able to infer several invariants simultaneously in such a way that
inference of one invariant does not affect the inference of another.

35

5. Conclusion

The encoding as presented in this thesis may, however, still be useful not
only as a proof of concept. Since for a given loop we perform the infer-
ence process for each of the possible combinations of the corresponding
input candidate invariants separately and independently from one an-
other, it suggests that our encoding can easily be parallelized.

36

Appendix A

Code Listings

A.1

type _SIZE_T_TYPE = bv32;

procedure _ATOMIC_OP32(x: [bv32]bv32 , y: bv32) returns (z$1:

bv32 , A$1: [bv32]bv32 , z$2: bv32 , A$2: [bv32]bv32);

axiom {: array_info "$$in"} {: global} {: elem_width 32} {:

source_name "in"} {: source_elem_width 32} {:

source_dimensions "*"} true;

var {: race_checking} {: global} {: elem_width 32} {:

source_elem_width 32} {: source_dimensions "*"}

_READ_HAS_OCCURRED_$$in: bool;

var {: race_checking} {: global} {: elem_width 32} {:

source_elem_width 32} {: source_dimensions "*"}

_WRITE_HAS_OCCURRED_$$in: bool;

var {: race_checking} {: global} {: elem_width 32} {:

source_elem_width 32} {: source_dimensions "*"}

_ATOMIC_HAS_OCCURRED_$$in: bool;

var {: race_checking} {: global} {: elem_width 32} {:

source_elem_width 128} {: source_dimensions "*"}

_READ_HAS_OCCURRED_$$out: bool;

var {: race_checking} {: global} {: elem_width 32} {:

source_elem_width 128} {: source_dimensions "*"}

_ATOMIC_HAS_OCCURRED_$$out: bool;

37

A. Code Listings

const _WATCHED_OFFSET: bv32;

const {: global_offset_x} global_offset_x: bv32;

const {: global_offset_y} global_offset_y: bv32;

const {: global_offset_z} global_offset_z: bv32;

const {: group_id_x} group_id_x$1: bv32;

const {: group_id_x} group_id_x$2: bv32;

const {: group_size_x} group_size_x: bv32;

const {: group_size_y} group_size_y: bv32;

const {: group_size_z} group_size_z: bv32;

const {: local_id_x} local_id_x$1: bv32;

const {: local_id_x} local_id_x$2: bv32;

const {: num_groups_x} num_groups_x: bv32;

const {: num_groups_y} num_groups_y: bv32;

const {: num_groups_z} num_groups_z: bv32;

function {: bvbuiltin "bvadd"} BV32_ADD(bv32 , bv32) : bv32;

function {: bvbuiltin "bvmul"} BV32_MUL(bv32 , bv32) : bv32;

function {: bvbuiltin "bvult"} BV32_ULT(bv32 , bv32) : bool;

procedure {: source_name "write_kernel"} {: kernel}

$write_kernel($ni: bv32 , $val: bv32 , $nk: bv32);

requires BV32_SGT(group_size_x , 0bv32);

requires BV32_SGT(num_groups_x , 0bv32);

requires BV32_SGE(group_id_x$1 , 0bv32);

requires BV32_SGE(group_id_x$2 , 0bv32);

requires BV32_SLT(group_id_x$1 , num_groups_x);

requires BV32_SLT(group_id_x$2 , num_groups_x);

requires BV32_SGE(local_id_x$1 , 0bv32);

requires BV32_SGE(local_id_x$2 , 0bv32);

requires BV32_SLT(local_id_x$1 , group_size_x);

requires BV32_SLT(local_id_x$2 , group_size_x);

requires BV32_SGT(group_size_y , 0bv32);

requires BV32_SGT(num_groups_y , 0bv32);

38

A.1.

requires BV32_SGE(group_id_y$1 , 0bv32);

requires BV32_SGE(group_id_y$2 , 0bv32);

requires BV32_SLT(group_id_y$1 , num_groups_y);

requires BV32_SLT(group_id_y$2 , num_groups_y);

requires BV32_SGE(local_id_y$1 , 0bv32);

requires BV32_SGE(local_id_y$2 , 0bv32);

requires BV32_SLT(local_id_y$1 , group_size_y);

requires BV32_SLT(local_id_y$2 , group_size_y);

requires BV32_SGT(group_size_z , 0bv32);

requires BV32_SGT(num_groups_z , 0bv32);

requires BV32_SGE(group_id_z$1 , 0bv32);

requires BV32_SGE(group_id_z$2 , 0bv32);

requires BV32_SLT(group_id_z$1 , num_groups_z);

requires BV32_SLT(group_id_z$2 , num_groups_z);

requires BV32_SGE(local_id_z$1 , 0bv32);

requires BV32_SGE(local_id_z$2 , 0bv32);

requires BV32_SLT(local_id_z$1 , group_size_z);

requires BV32_SLT(local_id_z$2 , group_size_z);

requires group_id_x$1 == group_id_x$2 && group_id_y$1 ==

group_id_y$2 && group_id_z$1 == group_id_z$2 ==>

local_id_x$1 != local_id_x$2 || local_id_y$1 !=

local_id_y$2 || local_id_z$1 != local_id_z$2;

implementation {: source_name "write_kernel"} {: kernel}

$write_kernel($ni: bv32 , $val: bv32 , $nk: bv32)

{

var {: source_name "out"} {: global} $$out: [bv32]bv32;

var $n.0: bv32;

var $i.0: bv32;

var $idx.0$1: bv32;

var $idx.0$2: bv32;

var v0: bool;

var v1: bool;

var v2: bool;

var _WRITE_READ_BENIGN_FLAG_$$out: bool;

var _WRITE_READ_BENIGN_FLAG_$$in: bool;

var _WRITE_HAS_OCCURRED_$$out: bool;

assume !_READ_HAS_OCCURRED_$$in && !

