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Viper (“Verification Infrastructure for PErmission- based Reasoning”) is a collection of
tools developed at ETH Zurich [5], oriented around a new intermediate verification language
called Silver. Silver provides support for permission-based reasoning ( la Separation Logic [9])
using the logic of implicit dynamic frames [11, 8, 10]. This infrastructure is particularly well
suited for supporting verification techniques based on separation logic and other permission
logics. Front-end tools for source programming languages can be encoded to verification
problems in Silver, for which there are two verifiers available as back-ends: Silicon (based on
symbolic execution) and Carbon (based on verification condition generation via Boogie [6]).

The intermediate language Silver supports a few primitive types and other types can
be encoded by front-end tools. It also provides support for polymorphic sequence and set
datatypes. The sequence and set types are supported by axiomatizations based on those used
in the Dafny verifier [7]. The axiomatisations have been developed using theories available
in the SMT solver (such as uninterpreted functions, integer arithmetic, etc.) and consist of
universally-quantified formulas controlled by triggers to guide the E-matching procedure in
Z3 [2]. The initial task of the internship will be to understand the existing encodings in detail.
In the context of the Viper tools, these axiomatisations perform reasonably well, but in some
cases there are performance issues when handling complicated examples (particularly those
with heavy use of set and sequence constructs). Understanding the performance of Z3 with
respect to different axiomatisations requires a lot of experimentation. The VCC project [1]
provides one tool which can be used for debugging and profiling Z3′s behaviour in these cases.
Finding a solution to this will give good and predicatable support for set and sequences data
types encoding which would also be relevant for the Dafny program verifier and others based
on Boogie/Z3′s technology; potential improvements could greatly benefit a variety of existing
tools and verifiers.

In the internship we propose to investigate the support for these mathematical types in
the following ways:

1. Analysing the existing encodings for mathematical datatypes of set and sequences; trying
examples and understanding the worst case behaviour for some existing encodings.

2. Investigating alternative approaches such as using different theorem provers or custom
decision procedures.
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3. Based on the above investigations, find a suitable solution, and document the in-
sights which lead to its development. We may consider formalising any complete-
ness/termination guarantees (for triggering-based axiomatisations, some existing papers
suggest techniques for defining these properties formally) [4, 3].

4. Further work may include specifying involved examples and exploiting the resulting
solutions, and/or transferring the ideas learned to support for other features of the
verification infrastructure.
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