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The general context

Satisfiability Modulo Theories solvers are the core of several verification technologies. Verification tasks
such as checking verification conditions in deductive verification or computing program abstraction in
software model checking can be reduced to the first order theories and solved in SMT solvers. SMT
solvers have native support for various theories such as linear arithmetic, arrays and bit vectors. Some
verification tasks involve reasoning of other complex theories such as sequences which are not natively
supported. Adding a new theory to SMT solvers depends on implementation details of the SMT
solver, and is done mainly by the developer. These theories can be alternatively supported by first
order axiomatization. However, in the presence of quantifiers, SMT solvers are incomplete and exhibit
unpredictable behaviour such as non-termination.

The research problem

Triggers or patterns can be used to handle quantifiers in the first order axiomatization. However, an
uncontrolled instantiation with triggers or patterns can give non-terminating and incomplete behaviour.
Therefore, if the trigger-based axiomatization are not designed carefully, they give an unpredictable
behaviour to the user and makes it hard to debug. The axiomatization can also lead to non termination
because of wrong order in instantiating the trigger or a matching loop. In the pursuit of completeness,
sometimes the axioms are instantiated exponentially which gives several duplicate axioms. This arises
performance issue in the solver for goals that originate from the verification programs manipulating
these data structures. Our goal is to study further about the problem of proving completeness and
termination with also keeping in mind about the performance issue.

The theory of mathematical sequences is one theory which is widely used in verification tools for
automatic support. It provides an excellent platform to practice proofs by induction and also serves
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as a basis of reasoning about lists in the verification language such as why3, silver etc. However,
due to several universal quantifiers and complexity of the theory, its difficult to come up with a good
trigger-based axiomatization.

Proposed contribution

There is no general recipe for designing a complete and terminating trigger-based axiomatization which
can work for all kind of theories. However, we investigated and proposed a number of general techniques
and guidelines which we found useful to design a sound, complete and terminating axiomatization. We
designed a trigger-based first order axiomatization for Sequence theory, proved and argued on its
soundness, completeness and termination with respect to the triggers used for instantiation. We also
show a general way to avoid duplicate instantiations of axioms with so-called "stub-functions" which
improves the performance significantly.

Arguments supporting its validity

We have the proofs and arguments for soundness, termination and completeness of the Sequence ax-
iomatization using several techniques and formalization. The new set of sequences axioms with triggers
is experimented with various verification tools and have shown significant performance improvement
in the verification tools.

Summary and future work

SMT solvers with user provided axiomatization performs badly while handling quantifier instantiations.
We could solve this problem to some extent for particular set of axioms using stub functions. But
there are still problems related to performance in triggered axiomatization which can be addressed if
investigated deeply over the instantiation tree. With respect to the sequence axiomatization, one can
furthermore think of providing a robust solution to the support of extensionality completely.

There has been significant work done in formalization but I think investigating furthermore about
the general way of implementing a good axiomatization can be fruitful for various verification tools.

Notes and acknowledgement

I wish to thank my supervisors Prof. Peter Müller and Dr. Alexander J. Summers for their genuine
help and keen insights which made this research internship fruitful.

The report is written in English, because the author and supervisors know very little French.
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1 Background

1.1 Axiomatization

Satisifiability Modulo Theories (SMT) solvers decide satisfiability or unsatisfiability of first order for-
mulas in the presence of background theories such as booleans, integer-arithmetic, bit-vectors, arrays
etc. However, in general, verification tools need support for various complex theories. as the verifica-
tion conditions generated should be evaluated modulo a theory describing the verification methodology.
SMT solvers cannot support such arbitrary theories natively. Given the complexity of such theories, it
seems highly impractical to implement inside an SMT solver. Therefore, a deductive first order axiom-
atization is typically developed using the theories available in the solver natively. An axiomatization to
support a theory consists of universally quantified formulas. SMT solvers can use several techniques.
Model-based quantifier instantiation and trigger based quantifier instantiations are most widely used;
our work concentrates on the latter.

Triggers The Stanford Pascal verifier and the subsequent Simplify theorem prover [9] pioneered the
use of trigger-based quantifier instantiation. The basic idea behind trigger-based quantifier instanti-
ation is quite straight-forward. Firstly, annotate a quantified formula using a pattern or trigger that
contains all the bound variables. A pattern is an expression (that does not contain binding operations,
such as quantifiers) that contains variables bound by a quantifier. Then instantiate the quantifier
whenever a term that matches the pattern is created during proof search. This is a conceptually
simple starting point, but there are several subtleties that are important.

We show an example below to describe triggers in universally quantified axioms:

∀x : int [g(x)]
f(g(x),0)=0

In the axiom f and g are function symbols, and x is a quantified integer variable. The square bracket
shows the trigger or the pattern. In the above example, taking all terms of integer type to instantiate
axiom is too much. With the help of the trigger g(x) we do not allow instantiation with all such terms.
Instead, we instantiate x only with terms t for which a ground term g(t) exists. This trigger can be
seen as a heuristic which can be given by the user or computed by the solver.

1.2 Motivation

Quantifier handling in trigger-based first order axiomatization are generally seen unreliable with no
termination and completeness guarantees. Most of the time a wrongly chosen trigger with no proper
reasoning can diverge the instantiations. The performance issue is also a problem when duplicate
axioms are instantiated. The E-matching algorithm [17] which is a well known approach for quantifier
reasoning also has some limitations [8]. It needs ground seeds terms, otherwise it fails to prove simple
properties when ground terms are not available. It also fails to detect the diverging triggering because
of the two mutually recursive triggers. This is generally termed as matching loop. A small example to
show matching loop:

Prasoon Dadhich 3



Internship Report –MPRI M2 2 PRELIMINARIES

∀x [f(x)]
f(x) = g(f(x)))

∀x [g(x)]
g(x) = f(g(x)))

In above axiom, if we start with a ground term f(x), the trigger in the left axiom f(x) will
unlock a new trigger of shape g(f(x)) which will trigger the right axiom and unlock a new term of
shape f(g(f(x)) and this mutual triggering process will repeat infinitely leading to non-termination.
Therefore, these limitations are to be dealt with care while working on a trigger based axiomatization.
There has been considerable work done in past to show that an axiomatization with correctly chosen
triggers, if proven sound, complete and terminating, will work as a generic decision procedure [11] . As
there is no universal recipe to build a new axiomatization for a theory, it requires a lot of reasoning
with triggers and theory specific knowledge to prove completeness and termination.