_WRITE_HAS_OCCURRED_$$in && !_ATOMIC_HAS_OCCURRED_$$in;

assume !_READ_HAS_OCCURRED_$$out && !

_WRITE_HAS_OCCURRED_$$out && !

_ATOMIC_HAS_OCCURRED_$$out;

v0 := $nk == 0bv32;

if (!v0) {

$n.0 := 0bv32;

39

A. Code Listings

assume {: captureState "loop_entry_state_0_0"} true;

while (BV32_ULT($n.0, $nk))

invariant {:tag "accessedOffsetsSatisfyPredicates"}

_b9 ==> _WRITE_HAS_OCCURRED_$$out ==> BV32_AND(

BV32_SUB(BV32_MUL(BV32_MUL(group_size_x ,

num_groups_x), 4bv32), 1bv32), _WATCHED_OFFSET) ==

BV32_AND(BV32_SUB(BV32_MUL(BV32_MUL(group_size_x ,

num_groups_x), 4bv32), 1bv32), BV32_MUL(BV32_ADD(

BV32_MUL(group_id_x$1 , group_size_x), local_id_x$1)

, 4bv32)) || BV32_AND(BV32_SUB(BV32_MUL(BV32_MUL(

group_size_x , num_groups_x), 4bv32), 1bv32),

_WATCHED_OFFSET) == BV32_AND(BV32_SUB(BV32_MUL(

BV32_MUL(group_size_x , num_groups_x), 4bv32), 1bv32

), BV32_ADD(BV32_MUL(BV32_ADD(BV32_MUL(group_id_x$1

, group_size_x), local_id_x$1), 4bv32), 1bv32)) ||

BV32_AND(BV32_SUB(BV32_MUL(BV32_MUL(group_size_x ,

num_groups_x), 4bv32), 1bv32), _WATCHED_OFFSET) ==

BV32_AND(BV32_SUB(BV32_MUL(BV32_MUL(group_size_x ,

num_groups_x), 4bv32), 1bv32), BV32_ADD(BV32_MUL(

BV32_ADD(BV32_MUL(group_id_x$1 , group_size_x),

local_id_x$1), 4bv32), 2bv32)) || BV32_AND(BV32_SUB

(BV32_MUL(BV32_MUL(group_size_x , num_groups_x), 4

bv32), 1bv32), _WATCHED_OFFSET) == BV32_AND(

BV32_SUB(BV32_MUL(BV32_MUL(group_size_x ,

num_groups_x), 4bv32), 1bv32), BV32_ADD(BV32_MUL(

BV32_ADD(BV32_MUL(group_id_x$1 , group_size_x),

local_id_x$1), 4bv32), 3bv32));

invariant {:tag "loopBound"} {: thread 1} _b3 ==>

BV32_UGE($n.0, 0bv32);

invariant {:tag "loopBound"} {: thread 1} _b2 ==>

BV32_ULE($n.0, 0bv32);

invariant {:tag "loopBound"} {: thread 1} _b1 ==>

BV32_SGE($n.0, 0bv32);

invariant {:tag "loopBound"} {: thread 1} _b0 ==>

BV32_SLE($n.0, 0bv32);

invariant {: block_sourceloc} {: sourceloc_num 3} true;

{

$i.0, $idx.0$1 := 0bv32 , BV32_ADD(BV32_MUL(

group_id_x$1 , group_size_x), local_id_x$1);

$idx.0$2 := BV32_ADD(BV32_MUL(group_id_x$2 ,

group_size_x), local_id_x$2);

assume {: captureState "loop_entry_state_1_0"} true;

while (BV32_ULT($i.0, $ni))

invariant {:tag "accessedOffsetsSatisfyPredicates"}

_b10 ==> _WRITE_HAS_OCCURRED_$$out ==> BV32_AND(

BV32_SUB(BV32_MUL(BV32_MUL(group_size_x ,

num_groups_x), 4bv32), 1bv32), _WATCHED_OFFSET)

== BV32_AND(BV32_SUB(BV32_MUL(BV32_MUL(

40

A.1.

group_size_x , num_groups_x), 4bv32), 1bv32),

BV32_MUL(BV32_ADD(BV32_MUL(group_id_x$1 ,

group_size_x), local_id_x$1), 4bv32)) || BV32_AND

(BV32_SUB(BV32_MUL(BV32_MUL(group_size_x ,

num_groups_x), 4bv32), 1bv32), _WATCHED_OFFSET)

== BV32_AND(BV32_SUB(BV32_MUL(BV32_MUL(

group_size_x , num_groups_x), 4bv32), 1bv32),

BV32_ADD(BV32_MUL(BV32_ADD(BV32_MUL(group_id_x$1 ,

group_size_x), local_id_x$1), 4bv32), 1bv32)) ||

BV32_AND(BV32_SUB(BV32_MUL(BV32_MUL(group_size_x

, num_groups_x), 4bv32), 1bv32), _WATCHED_OFFSET)

== BV32_AND(BV32_SUB(BV32_MUL(BV32_MUL(

group_size_x , num_groups_x), 4bv32), 1bv32),

BV32_ADD(BV32_MUL(BV32_ADD(BV32_MUL(group_id_x$1 ,

group_size_x), local_id_x$1), 4bv32), 2bv32)) ||

BV32_AND(BV32_SUB(BV32_MUL(BV32_MUL(group_size_x

, num_groups_x), 4bv32), 1bv32), _WATCHED_OFFSET)

