
Automated Support for Mathematical Datatypes in the Viper

Tool Infrastructure

Peter Müller
Chair of Programming Methodology

ETH Zürich
peter.mueller@inf.ethz.ch

January 30, 2015

Viper (“Verification Infrastructure for PErmission- based Reasoning”) is a collection of
tools developed at ETH Zurich [5], oriented around a new intermediate verification language
called Silver. Silver provides support for permission-based reasoning (la Separation Logic [9])
using the logic of implicit dynamic frames [11, 8, 10]. This infrastructure is particularly well
suited for supporting verification techniques based on separation logic and other permission
logics. Front-end tools for source programming languages can be encoded to verification
problems in Silver, for which there are two verifiers available as back-ends: Silicon (based on
symbolic execution) and Carbon (based on verification condition generation via Boogie [6]).

The intermediate language Silver supports a few primitive types and other types can
be encoded by front-end tools. It also provides support for polymorphic sequence and set
datatypes. The sequence and set types are supported by axiomatizations based on those used
in the Dafny verifier [7]. The axiomatisations have been developed using theories available
in the SMT solver (such as uninterpreted functions, integer arithmetic, etc.) and consist of
universally-quantified formulas controlled by triggers to guide the E-matching procedure in
Z3 [2]. The initial task of the internship will be to understand the existing encodings in detail.
In the context of the Viper tools, these axiomatisations perform reasonably well, but in some
cases there are performance issues when handling complicated examples (particularly those
with heavy use of set and sequence constructs). Understanding the performance of Z3 with
respect to different axiomatisations requires a lot of experimentation. The VCC project [1]
provides one tool which can be used for debugging and profiling Z3′s behaviour in these cases.
Finding a solution to this will give good and predicatable support for set and sequences data
types encoding which would also be relevant for the Dafny program verifier and others based
on Boogie/Z3′s technology; potential improvements could greatly benefit a variety of existing
tools and verifiers.

In the internship we propose to investigate the support for these mathematical types in
the following ways:

1. Analysing the existing encodings for mathematical datatypes of set and sequences; trying
examples and understanding the worst case behaviour for some existing encodings.

2. Investigating alternative approaches such as using different theorem provers or custom
decision procedures.

1

3. Based on the above investigations, find a suitable solution, and document the in-
sights which lead to its development. We may consider formalising any complete-
ness/termination guarantees (for triggering-based axiomatisations, some existing papers
suggest techniques for defining these properties formally) [4, 3].

4. Further work may include specifying involved examples and exploiting the resulting
solutions, and/or transferring the ideas learned to support for other features of the
verification infrastructure.

References

[1] Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., San-
ten, T., Schulte, W., and Tobies, S. VCC: A practical system for verifying concur-
rent C.

[2] de Moura, L., and Bjrner, N. Z3: An efficient SMT solver. In Tools and Algorithms
for the Construction and Analysis of Systems, 14th International Conference, TACAS
2008, Held as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings (2008),
vol. 4963 of Lecture Notes in Computer Science, Springer, pp. 337–340.

[3] Dross, C., Conchon, S., Kanig, J., and Paskevich, A. Reasoning with Triggers.
In SMT 2012 (2013), P. Fontaine and A. Goel, Eds., vol. 20 of EPiC Series, EasyChair,
pp. 22–31.

[4] Ge, Y., and Moura, L. Complete Instantiation for Quantified Formulas in Satisfia-
biliby Modulo Theories. In Proceedings of the 21st International Conference on Computer
Aided Verification (Berlin, Heidelberg, 2009), CAV ’09, Springer-Verlag, pp. 306–320.

[5] Juhasz, U., Kassios, I. T., Müller, P., Novacek, M., Schwerhoff, M., and
Summers, A. J. Viper: A Verification Infrastructure for Permission-Based Reasoning.
Tech. rep., ETH Zurich, 2014.

[6] Leino, K. R. M. This is Boogie 2. Tech. rep., June 2008.

[7] Leino, K. R. M. Dafny: An Automatic Program Verifier for Functional Correctness.
In Logic for Programming, Artificial Intelligence, and Reasoning - 16th International
Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised Selected Papers
(2010), pp. 348–370.

[8] Parkinson, M. J., and Summers, A. J. The Relationship Between Separation Logic
and Implicit Dynamic Frames. Logical Methods in Computer Science 8, 3 (2012).

[9] Reynolds, J. C. Separation logic: A Logic for Shared Mutable Data Structures. In
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science (Wash-
ington, DC, USA, 2002), LICS ’02, IEEE Computer Society, pp. 55–74.

[10] Smans, J. Specification and Automatic Verification of Frame Properties for Java-like
Programs (Specificatie en automatische verificatie van frame eigenschappen voor Java-
achtige programma’s). PhD thesis, Informatics Section, Department of Computer Science,

2

Faculty of Engineering Science, May 2009. Piessens, Frank and Clarke, Dave (supervi-
sors).

[11] Smans, J., Jacobs, B., and Piessens, F. Implicit Dynamic Frames: Combining
dynamic frames and separation logic. In ECOOP 2009 - Object-oriented Programming,
23rd European Conference, Genova, Italy, July 6-10, 2009, Proceedings, European Con-
ference on Object-oriented Programming (ECOOP), Genova, 6-10 July 2009 (July 2009),
S. Drossopoulou, Ed., Springer-Verlag, pp. 148–172.

3