Sequences is one of the most widely used theory as a first order axiomatization in various verifica-
tion infrastructures such as Why3 [4] , Dafny [15] and Viper [14]. It gives a good platform to practice
proof by induction. However, due to its complexity involved in instantiating universally quantified
axioms, leads to several unpredictable behaviours from the solver. This is mainly because the trig-
gered axiomatizations have not been studied in detail with respect to completeness and termination.
Therefore, investigating a better general way of designing the correct triggered axiomatization such as
sequences is potentially very useful for the verification tools.

1.3 Goal results

The goal of the thesis was to give a sound, terminating and complete first order logic axiomatization
for the theories of mathematical sets and sequences without compromising with the performance of
the tool. In order to solve this problem, we also came up with general techniques in addition to the
techniques shown in [10]. which can be used as a guideline to design such axiomatizations for other
theories.

2 Preliminaries

In this section we provide the definition of structures used throughout the thesis. At the end we define
the background problem and the problem studied.

2.1 Theorem Provers and SMT solvers

In a verification infrastructure, the Verification conditions from programs are fed either in interactive
theorem provers, automatic theorem provers or Satisfiability Modulo Theory solvers. We are interested
in the automated program verification therefore we can consider ATPs and SMT solvers.

Vampire [19] is one of the stable automatic theorem prover which uses resolution and superposition
to decide the satisfiability of first order propositional calculus with equality. Whereas, SMT solvers
decide the satisfiability of a set of formulas with ground terms modulo a background theory. Different
SMT solvers have native support for various background theories. Some of the most commonly sup-
ported are Equality and Uninterpreted Function (EUF), Linear Arithmetic (LIA etc.), Bit-Vectors and
Arrays.
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The SMT solver’s core is the SAT solver which is generally based on Davis-Putnam-Logemann-
Loveland (DPLL) algorithm.

Most SMT solvers provide native support for multiple background theories and it is often the case
that we need the combination of them to solve a problem. There are several methods used to combine
theories. The most common one is the Nelson-Oppen Combination method [6].

There are several SMT solvers developed. The Z3 SMT solver [7] developed at Microsoft Research
is the default solver used by Boogie. It have several theories supported. The open source CVC4 SMT
solver [2] is also very popular in academia. They too support several theories and recently have come
up with a new efficient approach for handling conflicts in quantifier instantiation techniques [18].

The verification condition generated from our intermediate verification language Silver in VIPER
tool infrastructure are discharged into Z3 solver.

2.2 Formalization

The formalization of the first order logic with a notation for triggers that restricts the quantifier
instantiation was shown by Claire Dross in paper "Reasoning with Triggers" [11] . In this logic we
then define properties- Soundeness, completeness and termination for the sequence axiomatization. We
also give the performance improvement tricks for the recursive axioms with our axiomatization.

2.2.1 First Order Logic with Triggers and witnesses (FOL*)

Two new kind of formulas are introduced. A formula ψ under trigger l is written [l]ψ. It can be read
as if a literal l is true and all its sub-terms are known then assume ψ. A dual construct for [l]ψ, which
we call witness 〈l〉ψ. It can be read as assume that the literal l is true and all its sub-terms are known
and assume ψ.

The extended syntax of formulas with First order logic are summarized as follows:

ψ ::= A | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ∀x.ψ | ∃x.ψ | ¬ψ | [l]ψ | 〈l〉ψ

2.2.2 Denotational Semantics of FOL*

The semantics of the FOL* language are defined via two encodings JK+ and JK− into First order lan-
guage. The notation JK± is used when the rules are same for both the polarities and the polarities
of the sub-formula does not change. A new unary predicate symbol Known is introduced which de-
notes the fact that a term is known. Given a term t or an atomic formula A, the set of all the
non-variable sub-terms of t is denoted with T (t). The expression Known(T (t)) stands for the conjunc-
tion ∧t′∈T (t)Known(t′).

The entailment in FOL* is defined as follows

F `∗ , known(ω), JF K− ` JGK+

where ω is an arbitrary fresh constant supposed to be known a priori, and ` stands for entailment in
FOL.

Definition 2.1. World modulo T : We call world a T-satisfiable set of ground literals. A world L is
inhabited if there is at least one term occurring in it, i.e. T (L) is non-empty. A world L is complete
if for every ground literal l in the signature of T , either l ∈ L of ¬l ∈ L.
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Definition 2.2. Known term modulo T : A term t is known in a world L if and only if there is a term
t'.

2.3 Equational axioms and E-matching algorithm

During the proof search in an SMT solver, axioms are triggered by matching sub-expressions in the
goal. In this triggered axiomatization, if we reason at the higher level, the axioms are all equations of
this form

∀x(tlhs = trhs)

where FV {tlhs} = x and FV {trhs} ⊆ x. The left-hand side tlhs is generally the pattern or trigger.

While in practice, SMT-solvers support various kind of patterns in general, in this thesis, we stick
to the pattern or trigger to be always on its left-hand side in the equational axioms.