== BV32_AND(BV32_SUB(BV32_MUL(BV32_MUL(

group_size_x , num_groups_x), 4bv32), 1bv32),

BV32_ADD(BV32_MUL(BV32_ADD(BV32_MUL(group_id_x$1 ,

group_size_x), local_id_x$1), 4bv32), 3bv32));

invariant {:tag "loopBound"} {: thread 1} _b8 ==>

BV32_UGE($i.0, 0bv32);

invariant {:tag "loopBound"} {: thread 1} _b7 ==>

BV32_ULE($i.0, 0bv32);

invariant {:tag "loopBound"} {: thread 1} _b6 ==>

BV32_SGE($i.0, 0bv32);

invariant {:tag "loopBound"} {: thread 1} _b5 ==>

BV32_SLE($i.0, 0bv32);

invariant {:tag "loopCounterIsStrided"} {: thread 1}

_b4 ==> BV32_AND(BV32_SUB(BV32_MUL(group_size_x ,

num_groups_x), 1bv32), $idx.0$1) == BV32_AND(

BV32_SUB(BV32_MUL(group_size_x , num_groups_x), 1

bv32), BV32_ADD(BV32_MUL(group_id_x$1 ,

group_size_x), local_id_x$1));

invariant {:tag "loopCounterIsStrided"} {: thread 2}

_b4 ==> BV32_AND(BV32_SUB(BV32_MUL(group_size_x ,

num_groups_x), 1bv32), $idx.0$2) == BV32_AND(

BV32_SUB(BV32_MUL(group_size_x , num_groups_x), 1

bv32), BV32_ADD(BV32_MUL(group_id_x$2 ,

group_size_x), local_id_x$2));

invariant {: block_sourceloc} {: sourceloc_num 5} true

;

{

_WRITE_HAS_OCCURRED_$$out := (if true && _TRACKING

&& _WATCHED_OFFSET == BV32_MUL($idx.0$1 , 4bv32)

&& _WATCHED_VALUE_$$out == $val then true else

_WRITE_HAS_OCCURRED_$$out);

_WRITE_READ_BENIGN_FLAG_$$out := (if true &&

41

A. Code Listings

_TRACKING && _WATCHED_OFFSET == BV32_MUL($idx.0$1

, 4bv32) && _WATCHED_VALUE_$$out == $val then

$val != $$out[BV32_MUL($idx.0$1 , 4bv32)] else

_WRITE_READ_BENIGN_FLAG_$$out);

_WRITE_READ_BENIGN_FLAG_$$out := (if true &&

_WRITE_HAS_OCCURRED_$$out && _WATCHED_OFFSET ==

BV32_MUL($idx.0$2, 4bv32) then false else

_WRITE_READ_BENIGN_FLAG_$$out);

assume {: do_not_predicate} {: check_id "check_state_0

"} {: captureState "check_state_0"} {: sourceloc}

{: sourceloc_num 7} true;

assume !(true && _WRITE_HAS_OCCURRED_$$out &&

_WATCHED_OFFSET == BV32_MUL($idx.0$2, 4bv32) &&

_WATCHED_VALUE_$$out != $val);

assume !(true && _READ_HAS_OCCURRED_$$out &&

_WATCHED_OFFSET == BV32_MUL($idx.0$2, 4bv32) &&

_WATCHED_VALUE_$$out != $val);

assume !(true && _ATOMIC_HAS_OCCURRED_$$out &&

_WATCHED_OFFSET == BV32_MUL($idx.0$2, 4bv32));

assume {: captureState "call_return_state_0"} {:

procedureName "_CHECK_WRITE_$$out"} true;

$$out[BV32_MUL($idx.0$1, 4bv32)] := $val;

$$out[BV32_MUL($idx.0$2, 4bv32)] := $val;

_WRITE_HAS_OCCURRED_$$out := (if true && _TRACKING

&& _WATCHED_OFFSET == BV32_ADD(BV32_MUL($idx.0$1 ,

4bv32), 1bv32) && _WATCHED_VALUE_$$out == $val

then true else _WRITE_HAS_OCCURRED_$$out);

_WRITE_READ_BENIGN_FLAG_$$out := (if true &&

_TRACKING && _WATCHED_OFFSET == BV32_ADD(BV32_MUL

($idx.0$1 , 4bv32), 1bv32) && _WATCHED_VALUE_$$out

== $val then $val != $$out[BV32_ADD(BV32_MUL(

$idx.0$1 , 4bv32), 1bv32)] else

_WRITE_READ_BENIGN_FLAG_$$out);

_WRITE_READ_BENIGN_FLAG_$$out := (if true &&

_WRITE_HAS_OCCURRED_$$out && _WATCHED_OFFSET ==

BV32_ADD(BV32_MUL($idx.0$2, 4bv32), 1bv32) then

false else _WRITE_READ_BENIGN_FLAG_$$out);

assume {: do_not_predicate} {: check_id "check_state_1

"} {: captureState "check_state_1"} {: sourceloc}

{: sourceloc_num 8} true;

assume !(true && _WRITE_HAS_OCCURRED_$$out &&

_WATCHED_OFFSET == BV32_ADD(BV32_MUL($idx.0$2, 4

bv32), 1bv32) && _WATCHED_VALUE_$$out != $val);

42

A.1.

assume !(true && _READ_HAS_OCCURRED_$$out &&

_WATCHED_OFFSET == BV32_ADD(BV32_MUL($idx.0$2, 4

bv32), 1bv32) && _WATCHED_VALUE_$$out != $val);

assume !(true && _ATOMIC_HAS_OCCURRED_$$out &&

_WATCHED_OFFSET == BV32_ADD(BV32_MUL($idx.0$2, 4

bv32), 1bv32));

assume {: captureState "call_return_state_0"} {:

procedureName "_CHECK_WRITE_$$out"} true;

$$out[BV32_ADD(BV32_MUL($idx.0$1, 4bv32), 1bv32)] :=

$val;

$$out[BV32_ADD(BV32_MUL($idx.0$2, 4bv32), 1bv32)] :=

$val;

_WRITE_HAS_OCCURRED_$$out := (if true && _TRACKING

&& _WATCHED_OFFSET == BV32_ADD(BV32_MUL($idx.0$1 ,

4bv32), 2bv32) && _WATCHED_VALUE_$$out == $val

then true else _WRITE_HAS_OCCURRED_$$out);