Simplify [9] is a legacy SMT system, the first one to have efficiently combine theory and quantifier
reasoning. Their technical report describes a recursive matching algorithm which has evolved into the
concept of E-matching and is used in various SMT solvers. The high level idea behind the E-matching
is as follows. The axiom is triggered by the activate trigger ψ of the solver, if ψ contains a subterm u
and there exists a substitution θ such that u =E tlhsθ, i.e. u matches the trigger of the axiom modulo
Equality. If the axiom is triggered, then the current active term is replaced by the logically equivalent
formula where u will be replaced by trhsθ.
Therefore, the axioms which will be used in the axiomatization can finally be viewed as the rewriting
rules as also described above in the formal semantics. Each application of an axiom will preserve the
logical equivalence to the original goal.
As long as there exists an axiom with the active terms that can be triggered, then the triggering is
guaranteed. Same term cannot be triggered again unless there is another axiom with mutually recursive
trigger. This is why, the termination in general is not guaranteed for the mutually recursive axioms
because they keep unlocking new triggers. Note that, unlike in term rewrite systems, there is no notion
of term orderings or well-defined customizable strategies which could be used to guide the triggering
process of the axioms. Therefore, sometimes while triggering, if the axiomatization leads to wrong
ordering, it can lead to non-termination or longer path. The ordering can also instantiate duplicate
axioms in some cases.

2.4 Concept of local theory extension

Local Theory A theory extension extends a given theory with additional symbols and axioms. Local
theory extensions are class of such axioms that can be decided using finite quantifier instantiation of
the extension axioms.

The triggered axiomatization can be further seen as a local theory extension [1, 13] which extends
on a given base theory with additional symbols and axioms. We consider extensions T0

⋃
K with

additional symbols and axioms satisfying a set K. An extension T0 ⊆ T0
⋃
K is local if satisfiability of

a set G of clauses w.r.t. T0
⋃
K only depends on T0 and those instances K[G] of K in which the terms

starting with extension functions are in the set st(K, G) of ground terms which already occur in G or
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K. It allows to restrict the search to the instances K[g] of K in which the variables below are extension
functions are instantiated with σ0-terms generated from st(K, G). But in the triggered axiomatization
the local instances K with respect to the ground terms set st(K, G) are sometimes insufficient to yield
a saitisfiability modulo the theory extensions.

3 Designing Trigger-based Axiomatization

There is no general way to design an axiomatization and nor to prove termination and completeness.
The axiomatization and proofs are dependent on the theory we want to decide. In this section, we
give general practices and our experiences, including debugging techniques, which can be applicable
for several other theories with triggered axiomatizations.

3.1 Termination

There can be no single "true" definition of a terminating axiomatization. Different variations of solver
with different algorithm may terminate on different classes of problems, which is difficult to describe
and to reason about. In [10], description for these definitions are detailed.

To reason about termination in general, we need an abstract representation of the solver’s state.
It is convenient to see this evolution as game where we choose several universally quantified formulas
to instantiate and our set of truth assignment decides how to interpret the result of the instantiation,
that is what new facts can be assumed. Whenever we arrive at a set of facts that is inconsistent or
saturated so that no new instantiations can occur, the game terminates and we win. If on the other
hand, whatever instantiations we do, the assignments can find new universal formulas to instantiate,
the game continues indefinitely. The axiomatization will be terminating if we have the winning strategy.
The winning strategy in this context can be summarized as: no matter what partial order we explore,
there will be a sequence of instantiations due to unlocked triggers which leads either to a conflict or a
saturated partial model.

According to our experience, in order to design such a terminating axiomatization, one could classify
the set of axioms in such a way that they can be reasoned for termination independently. Once you
have this classification, we can look for the dependencies with terms between each classified sets of
axioms. And in general, the axioms should unlock triggers of "smaller" size , in order to avoid diverging
triggering.

Avoiding Matching Loops As mentioned earlier, E-matching does not prevent the possible non-
termination which could be because of the two mutually recursive axioms or triggering with the wrong
order leading to matching loop. This problem can be mitigated by choosing triggers that are larger
than the new terms produced by the instantiations or converge the instantiation to the empty (halting)
symbol. We give a small example to explain this phenomena.

Lets have a recursive Axiom Append_Append_Associativity which defines an associativity property
quantified over three variables of polymorphic type Seq T .

∀ s0, s1, s2 : Seq T [Append(s0,Append(s1, s2))]
Append(s0,Append(s1, s2)) ≈ Append(Append(s0, s1), s2)
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If the axiom were triggered on Append(Append(s0, s1), s2) instead of Append(s0,Append(s1, s2))
, the triggering would have led to a matching loop. This is because of the wrong order chosen for
triggering as in the first case the SMT solver would know the empty sequence case to stop instantiations
whereas its not possible with the second trigger.

Performance optimization As mentioned in the E-matching, unlike in term rewriting systems,
there is no notion of term orderings or well-defined customizable strategies which can be used to
guide the triggering instances in the right direction. Therefore, sometimes triggering, leads to wrong
ordering and diverges causing non-termination. Such a mistake can be possibly avoided by choosing
the right trigger as shown earlier. But, sometimes, the triggering can also lead to instantiations of
several duplicate instantiations which worsens the performance of the solver. We propose a general
way of guiding the instantiations which works for all the recursive functions. We take the same
recursive axiom Append_Append_Associativity to explain this technique. The axiom is self triggering
or recursive, which instantiate several duplicate axioms and eventually gives us the same information.
For example: In Append_Append_Associativity axiom, for the term which is nested with more than 2
Append : Append(s0, (Append(s1, ...(Append(sn, sn+1)...sm−1, sm) will have the set of known subterms
to trigger exponentially for each bracketing which will lead to several instances with same information
learnt. In order to avoid this, we introduce a new stub function Append'(Seq T, Seq T ) : Seq T . and
modify our trigger by introducing a new function symbol in such a way that we lock further more
instantiations.

∀ s0, s1 : Seq T [Append(s0, s1)]
Append(s0, s1) ≈ Append′(s0, s1)

∀ s0, s1, s2 : Seq T [Append(s0,Append′(s1, s2))]
Append(s0,Append′(s1, s2)) ≈ Append′(Append(s0, s1), s2)

Note that the new symbol introduced and the axiom is just a symbol equality which does not affect
other axioms. In the second axiom, when the Known terms will be learned with the ground terms
or other active terms, the solver will also look for several possible combination of sub-terms. But this
time, with the help of the new symbol introduced, we filter the duplicate instantiation of nested trigger
with "stub" function. We have significantly limited the no. of subeterms to be triggered, as the new
triggers will introduce inactive terms Append′(Append(s0, s1), s2) which do not get triggered again; as
there is no trigger of such term in the axiomatization.

The new "stub" function potentially acts as a halting or controlling function to avoid equational
axioms getting triggered redundantly.

3.2 Completeness

We use Herbrand model in our formalization. The procedure to [10]design a complete axiomatization
W is to give a general method for completing the world L in which W axiomatization is true into a
model of the theory. It means that the term of L that are interpreted must be given a value in the
world which may create new equalities between them. This reasoning is easier if the new triggers are
not unlocked in W axiomatization. Therefore, in multi-sorted logic, it is generally enough to restrict
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the triggers such that, every trigger l in the axiomatization and every subterm t of l of an interpreted
sort, either t is a variable or t is top-level in l. In this way, the only triggers that can be unlocked are
then those where l becomes true because of the new equalities, which are generally easier to reason
about.

Model modulo T : A world L is said to be a model of a closed formula ψ whenever L is complete
and LBT ψ. We call ψ satisfiable if it has a model.

Another important point, when a trigger is guarding a disjunction (a nested function), then triggers
should not prevent us from deducing an element of the disjunction when others are false (or not active)
.

For example : The axioms described in the sequence axiomatization in next Sequence section with
nested triggers must be triggered in such a way that the rewriting is possible in both ways. For example
in the theory of Sequence axiomatization (shown in next section) must have duplicate axiom so that
there trigger come from each side of the equality. For example, axiom Lengt_Drop.

Axiom 2 (Length_Drop).

∀ s : Seq T, n : int [Length(Drop(s, n))]
(n < 0 =⇒ Length(Drop(s, n)) ≈ Length(s)) &

(0 ≤ n & n < Length(s) =⇒ Length(Drop(s, n)) ≈ Length(s)− n) &
(Length(s) ≤ n =⇒ Length(Drop(s, n)) ≈ 0)

Axiom 3 (Length_Drop_Inv).

∀ s : Seq T, n : int [Length(s),Drop(s, n)]
(n < 0 =⇒ Length(Drop(s, n)) ≈ Length(s)) &

(0 ≤ n & n < Length(s) =⇒ Length(Drop(s, n)) ≈ Length(s)− n) &
(Length(s) ≤ n =⇒ Length(Drop(s, n)) ≈ 0)

In this case if the above axiom was not added, we would not be able to get the conflict for the
{length(s1) 6≈ length(s2), Drop(s1, n) ≈ Drop(s2, n)}.

The approach to get completeness can also be extended to more general notion of Psi-Local Theory
extensions. It is experienced that sometimes the local instances of axioms are not enough to decide the
satisfiability modulo of the theory axiomatization. This is basically because in the First Order Logic
with triggers (FOL*) the cut rule is not admissible in it. Therefore, we need to compute a stronger set
ψ(st(G)) for the set st(G) such that we have all the terms to compute the satisfiability.

ψ(st(G)) = st(G)
⋃
{g(f(t)|t ∈ st(G)}

The above formula states, the general intermediate step for computing stronger set of ground terms.
The g and f are function symbols of same return type. To check the satisfiability of a set of ground
terms G, it is sufficient to instantiate the axioms such that all term appear in ψ(st(G)).

Unfortunately, there can be no general way of computing this stronger set. Its also theory depen-
dent. Although, it seems possible to specify Psi function in a symbolic way but as the solvers are
today, this still needs to be done externally.
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This could be also seen as an intermediate lemma which is required to prove the satisfiability. And
it eventually helps us to avoid the restriction of not admitting the cut rule.

We can also introduce these stronger set of ground terms by triggering on all possible nested terms
which we have with the help of the Psi function.

4 Sequences

We have used the above framework for Sequence axiomatization and have implemented successfully in
our verification infrastructure VIPER. We also prove termination and Completeness for the sequence
axiomatization and thus show that the triggered axiomatization can handle complex theories efficiently.
Our tests, when the theory is heavily used, gives a better performance to the solver on the goals that
comes from the verification of programs using this data-structure.

4.1 Presentation of the theory

Viper tool aims to provide automatic support for polymorphic sequences. The theory describes several
functions over sequences. The choice of functions and the basis of axiomatization comes from the
Dafny verification tool.

Let T be a polymorphic type. We define the sequence Seq T ordered and of finite length over
T . We first define function symbol Empty() : Seq T which returns an empty sequence, it contains no
elements.

Then we define a concatenation operation, which we call Append. To append a sequence means to
add the elements of the second sequence at the end of first sequence. The constant function Empty
and concatenation function Append satisfy the axioms for monoids. That is, Empty is an identity of
Append and Append is also associative. We axiomatize this is in our axioms described later.

Furthermore, we define sequence extraction operation with functions Take and Drop. The Take
function gives the first n elements of the sequence. The Drop function gives a sequence with its first n
elements dropped.

We extend the theory to use integers. We define the function Length for sequences which is the
number of elements. In order to refer to the elements directly as a reference we also define function
Index. And thus in our axiomatization, we will add the knowledge of the few properties of the integers
based on length and index.

The function Contains is based on the notion of membership. It is described by using the function
symbol Contains whose value is true if only if the sequence s contains the element t.