_WRITE_READ_BENIGN_FLAG_$$out := (if true &&

_TRACKING && _WATCHED_OFFSET == BV32_ADD(BV32_MUL

($idx.0$1, 4bv32), 2bv32) && _WATCHED_VALUE_$$out

== $val then $val != $$out[BV32_ADD(BV32_MUL(

$idx.0$1 , 4bv32), 2bv32)] else

_WRITE_READ_BENIGN_FLAG_$$out);

_WRITE_READ_BENIGN_FLAG_$$out := (if true &&

_WRITE_HAS_OCCURRED_$$out && _WATCHED_OFFSET ==

BV32_ADD(BV32_MUL($idx.0$2, 4bv32), 2bv32) then

false else _WRITE_READ_BENIGN_FLAG_$$out);

assume {: do_not_predicate} {: check_id "check_state_2

"} {: captureState "check_state_2"} {: sourceloc}

{: sourceloc_num 9} true;

assume !(true && _WRITE_HAS_OCCURRED_$$out &&

_WATCHED_OFFSET == BV32_ADD(BV32_MUL($idx.0$2, 4

bv32), 2bv32) && _WATCHED_VALUE_$$out != $val);

assume !(true && _READ_HAS_OCCURRED_$$out &&

_WATCHED_OFFSET == BV32_ADD(BV32_MUL($idx.0$2, 4

bv32), 2bv32) && _WATCHED_VALUE_$$out != $val);

assume !(true && _ATOMIC_HAS_OCCURRED_$$out &&

_WATCHED_OFFSET == BV32_ADD(BV32_MUL($idx.0$2, 4

bv32), 2bv32));

assume {: captureState "call_return_state_0"} {:

procedureName "_CHECK_WRITE_$$out"} true;

$$out[BV32_ADD(BV32_MUL($idx.0$1, 4bv32), 2bv32)] :=

$val;

$$out[BV32_ADD(BV32_MUL($idx.0$2, 4bv32), 2bv32)] :=

$val;

43

A. Code Listings

_WRITE_HAS_OCCURRED_$$out := (if true && _TRACKING

&& _WATCHED_OFFSET == BV32_ADD(BV32_MUL($idx.0$1 ,

4bv32), 3bv32) && _WATCHED_VALUE_$$out == $val

then true else _WRITE_HAS_OCCURRED_$$out);

_WRITE_READ_BENIGN_FLAG_$$out := (if true &&

_TRACKING && _WATCHED_OFFSET == BV32_ADD(BV32_MUL

($idx.0$1 , 4bv32), 3bv32) && _WATCHED_VALUE_$$out

== $val then $val != $$out[BV32_ADD(BV32_MUL(

$idx.0$1, 4bv32), 3bv32)] else

_WRITE_READ_BENIGN_FLAG_$$out);

_WRITE_READ_BENIGN_FLAG_$$out := (if true &&

_WRITE_HAS_OCCURRED_$$out && _WATCHED_OFFSET ==

BV32_ADD(BV32_MUL($idx.0$2, 4bv32), 3bv32) then

false else _WRITE_READ_BENIGN_FLAG_$$out);

assume {: do_not_predicate} {: check_id "check_state_3

"} {: captureState "check_state_3"} {: sourceloc}

{: sourceloc_num 10} true;

assume !(true && _WRITE_HAS_OCCURRED_$$out &&

_WATCHED_OFFSET == BV32_ADD(BV32_MUL($idx.0$2, 4

bv32), 3bv32) && _WATCHED_VALUE_$$out != $val);

assume !(true && _READ_HAS_OCCURRED_$$out &&

_WATCHED_OFFSET == BV32_ADD(BV32_MUL($idx.0$2, 4

bv32), 3bv32) && _WATCHED_VALUE_$$out != $val);

assume !(true && _ATOMIC_HAS_OCCURRED_$$out &&

_WATCHED_OFFSET == BV32_ADD(BV32_MUL($idx.0$2, 4

bv32), 3bv32));

assume {: captureState "call_return_state_0"} {:

procedureName "_CHECK_WRITE_$$out"} true;

$$out[BV32_ADD(BV32_MUL($idx.0$1, 4bv32), 3bv32)] :=

$val;

$$out[BV32_ADD(BV32_MUL($idx.0$2, 4bv32), 3bv32)] :=

$val;

$i.0, $idx.0$1 := BV32_ADD($i.0, 1bv32), BV32_ADD(

$idx.0$1 , BV32_MUL(group_size_x , num_groups_x));

$idx.0$2 := BV32_ADD($idx.0$2 , BV32_MUL(group_size_x

, num_groups_x));

assume {: captureState "loop_back_edge_state_1_0"}

true;

}

$n.0 := BV32_ADD($n.0, 1bv32);

assume {: captureState "loop_back_edge_state_0_0"} true

;

}

}

44

A.1.