4.2 Description of the Sequence Axiomatization

SMT solvers do not have a built-in support for Sequences. Several verification tools use first order
axiomatization to support sequence theory automatically. We investigate further in detail on the first
order axiomatization of sequences theory by keeping several guidelines and techniques to get a well
reasoned trigger based axiomatization. We also give the detailed perspective of how the axiomatization
can be classified and reasoned for termination. We also show where the prover will fail to instantiate
the quantified axioms leading to incompleteness.
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To start with axiomatization, computing a stronger set of st(ψ) ground terms by saturating all
possible combination of terms with triggers is useful. As mentioned earlier in the limitation of E-
matching algorithm, the prover needs to have a term showing up in the ground terms to trigger
some of the axioms. Therefore, several axioms are needed which can be seen as a special case of the
extensionality axiom to trigger the equality. They basically help us to introduce the equal terms which
also acts as an intermediate lemma. In general, its observed that one can take an idea of all these terms
by constructing a larger set of ground terms. This further helps us to get a complete axiomatization.

The axioms are described below. They are classified according to their triggers.
Firstly, we have the Length term and all possible subterms triggers such as Length(Empty()),

Length(Singleton), (Length(Append(s0, s1), Length(Take(s, n)) and Length(Drop(s, n)).

Axiom 4 (Length_Positive).

∀ s : Seq T [Length(s)]
0 ≤ Length(s)

Axiom 5 (Length_Empty 1).

Length(Empty()) ≈ 0

Axiom 6 (Length_Empty 2).

∀ s : Seq T [Length(s)]
Length(s) ≈ 0 =⇒ s ≈ Empty()

Axiom 7 (Length_Singleton).

∀ t : T [Length(Singleton(t))]
Length(Singleton(t)) ≈ 1

Axiom 8 (Length_Append).

∀ s0 : Seq T, s1 : Seq T [Length(Append(s0, s1))]
Length(Append(s0, s1)) ≈ Length(s0) + Length(s1)

Axiom 9 (Length_Drop).

∀ s : Seq T, n : int [Length(Drop(s, n))]
(n < 0 =⇒ Length(Drop(s, n)) ≈ Length(s)) &

(0 ≤ n & n < Length(s) =⇒ Length(Drop(s, n)) ≈ Length(s)− n) &
(Length(s) ≤ n =⇒ Length(Drop(s, n)) ≈ 0)

Axiom 10 (Length_Take).

∀ s : Seq T, n : int [Length(Take(s, n))]
(n < 0 =⇒ Length(Take(s, n)) ≈ 0) &

(0 ≤ n & n < Length(s) =⇒ Length(Take(s, n)) ≈ n) &
(Length(s) ≤ n =⇒ Length(Take(s, i)) ≈ Length(s))
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We axiomatize the properties of Index term and all its sub-terms with

Axiom 11 (Index_Singleton).

∀ t : T [Index(Singleton(t), 0)]
Index(Singleton(t), 0) ≈ t)

Axiom 12 (Index_Append).

∀ s0 : Seq T, s1 : Seq T, n : int [Index(Append(s0, s1), n)]
(n < Length(s0) =⇒ Index(Append(s0, s1), n) ≈ Index(s0, n)) &

(Length(s0) ≤ n =⇒ Index(Append(s0, s1), n) ≈ Index(s1, n− Length(s0)))

Axiom 13 (Index_Take).

∀ s : Seq T, n : int, j : int [Index(Take(s, n), j)]
0 ≤ j & j < n & j < Length(s) =⇒ Index(Take(s, n), j) ≈ Index(s, j)

Axiom 14 (Index_Drop).

∀ s : Seq T, n : int, j : int [Index(Drop(s, n), j)]
0 ≤ n & 0 ≤ j & j < Length(s)− n =⇒ Index(Drop(s, n), j) ≈ Index(s, j + n)

We axiomatize Contains terms and its sub-terms.

Axiom 15 (Contains).

∀ s : Seq T, x : T [Contains(s,x)]
Contains(s,x) ⇐⇒ (∃i : int :: [Index(s, i)]0 ≤ i & i < Length(s) & Index(s, i) ≈ x)

Axiom 16 (Contains_Empty).

∀ x : T [Contains(Empty(), x)]
!Contains(Empty(), x))

Axiom 17 (Contains_Append).

∀ s0 : Seq T, s1 : Seq T, x : T [Contains(Append(s0, s1), x)]
Contains(Append(s0, s1), x)⇐⇒ Contains(s0, x)||Contains(s1, x)

Axiom 18 (Contains_Take).

∀ s : Seq T, n : int, x : T [Contains(Take(s, n), x)]
Contains(Take(s, n), x)

⇐⇒ (∃ i : int [Index(s, i)] 0 ≤ i & i < n & i < Length(s) & Index(s, i) ≈ x)

Axiom 19 (Contains_Drop).

∀ s : Seq T, n : int, x : T [Contains(Drop(s, n), x)]
Contains(Drop(s, n), x)

⇐⇒ (∃ i : int [Index(s, i)] 0 ≤ n & n ≤ i & i < Length(s) & Index(s, i) ≈ x)
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Axiom 20 (Contains_Singleton).

∀ x, y : T [Contains(Singleton(x), y)]
Contains(Singleton(x),y) ⇐⇒ x ≈ y

We define the associativity property of Append function with the help of a recursive trigger and
performance optimization as described in general guidelines with the help of auxillary Append' function

Axiom 21 (Empty_Append 1).

∀ s : Seq T [Append(Empty(), s)]
Append(Empty(),s) ≈ s

Axiom 22 (Append_Empty 2).

∀ s : Seq T [Append(s,Empty()]
Append(s,Empty()) ≈ s

Axiom 23 (Append).

∀ s0 : Seq T, s1 : Seq T [Append(s0, s1)]
Append(s0, s1) ≈ Append′(s0, s1)

Axiom 24 (Append_Append').

∀ s0 : Seq T, s1 : Seq T, s2 : Seq T [Append(s0,Append′(s1, s2))]
Append(s0,Append′(s1, s2)) ≈ Append′(Append(s0, s1), s2)

Take and Drop additive properties are defined with recursive triggering function with the help
auxillary functions Take' and Drop' respectively to avoid exponential blow up.

Axiom 25 (Drop_base).

∀ s : Seq T, n : int [Drop(s, n)]
n == 0 =⇒ Drop(s, n) ≈ s

Axiom 26 (Take_base).

∀ s : Seq T, n : int [Take(s, n)]
n == 0 =⇒ Take(s, n) ≈ Empty()

Axiom 27 (Drop_Recursive).

∀ s : Seq T,m, n : int [Drop, n]
0 ≤ n & n ≤ Length(s) =⇒ Drop(s, n) ≈ Drop′(s, n)

Axiom 28 (Drop_Drop'_Recursive).

∀ s : Seq T,m, n : int [Drop(Drop'(s,m), n)]
0 ≤ m & 0 ≤ n &m+ n ≤ Length(s) =⇒ Drop(Drop'(s,m), n) ≈ Drop'(s,m+ n)
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Axiom 29 (Take_Recursive).

∀ s : Seq T,m, n : int [Take(s, n]
0 ≤ n & n ≤ Length(s) =⇒ Take(s, n) ≈ Take′(s, n)

Axiom 30 (Take_Take'_Recursive).

∀ s : Seq T,m, n : int [Take(Take'(s,m), n)]
0 ≤ m & 0 ≤ n &m+ n ≤ Length(s) =⇒ Take(Take'(s,m), n) ≈ Take'(s,m+ n)

Theorem 4.1. The axiomatization is terminating, sound and complete with respect to the same
axiomatization without triggers and witnesses on verification conditions coming from our intermediate
verification language Silver in VIPER verification infrastructure.

4.3 Termination

We show that our verification conditions coming from VIPER programs which uses sequences axiom-
atization is terminating.

We use the fact that the triggers only contain uninterpreted function symbols. We only need to
show that considering the set of terms generated via E-matching with the above axioms and any finite
set of initial terms and equalities, the instantiation will terminate. Indeed, as mentioned in general
criteria, the underlying theory T cannot create a new terms starting with every uninterpreted function
symbol, hence there can only be a finite number of instances generated by our axiomatization.

Length Terms (α)

Length(Singleton(t), c)

Length(Append(s0, s1)

Length(Take(s, n))

Length(Drop(s, n))

Index Terms (β)

Index(Singleton(t), c)

Index(Append(s0, s1)

Index(Take(s, n), i)

Index(Drop(s, n), j)

Contains Terms (γ)

Contains(Singleton(t), 0)

Contains(Append(s0, s1), e)

Contains(Take(s, n), e)

Contains(Drop(s, n), e)

We classify the axioms and their triggers in such a way that they can be reasoned independently
or reasoned relatively to other classified sets. To do this, we separate the triggering terms. By
triggering terms we mean the set of terms that can be triggered when the terms are known. In
sequence axiomatization we do this classification according to Length, Index and Contains as their
sub-terms.

We first consider Length(s) trigger from the axiom Length_Positive and Length_Empty. The
Length_Positive axiom does not create any new triggering term except constants. The Length_Empty
axiom only creates a constant logical function Empty() which of course does not trigger further.

Now, we look for all the length terms with the sub-terms as shown above. We see all the axioms
Length_Singleton, Length_Append, Length_Take, Length_Drop can unlock only length term triggers.
We can see this as a rewriting of equational axioms from (tlhs to trhs). Now, let us take this set of
the triggering Length terms to be α. This set α can expand with the instantiation of triggering Length
terms in the presence of ground terms or known terms. In order to prove the termination it is necessary
to argue on the fact that this set will stop expanding eventually when all the terms are saturated or
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partial model is built. We know that we start with finite initial terms, therefore the only possible way
to see the non-termination is when the set of Length axioms are diverging. Now, we analyse our axioms
carefully and we find that all the Length terms when triggered unlocks "smaller" terms which do not
introduce new terms, converging to the end of the finite terms we started with. Therefore, according
to the axioms the length terms will only unlock converging triggering length terms, and we see the
termination eventually.

Similarly we look for Index terms. The function Index terms does get triggered in the Contains
axiom and in the existential quantification. If we look at the axioms of all Index term, we see that this
can only lead to new triggering terms of Length or Index. The Length triggering terms will saturate to
the set α and follow the instantiation as explained before. And then, we further look with the sub-terms
triggered with Index axioms. Now, let us take another set β for the triggering index terms. Similar
to the Length axioms, we analyse our axioms and find all the triggers which unlock only converging
triggering Index terms. Therefore, even if the set β expands with ground and known terms but due to
converging triggering with finite terms to start with, it will terminate eventually.

γ
β

α

Figure 1: Representation
of set α, β and γ

Now, we consider Contains terms. Let us take the set γ for the trigger-
ing contains terms. As the trigger Contains saturates directly into Index
and Length terms and thus respectively into the set β and α which then
follows the above argument. We further see the Contains and its sub-terms
in the axioms Contains_Singleton, Contains_Append, Contains_Take and
Contains_Drop has only converging triggering terms . This terms will
be saturated only to the terms Contains and Index and Length, thus into
the set γ, β, and α respectively which will expand with the ground terms
and known terms, but eventually gives a finite number of instantiation of
axioms.

For the recursively triggered axioms Append_Append, Take_Take and
Drop_Drop we keep the base axiom and the recursive axiom. The appli-
cation of these two axioms are eventually stopped when the conditions of
the base axioms are satisfied.

We do believe that the sets α, β and γ will expand with the no. of terms getting instantiated,
However this expansion will eventually terminate because we start with only finite uninterpreted terms.
we cannot have an infinite triggering unless we have a mutually recursive trigger or a matching loop.
We avoid the possibility of matching loop in our axiomatization by triggering only towards one side.
If we abstract the triggering axiomatization, we can see it as a triggering in only only one direction
hierarchically. The Contains term triggers unlock only Index and Length term triggers. And the Index
term triggers unlock only to the Length triggers. The Length triggers unlock only the Length triggers.