}

axiom (if group_size_y == 1bv32 then 1bv1 else 0bv1) != 0bv1

;

axiom (if group_size_z == 1bv32 then 1bv1 else 0bv1) != 0bv1

;

axiom (if num_groups_y == 1bv32 then 1bv1 else 0bv1) != 0bv1

;

axiom (if num_groups_z == 1bv32 then 1bv1 else 0bv1) != 0bv1

;

axiom (if group_size_x == 128 bv32 then 1bv1 else 0bv1) != 0

bv1;

axiom (if num_groups_x == 32768 bv32 then 1bv1 else 0bv1) !=

0bv1;

axiom (if global_offset_x == 0bv32 then 1bv1 else 0bv1) != 0

bv1;

axiom (if global_offset_y == 0bv32 then 1bv1 else 0bv1) != 0

bv1;

axiom (if global_offset_z == 0bv32 then 1bv1 else 0bv1) != 0

bv1;

const {: local_id_y} local_id_y$1: bv32;

const {: local_id_y} local_id_y$2: bv32;

const {: local_id_z} local_id_z$1: bv32;

const {: local_id_z} local_id_z$2: bv32;

const {: group_id_y} group_id_y$1: bv32;

const {: group_id_y} group_id_y$2: bv32;

const {: group_id_z} group_id_z$1: bv32;

const {: group_id_z} group_id_z$2: bv32;

function {: bvbuiltin "bvsle"} BV32_SLE(bv32 , bv32) : bool;

const {: existential true} _b0: bool;

45

A. Code Listings

function {: bvbuiltin "bvsge"} BV32_SGE(bv32 , bv32) : bool;

const {: existential true} _b1: bool;

function {: bvbuiltin "bvule"} BV32_ULE(bv32 , bv32) : bool;

const {: existential true} _b2: bool;

function {: bvbuiltin "bvuge"} BV32_UGE(bv32 , bv32) : bool;

const {: existential true} _b3: bool;

function {: bvbuiltin "bvsub"} BV32_SUB(bv32 , bv32) : bv32;

function {: bvbuiltin "bvand"} BV32_AND(bv32 , bv32) : bv32;

const {: existential true} _b4: bool;

const {: existential true} _b5: bool;

const {: existential true} _b6: bool;

const {: existential true} _b7: bool;

const {: existential true} _b8: bool;

const _WATCHED_VALUE_$$in: bv32;

var _WRITE_READ_BENIGN_FLAG_$$in: bool;

const _WATCHED_VALUE_$$out: bv32;

var _TRACKING: bool;

function {: bvbuiltin "bvsgt"} BV32_SGT(bv32 , bv32) : bool;

function {: bvbuiltin "bvslt"} BV32_SLT(bv32 , bv32) : bool;

const {: existential true} _b9: bool;

const {: existential true} _b10: bool;

kernel structured nocalls.bpl

46

A.2.

A.2

type _SIZE_T_TYPE = bv32;

procedure _ATOMIC_OP32(x: [bv32]bv32 , y: bv32) returns (z$1:

bv32 , A$1: [bv32]bv32 , z$2: bv32 , A$2: [bv32]bv32);

var {: source_name "Histogram"} {: global} $$Histogram: [bv32]

bv32;

axiom {: array_info "$$Histogram"} {: global} {: elem_width 32}

{: source_name "Histogram"} {: source_elem_width 32} {:

source_dimensions "*"} true;

var {: race_checking} {: global} {: elem_width 32} {:

source_elem_width 32} {: source_dimensions "*"}

_READ_HAS_OCCURRED_$$Histogram: bool;

var {: race_checking} {: global} {: elem_width 32} {:

source_elem_width 32} {: source_dimensions "*"}

_WRITE_HAS_OCCURRED_$$Histogram: bool;

var {: race_checking} {: global} {: elem_width 32} {:

source_elem_width 32} {: source_dimensions "*"}

_ATOMIC_HAS_OCCURRED_$$Histogram: bool;

const _WATCHED_OFFSET: bv32;

const {: global_offset_x} global_offset_x: bv32;

const {: global_offset_y} global_offset_y: bv32;

const {: global_offset_z} global_offset_z: bv32;

const {: group_id_x} group_id_x$1: bv32;

const {: group_id_x} group_id_x$2: bv32;

const {: group_size_x} group_size_x: bv32;

const {: group_size_y} group_size_y: bv32;

const {: group_size_z} group_size_z: bv32;

const {: local_id_x} local_id_x$1: bv32;

const {: local_id_x} local_id_x$2: bv32;

const {: num_groups_x} num_groups_x: bv32;

47

A. Code Listings

const {: num_groups_y} num_groups_y: bv32;

const {: num_groups_z} num_groups_z: bv32;

function {: bvbuiltin "bvadd"} BV32_ADD(bv32 , bv32) : bv32;

function {: bvbuiltin "bvmul"} BV32_MUL(bv32 , bv32) : bv32;

function {: bvbuiltin "bvult"} BV32_ULT(bv32 , bv32) : bool;

procedure {: source_name "reduceKernel"} {: kernel}

$reduceKernel($nSubHists: bv32);

requires !_WRITE_HAS_OCCURRED_$$Histogram && !

_ATOMIC_HAS_OCCURRED_$$Histogram;

requires BV32_SGT(group_size_x , 0bv32);

requires BV32_SGT(num_groups_x , 0bv32);

requires BV32_SGE(group_id_x$1 , 0bv32);

requires BV32_SGE(group_id_x$2 , 0bv32);

requires BV32_SLT(group_id_x$1 , num_groups_x);

requires BV32_SLT(group_id_x$2 , num_groups_x);

requires BV32_SGE(local_id_x$1 , 0bv32);

requires BV32_SGE(local_id_x$2 , 0bv32);

requires BV32_SLT(local_id_x$1 , group_size_x);

requires BV32_SLT(local_id_x$2 , group_size_x);

requires BV32_SGT(group_size_y , 0bv32);

requires BV32_SGT(num_groups_y , 0bv32);

requires BV32_SGE(group_id_y$1 , 0bv32);

requires BV32_SGE(group_id_y$2 , 0bv32);

requires BV32_SLT(group_id_y$1 , num_groups_y);

requires BV32_SLT(group_id_y$2 , num_groups_y);

requires BV32_SGE(local_id_y$1 , 0bv32);

requires BV32_SGE(local_id_y$2 , 0bv32);

requires BV32_SLT(local_id_y$1 , group_size_y);

requires BV32_SLT(local_id_y$2 , group_size_y);

requires BV32_SGT(group_size_z , 0bv32);

requires BV32_SGT(num_groups_z , 0bv32);

requires BV32_SGE(group_id_z$1 , 0bv32);

requires BV32_SGE(group_id_z$2 , 0bv32);

requires BV32_SLT(group_id_z$1 , num_groups_z);

requires BV32_SLT(group_id_z$2 , num_groups_z);

requires BV32_SGE(local_id_z$1 , 0bv32);

requires BV32_SGE(local_id_z$2 , 0bv32);

requires BV32_SLT(local_id_z$1 , group_size_z);

requires BV32_SLT(local_id_z$2 , group_size_z);

requires group_id_x$1 == group_id_x$2 && group_id_y$1 ==

group_id_y$2 && group_id_z$1 == group_id_z$2 ==>

local_id_x$1 != local_id_x$2 || local_id_y$1 !=

local_id_y$2 || local_id_z$1 != local_id_z$2;