Therefore, with above arguments we conclude these axioms will instantiate triggers finitely and
thus can be added to the solver without compromising the termination of it.

4.4 Completeness

Firstly we note that the axiomatization is not complete in general with the extensionality of sequences.
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Axiom 31 (Sequence_Equal).

∀ s0 : Seq T, s1 : Seq T [Equal(s0, s1)]
Equal(s0, s1)⇐⇒ Length(s0) ≈ Length(s1)&∀ j : int [Index(s0, j)][Index(s1, j)]

0 ≤ j&j < Length(s0) =⇒ Index(s0, j) ≈ Index(s1, j))

Axiom 32 (Extensionality).

∀ a : Seq T, b : Seq T [Equal(a, b)]
Equal(a,b) =⇒ a ≈ b)

One can come up easily with a counter-example to show the axiomatization is incomplete if not
Equal term shows up in the literals. Indeed such a case can only happen in practice, if either there is a
trigger containing twice the same sequence variable, in which case a new equality will allow the trigger
to match with the extensionality or if there are two nested triggers with the same sequence variable.
Generally, in practice, the first case happens rarely and if it does it is covered by the extensionality.
For the second case, as mentioned in the section 3.2 designing complete axiomatization; it does happen
with the nested triggers such as Length(Drop(s, n)) , the axiomatization will be incomplete as it won’t
be able to find the unsatisfiability in {Length(s1) 6≈ Length(s2), Drop(s1, n) ≈ Drop(s2, n)}. The
second case, can be solved when added duplicate inverse axiom with multi-trigger.

We have handled the nested recursive applications with recursive triggers. We have three recursive
triggers Append(Append(s1, s2), ss) , Drop(Drop(s, i), j) and Take(Take(s, i), j). These triggers and
axioms define properties when nested to themselves. They help to prove the sub-goals that may arrive
from the verification conditions. For example, it would not have been possible to get the unsatisfiability
in {drop(drop(s, i), j) ≈ st, drop(s, i+ j) 6≈ drop(st)}.

There are couple of axioms that are specialization of existensionality axioms.

Axiom 33 (Append_Drop).

∀ s0 : Seq T, s1 : Seq T, n : int [Append(Drop(s0, n), s1)]
0 < Length(s0) & n ≥ 0 & n ≤ Length(s0) =⇒

Append(Drop(s0, n), s1) ≈ Drop(Append(s0, s1), n)))

Axiom 34 (Append_Take).

∀ s0 : Seq T, s1 : Seq T, n : int [Append(s0,Take(s1, n))]
0 < Length(s1) & n ≤ 0 & n ≤ Length(s1) =⇒

Append(s0,Take(s1, n)) ≈ Take(Append(s0, s1), n+ Length(s0)))

Basically, because in sequence axiomatization the solver could not learn the equality when Append
and Drop or Append and Take function overlaps, and when they do not overlap. Therefore the axioms
Append_Drop and Append_Take were required. These axioms will be theoretically redundant but are
useful in the triggered axiomatization of sequences. Its because during the time of experimentation,
we noticed, the solver wasn’t able to apply the extensionality.
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S1 S2

S1+2

n

S1 S2

S1+2

m

Figure 2: Append_Drop and Append_Take

As shown in the figure above, cut made by m and n would have certain part of the sequences still
equal irrespective of the cut made before or after the Append operation.

In order to prove that we are complete except the case of extensionality, we first need a lemma
that states the equalities between integers which can be safely added to the partial model of the
axiomatization :

Lemma 4.2. [10] Let L be a world in which the axiomatization is true and t1,t2 ∈ T (L) be two type
integers. If L 0 t1 6≈ t2 then the axiomatization is also true in L ∪ t1 ≈ t2.

Let G be a set of literals and L a world in which G and the axiomatization are true. We construct
a model from L for the axiomatization without triggers and witnesses. Since LBT G, it is also a model
of G.

Since L is a T-satisfiable, let IT be a model of L. No integer constant appears in a trigger of the
axiomatization. As a consequence, the axiomatization is true in L ∪ {i ≈ i|i is an integer constant}.
For every term t ∈ T (L) of the form Length(s), we add t ≈ IT (t) to L. By Lemma, the axiomatization
is still true in L.

For every term s of type Seq in L, if Length(s) is not in T (L) modulo T , we add Length(co) ≈ 0
to L and, for every index i of type int if Index(s, i) is not in L, we add a Index(s, i) ≈ 0. This decides
that the sequences that are not forced to be non-empty are empty and index that are not forced to be
valid are invaild in Sequence s. The axiomatization will be still true in L. Indeed, thanks to the axiom
Length_Positive which say Length(s) is in T (L) whenever there is any Index(s, i) for sequence s is in
T (L).

Now, we give a value to Contains(s, v) for each known term t of Type T and each known term s of
Seq T in L. For every s and x such that L 0T Contains(s, v) ≈ t, we add the literal Contains(s, v) 6≈ t
to L. Since Contains is uninterpreted, the set of literals L is still satisfiable in T . The axiomatization
will be still true in L. Since axioms guarded with Contains(s, v) term contains a negative occur-
rence of Contains(s, v) ≈ t. As a consequence, they are all automatically satisfied when assuming
Contains(s, v) 6≈ t.

Finally, we handle Empty. For every known term s of type Seq.1cmT in L, if s is not equal to
Empty then add Empty(s) 6≈ t to L. If the length of the seq s is 0 we already have L `T s ≈ Empty().
Thanks to the Length(Empty) axiom and as a consequence the axiomatization will be still true in L.

4.5 Soundness

We show that, if a set of literal G has a model in the axiomatization without triggers and witnesses
then there is a total model of G and the axiomatization [10]. If I is the model of a set of literals G in
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the axiomatization without triggers and witnesses, we define L = l|I(l) = T . By construction of L, L
is a total model of G. Since L is total, for every axiom ψ of the axiomatization, LBT ψ.