48

A.2.

modifies $$Histogram , _WRITE_HAS_OCCURRED_$$Histogram ,

_WRITE_READ_BENIGN_FLAG_$$Histogram ,

_WRITE_READ_BENIGN_FLAG_$$Histogram;

implementation {: source_name "reduceKernel"} {: kernel}

$reduceKernel($nSubHists: bv32)

{

var $bin.0$1: bv32;

var $bin.0$2: bv32;

var $i.0: bv32;

var v0$1: bv32;

var v0$2: bv32;

var v1: bool;

var v2$1: bv32;

var v2$2: bv32;

var _READ_HAS_OCCURRED_$$Histogram: bool;

assume !_READ_HAS_OCCURRED_$$Histogram;

v0$1 := BV32_ADD(BV32_MUL(group_id_x$1 , group_size_x),

local_id_x$1);

v0$2 := BV32_ADD(BV32_MUL(group_id_x$2 , group_size_x),

local_id_x$2);

$bin.0$1 , $i.0 := 0bv32 , 0bv32;

$bin.0$2 := 0bv32;

assume {: captureState "loop_entry_state_0_0"} true;

while (BV32_ULT($i.0, $nSubHists))

invariant {:tag "accessBreak"} _b7 ==>

_READ_HAS_OCCURRED_$$Histogram ==> group_id_x$1 ==

BV32_DIV(_WATCHED_OFFSET , group_size_x);

invariant {:tag "accessedOffsetsSatisfyPredicates"} _b6

==> _READ_HAS_OCCURRED_$$Histogram ==> BV32_AND(

BV32_SUB(BV32_MUL (1bv32 , 256 bv32), 1bv32),

_WATCHED_OFFSET) == BV32_AND(BV32_SUB(BV32_MUL (1bv32 ,

256 bv32), 1bv32), BV32_ADD(BV32_MUL (0bv32 , 256 bv32),

BV32_ADD(BV32_MUL(group_id_x$1 , group_size_x),

local_id_x$1)));

invariant {:tag "accessUpperBoundBlock"} _b5 ==>

_READ_HAS_OCCURRED_$$Histogram ==> BV32_SLT(

_WATCHED_OFFSET , BV32_ADD(BV32_MUL(BV32_ADD(

group_id_x$1 , 1bv32), group_size_x), local_id_x$1));

invariant {:tag "accessLowerBoundBlock"} _b4 ==>

_READ_HAS_OCCURRED_$$Histogram ==> BV32_SLE(BV32_ADD(

BV32_MUL(group_id_x$1 , group_size_x), local_id_x$1),

_WATCHED_OFFSET);

invariant {:tag "loopBound"} {: thread 1} _b3 ==>

BV32_UGE($i.0, 0bv32);

invariant {:tag "loopBound"} {: thread 1} _b2 ==>

49

A. Code Listings

BV32_ULE($i.0, 0bv32);

invariant {:tag "loopBound"} {: thread 1} _b1 ==>

BV32_SGE($i.0, 0bv32);

invariant {:tag "loopBound"} {: thread 1} _b0 ==>

BV32_SLE($i.0, 0bv32);

invariant {: block_sourceloc} {: sourceloc_num 1} true;

{

assume {: partition} v1;

_READ_HAS_OCCURRED_$$Histogram := (if true && _TRACKING

&& _WATCHED_OFFSET == BV32_ADD(BV32_MUL($i.0, 256 bv32

), v0$1) && _WATCHED_VALUE_$$Histogram == $$Histogram

[BV32_ADD(BV32_MUL($i.0, 256 bv32), v0$1)] then true

else _READ_HAS_OCCURRED_$$Histogram);

assume {: do_not_predicate} {: check_id "check_state_1"}

{: captureState "check_state_1"} {: sourceloc} {:

sourceloc_num 3} true;

assume !(true && _WRITE_HAS_OCCURRED_$$Histogram &&

_WATCHED_OFFSET == BV32_ADD(BV32_MUL($i.0, 256 bv32),

v0$2) && _WRITE_READ_BENIGN_FLAG_$$Histogram);

assume !(true && _ATOMIC_HAS_OCCURRED_$$Histogram &&

_WATCHED_OFFSET == $$Histogram[BV32_ADD(BV32_MUL($i

.0, 256 bv32), v0$2)]);

assume {: captureState "call_return_state_0"} {:

procedureName "_CHECK_READ_$$Histogram"} true;

v2$1 := $$Histogram[BV32_ADD(BV32_MUL($i.0, 256 bv32),

v0$1)];

v2$2 := $$Histogram[BV32_ADD(BV32_MUL($i.0, 256 bv32),

v0$2)];

$bin.0$1 , $i.0 := BV32_ADD($bin.0$1 , v2$1), BV32_ADD($i

.0, 1bv32);

$bin.0$2 := BV32_ADD($bin.0$2 , v2$2);

assume {: captureState "loop_back_edge_state_0_0"} true;

}

assume {: partition} !v1;