5 Related Work

Besides first order axiomatization, there are several ways that can be used to support new theories in
SMT solvers. As described in this paper by Bjorner [3], several non-native theories can be supported
using Z3. This paper also presents an API which can be used to add decision procedures. Both the
first order axiomatization and encoding to an already supported theories through API, requires a lot
of thinking to get a coherent design and manual proofs of completeness and termination. We find each
of these techniques can be better than others specific to the theories.

There are various instantiation techniques to support quantifier in First order logic other than
the trigger-based instantiation. Model-based quantifier instantiation [12] is one of the commonly used
technique for generating instances. Generally, its not considered well performing but on the other hand
its accurate, since it allows to continue the search when otherwise the solver would have stopped with
the partial model.

Simplify is one of the first legacy solver, the first one to have efficiently combine theories with
quantifiers reasoning using E-matching algorithm [9]. They define several triggering techniques in their
technical report. Most of the solvers have heuristics to select the triggers automatically in the E-
matching algorithm. However, its commonly agreed that manual triggers are sometimes more efficient
to generate better instances [16]. A Lot of work has also been done on defining an efficient mechanism
for finding the instances with triggers.

In [11] paper, they give a generic technique and guidelines that can be followed to do an efficient
trigger based axiomatization which works as a custom decision procedure. We use the same formal-
izataion and extend the general guidelines and techniques. Recently, in this paper [1] they also show
how to obtain a complete decision procedure for local theory extensions via E-matching, an important
class of theory that are decidable using a finite instantiation of axioms.

Several theories has been supported as a decision procedure efficiently using these techniques. In
Claire Dross thesis [10] , she has given a formal trigger-based axiomatization with proofs for sets and
linked list. We provide a formalization for the sequences theory in this thesis which is most widely
used in various verification infrastructure.

6 Experimentation and Debugging

We evaluated our techniques on a set of benchmarks of silver intermediate verification language in the
VIPER verification tool [14] . The benchmarks relies on the automatic support for sets and sequences
theories. The intermediate verification language Silver which supports specification in first-order logic
and separation logic. The tool reduces the program and specification into verification conditions modulo
several other theories such as sets and sequences.

We can see the heirarchy of tool as follows:

• Base theory: At the lowest level we have UFLIA

• Sets and Sequence
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• Implicit dynamice frames and separation logic (permission logic)

• program specific extensions

The programs considered were general sorting algorithms, common data structure operations and
abstract datatypes, linked lists etc.

The initial set of sequence axiomatization based on Dafny verification tool were not complete and
sometimes had several unpredictable behaviour due to diverging triggers. After the formalization and
new set of axioms we could fix them and also could improve the overall performance by restricting
duplicate instantiations. The VIPER test suite performance improved from 250 sec to 155 sec. We
were also able to automatically verify the sequences and set specific assertions. The similar behaviour
is also expected with the Dafny verification tool.

The particular example of "two way boolean recursive sort" which makes heavy use of sequences
verified in 40 sec with the initial set of axioms, whereas after with new set of axiomatization it took
less than 15 sec. The similar performance improvement was seen in Silicon the symbolic execution tool
at the back-end of Viper (from 15 sec to 5 sec).

During experimentation and debugging we used the debugging tool Axiom profiler from Vcc verifi-
cation tool [5]. Sometimes two triggers from different axioms behaves in a very unpredicatable manner
and its hard to detect them. Axiom profiler helped us to see the possible matching loop in these cases.
One of the example where we could debug a diverging trigger was in the axiom Append_Drop and
Drop_Drop_Recursive. The triggering diverged when triggered on Drop(Append(s0, s1), n) instead of
Append(Drop(s0, n), s1).

7 Conclusion

In this thesis, we have investigated and proposed trigger-based axiomatization techniques with respect
to termination, completeness and soundness. Keeping these techniques in mind, we worked concretely
on sequence axiomatization; proved and argued about its soundness, termination and completeness.
We also presented a technique to improve the performance issue of the solver. The result of these gives
a significant improvement over the previous version of the axiomatization.

Related to the sequences axiomatization, one could work further more to provide a complete sup-
port to the extensionality. There are several other related problems which are not addressed here, such
as various instantiation techniques : lazy, eager and hybrid instantiations. These techniques are used
for generating instantiation tree and can have different behaviour for different triggger-based axioma-
tizatons. It has been shown in [18], sometimes switching to one or another can help the solver to find
conflicting instances faster. It will be interesting to investigate furthermore about triggering strategies
in the perspective of how the instantiation tree is generated.
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A Figures

The figure shown below describes which trigger in Sequence axiomatization unlocks which triggering
term. The directed acyclic graph constructed helps us to see if there is any possible cycle which can
be a mutually recursive trigger (matching loop). However, one has to still do a manual proof because
there can be a possibility of having diverging triggers which cannot be visualized in the Directed graph
as cycles.

Figure 3: Directed graph of triggers in sequence axiomatization

B Making extensionality stronger

The below axioms on the extensionality were also found useful in performance improvement. They
helped the prover to add known terms and thus making the set of Ground terms more stronger, which
avoids instantiating new instances.

Axiom 35 (Extensionality_reflexive).

∀ a : Seq T, b : Seq T [Equal(a, b)]
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Equal(a,b) =⇒ Equal(b, a)

Axiom 36 (Extensionality_transitive).

∀ a : Seq T, b : Seq T, c : Seq T [Equal(a, b), Equal(b, c)]
Equal(a,b) & Equal(b,c) =⇒ Equal(a, c)

Axiom 37 (Extensionality_transitive 1).

∀ a : Seq T, b : Seq T, c : Seq T [Equal(a, b), Equal(a, c)]
Equal(a,b) & Equal(b,c) =⇒ Equal(a, c)
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