_WRITE_HAS_OCCURRED_$$Histogram := (if true && _TRACKING

&& _WATCHED_OFFSET == v0$1 &&

_WATCHED_VALUE_$$Histogram == $bin.0$1 then true else

_WRITE_HAS_OCCURRED_$$Histogram);

_WRITE_READ_BENIGN_FLAG_$$Histogram := (if true &&

_TRACKING && _WATCHED_OFFSET == v0$1 &&

_WATCHED_VALUE_$$Histogram == $bin.0$1 then $bin.0$1 !=

$$Histogram[v0$1] else

_WRITE_READ_BENIGN_FLAG_$$Histogram);

_WRITE_READ_BENIGN_FLAG_$$Histogram := (if true &&

_WRITE_HAS_OCCURRED_$$Histogram && _WATCHED_OFFSET ==

v0$2 then false else

_WRITE_READ_BENIGN_FLAG_$$Histogram);

assume {: do_not_predicate} {: check_id "check_state_0"} {:

50

A.2.

captureState "check_state_0"} {: sourceloc} {:

sourceloc_num 6} true;

assume !(true && _WRITE_HAS_OCCURRED_$$Histogram &&

_WATCHED_OFFSET == v0$2 && _WATCHED_VALUE_$$Histogram

!= $bin.0$2);

assume !(true && _READ_HAS_OCCURRED_$$Histogram &&

_WATCHED_OFFSET == v0$2 && _WATCHED_VALUE_$$Histogram

!= $bin.0$2);

assume !(true && _ATOMIC_HAS_OCCURRED_$$Histogram &&

_WATCHED_OFFSET == v0$2);

assume {: captureState "call_return_state_0"} {:

procedureName "_CHECK_WRITE_$$Histogram"} true;

$$Histogram[v0$1] := $bin.0$1;

$$Histogram[v0$2] := $bin.0$2;

return;

}

axiom (if group_size_y == 1bv32 then 1bv1 else 0bv1) != 0bv1

;

axiom (if group_size_z == 1bv32 then 1bv1 else 0bv1) != 0bv1

;

axiom (if num_groups_y == 1bv32 then 1bv1 else 0bv1) != 0bv1

;

axiom (if num_groups_z == 1bv32 then 1bv1 else 0bv1) != 0bv1

;

axiom (if group_size_x == 128 bv32 then 1bv1 else 0bv1) != 0

bv1;

axiom (if num_groups_x == 2bv32 then 1bv1 else 0bv1) != 0bv1

;

axiom (if global_offset_x == 0bv32 then 1bv1 else 0bv1) != 0

bv1;

axiom (if global_offset_y == 0bv32 then 1bv1 else 0bv1) != 0

bv1;

axiom (if global_offset_z == 0bv32 then 1bv1 else 0bv1) != 0

bv1;

const {: local_id_y} local_id_y$1: bv32;

const {: local_id_y} local_id_y$2: bv32;

51

A. Code Listings

const {: local_id_z} local_id_z$1: bv32;

const {: local_id_z} local_id_z$2: bv32;

const {: group_id_y} group_id_y$1: bv32;

const {: group_id_y} group_id_y$2: bv32;

const {: group_id_z} group_id_z$1: bv32;

const {: group_id_z} group_id_z$2: bv32;

function {: bvbuiltin "bvsle"} BV32_SLE(bv32 , bv32) : bool;

const {: existential true} _b0: bool;

function {: bvbuiltin "bvsge"} BV32_SGE(bv32 , bv32) : bool;

const {: existential true} _b1: bool;

function {: bvbuiltin "bvule"} BV32_ULE(bv32 , bv32) : bool;

const {: existential true} _b2: bool;

function {: bvbuiltin "bvuge"} BV32_UGE(bv32 , bv32) : bool;

const {: existential true} _b3: bool;

const _WATCHED_VALUE_$$Histogram: bv32;

var _WRITE_READ_BENIGN_FLAG_$$Histogram: bool;

procedure {: inline 1} _LOG_ATOMIC_$$Histogram(_P: bool ,

_offset: bv32);

modifies _ATOMIC_HAS_OCCURRED_$$Histogram;

implementation {: inline 1} _LOG_ATOMIC_$$Histogram(_P: bool ,

_offset: bv32)

{

log_access_entry:

_ATOMIC_HAS_OCCURRED_$$Histogram := (if _P && _TRACKING &&

_WATCHED_OFFSET == _offset then true else

_ATOMIC_HAS_OCCURRED_$$Histogram);

return;

}

procedure _CHECK_ATOMIC_$$Histogram(_P: bool , _offset: bv32)

;

requires {: source_name "Histogram"} {:array "$$Histogram"}

52

A.3.

{:race} {: write_atomic} !(_P &&

_WRITE_HAS_OCCURRED_$$Histogram && _WATCHED_OFFSET ==

_offset);

requires {: source_name "Histogram"} {:array "$$Histogram"}

{:race} {: read_atomic} !(_P &&

_READ_HAS_OCCURRED_$$Histogram && _WATCHED_OFFSET ==

_offset);

var _TRACKING: bool;

function {: bvbuiltin "bvsgt"} BV32_SGT(bv32 , bv32) : bool;

function {: bvbuiltin "bvslt"} BV32_SLT(bv32 , bv32) : bool;

const {: existential true} _b4: bool;

const {: existential true} _b5: bool;

function {: bvbuiltin "bvsub"} BV32_SUB(bv32 , bv32) : bv32;

function {: bvbuiltin "bvand"} BV32_AND(bv32 , bv32) : bv32;

const {: existential true} _b6: bool;

function {: bvbuiltin "bvsdiv"} BV32_DIV(bv32 , bv32) : bv32;

const {: existential true} _b7: bool;

HistogramAtomics.bpl

A.3

const {: existential true} _b1: bool;

const {: existential true} _b2: bool;

const {: existential true} _b3: bool;

const {: existential true} _b4: bool;

const {: existential true} _b5: bool;

const {: existential true} _b6: bool;

const {: existential true} _b7: bool;

const {: existential true} _b8: bool;

const {: existential true} _b9: bool;

function lol(b: bool): bool;

procedure foo (m: int) returns (res: int)

requires m >= 0;

ensures res == m;

{

53

A. Code Listings

var i: int;

var j: int;

var stop: bool;

i := 0;

j := 0;

stop := false;

res := 0;

while (!stop)

invariant _b1 ==> i <= 0;

invariant _b2 ==> i <= 1;

invariant _b3 ==> i <= 2;

invariant _b4 ==> i <= 3;

invariant _b5 ==> i <= 4;

invariant _b6 ==> i <= 5;

invariant _b7 ==> i <= 6;

invariant _b8 ==> i <= 7;

invariant _b9 ==> i <= 8;

{

i := i + 1;

stop := lol(stop);

}

// the next if statement is repeated 50000 times

if (res != m)

{

j := j + 1;

}

else

{

j := j - 1;

}

...

if (res != m)

{

j := j + 1;

}

else

{

j := j - 1;

}

res := m;

54

A.4.

}

many false invariants.bpl

A.4

const {: existential true} _b1: bool;

const {: existential true} _b2: bool;

function lol(b: bool): bool;

procedure foo (m: int) returns (res: int)

requires m >= 0;

ensures res == m;

{

var i: int;

var j: int;

var stop: bool;

i := 0;

j := 0;

stop := false;

res := 0;

while (!stop)

invariant _b1 ==> i <= 0;

invariant _b2 ==> i <= 1;

{

i := i + 1;

stop := lol(stop);

}

// the next if statement is repeated 50000 times

if (res != m)

{

j := j + 1;

}

else

{

j := j - 1;

}

...

if (res != m)

55

A. Code Listings

{

j := j + 1;

}

else

{

j := j - 1;

}

res := m;

}

many lines.bpl

A.5
const {: existential true} _b1: bool;

const {: existential true} _b2: bool;

const {: existential true} _b3: bool;

procedure multiply_by_4 (m: int) returns (res: int)

requires m > 0;

ensures res == 4 * m;

{

var i: int;

var j: int;

i := 0;

j := 0;

res := 0;

while (i < 4)

invariant _b1 ==> res == m * i;

invariant _b2 ==> i <= 4;

invariant j == 0;

{

while (j < m)

invariant _b3 ==> res == (m * i) + j;

invariant j <= m;

{

j := j + 1;

res := res + 1;

}

i := i + 1;

j := 0;

}

}

nested loops transformed 09.bpl

56

A.6.

A.6

const {: existential true} _b1: bool;

const {: existential true} _b2: bool;

const {: existential true} _b3: bool;

const {: existential true} _b4: bool;

function lol(b: bool): bool;

procedure bar() returns ()

{

var a: int;

var b: int;

var c: int;

var temp: int;

var stop : bool;

stop := false;

a := 1;

b := 2;

c := 3;

while (!stop)

invariant _b3 ==> a != c;

invariant _b1 ==> a != b;

invariant _b2 ==> b != c;

invariant _b4 ==> c > 1;

{

stop := lol(stop);

temp := a;

a := b;

b := c;

c := temp;

}

assert {:msg "outer"} a != c; // should fail without _b2

candidate , should succeed otherwise.

}

unsound 00.bpl

57

Bibliography

[1] AMD. Accelerated parallel processing sdk. http://developer.amd.
com/sdks/amdappsdk. [Online; accessed 2014].

[2] Adam Betts, Nathan Chong, Alastair F. Donaldson, Shaz Qadeer,
and Paul Thomson. Gpuverify: a verifier for GPU kernels. In Gary T.
Leavens and Matthew B. Dwyer, editors, Proceedings of the 27th An-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2012, part of SPLASH 2012,
Tucson, AZ, USA, October 21-25, 2012, pages 113–132. ACM, 2012.

[3] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where
programs meet provers. In Matthias Felleisen and Philippa Gard-
ner, editors, Proceedings of the 22nd European Symposium on Program-
ming, volume 7792 of Lecture Notes in Computer Science, pages 125–
128. Springer, March 2013.

[4] Cormac Flanagan, Cormac Flanagan, K. Rustan M. Leino, Mark Lil-
libridge, Greg Nelson, James B. Saxe, and Raymie Stata. Extended
static checking for java. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation, PLDI
’02, pages 234–245, New York, NY, USA, 2002. ACM.

[5] Cormac Flanagan and K. Rustan M. Leino. Houdini, an annotation
assistant for esc/java. In José Nuno Oliveira and Pamela Zave, ed-
itors, FME 2001: Formal Methods for Increasing Software Productivity,
pages 500–517, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

59

http://developer.amd.com/sdks/amdappsdk
http://developer.amd.com/sdks/amdappsdk

Bibliography

[6] K. Rustan M. Leino. This is boogie 2.
https://www.microsoft.com/en-us/research/publication/this-
is-boogie-2-2/, June 2008.

[7] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper:
A verification infrastructure for permission-based reasoning. In Pro-
ceedings of the 17th International Conference on Verification, Model Check-
ing, and Abstract Interpretation - Volume 9583, VMCAI 2016, pages
41–62, New York, NY, USA, 2016. Springer-Verlag New York, Inc.

[8] Tobias Nipkow and Gerwin Klein. IMP: A Simple Imperative Language,
pages 75–94. Springer International Publishing, Cham, 2014.

60

	Contents
	Introduction
	Project Overview
	Project structure

	Encoding
	General Idea
	Transformation Function
	Definitions
	Transformations

	Potential Problems of the Encoding
	Possible Inefficiencies
	Potential Solutions

	Implementation
	Evaluation
	Conclusion
	Code Listings
	
	
	
	
	
	

	Bibliography

